JP2004124217A - Method for operating smelting reduction furnace - Google Patents

Method for operating smelting reduction furnace Download PDF

Info

Publication number
JP2004124217A
JP2004124217A JP2002293163A JP2002293163A JP2004124217A JP 2004124217 A JP2004124217 A JP 2004124217A JP 2002293163 A JP2002293163 A JP 2002293163A JP 2002293163 A JP2002293163 A JP 2002293163A JP 2004124217 A JP2004124217 A JP 2004124217A
Authority
JP
Japan
Prior art keywords
oxygen
tuyere
carbon
reducing agent
smelting reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002293163A
Other languages
Japanese (ja)
Inventor
Takashi Matsui
松井 貴
Yoshiaki Hara
原 義明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002293163A priority Critical patent/JP2004124217A/en
Publication of JP2004124217A publication Critical patent/JP2004124217A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing molten low phosphorus metal which further reduces P content by using powdery raw material and carbon-base solid reducing agent having the same degree of P content as usual without selecting the powdery raw material and the carbon-base solid reducing agent, having low P content. <P>SOLUTION: In a method for operating a smelting reduction furnace, with which oxygen-enriched air and also, the powdery raw material containing metallic oxide raw material from a tuyere at the upper step in the smelting reduction furnace filling up the carbon-base solid reducing agent, and the molten metal is produced by blowing the oxygen-enriched air from the tuyere at the lower step, the theoretical combustion temperature of the oxygen-enriched air blown from the tuyere at the upper step is made to be ≥ 2700°C. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、炉頂から炭素系固体還元剤を装入して溶融還元炉内に充填し、羽口から金属酸化物を含有する粉粒状原料と酸素富化空気とを吹込んで、P含有量の低い溶融金属(以下、低燐溶融金属という)を製造する溶融還元炉の操業方法に関する。
【0002】
【従来の技術】
一般に、金属材料に混入するPは不純物と考えられており、P含有量が上昇すると金属材料の特性が劣化する。そのため、金属材料中のPを低濃度に維持する必要がある。たとえば鉄鋼材料の場合は、P含有量が増加すると、結晶粒界での強度を弱め、靭性を低下させることが知られている。したがって各種の規格にて、その鉄鋼材料の用途に応じてP含有量が規定されており、いずれも許容されるP含有量は低く抑えられている。
【0003】
しかしながら銑鉄の製造方法として広く採用されている高炉法においては、原料として高炉に装入される焼結鉱や鉱石にPが含まれているので、銑鉄のP含有量を低く抑えるのは困難である。つまり、焼結鉱や鉱石に含有されるPは主として酸化物として存在しており、その酸化物が高炉内の還元雰囲気に曝されて容易に還元され、Pが銑鉄に溶解するのである。
【0004】
しかも高炉内に装入される炭素系固体還元剤(たとえばコークス等)の灰分にもPは含まれており、炭素系固体還元剤が高炉内を降下する間に羽口前の高温領域でPが気化し、炉内ガスとともに炉内を上昇していく。一方、炉頂から装入された焼結鉱や鉱石が高炉内を降下するにつれて、炉内ガスとの熱交換によって昇温される。こうして溶融した焼結鉱や鉱石が融着帯と呼ばれる融着層を形成し、この融着帯の下側で銑鉄やスラグの液滴が落下する。この液滴が気化したPと接触して、Pが銑鉄やスラグに溶解するのである。
【0005】
このように高炉法では、Pが原料から銑鉄に混入するのは避けられない。したがって銑鉄のP含有量を低減するためには、P含有量の低い原料を選別して使用せざるを得ない。このようなP含有量の低い原料は高価であるから、高炉法による低燐銑鉄の製造は、製造コストの上昇を招く。
これに対して、シャフト部でのPの溶銑やスラグへの溶解を防ぐことのできる溶融還元法では、通常の原料から低燐溶融金属を製造することが期待される。
【0006】
たとえば特開昭57−198205 号公報(特許文献1)には、溶融還元炉の上段羽口から粉粒状の金属酸化物を高温の空気とともに炉内に吹込み、かつ下段羽口から高温の空気を吹込んで、炉内に充填した炭素系固体還元剤を燃焼させて金属酸化物を還元し、溶融金属を製造する技術が開示されている。この技術では、炉頂から装入されるのは炭素系固体還元剤のみであり、上段羽口の上方には溶融金属や溶融スラグが存在しない。したがって炭素系固体還元剤の灰分に含まれるPが気化して溶融還元炉内を上昇しても、溶融金属や溶融スラグに接触することはなく、P濃度の上昇を抑制できると考えられる。
【0007】
しかしながら特開昭57−198205 号公報に開示された技術では、高炉法に比べると消費する炭素系固体還元剤の量が多くなるという欠点があった。下段羽口前で燃焼した炭素系固体還元剤の灰分に含まれていたPは気化した後に溶融金属や溶融スラグに接触するため、下段羽口前で燃焼した炭素系固体還元剤中のPについては溶融金属へ移行するのを防ぐことは困難であるが、高炉法に比べて炭素系固体還元剤の使用量が多いために、結果として溶銑中のPの濃度が上昇してしまうという問題があった。
【0008】
また特許第2558989 号公報(特許文献2)には、溶融還元炉内でPを気化させることによって、低燐溶融金属を製造する技術が開示されている。これは、上記溶融還元法において、シャフトにおける炭素系固体還元剤の充填層の温度を制御して、炭素系固体還元剤が吹込み羽口へ降下するまでに1500℃以上に1時間以上保持されるようにすることにより、炭素系固体還元剤の灰分に含まれるPの酸化物がシャフト中で還元気化することを利用した技術である。これにより、吹込み羽口へ降下するまでに、炭素系固体還元剤中のP量が低減し、その結果、吹込み羽口前に到達するP量が低減できるため、溶融金属中のP濃度を低減できる。
【0009】
そこで発明者は、特許第2558989 号公報に開示された操業方法に準じて溶融還元炉を稼動して溶融金属を製造し、溶融金属へ移行するPについて調査した。
すなわち、表1に示す仕様の溶融還元炉(生産量200ton/日)を用いて、製鋼ダストの溶融還元を行なった。この製鋼ダストは、銑鉄を脱炭処理する製鋼工場から発生するダストを回収したものであり、成分は表2に示す通りである。
【0010】
【表1】

Figure 2004124217
【0011】
【表2】
Figure 2004124217
【0012】
製鋼ダスト中のPは、溶融還元炉内へ吹込まれたときに、生成する溶融メタル中へそのままほぼ全量移行すると考えられる。また、スラグ中へはほとんど移行しないと考えて良い。したがって単位時間あたりに溶融還元炉で使用した炭素系固体還元剤(たとえばコークス等)中のP含有量をPC (kg/H),単位時間あたりに溶融還元炉で使用した製鋼ダスト中のP含有量をPD (kg/H),単位時間あたりに溶融還元炉で製造した溶融メタル中のP含有量をPM (kg/H),炭素系固体還元剤中のPのうち、溶融メタルへ移行した比率R(%)(以下、 移行率という)の関係は、
R(%)= 100×(PM −PD )/PC        ・・・ (1)
となる。
【0013】
上記した溶融還元炉での操業結果から、この移行率Rを求めたところ、R=55%程度であることが判明した。これは、特許第2558989 号公報の技術では、炭素系固体還元剤中のPの約55%は依然として溶融金属中に溶解していることを意味する。
つまり特許第2558989 号公報に開示された技術では、低燐溶融金属の製造は可能であるが、さらなる改善の余地が残されていた。
【0014】
【特許文献1】
特開昭57−198205 号公報
【特許文献2】
特許第2558989 号公報
【0015】
【発明が解決しようとする課題】
本発明は上記のような問題を解消し、P含有量の低い炭素系固体還元剤を選別せず、従来と同等のP含有量を有する炭素系固体還元剤を使用して、従来の方法で製造した低燐溶融金属に比べてP含有量をさらに低減した低燐溶融金属を製造する方法を提供することを目的とする。
【0016】
【課題を解決するための手段】
特許第2558989 号公報に開示された技術において、Pの移行率を低減するための操業条件について、種々検討を加えたところ、シャフト部の炭素系固体還元剤の温度が必ずしも水平方向で均一とはならないためと考えられた。すなわち、溶融還元炉のシャフト部では上下段羽口から吹込まれた酸素富化空気が炭素系固体還元剤を燃焼したときの熱が、その燃焼ガスが炉内ガスとしてシャフト内を上昇する際に、炭素系固体還元剤を昇温する。
【0017】
したがって炉内ガスがシャフトを均等に流れればシャフト部での炭素系固体還元剤の温度は水平方向でほぼ均一になると考えられるが、溶融還元炉では羽口前で発生する炉内ガスがシャフト部で抵抗のないところを選択的に流れることになるため、流れの強いところでは還元剤の温度が高くなるが、流れの少ないところでは還元剤の温度は必ずしも上昇しない。
【0018】
このために、炉内で炭素系固体還元剤を1500℃以上で1時間以上保持するのは、簡単なことではないことが判明した。そこで、シャフト部で炭素系固体還元剤の温度を十分高温に保持してPの還元気化を効果的に行なうための操業条件を鋭意求めた結果、 本発明に至った。
本発明は、炭素系固体還元剤を充填した溶融還元炉の上段羽口から酸素富化空気とともに金属酸化物原料を含有する粉粒状原料を吹込み、かつ下段羽口から酸素富化空気を吹込んで溶融金属を製造する溶融還元炉の操業方法において、上段羽口前炉内側の領域での理論燃焼温度を2700℃以上にする溶融還元炉の操業方法である。
【0019】
前記した発明においては、好適態様として、上段羽口から吹込む酸素富化空気の富化酸素量を調整することにより、上段羽口前炉内側の領域での理論燃焼温度を2750℃以上にすることが好ましい。
【0020】
【発明の実施の形態】
図1は、本発明を適用する溶融還元炉の例を模式的に示す配置図である。図1に示すように、コークス等の炭素系固体還元剤2は、溶融還元炉1の炉頂から装入され、炉内に充填される。一方、 金属酸化物を含有する粉粒状原料10は、上段羽口3から酸素富化空気とともに炉内に吹込まれる。
【0021】
溶融還元炉1内の炭素系固体還元剤2の温度が高いほど、炭素系固体還元剤2中のPが短時間で気化する。溶融還元炉1の炉頂から装入されるのは炭素系固体還元剤2のみであり、上段羽口3の上方には溶融金属14や溶融スラグ15が存在しない。したがって炭素系固体還元剤2の灰分に含まれるPが気化して溶融還元炉1内を上昇しても、溶融金属14や溶融スラグ15に接触することはない。つまり上段羽口3より上方の炉内温度を上昇させることによって、Pの気化を促進し、溶融金属14へのPの移行を抑制することができる。
【0022】
このとき、前記したように上段羽口3より上方の炉内温度は必ずしも均一に昇温している訳ではないため、上段羽口3あるいは下段羽口4の前に炭素系固体還元剤が降下して燃焼するまでに、Pが気化する程度に昇温するためには、上段羽口前における燃焼ガスの温度を高くしておくことが効果的である。すなわち、羽口前での燃焼ガスの温度を高くしておくことで、上段羽口3より上方における炉内温度が不均一であっても、全体として温度を上昇させることができ、このため比較的低温部においてもPの気化を促進することができる。
【0023】
上段羽口3の羽口前での燃焼ガス温度は極めて高温であるため、直接温度を計測することは困難である。しかし、羽口前領域における熱バランスを考慮すれば、合理的な仮定の下に推定することができる。通常は上段羽口前領域へ単位時間あたりに入って来る送風量,富化酸素量,送風中の湿分,上段羽口前領域から出て行く燃焼ガス量,および送風温度,燃焼ガス温度の間で炭素系固体還元剤の燃焼熱を考慮して熱バランスを求めることで、上段羽口前における温度、すなわち理論燃焼温度(以下、 TFTという)が (2)式が求められる。
【0024】
TFT=A/B                  ・・・ (2)
A=〔BV×( 0.387BT+605.3 )+EO2 ×( 0.493BT+2719)+BV×BM/18000 ×(10.751BT−27241 )〕
B=〔 0.411BV+13.893BV×BM/18000 + 0.492EO2 
BV :送風量(m3 /min )
BT :送風温度(℃)
EO2 :富化酸素量(m3 /min )
BM :送風湿分(g/m3 
なお、BV,EO2 ,BMの体積は標準状態を示す。
【0025】
溶融還元炉1を操業するにあたって、これらのBV,BT,EO2 ,BMを変化させ、上段羽口3前の領域での理論燃焼温度TFTを算出し、移行率Rとの関係を調査した。その結果は図2に示す通りである。なお、ここで使用した溶融還元炉1の仕様は表1に示す通りであり、粉粒状原料10として使用した製鋼ダストの成分は表2に示す通りである。
【0026】
図2から明らかなように、上段羽口3の前の領域でのTFTが2750℃以上であれば、移行率Rが十分に低下することが分かる。したがって上段羽口3の前の領域でのTFTを2750℃以上とすることによって、炭素系固体還元剤2から溶融金属14へのPの移行を抑制し、低燐溶融金属を製造できる。
上段羽口3の前の領域でのTFTを2750℃以上にするためには、上段羽口3から吹込まれる酸素富化空気の酸素含有量を増加することが好ましい。
【0027】
また、下段羽口4から吹込まれる酸素富化空気の送風量を相対的に減少して、上段羽口3と下段羽口4から吹込まれる酸素富化空気中の総酸素量を従来の操業と同じ設定にすると、従来の方法で製造した低燐溶融金属に比べて、P含有量を一層低減した低燐溶融金属が得られる。
この場合は、下段羽口4から吹込まれる酸素富化空気中の酸素含有量を相対的に減少して、上段羽口3と下段羽口4から吹込まれる酸素富化空気中の総酸素量を従来の操業と同じ設定にすると、従来の方法で製造した低燐溶融金属に比べて、P含有量を一層低減した低燐溶融金属が得られる。このような酸素含有量の調整は、図1中の1次酸素11と2次酸素12の添加量を調整することによって可能である。ここで1次酸素とは、熱風発生機6に入る前に空気へ富化された酸素であり、2次酸素とは各上段羽口3へそれぞれ別個に供給される富化酸素である。
【0028】
【実施例】
図1に示す溶融還元炉1を用いて低燐溶融金属(すなわち低燐溶銑)を製造した。粉粒状原料10として使用した製鋼ダストの成分は表2に示す通りであり、溶融還元炉1の操業条件は表3に示す通りである。
【0029】
【表3】
Figure 2004124217
【0030】
表3中の発明例1〜6は、いずれも上段羽口3から吹込まれる酸素富化空気の理論燃焼温度TFTが2750℃以上であった例である。一方、比較例1,2は、上段羽口3から吹込まれる酸素富化空気の理論燃焼温度TFTが2750℃未満であった例である。これらの発明例1〜6と比較例1,2について移行率Rを比べると、比較例1,2では47.5〜54.8%であったのに対して、発明例1〜6では28.4〜41.7%であった。つまり本発明によって、移行率Rが低く抑えることができた。
【0031】
なお発明例1〜3は、2次酸素12を添加せず、1次酸素11のみ添加した酸素富化空気を上段羽口3と下段羽口4から各々0.5 の配分比率で吹込んだ例である。また発明例4,5は、酸素富化空気を上段羽口3と下段羽口4から各々0.5 の配分比率で吹込みながら、1次酸素11に加えて2次酸素12を添加し、上段羽口3から吹込まれる酸素富化空気の酸素含有量を増加した例である。発明例1〜3と発明例4,5について移行率Rを比べると、発明例1〜3では38.4〜41.7%であったのに対して、発明例4,5では33.6〜35.7%であり、移行率Rが一層低く抑えることができた。
【0032】
発明例6は、1次酸素11に加えて2次酸素12を添加し、上段羽口3から吹込まれる酸素富化空気の酸素含有量を増加するとともに、上段羽口3から吹込む酸素富化空気の配分比率を0.55とした例であり、その移行率Rは28.4%であった。これにより、移行率Rをより一層低く抑えることができた。
【0033】
【発明の効果】
本発明によれば、溶融還元炉で従来と同様の粉粒状原料や炭素系固体原料を使用して移行率Rを低く抑えることが可能であり、従来の方法で製造した低燐溶融金属に比べてP含有量を一層低減した低燐溶融金属を製造できる。
【図面の簡単な説明】
【図1】本発明を適用する溶融還元炉の例を模式的に示す配置図である。
【図2】移行率Rと上段羽口前の領域での理論燃焼温度TFTとの関係を示すグラフである。
【符号の説明】
1 溶融還元炉
2 炭素系固体還元剤
3 上段羽口
4 下段羽口
5 送風機
6 熱風発生機
7 粉粒状原料吹込み装置
8 炉頂装入装置
9 排出口
10 粉粒状原料
11 1次酸素
12 2次酸素
13 フラックス
14 溶融金属
15 溶融スラグ
16 排ガス
17 ダスト[0001]
TECHNICAL FIELD OF THE INVENTION
In the present invention, a carbon-based solid reducing agent is charged from the furnace top and charged into a smelting reduction furnace, and a powdery and granular material containing a metal oxide and oxygen-enriched air are blown from a tuyere to obtain a P content. The present invention relates to a method for operating a smelting reduction furnace for producing a molten metal having a low melting point (hereinafter, referred to as a low phosphorus molten metal).
[0002]
[Prior art]
Generally, P mixed into a metal material is considered to be an impurity, and as the P content increases, the characteristics of the metal material deteriorate. Therefore, it is necessary to keep P in the metal material at a low concentration. For example, in the case of a steel material, it is known that when the P content increases, the strength at the crystal grain boundaries is reduced, and the toughness is reduced. Therefore, in various standards, the P content is specified according to the use of the steel material, and the allowable P content is kept low in each case.
[0003]
However, in the blast furnace method widely used as a method for producing pig iron, it is difficult to keep the P content of pig iron low because P is contained in the sintered ore or ore charged into the blast furnace as a raw material. is there. That is, P contained in the sinter ore is mainly present as an oxide, and the oxide is easily reduced by being exposed to the reducing atmosphere in the blast furnace, and P is dissolved in the pig iron.
[0004]
Moreover, P is also contained in the ash of the carbon-based solid reducing agent (for example, coke) charged in the blast furnace, and P falls in the high-temperature region before the tuyere while the carbon-based solid reducing agent descends in the blast furnace. Is vaporized and rises in the furnace together with the furnace gas. On the other hand, as the sinter ore charged from the furnace top descends in the blast furnace, the temperature is increased by heat exchange with the furnace gas. The fused ore or ore thus formed forms a fusion layer called a fusion zone, and drops of pig iron and slag fall below the fusion zone. The droplets come into contact with the vaporized P, and the P is dissolved in pig iron and slag.
[0005]
As described above, in the blast furnace method, it is inevitable that P is mixed into pig iron from a raw material. Therefore, in order to reduce the P content of pig iron, a raw material having a low P content must be selected and used. Since such a raw material having a low P content is expensive, the production of low phosphorus pig iron by the blast furnace method causes an increase in production cost.
On the other hand, in the smelting reduction method that can prevent the dissolution of P into hot metal or slag in the shaft portion, it is expected that a low-phosphorus molten metal is produced from ordinary raw materials.
[0006]
For example, Japanese Patent Application Laid-Open No. 57-198205 (Patent Document 1) discloses that a particulate metal oxide is blown into a furnace together with high-temperature air from an upper tuyere of a smelting reduction furnace, and high-temperature air is blown from a lower tuyere. A technology is disclosed in which a carbon-based solid reducing agent charged into a furnace is burned to reduce a metal oxide to produce a molten metal. In this technique, only the carbon-based solid reducing agent is charged from the furnace top, and no molten metal or molten slag exists above the upper tuyere. Therefore, even if P contained in the ash of the carbon-based solid reducing agent is vaporized and rises in the smelting reduction furnace, it is considered that the P does not come into contact with the molten metal or the molten slag, thereby suppressing an increase in the P concentration.
[0007]
However, the technique disclosed in Japanese Patent Application Laid-Open No. 57-198205 has a disadvantage that the amount of the carbon-based solid reducing agent consumed is larger than that in the blast furnace method. Since P contained in the ash of the carbon-based solid reducing agent burned in front of the lower tuyere comes into contact with the molten metal or molten slag after vaporization, the P in the carbon-based solid reducing agent burned in front of the lower tuyere Although it is difficult to prevent the transition to molten metal, the use of a carbon-based solid reducing agent is greater than in the blast furnace method, and as a result, the P concentration in the hot metal increases. there were.
[0008]
Japanese Patent No. 2555899 (Patent Document 2) discloses a technique for producing a low-phosphorus molten metal by vaporizing P in a smelting reduction furnace. This is because in the smelting reduction method, the temperature of the packed bed of the carbon-based solid reducing agent in the shaft is controlled, and the carbon-based solid reducing agent is maintained at 1500 ° C. or more for 1 hour or more before dropping to the blowing tuyere. This is a technique utilizing the fact that the oxide of P contained in the ash of the carbon-based solid reducing agent is reduced and vaporized in the shaft. By this, the amount of P in the carbon-based solid reducing agent is reduced before descending to the injection tuyere, and as a result, the amount of P reaching the front of the injection tuyere can be reduced. Can be reduced.
[0009]
Then, the inventor investigated the P which shifts to a molten metal by producing a molten metal by operating a smelting reduction furnace in accordance with the operation method disclosed in Japanese Patent No. 2555899.
That is, the smelting reduction of steelmaking dust was performed using a smelting reduction furnace (production amount 200 ton / day) having the specifications shown in Table 1. The steelmaking dust was obtained by collecting dust generated from a steelmaking factory for decarburizing pig iron. The components are as shown in Table 2.
[0010]
[Table 1]
Figure 2004124217
[0011]
[Table 2]
Figure 2004124217
[0012]
It is considered that almost all of P in the steelmaking dust is transferred to the generated molten metal as it is when it is blown into the smelting reduction furnace. In addition, it can be considered that there is almost no migration into the slag. Therefore, the P content in the carbon-based solid reducing agent (for example, coke or the like) used in the smelting reduction furnace per unit time is P C (kg / H), and the P content in the steelmaking dust used in the smelting reduction furnace per unit time. the content of P D (kg / H), the P content in the molten metal produced in the smelting reduction furnace per unit time P M (kg / H), of P in the carbon-based solid reductant, melted metal The relationship of the ratio R (%) (hereinafter referred to as the transition rate)
R (%) = 100 × ( P M -P D) / P C ··· (1)
It becomes.
[0013]
From the operation results in the above-described smelting reduction furnace, when this transfer rate R was obtained, it was found that R = about 55%. This means that in the technique of Japanese Patent No. 2555899, about 55% of P in the carbon-based solid reducing agent is still dissolved in the molten metal.
In other words, the technique disclosed in Japanese Patent No. 2555899 can produce a low-phosphorus molten metal, but leaves room for further improvement.
[0014]
[Patent Document 1]
JP-A-57-198205 [Patent Document 2]
Japanese Patent No. 2555899 [0015]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems, does not select a carbon-based solid reducing agent having a low P content, and uses a carbon-based solid reducing agent having a P content equivalent to that of the related art, using a conventional method. An object of the present invention is to provide a method for producing a low-phosphorus molten metal in which the P content is further reduced as compared with the produced low-phosphorus molten metal.
[0016]
[Means for Solving the Problems]
In the technology disclosed in Japanese Patent No. 258989, various examinations were made on operating conditions for reducing the transfer rate of P. As a result, it was found that the temperature of the carbon-based solid reducing agent in the shaft portion was not necessarily uniform in the horizontal direction. It was thought not to be. In other words, when the oxygen-enriched air blown from the upper and lower tuyeres burns the carbon-based solid reducing agent in the shaft portion of the smelting reduction furnace, the heat is generated when the combustion gas rises inside the shaft as furnace gas. Then, the temperature of the carbon-based solid reducing agent is increased.
[0017]
Therefore, if the gas in the furnace flows evenly through the shaft, the temperature of the carbon-based solid reducing agent in the shaft part is considered to be almost uniform in the horizontal direction. Since the flow selectively flows in a portion where there is no resistance in the portion, the temperature of the reducing agent increases in a place where the flow is strong, but the temperature of the reducing agent does not necessarily increase in a place where the flow is small.
[0018]
For this reason, it has been found that it is not easy to hold the carbon-based solid reducing agent in a furnace at 1500 ° C. or more for 1 hour or more. Accordingly, as a result of earnestly seeking operating conditions for effectively reducing and evaporating P while maintaining the temperature of the carbon-based solid reducing agent at a sufficiently high temperature in the shaft portion, the present invention has been achieved.
According to the present invention, a particulate material containing a metal oxide material is blown together with oxygen-enriched air from the upper tuyere of a smelting reduction furnace filled with a carbon-based solid reducing agent, and oxygen-enriched air is blown from a lower tuyere. In the method for operating a smelting reduction furnace for producing molten metal by using a method, the theoretical combustion temperature in the region inside the furnace in front of the upper tuyere is set to 2700 ° C. or higher.
[0019]
In the above-described invention, as a preferred embodiment, the theoretical combustion temperature in the region inside the furnace in front of the upper tuyere is adjusted to 2750 ° C. or more by adjusting the enriched oxygen amount of the oxygen-enriched air blown from the upper tuyere. Is preferred.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a layout diagram schematically showing an example of a smelting reduction furnace to which the present invention is applied. As shown in FIG. 1, a carbon-based solid reducing agent 2 such as coke is charged from the top of the smelting reduction furnace 1 and charged into the furnace. On the other hand, the powdery and granular raw material 10 containing the metal oxide is blown into the furnace from the upper tuyere 3 together with the oxygen-enriched air.
[0021]
As the temperature of the carbon-based solid reducing agent 2 in the smelting reduction furnace 1 increases, the P in the carbon-based solid reducing agent 2 evaporates in a shorter time. Only the carbon-based solid reducing agent 2 is charged from the top of the smelting reduction furnace 1, and no molten metal 14 or molten slag 15 exists above the upper tuyere 3. Therefore, even if P contained in the ash of the carbon-based solid reducing agent 2 is vaporized and rises in the smelting reduction furnace 1, it does not come into contact with the molten metal 14 or the molten slag 15. That is, by elevating the furnace temperature above the upper tuyere 3, the vaporization of P is promoted, and the transfer of P to the molten metal 14 can be suppressed.
[0022]
At this time, as described above, the temperature in the furnace above the upper tuyere 3 does not always rise uniformly, so that the carbon-based solid reducing agent drops before the upper tuyere 3 or the lower tuyere 4. In order to raise the temperature to such an extent that P is vaporized before burning by combustion, it is effective to increase the temperature of the combustion gas in front of the upper tuyere. In other words, by increasing the temperature of the combustion gas in front of the tuyere, even if the temperature inside the furnace above the upper tuyere 3 is not uniform, the temperature can be raised as a whole. The vaporization of P can be promoted even in a very low temperature part.
[0023]
Since the combustion gas temperature in front of the upper tuyere 3 is extremely high, it is difficult to directly measure the temperature. However, when the heat balance in the tuyere front region is considered, it can be estimated under a reasonable assumption. Normally, the amount of air blown into the upper tuyere front area per unit time, the amount of enriched oxygen, the moisture during the air blow, the amount of combustion gas exiting from the upper tuyere front area, and the air temperature and combustion gas temperature By calculating the heat balance in consideration of the heat of combustion of the carbon-based solid reducing agent, the temperature in front of the upper tuyere, that is, the theoretical combustion temperature (hereinafter, referred to as TFT), is given by the expression (2).
[0024]
TFT = A / B (2)
A = [BV × (0.387BT + 605.3) + EO 2 × (0.493BT + 2719) + BV × BM / 18000 × (10.751BT-27241)]
B = [0.411BV + 13.893BV × BM / 18000 + 0.492EO 2 ]
BV: Ventilation volume (m 3 / min)
BT: Air temperature (° C)
EO 2 : oxygen-enriched amount (m 3 / min)
BM: blast moisture (g / m 3 )
The volumes of BV, EO 2 , and BM indicate the standard state.
[0025]
In operating the smelting reduction furnace 1, these BV, BT, EO 2 , and BM were changed, the theoretical combustion temperature TFT in the region before the upper tuyere 3 was calculated, and the relationship with the transfer rate R was investigated. The result is as shown in FIG. The specifications of the smelting reduction furnace 1 used here are as shown in Table 1, and the components of the steelmaking dust used as the granular raw material 10 are as shown in Table 2.
[0026]
As is clear from FIG. 2, if the TFT in the region in front of the upper tuyere 3 is 2750 ° C. or higher, the transition rate R is sufficiently reduced. Therefore, by setting the temperature of the TFT in the region in front of the upper tuyere 3 to 2750 ° C. or higher, the transfer of P from the carbon-based solid reducing agent 2 to the molten metal 14 can be suppressed, and a low-phosphorus molten metal can be manufactured.
In order to maintain the temperature of the TFT in the region before the upper tuyere 3 at 2750 ° C. or higher, it is preferable to increase the oxygen content of the oxygen-enriched air blown from the upper tuyere 3.
[0027]
Further, the amount of oxygen-enriched air blown from the lower tuyere 4 is relatively reduced, and the total oxygen amount in the oxygen-enriched air blown from the upper tuyere 3 and the lower tuyere 4 is reduced. With the same setting as the operation, a low-phosphorus molten metal having a further reduced P content as compared with a low-phosphorus molten metal produced by a conventional method can be obtained.
In this case, the oxygen content in the oxygen-enriched air blown from the lower tuyere 4 is relatively reduced, and the total oxygen in the oxygen-enriched air blown from the upper tuyere 3 and the lower tuyere 4 is reduced. When the amount is set to be the same as in the conventional operation, a low phosphorus molten metal having a further reduced P content can be obtained as compared with a low phosphorus molten metal produced by a conventional method. Such adjustment of the oxygen content is possible by adjusting the addition amounts of the primary oxygen 11 and the secondary oxygen 12 in FIG. Here, the primary oxygen is oxygen enriched in air before entering the hot air generator 6, and the secondary oxygen is enriched oxygen separately supplied to each upper tuyere 3.
[0028]
【Example】
Using the smelting reduction furnace 1 shown in FIG. 1, a low-phosphorus molten metal (that is, low-phosphorus molten iron) was produced. The components of the steelmaking dust used as the granular raw material 10 are as shown in Table 2, and the operating conditions of the smelting reduction furnace 1 are as shown in Table 3.
[0029]
[Table 3]
Figure 2004124217
[0030]
Inventive Examples 1 to 6 in Table 3 are all examples in which the theoretical combustion temperature TFT of the oxygen-enriched air blown from the upper tuyere 3 is 2750 ° C or more. On the other hand, Comparative Examples 1 and 2 are examples in which the theoretical combustion temperature TFT of the oxygen-enriched air blown from the upper tuyere 3 is less than 2750 ° C. Comparing the transfer rates R of these Inventive Examples 1 to 6 and Comparative Examples 1 and 2, it was 47.5 to 54.8% in Comparative Examples 1 and 2, whereas 28 in Inventive Examples 1 to 6. 0.4 to 41.7%. That is, according to the present invention, the transfer rate R could be kept low.
[0031]
In Inventive Examples 1 to 3, oxygen-enriched air to which only primary oxygen 11 was added without adding secondary oxygen 12 was blown from the upper tuyere 3 and the lower tuyere 4 at a distribution ratio of 0.5 each. It is an example. In addition, in Invention Examples 4 and 5, secondary oxygen 12 was added to primary oxygen 11 while blowing oxygen-enriched air from the upper tuyere 3 and the lower tuyere 4 at a distribution ratio of 0.5, respectively. This is an example in which the oxygen content of the oxygen-enriched air blown from the upper tuyere 3 is increased. Comparing the migration rates R of Invention Examples 1 to 3 and Invention Examples 4 and 5, it was 38.4 to 41.7% in Invention Examples 1 to 3, whereas 33.6 in Invention Examples 4 and 5. 3535.7%, and the transfer rate R could be further suppressed.
[0032]
Inventive Example 6 adds secondary oxygen 12 in addition to primary oxygen 11 to increase the oxygen content of the oxygen-enriched air blown from upper tuyere 3 and increase oxygen richness blown from upper tuyere 3. This is an example in which the distribution ratio of the forming air is set to 0.55, and the transfer rate R is 28.4%. As a result, the transfer rate R could be further reduced.
[0033]
【The invention's effect】
According to the present invention, it is possible to keep the transfer rate R low by using the same powdery and granular raw materials or carbon-based solid raw materials in the smelting reduction furnace as in the prior art, and it is possible to reduce the transfer rate R compared to the low-phosphorus molten metal manufactured by the conventional method. Thus, a low-phosphorus molten metal having a further reduced P content can be produced.
[Brief description of the drawings]
FIG. 1 is a layout diagram schematically showing an example of a smelting reduction furnace to which the present invention is applied.
FIG. 2 is a graph showing a relationship between a transfer rate R and a theoretical combustion temperature TFT in a region in front of an upper tuyere.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Smelting reduction furnace 2 Carbon-based solid reducing agent 3 Upper tuyere 4 Lower tuyere 5 Blower 6 Hot air generator 7 Powder and granular material blowing device 8 Furnace top charging device 9 Outlet 10 Powder and granular material 11 Primary oxygen 12 2 Secondary oxygen 13 Flux 14 Molten metal 15 Molten slag 16 Exhaust gas 17 Dust

Claims (2)

炭素系固体還元剤を充填した溶融還元炉の上段羽口から酸素富化空気とともに金属酸化物原料を含有する粉粒状原料を吹込み、かつ下段羽口から酸素富化空気を吹込んで溶融金属を製造する溶融還元炉の操業方法において、前記上段羽口前炉内側の領域での理論燃焼温度を2700℃以上にすることを特徴とする溶融還元炉の操業方法。The powdery granular material containing the metal oxide material is blown together with the oxygen-enriched air from the upper tuyere of the smelting reduction furnace filled with the carbon-based solid reducing agent, and the oxygen-enriched air is blown from the lower tuyere to remove the molten metal. The method of operating a smelting reduction furnace to be manufactured, wherein a theoretical combustion temperature in a region inside the furnace in front of the upper tuyere is set to 2700 ° C. or more. 前記上段羽口から吹込む酸素富化空気の富化酸素量を調整することにより、前記上段羽口前炉内側の領域での理論燃焼温度を2750℃以上にすることを特徴とする請求項1に記載の溶融還元炉の操業方法。The theoretical combustion temperature in the region inside the furnace in front of the upper tuyere is adjusted to 2750 ° C. or higher by adjusting the oxygen-enriched amount of oxygen-enriched air blown from the upper tuyere. 3. The method for operating a smelting reduction furnace according to 1.
JP2002293163A 2002-10-07 2002-10-07 Method for operating smelting reduction furnace Pending JP2004124217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002293163A JP2004124217A (en) 2002-10-07 2002-10-07 Method for operating smelting reduction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002293163A JP2004124217A (en) 2002-10-07 2002-10-07 Method for operating smelting reduction furnace

Publications (1)

Publication Number Publication Date
JP2004124217A true JP2004124217A (en) 2004-04-22

Family

ID=32284150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002293163A Pending JP2004124217A (en) 2002-10-07 2002-10-07 Method for operating smelting reduction furnace

Country Status (1)

Country Link
JP (1) JP2004124217A (en)

Similar Documents

Publication Publication Date Title
EP2210959B1 (en) Process for producing molten iron
JP4326581B2 (en) How to operate a vertical furnace
JP4598204B2 (en) Blast furnace operation method when a large amount of pulverized coal is injected
JP2004124217A (en) Method for operating smelting reduction furnace
TWI223006B (en) Method for producing molten iron having low silicon content
JP2004027265A (en) Method for operating blast furnace performing blow-in of pulverlized fine coal
JP3746842B2 (en) Blast furnace operation method when a large amount of pulverized coal is injected
JPH06172825A (en) Operation of blast furnace
JP3590543B2 (en) How to inject iron-containing powder into the blast furnace
JP5626072B2 (en) Operation method of vertical melting furnace
JPH07278634A (en) Operation of scrap melting furnace
JP2969249B2 (en) Blast furnace operation method
JP3395573B2 (en) Method for producing and using sinter
JP2001123208A (en) Operating method of blast furnace
JPS62227015A (en) Method for operating carbonaceous material-packed bed type smelting and reducing furnace
JPH02285010A (en) Method for regulating si in molten pig iron
JP3017009B2 (en) Blast furnace operation method
JP2837282B2 (en) Production method of chromium-containing hot metal
JP2000096113A (en) Method for blowing powdery iron source into blast furnace
JPS58199842A (en) Melt smelting method of powdery manganese ore
JPH0788522B2 (en) Blast furnace operation method
JPS62290843A (en) Production of ferronickel
JPH0681015A (en) Operation of blast furnace
JPS63157807A (en) Operation of smelting reduction furnace with carbonic material packing layer
JP2002060809A (en) Low furnace heat blast furnace operation method using sintered ore having controlled chemical composition