JP2004122075A - Water treatment apparatus - Google Patents

Water treatment apparatus Download PDF

Info

Publication number
JP2004122075A
JP2004122075A JP2002293645A JP2002293645A JP2004122075A JP 2004122075 A JP2004122075 A JP 2004122075A JP 2002293645 A JP2002293645 A JP 2002293645A JP 2002293645 A JP2002293645 A JP 2002293645A JP 2004122075 A JP2004122075 A JP 2004122075A
Authority
JP
Japan
Prior art keywords
arc
guide wall
flow direction
flow
shaped guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002293645A
Other languages
Japanese (ja)
Inventor
Kenya Ogata
小形 研哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinmaywa Industries Ltd
Original Assignee
Shin Meiva Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Meiva Industry Ltd filed Critical Shin Meiva Industry Ltd
Priority to JP2002293645A priority Critical patent/JP2004122075A/en
Publication of JP2004122075A publication Critical patent/JP2004122075A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water treatment apparatus which achieves the prevention of sludge sedimentation in the vicinity of the inlet of a circular passage and the prevention of sludge sedimentation by inhibiting the generation of back-flow in an inner peripheral part in the vicinity of the outlet of the circular passage. <P>SOLUTION: An oxidation ditch tank 14 has a circulating water passage 17 consisting of linear passages 12 partitioned by a partition wall 11 and the circular passages 13 connecting the ends of both linear passages 12 to each other. Each circular passage 17 has a circular guide wall 18 expanding outward. An inflow side end part, facing the flow direction Q in the circulating water passage 17, of the circular guide wall 18 is disposed to have an inner inlet angle θ2 inclined inward against the flow direction along the linear passage 12. An outflow side end part, located on the front side against the flow direction Q, of the circular guide wall 18 is disposed to have an inner outlet angle θ3 inclined inward against the flow direction along the linear passage 12. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、オキシデーションディッチ槽における汚泥の沈降を有効に防止する水処理装置に関するものである。
【0002】
【従来の技術】
下水や廃水を活性汚泥法により浄化処理する水処理装置があり、例えば、隔壁で仕切られた両側の直線流路と、両直線流路の端部をそれぞれ互いに接続する円弧流路とを備えた長円形オキシデーションディッチ槽を備え、これら直線流路や円弧流路により構成された循環水路内で汚水を撹拌しつつ循環させ、曝気処理を行う構造とされている。
【0003】
また、図4に示される如く、円弧流路1部分に円弧状ガイド壁2を配置した構造のものがあり、流れが折り返される円弧流路1部分においては、外周側の流れが速く、内周側の流れが遅くなる傾向があり、流れの内周側、即ち内側に汚泥の沈降を招くおそれがあるため、循環水路3の流れ方向Pに対する折返し部の内側における汚泥の滞留や沈降を防止すべく、円弧状ガイド壁2を直線流路4からの汚水流入側が広く、汚水流出側が狭くなるように、隔壁5の軸延長線に対して偏心配置し、折返し部の内側における汚水の流出速度を速めた構造のものがある(例えば、特許文献1参照。)。
【0004】
さらには、円弧状ガイド壁2における汚水流出側の端部を角度調整可能な可動式にして、オキシデーションディッチ槽6における内周部の流速を調整可能とした構造のものもある(例えば、特許文献2参照。)。
【0005】
【特許文献1】
実公昭58−37513号公報
【特許文献2】
実開平5−51499号公報
【0006】
【発明が解決しようとする課題】
前記特許文献1に開示の装置によれば、円弧流路1の出口側において、外周部より低速となる内周部の流速を高めることを目的として、円弧状ガイド壁2を偏心配置した構造としている。
【0007】
しかしながら、この構造によれば、円弧状ガイド壁2に対する汚水流入側、即ち入口側が広く、汚水流出側、即ち出口側が狭くなっているため、円弧状ガイド壁2内周部での流れに対する抵抗が大きくなり、入口側では図4に示されるような流速分布Aになって円弧状ガイド壁2内側に対する入口部付近での流速の低下を招き、入口部付近に汚泥の沈降領域Bが生じるおそれがあった。
【0008】
また、循環水路3の円弧流路1からの汚水流出側における流速の分布は図4に示されるような流速分布Cになり、円弧状ガイド壁2の内周面側から流れ出る汚水の流速は増速されるものの、隔壁5近くの内側流速が有効に確保できないため、流速の速い領域と遅い領域との差が大きくなり、この流速のアンバランスによって内周部に逆流域Dが発生し、汚泥の沈降を招くおそれがあった。
【0009】
さらに、前記特許文献2に開示の装置においても、上記同様、円弧状ガイド壁2に対する入口部付近での流速の低下を招き、入口部付近に汚泥の沈降領域Bが生じるおそれがあり、出口部付近にも流速のアンバランスにより、逆流域Dを生じて、汚泥の沈降を招くおそれがあった。
【0010】
そこで、本発明は上記問題点に鑑み、円弧流路に対する入口部付近での汚泥の沈降防止を図った水処理装置を提供すると共に、さらには、円弧流路からの出口部付近での内周部の逆流発生を抑えて、汚泥の沈降防止を図った水処理装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するための技術的手段は、隔壁で仕切られた流入側直線流路および流出側直線流路と、これら両直線流路の端部を互いに接続する円弧流路とを備えた循環水路を有するオキシデーションディッチ槽の前記円弧流路部分に、外方向に向けて膨出する弧状ガイド壁を備えた水処理装置において、前記弧状ガイド壁における前記循環水路の流れ方向に面する流入側端部が、前記直線流路に沿った流れ方向に対して内側に傾斜する内側入口角を有して配置された点にある。
【0012】
また、前記弧状ガイド壁における前記流れ方向に対して前側に位置する流出側端部が、前記直線流路に沿った流れ方向に対して内側に傾斜する内側出口角を有して配置された構造としてもよい。
【0013】
さらに、前記弧状ガイド壁の水平断面が前記流れ方向に沿った翼形状に形成された構造としてもよい。
【0014】
【発明の実施の形態】
以下、本発明の第1の実施形態を図面に基づいて説明すると、図1に示される如く、水処理装置10は、隔壁11で仕切られた対の直線流路12と、両直線流路12の両端部をそれぞれ互いに接続する対の円弧流路13とからなる長円形のオキシデーションディッチ槽14を備え、直線流路12内の適宜位置には、回転駆動されるプロペラ装置等からなる撹拌装置15およびブロワ等から供給された空気を散気孔等から汚水中に噴出させる空気供給用の散気装置16がそれぞれ設置されている。
【0015】
そして、撹拌装置15の回転駆動により、各直線流路12および各円弧流路13を通じて汚水を所定の流れ方向Qに沿って循環させる循環水路17を構成している。
【0016】
また、各円弧流路13部分には、外方向に向けて膨出する弧状ガイド壁としての円弧状ガイド壁18がそれそれ配置されている。本実施形態においては、各円弧状ガイド壁18は半円状に構成され、隔壁11の両端をそれぞれ中心として配置されると共に流れ方向Qに沿って0度より大きな適宜回転角θ1を有して配置されている。
【0017】
ここに、円弧状ガイド壁18における循環水路17の流れ方向Qに面する流入側端部が、流入側の直線流路12に沿った流れ方向Qに対して内側に傾斜する適宜内側入口角θ2を有して配置された構造とされている。
【0018】
また、円弧状ガイド壁18における循環水路17の流れ方向Qに対して前側に位置する流出側端部が、流出側の直線流路12に沿った流れ方向Qに対して内側に傾斜する内側出口角θ3を有して配置された構造とされている。
【0019】
そして、散気装置16から空気を噴出させた状態で、撹拌装置15を回転駆動することにより、循環水路17内の汚水を好気状態で所定の流れ方向Qに沿って循環させ、散気装置16から空気の噴出を停止させた状態で、撹拌装置15を回転駆動することにより、循環水路17内の汚水を嫌気状態で所定の流れ方向Qに沿って循環させる構造とされている。
【0020】
本実施形態は以上のように構成されており、循環水路17内を流れ方向Qに沿って汚水が循環される際、円弧状ガイド壁18の流入側端部が、流入側の直線流路12に沿った流れ方向Qに対して内側入口角θ2を有しているため、汚水の流れに対して円弧状ガイド壁18はいわゆる迎え角を有して配置された構造となり、円弧状ガイド壁18により翼効果が生じて、流れによるうずの発生が抑えられ、流れの抵抗を減らすことができ、円弧状ガイド壁18の外周面側の汚水の流れが増速される。このことから円弧状ガイド壁18の内周面側での流れの抵抗を抑えることができ、ここに、円弧状ガイド壁18内周面側における汚水の入口部付近での流速の低下が有効に防止でき、入口部付近での汚泥の沈降が有効に防止できる。
【0021】
また、円弧状ガイド壁18の外周面側の汚水の流れが増速され、円弧状ガイド壁18の流出側端部が、流出側の直線流路12に沿った流れ方向Qに対して内側出口角θ3を有しているため、円弧状ガイド壁18における汚水の出口部付近での流速の分布は図1に示されるような滑らかな速度分布Eになり、出口部付近での流速のアンバランスに起因する内周部の逆流発生が有効に防止でき、出口部付近での汚泥の沈降も有効に防止できる。
【0022】
従って、循環水路17に沿って汚水を循環させるに際して、上記のように汚泥の沈降が有効に防止できるため、水処理装置10としての浄化処理性能の向上が図れる。
【0023】
図2は、第2の実施形態を示しており、前記第1の実施形態と同様構成部分は同一符号を付し、その説明を省略する。
【0024】
即ち、第1の実施形態における円弧状ガイド壁18の水平断面が流れ方向Qに沿って同じ肉厚に形成されているのに対し、本実施形態における円弧状ガイド壁18の水平断面は、流れ方向Qに沿った翼形状に形成された構造とされている。
【0025】
従って、本実施形態によれば、第1の実施形態と同様の効果が得られるだけでなく、円弧状ガイド壁18が流れ方向Qに沿った翼形状に形成されているため、翼効果によってうずの発生がより効果的に抑えることができ、流れの抵抗をより効率よく減らすことができ、円弧状ガイド壁18の外周面側の汚水の流れがより増速され、円弧状ガイド壁18の内周面側での流れの抵抗をより効率的に抑えることができ、円弧状ガイド壁18内周面側における汚水の入口部付近での流速の低下がより有効に防止でき、入口部付近での汚泥の沈降がより有効に防止できると共に、出口部付近での汚泥の沈降もより有効に防止でき、水処理装置10としての浄化処理性能のより向上が図れる。
【0026】
図3は、第3の実施形態を示しており、前記第1の実施形態と同様構成部分は同一符号を付し、その説明を省略する。
【0027】
即ち、本実施形態によれば、円弧状ガイド壁18における循環水路17の流れ方向Qに面する流入側端部が、第1の実施形態と同様、流入側の直線流路12に沿った流れ方向Qに対して内側に傾斜する適宜内側入口角θ2を有して配置された構造とされている。
【0028】
また、円弧状ガイド壁18における循環水路17の流れ方向Qに対して前側に位置する流出側端部は、流出側の直線流路12に沿った流れ方向Qとされ、内側出口角θ3を有しない構造とされている。
【0029】
従って、本実施形態によれば、第1の実施形態と同様、円弧状ガイド壁18の翼効果によって流れによるうずの発生が抑えられ、円弧状ガイド壁18の外周面側の汚水の流れが増速されて円弧状ガイド壁18の内周面側での流れの抵抗を抑えることができ、円弧状ガイド壁18内周面側における汚水の入口部付近での汚泥の沈降が有効に防止できる利点がある。
【0030】
なお、上記各実施形態において、円弧状ガイド壁18が隔壁11の一端を中心とした円弧状に形成された構造を示しているが、円弧状に限らず、流れ方向Qに沿って曲率半径が適宜変化する弧状に形成された構造であってもよく、循環される汚水の流速に応じて適宜決定すればよい。
【0031】
また、各実施形態において、円弧状ガイド壁18の流入側端部が、流れ方向Qに沿って0度より大きな適宜回転角θ1を有して配置された構造を示しているが、前記流入側端部が、流入側の直線流路12に沿った流れ方向Qに対して内側に傾斜する適宜内側入口角θ2を有していればよく、回転角θ1を有していない構造であってもよい。
【0032】
さらに、長円形のオキシデーションディッチ槽14における両側の円弧流路13にそれぞれ円弧状ガイド壁18が備えられた構造を示しているが、一方のみに備える構造であってもよく、さらには、オキシデーションディッチ槽14の形状として、長円形に限られず、馬蹄形等であってもよい。
【0033】
【発明の効果】
以上のように、本発明の水処理装置によれば、弧状ガイド壁における循環水路の流れ方向に面する流入側端部が、直線流路に沿った流れ方向に対して内側に傾斜する内側入口角を有して配置された構造であり、流れに対して弧状ガイド壁はいわゆる迎え角を有して配置された構造となり、翼効果が生じて流れによるうずの発生が抑えられ、流れの抵抗を減らすことができ、弧状ガイド壁の外周面側の汚水の流れが増速され、弧状ガイド壁の内周面側での流れの抵抗を抑えることができ、ここに、弧状ガイド壁内周面側における汚水の入口部付近での流速の低下が有効に防止でき、入口部付近での汚泥の沈降が有効に防止できるという利点がある。
【0034】
また、弧状ガイド壁における流れ方向に対して前側に位置する流出側端部が、直線流路に沿った流れ方向に対して内側に傾斜する内側出口角を有して配置された構造とすることによって、弧状ガイド壁における汚水の出口部付近での速度分布が滑らかになり、出口部付近での流速のアンバランスに起因する逆流発生が有効に防止でき、出口部付近での汚泥の沈降も有効に防止できるという利点がある。
【0035】
さらに、弧状ガイド壁の水平断面が流れ方向に沿った翼形状に形成された構造とすれば、弧状ガイド壁による翼効果により、うずの発生がより効果的に抑えることができ、流れの抵抗をより効率よく減らすことができ、弧状ガイド壁外周面側の汚水の流れがより増速され、円弧流路における入口部付近での汚泥の沈降がより有効に防止できると共に、出口部付近での汚泥の沈降もより有効に防止できるという利点がある。
【図面の簡単な説明】
【図1】本発明の第1の実施形態を示す概略平面説明図である。
【図2】第2の実施形態を示す要部平面図である。
【図3】第3の実施形態を示す要部平面図である。
【図4】従来例を示す平面説明図である。
【符号の説明】
10 水処理装置
11 隔壁
12 直線流路
13 円弧流路
14 オキシデーションディッチ槽
17 循環水路
18 円弧状ガイド壁
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a water treatment apparatus for effectively preventing sludge settling in an oxidation ditch tank.
[0002]
[Prior art]
BACKGROUND ART There is a water treatment apparatus for purifying sewage and wastewater by an activated sludge method, and includes, for example, a straight flow path on both sides separated by a partition wall, and an arc flow path connecting ends of the two straight flow paths to each other. It has an oval oxidation ditch tank, and has a structure in which sewage is circulated while being stirred in a circulating water channel constituted by these straight flow paths and circular arc flow paths to perform aeration treatment.
[0003]
Further, as shown in FIG. 4, there is a structure in which an arc-shaped guide wall 2 is disposed in an arc flow path 1 portion. Since the flow on the side tends to be slow and sludge may settle on the inner circumferential side of the flow, that is, inside, the sludge is prevented from being retained or settled inside the folded portion of the circulation channel 3 in the flow direction P. Therefore, the arc-shaped guide wall 2 is eccentrically arranged with respect to the axial extension line of the partition wall 5 so that the inflow side of the sewage from the straight flow path 4 is wide and the outflow side of the sewage is narrow, so that the outflow speed of the sewage inside the folded portion is reduced. There is a structure with an accelerated structure (for example, see Patent Document 1).
[0004]
Further, there is also a structure in which the end of the arc-shaped guide wall 2 on the sewage outflow side is movable so that the angle can be adjusted so that the flow velocity of the inner peripheral portion of the oxidation ditch tank 6 can be adjusted (for example, see Patents). Reference 2).
[0005]
[Patent Document 1]
Japanese Utility Model Publication No. 58-37513 [Patent Document 2]
Published Japanese Utility Model Application No. 5-51499
[Problems to be solved by the invention]
According to the device disclosed in Patent Document 1, the arc-shaped guide wall 2 is eccentrically arranged on the outlet side of the arc-shaped flow path 1 for the purpose of increasing the flow velocity in the inner peripheral portion, which is lower than the outer peripheral portion. I have.
[0007]
However, according to this structure, since the sewage inflow side, that is, the inlet side, with respect to the arc-shaped guide wall 2 is wide, and the sewage outflow side, that is, the outlet side, is narrow, the resistance to the flow at the inner peripheral portion of the arc-shaped guide wall 2 is reduced. At the inlet side, the flow velocity distribution A as shown in FIG. 4 occurs, causing a decrease in the flow velocity near the inlet with respect to the inside of the arc-shaped guide wall 2, and there is a possibility that a sludge sedimentation region B is generated near the inlet. there were.
[0008]
Further, the distribution of the flow velocity on the sewage outflow side from the circular flow path 1 of the circulation channel 3 becomes a flow velocity distribution C as shown in FIG. 4, and the flow velocity of the sewage flowing out from the inner peripheral surface side of the arcuate guide wall 2 increases. Although the flow velocity is increased, the inner flow velocity near the partition wall 5 cannot be secured effectively, so that the difference between the high flow velocity area and the low flow velocity area becomes large. There was a risk of sedimentation.
[0009]
Further, also in the device disclosed in Patent Document 2, similarly to the above, the flow velocity of the arc-shaped guide wall 2 near the inlet may be reduced, and the sludge sedimentation region B may be generated near the inlet, and the outlet may be reduced. In the vicinity, there is a possibility that a backflow zone D is generated due to the imbalance of the flow velocity, and sludge settles.
[0010]
In view of the above problems, the present invention provides a water treatment apparatus that prevents sludge sedimentation in the vicinity of an inlet to an arc flow path, and further provides an inner periphery near an outlet from the arc flow path. It is an object of the present invention to provide a water treatment apparatus in which backflow of a part is suppressed and sludge settling is prevented.
[0011]
[Means for Solving the Problems]
The technical means for achieving the above object is a circulation device having an inflow-side linear flow passage and an outflow-side linear flow passage partitioned by a partition wall, and an arcuate flow passage connecting the ends of the two straight flow passages to each other. In the water treatment device provided with an arc-shaped guide wall bulging outward in the arc-shaped flow path portion of the oxidation ditch tank having a water channel, an inflow side of the arc-shaped guide wall facing a flow direction of the circulation water channel. The end is located at a point located with an inner entrance angle that slopes inward with respect to the flow direction along the straight flow path.
[0012]
Also, a structure in which an outflow side end of the arcuate guide wall located on the front side with respect to the flow direction has an inner exit angle inclined inward with respect to the flow direction along the straight flow path. It may be.
[0013]
Further, the arcuate guide wall may have a horizontal cross section formed in a wing shape along the flow direction.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, a water treatment apparatus 10 includes a pair of straight flow paths 12 partitioned by partition walls 11 and two straight flow paths 12. An elliptical oxidation ditch tank 14 composed of a pair of circular arc channels 13 connecting both ends of the cylinder to each other, and a stirrer including a rotationally driven propeller device or the like is provided at an appropriate position in the straight channel 12. 15 and an air supply diffuser 16 for ejecting air supplied from a blower or the like into sewage from a diffuser hole or the like.
[0015]
Then, a circulating water passage 17 that circulates sewage in a predetermined flow direction Q through each straight flow path 12 and each circular flow path 13 by rotating and driving the stirring device 15 is configured.
[0016]
In addition, arcuate guide walls 18 as arcuate guide walls bulging outward are arranged in the respective arc passages 13. In the present embodiment, each of the arc-shaped guide walls 18 is formed in a semicircular shape, is arranged with both ends of the partition 11 as centers, and has an appropriate rotation angle θ1 larger than 0 degrees along the flow direction Q. Are located.
[0017]
Here, the inflow-side end of the arc-shaped guide wall 18 facing the flow direction Q of the circulating water channel 17 is appropriately inwardly inclined with respect to the flow direction Q along the inflow-side straight flow path 12 so as to have an appropriate inner entrance angle θ2. It is a structure arranged with.
[0018]
Further, an inner outlet in which the outflow side end of the arcuate guide wall 18 located on the front side with respect to the flow direction Q of the circulating water channel 17 is inclined inward with respect to the flow direction Q along the straight flow path 12 on the outflow side. It is a structure arranged with an angle θ3.
[0019]
Then, by rotating the stirring device 15 in a state where the air is ejected from the air diffuser 16, the wastewater in the circulation water passage 17 is circulated along the predetermined flow direction Q in an aerobic state, and the air diffuser By rotating the stirring device 15 in a state in which the ejection of air from the air 16 is stopped, the sewage in the circulation water passage 17 is anaerobically circulated along the predetermined flow direction Q.
[0020]
The present embodiment is configured as described above. When the sewage is circulated in the circulation channel 17 in the flow direction Q, the inflow-side end of the arc-shaped guide wall 18 is connected to the inflow-side straight flow path 12. Has an inside entrance angle θ2 with respect to the flow direction Q along the arc, the arc-shaped guide wall 18 has a structure arranged with a so-called angle of attack with respect to the flow of sewage, and the arc-shaped guide wall 18 As a result, a wing effect is generated, the generation of eddies due to the flow is suppressed, the flow resistance can be reduced, and the flow of sewage on the outer peripheral surface side of the arc-shaped guide wall 18 is increased. From this, the resistance of the flow on the inner peripheral surface side of the arc-shaped guide wall 18 can be suppressed, and the reduction of the flow velocity near the inlet of the sewage on the inner peripheral surface side of the arc-shaped guide wall 18 can be effectively performed. It can prevent sludge settling near the entrance.
[0021]
In addition, the flow of the sewage on the outer peripheral surface side of the arc-shaped guide wall 18 is accelerated, and the outflow-side end of the arc-shaped guide wall 18 has an inner outlet with respect to the flow direction Q along the outflow-side straight flow path 12. Due to the angle θ3, the flow velocity distribution near the outlet of the sewage in the arc-shaped guide wall 18 becomes a smooth velocity distribution E as shown in FIG. 1, and the flow velocity is unbalanced near the outlet. This effectively prevents the backflow from occurring in the inner peripheral portion, and also effectively prevents sedimentation of sludge near the outlet.
[0022]
Therefore, when the sewage is circulated along the circulation water channel 17, the settling of the sludge can be effectively prevented as described above, so that the purification treatment performance of the water treatment apparatus 10 can be improved.
[0023]
FIG. 2 shows a second embodiment, in which the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[0024]
That is, while the horizontal cross section of the arc-shaped guide wall 18 in the first embodiment is formed to have the same thickness along the flow direction Q, the horizontal cross section of the arc-shaped guide wall 18 in the present embodiment is The structure is formed in a wing shape along the direction Q.
[0025]
Therefore, according to the present embodiment, not only the same effects as in the first embodiment can be obtained, but also the arc-shaped guide wall 18 is formed in a wing shape along the flow direction Q, so that the vortex is formed by the wing effect. Can be suppressed more effectively, the flow resistance can be reduced more efficiently, the flow of sewage on the outer peripheral surface side of the arcuate guide wall 18 is further increased, and the inside of the arcuate guide wall 18 The flow resistance on the peripheral surface side can be suppressed more efficiently, and a decrease in flow velocity near the inlet portion of the sewage on the inner peripheral surface side of the arc-shaped guide wall 18 can be more effectively prevented. Sludge settling can be more effectively prevented, and sludge settling near the outlet can be more effectively prevented, so that the purification performance of the water treatment apparatus 10 can be further improved.
[0026]
FIG. 3 shows a third embodiment, in which the same components as in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
[0027]
That is, according to the present embodiment, the inflow-side end of the arc-shaped guide wall 18 facing the flow direction Q of the circulating channel 17 flows along the inflow-side straight flow path 12 as in the first embodiment. The structure is arranged so as to have an appropriate inner entrance angle θ2 inclined inward with respect to the direction Q.
[0028]
The outflow-side end of the arc-shaped guide wall 18 located on the front side with respect to the flow direction Q of the circulating water passage 17 has a flow direction Q along the outflow-side straight flow path 12 and has an inner outlet angle θ3. It is not structured.
[0029]
Therefore, according to the present embodiment, as in the first embodiment, the generation of eddies due to the flow is suppressed by the wing effect of the arcuate guide wall 18, and the flow of sewage on the outer peripheral surface side of the arcuate guide wall 18 increases. Advantageously, the flow resistance on the inner peripheral surface side of the arc-shaped guide wall 18 can be suppressed by being accelerated, and the sedimentation of sludge near the inlet of the sewage on the inner peripheral surface side of the arc-shaped guide wall 18 can be effectively prevented. There is.
[0030]
In each of the above embodiments, the structure in which the arc-shaped guide wall 18 is formed in an arc shape centered on one end of the partition wall 11 is shown, but the shape is not limited to the arc shape, and the radius of curvature along the flow direction Q is not limited. The structure may be formed in an arc shape that changes as appropriate, and may be determined as appropriate according to the flow rate of the circulated wastewater.
[0031]
Further, in each embodiment, the inflow side end of the arc-shaped guide wall 18 has a structure in which the appropriate rotation angle θ1 greater than 0 degree is arranged along the flow direction Q, but the inflow side is described. It is sufficient that the end portion has an appropriate inner inlet angle θ2 inclined inward with respect to the flow direction Q along the inflow-side straight flow path 12, and even if the end portion does not have the rotation angle θ1. Good.
[0032]
Furthermore, although the structure in which the arc-shaped guide walls 18 are provided in the arc-shaped flow passages 13 on both sides of the oval oxidation ditch tank 14 is shown, the structure may be provided in only one of them. The shape of the ditch ditch tank 14 is not limited to an elliptical shape, but may be a horseshoe shape or the like.
[0033]
【The invention's effect】
As described above, according to the water treatment apparatus of the present invention, the inflow-side end of the arc-shaped guide wall facing the flow direction of the circulation channel has an inner inlet inclined inward with respect to the flow direction along the straight flow path. It is a structure arranged with an angle, and the arc-shaped guide wall is arranged with a so-called angle of attack with respect to the flow, the wing effect is generated, the generation of eddies due to the flow is suppressed, and the flow resistance is reduced. And the flow of sewage on the outer peripheral surface side of the arcuate guide wall is accelerated, and the flow resistance on the inner peripheral surface side of the arcuate guide wall can be suppressed. There is an advantage that a decrease in the flow velocity in the vicinity of the inlet of the sewage on the side can be effectively prevented, and the settling of sludge near the inlet can be effectively prevented.
[0034]
In addition, the outflow-side end of the arc-shaped guide wall located on the front side with respect to the flow direction is configured to have an inner exit angle that is inclined inward with respect to the flow direction along the straight flow path. As a result, the velocity distribution near the outlet of the sewage on the arcuate guide wall becomes smooth, the backflow due to the imbalance in the flow velocity near the outlet can be effectively prevented, and the sedimentation of the sludge near the outlet is also effective. There is an advantage that can be prevented.
[0035]
Furthermore, if the horizontal cross section of the arcuate guide wall is formed in a wing shape along the flow direction, the wing effect by the arcuate guide wall can more effectively suppress the generation of eddies and reduce the flow resistance. More efficiently, the flow of the sewage on the outer circumferential surface side of the arc-shaped guide wall is further accelerated, and the settling of the sludge near the inlet in the arc-shaped flow path can be more effectively prevented, and the sludge near the outlet is more effective. There is an advantage that sedimentation can be more effectively prevented.
[Brief description of the drawings]
FIG. 1 is a schematic plan view showing a first embodiment of the present invention.
FIG. 2 is a main part plan view showing a second embodiment.
FIG. 3 is a main part plan view showing a third embodiment.
FIG. 4 is an explanatory plan view showing a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Water treatment apparatus 11 Partition wall 12 Straight channel 13 Arc channel 14 Oxidation ditch tank 17 Circulation channel 18 Arc guide wall

Claims (3)

隔壁で仕切られた流入側直線流路および流出側直線流路と、これら両直線流路の端部を互いに接続する円弧流路とを備えた循環水路を有するオキシデーションディッチ槽の前記円弧流路部分に、外方向に向けて膨出する弧状ガイド壁を備えた水処理装置において、
前記弧状ガイド壁における前記循環水路の流れ方向に面する流入側端部が、前記直線流路に沿った流れ方向に対して内側に傾斜する内側入口角を有して配置されたことを特徴とする水処理装置。
The arc-shaped channel of the oxidation ditch tank having a circulating water channel including an inflow-side linear channel and an outflow-side linear channel separated by a partition wall, and an arc channel connecting the ends of the two straight channels to each other. In a water treatment device provided with an arc-shaped guide wall bulging outward in a portion,
The inflow-side end of the arc-shaped guide wall facing the flow direction of the circulating water channel is disposed with an inner entrance angle inclined inward with respect to the flow direction along the straight flow path. Water treatment equipment.
前記弧状ガイド壁における前記流れ方向に対して前側に位置する流出側端部が、前記直線流路に沿った流れ方向に対して内側に傾斜する内側出口角を有して配置されたことを特徴とする請求項1に記載の水処理装置。An outlet-side end of the arc-shaped guide wall located on the front side with respect to the flow direction is disposed so as to have an inner exit angle inclined inward with respect to the flow direction along the straight flow path. The water treatment apparatus according to claim 1, wherein 前記弧状ガイド壁の水平断面が前記流れ方向に沿った翼形状に形成されたことを特徴とする請求項1または請求項2に記載の水処理装置。The water treatment device according to claim 1 or 2, wherein a horizontal cross section of the arc-shaped guide wall is formed in a blade shape along the flow direction.
JP2002293645A 2002-10-07 2002-10-07 Water treatment apparatus Pending JP2004122075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002293645A JP2004122075A (en) 2002-10-07 2002-10-07 Water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002293645A JP2004122075A (en) 2002-10-07 2002-10-07 Water treatment apparatus

Publications (1)

Publication Number Publication Date
JP2004122075A true JP2004122075A (en) 2004-04-22

Family

ID=32284500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002293645A Pending JP2004122075A (en) 2002-10-07 2002-10-07 Water treatment apparatus

Country Status (1)

Country Link
JP (1) JP2004122075A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100548904C (en) * 2007-06-07 2009-10-14 无锡市联创市政工程设计有限公司 High-efficiency combined-building type raceway-shaped oxidation ditch
CN102897903A (en) * 2012-09-26 2013-01-30 冯秀娟 Efficient biochemical reactor
CN102897905A (en) * 2012-09-26 2013-01-30 冯秀娟 Activated sludge reactor
CN103046773A (en) * 2013-01-11 2013-04-17 吴正新 Transverse backflow device and pool and river channel utilizing same
CN103523907A (en) * 2013-10-25 2014-01-22 中国水电顾问集团中南勘测设计研究院有限公司 Oxidation ditch system with synergistic interaction of spiral-flow aeration and plug flow nozzles
CN109970185A (en) * 2019-04-25 2019-07-05 河南省科学院化学研究所有限公司 Process for treating industrial waste water and improved oxidation ditch based on improved oxidation ditch
CN110541454A (en) * 2019-09-20 2019-12-06 常州通用自来水有限公司 secondary water supply tank easy to disinfect and guarantee water quality and control method thereof
JP2020151673A (en) * 2019-03-20 2020-09-24 オルガノ株式会社 Aeration and agitation system, method of installation and oxidation ditch system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100548904C (en) * 2007-06-07 2009-10-14 无锡市联创市政工程设计有限公司 High-efficiency combined-building type raceway-shaped oxidation ditch
CN102897903A (en) * 2012-09-26 2013-01-30 冯秀娟 Efficient biochemical reactor
CN102897905A (en) * 2012-09-26 2013-01-30 冯秀娟 Activated sludge reactor
CN102897903B (en) * 2012-09-26 2016-01-13 冯秀娟 A kind of efficient biochemical reactor
CN103046773A (en) * 2013-01-11 2013-04-17 吴正新 Transverse backflow device and pool and river channel utilizing same
CN103523907A (en) * 2013-10-25 2014-01-22 中国水电顾问集团中南勘测设计研究院有限公司 Oxidation ditch system with synergistic interaction of spiral-flow aeration and plug flow nozzles
JP2020151673A (en) * 2019-03-20 2020-09-24 オルガノ株式会社 Aeration and agitation system, method of installation and oxidation ditch system
JP7220602B2 (en) 2019-03-20 2023-02-10 オルガノ株式会社 Aeration stirring system, its installation method and oxidation ditch device
CN109970185A (en) * 2019-04-25 2019-07-05 河南省科学院化学研究所有限公司 Process for treating industrial waste water and improved oxidation ditch based on improved oxidation ditch
CN110541454A (en) * 2019-09-20 2019-12-06 常州通用自来水有限公司 secondary water supply tank easy to disinfect and guarantee water quality and control method thereof

Similar Documents

Publication Publication Date Title
KR100316317B1 (en) Liquid mixing device
JP2009160576A (en) Fine air bubble generator
JPS602898B2 (en) Device that brings liquid into contact with gas
JP2004122075A (en) Water treatment apparatus
JP2012157829A (en) Guide plate for impeller and aeration agitator
JP4875778B1 (en) Aeration stirrer
JP2010167329A (en) Aeration agitator
KR101890360B1 (en) A micro bubble generator capable of solid-liquid separation and electricity generation
JP2007222771A (en) Device for inducing convection in water tank
JP4947747B1 (en) Stirrer
JP7220602B2 (en) Aeration stirring system, its installation method and oxidation ditch device
JPH0833895A (en) Axial-flow impeller in agitated aerator
JP3569616B2 (en) Vertical pump suction channel
JP2007092565A (en) Centrifugal pump, mixed flow pump, axial flow pump
JPS588588A (en) Aerator
JP2002035784A (en) Agitation and aeration apparatus
JP4094712B2 (en) Backflow preventer for mechanical aeration equipment in oxidation ditch.
JPS5992093A (en) Circulatory aerative purification of sludge and apparatus therefor
JP2015163402A (en) Guide plate for impeller, and aeration agitator
JP3429227B2 (en) Middle and deep aeration type wastewater treatment equipment
JP2020157305A (en) Guide plate for impeller and aeration stirrer
JP6867233B2 (en) Disperser and treatment system for water to be treated
JP3203336B2 (en) Underwater stirrer
JP2002191662A (en) Screw for generating cavitation
JPH019643Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070911