JP2004120856A - Power supply - Google Patents

Power supply Download PDF

Info

Publication number
JP2004120856A
JP2004120856A JP2002278865A JP2002278865A JP2004120856A JP 2004120856 A JP2004120856 A JP 2004120856A JP 2002278865 A JP2002278865 A JP 2002278865A JP 2002278865 A JP2002278865 A JP 2002278865A JP 2004120856 A JP2004120856 A JP 2004120856A
Authority
JP
Japan
Prior art keywords
battery
battery pack
power supply
charging
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002278865A
Other languages
Japanese (ja)
Inventor
Yoshitada Nakao
中尾 善忠
Nobuyasu Morishita
森下 展安
Toshifumi Ueda
植田 利史
Kazuhiro Okawa
大川 和宏
Takahisa Masashiro
正代 尊久
Keiichi Saito
斉藤 景一
Hiroshi Wakagi
若木 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Panasonic Holdings Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Matsushita Electric Industrial Co Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002278865A priority Critical patent/JP2004120856A/en
Publication of JP2004120856A publication Critical patent/JP2004120856A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply of larger capacity, saved space, and extended life, capable of backing up even when a power failure occurs during judging degradation of a battery. <P>SOLUTION: When performing a discharge capacity test with a battery pack whose degradation is to be judged among a plurality of battery packs 41 and 42 connected in parallel, a battery monitoring means 7 issues a charge start request to a monitor control unit in response to the test request from the monitor control unit 10, to make a charge control means 5 fully charge the battery pack whose degradation is to be judged. Then a battery pack whose degradation is not to be judged is fully charged for discharge capacity test. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電源装置に関し、特に無線通信の基地局等に設置され、停電時等のバックアップ用電源としてニッケル−水素二次電池が塔載された通信用直流電源装置に関する。
【0002】
【従来の技術】
従来、携帯電話等の基地局に設置される通信用直流電源装置には、停電時や保守時等のバックアップ用電源として、鉛蓄電池が使用されてきた(例えば、特許文献1参照)。この鉛蓄電池は、商用電源の交流電圧を整流器により整流した直流電圧によりフロート充電され、特に充電制御は行われていなかった。
【0003】
また、このような電源装置に用いられる鉛蓄電池の劣化や寿命を判定する方法の一つとしては、環境温度に依存して劣化の進行とともに電池の内部抵抗が増大することで、負荷電流による電圧降下の程度を検出して判定する方法がある。また、他の劣化判定方法として、鉛蓄電池を定期的に放電試験することにより、その放電電気量を算出して判定する方法がある。
【0004】
【特許文献1】
特開平5−315015号公報
【0005】
【発明が解決しようとする課題】
近年、通信用直流電源装置に対する電力需要が増大しており、またその設置スペースも限られている。しかしながら、通信用直流電源装置のバックアップ用電源として鉛蓄電池を用いた場合、高容量化や省スペース化の点で問題があり、また、経年劣化による寿命も短く、保守・点検等によりコストが増大するという問題もある。
【0006】
また、上記のような、鉛蓄電池を定期的に放電試験することにより、その放電電気量を算出して劣化判定する方法は、鉛蓄電池が通信用設備等をバックアップしている場合、放電試験中の停電等により通信用設備が停止する可能性があるため、実施できなかったという問題がある。
【0007】
本発明は、かかる問題点に鑑みてなされたものであり、その目的は、鉛蓄電池に代えてニッケル−水素二次電池を用いることで、高容量化や省スペース化、また長寿命化を図るとともに、電池の劣化判定中の停電等に対してもバックアップを可能にした電源装置を提供することにある。
【0008】
【課題を解決するための手段】
前記の目的を達成するため、本発明に係る電源装置は、ニッケル−水素二次電池を複数個直列に接続して成る組電池が複数個並列に接続された複数の組電池と、商用電源からの交流電力を整流して例えば通信機器を含む負荷および複数の組電池に対して直流電力を供給する整流器と、整流器からの直流電力を受けて複数の組電池に対する電気量の充電を制御する充電制御手段と、複数の組電池に充電された電気量の放電を制御する放電制御手段と、複数の組電池の電圧情報(V11、V12、V13、V14;V21、V22、V23、V24)、電流情報(I1;I2)、および温度情報(Tb1;Tb2)に基づいて、少なくとも複数の組電池の残存容量(SOC1;SOC2)を演算し、複数の組電池の状態を監視する電池監視手段(電池ECU(Electronic Control Unit))と、整流器の出力電圧を制御するとともに、電池監視手段からの指示に応じて充電制御手段および放電制御手段を制御する監視制御部(MPU)と、負荷に供給される電圧が負荷の動作可能な第1の電圧値(例えば、46ボルト)を下回った場合、負荷に供給する電圧を昇圧して第1の電圧値に維持する昇圧手段とを備え、複数の組電池のうち劣化判定対象の組電池に対する放電容量試験を行うに際して、監視制御部からの試験要求に応答して、電池監視手段は、充電開始要求(CSTART1;CSTART2)を監視制御部に発して、充電制御手段に、劣化判定対象の組電池および/または劣化判定対象外の組電池を充電させたうえで、放電容量試験を行うことを特徴とする。
【0009】
この構成によれば、劣化判定対象の組電池に対して放電容量試験を行い、負荷に供給される電圧が低下したとしても、昇圧手段により、電池電圧を昇圧して負荷に供給することができ、停電時などにおいても通信設備のバックアップが可能になる。また、劣化判定対象の組電池に対する放電容量試験の結果、劣化判定対象の組電池が劣化している、または寿命であると判定されたとしても、劣化判定対象外の組電池を充電しているので、劣化判定対象外の組電池により、通信設備を確実にバックアップすることができる。
【0010】
本発明に係る電源装置において、劣化判定対象の組電池および/または劣化判定対象外の組電池を満充電まで充電させた後、監視制御部は、放電制御手段に、劣化判定対象外の組電池からの放電を禁止させた後、劣化判定対象の組電池からの放電を開始させることを特徴とする。
【0011】
また、放電容量試験時に、監視制御部は、整流器の出力電圧を、第1の電圧値(例えば、46ボルト)よりも低い第2の電圧値(例えば、45ボルト)にまで低下させることを特徴とする。
【0012】
また、電池監視手段は、電圧情報に基づいて劣化判定対象の組電池の電圧が第2の電圧値(例えば、45ボルト)よりも低い第3の電圧値(例えば、43ボルト)にまで低下したと判断した場合、監視制御部に放電停止要求(CSTOP1;CSTOP2)を発して、劣化判定対象の組電池からの放電を終了させることを特徴とする。
【0013】
また、電池監視手段は、劣化判定対象の組電池に対する放電の開始時点から終了時点までの放電電気量を算出し、算出した放電電気量が第1の閾値(例えば、電池の定格容量の80%に相当する80Ah)を下回った場合、劣化判定対象の組電池は劣化または寿命である旨を監視制御部に通知することを特徴とする。この場合、算出した放電電気量が第1の閾値よりも低い第2の閾値(例えば、70Ah)を下回った場合、電池監視手段は、劣化判定対象の組電池は寿命である旨を監視制御部に通知することを特徴とする。
【0014】
この構成によれば、放電容量試験時において、放電電気量が第1の閾値以上である場合、劣化判定対象の組電池は正常であると判定し、放電電気量が第1の閾値未満で第2の閾値以上である場合、劣化判定対象の組電池は劣化していると判定し、放電電気量が第2の閾値未満である場合、劣化判定対象の組電池は寿命であると判定することができる。
【0015】
本発明に係る電源装置はさらに、負荷に供給される電圧が負荷の動作可能な第4の電圧値(例えば、55ボルト)を上回った場合、負荷に供給する電圧を降圧して第4の電圧値に維持する降圧手段を備えることが好ましい。
【0016】
この構成によれば、組電池が満充電に近い状態にあり電池電圧が上昇している場合に、電池電圧を降圧して負荷に動作保証電圧を供給することができる。
【0017】
本発明に係る電源装置において、放電制御手段が降圧手段の機能を兼ねることが好ましい。これにより、容易に降圧手段を構成することができる。
【0018】
本発明に係る電源装置はさらに、組電池の深放電が検出された場合、負荷への放電を停止する過放電防止手段を備えることが好ましく、この場合、放電制御手段が過放電防止手段の機能を兼ねることが好ましい。
【0019】
本発明に係る電源装置において、電池監視手段は、組電池への充電を行っている間に、温度情報に基いて組電池の温度が所定温度(例えば、60℃)以上になったと判断した場合、充電停止要求(CSTOP1;CSTOP2)を発して充電制御手段に組電池への充電を中断させることが好ましい。
【0020】
この場合、電池監視手段は、充電停止要求を発した後、充電制御手段に組電池への充電を中断させている間に、温度情報に基いて組電池の温度が所定温度(例えば、60℃)未満になったと判断した場合、充電開始要求(CSTART1;CSTART2)を発して充電制御手段に組電池への充電を再開させることが好ましい。
【0021】
この構成によれば、組電池の温度が高い場合には充電効率が悪化するため、組電池への充電を一時中断し、組電池の温度が低下するのを待って、充電を再開することで、組電池に対して最適な充電制御を行うことができる。
【0022】
【発明の実施の形態】
以下、本発明の好適な実施形態について、図面を参照して説明する。
【0023】
図1は、本発明の一実施形態に係る電源装置の一構成例を示すブロック図である。図1において、1は50Hzまたは60Hzの商用電源、2は商用電源1の交流電力を整流して直流電力(例えば、公称電圧VCC=−48V)を生成する整流器、3は通信機器等を含む負荷(電流定格としては、例えば60A)である。
【0024】
41はニッケル−水素二次電池からなる単位電池(例えば、電池モジュール)が4つ直列に接続された第1の組電池(例えば、容量100Ah)、42はニッケル−水素二次電池からなる単位電池(例えば、電池モジュール)が4つ直列に接続され、第1の組電池41と並列に接続された第2の組電池である。なお、図1には、2つの組電池が並列に接続された場合を例示しているが、必要に応じて3つ以上であってもよいことは言うまでもない。
【0025】
5は整流器2からの直流電力を受けて第1の組電池41および第2の組電池42に対する電気量の充電を制御する充電制御手段、6は第1の組電池41および第2の組電池42に充電された電気量の放電を制御する放電制御手段である。なお、充電制御手段5および放電制御手段6は、それぞれ、第1の組電池41および第2の組電池42に対応して、2組のパワースイッチ素子および逆流防止用ダイオードを含んで構成される。
【0026】
7は、電池監視手段(電池ECU(Electronic Control Unit))であり、第1の組電池41の電圧情報(V11、V12、V13、V14)、第1の組電池41の電流情報(I1)、および第1の組電池41の温度情報(Tb1)に基づいて、少なくとも第1の組電池41の残存容量SOC1を演算し、また第2の組電池42の電圧情報(V21、V22、V23、V24)、第2の組電池42の電流情報(I2)、および第2の組電池42の温度情報(Tb2)に基づいて、少なくとも第2の組電池42の残存容量SOC2を演算し、第1の組電池41および第2の組電池42の状態を監視する。
【0027】
81は第1の組電池41に流れる充放電電流を検出する電流センサ、82は第2の組電池42に流れる充放電電流を検出する電流センサである。
【0028】
9は、昇圧手段であり、停電時や電池の放電容量試験時など整流器2からの直流電圧が低下しており、また放電末期で第1の組電池41と第2の組電池42の電圧が第1の電圧値(負荷3の動作保証電圧の下限値よりも高い電池電圧値、例えば46ボルト)を下回った場合に、負荷3に供給する電圧を昇圧して第1の電圧値に維持する働きをする。
【0029】
10は、監視制御部(MPU)であり、第1の組電池41および第2の組電池42の放電容量試験時において、整流器2からの出力電圧を制御したり、電池ECU7からの指示(充電開始要求(CSTART)、充電停止要求(CSTOP)、放電開始要求(DSTART)、放電停止要求(DSTOP)など)に応じて、充電制御手段5および放電制御手段6による充放電動作を制御する。
【0030】
次に、このように構成された電源装置の充放電動作について、図1に加えて、図2、図3、図4Aおよび図4Bを参照して説明する。
【0031】
図2は、図1の電源装置における基本的な充放電動作を示す図で、図3は、図1の電源装置における充電中断が発生した場合の充放電動作を示す図である。なお、図2および図3の上側は、充放電による第1の組電池41の残存容量SOC1の時間変化および第2の組電池42の残存容量SOC2の時間変化を示し、図2および図3の下側は、各種要求および状態を指示するフラグを示す。
【0032】
図4Aは、放電容量試験中における各部電圧の時間変化を示す図で、図4Bは、放電電流(I)および放電電気量(Q)の時間変化を示す図である。なお、図4Aにおいて、期間T31は定常状態の期間、期間T32は回路動作を確認するために整流器2の出力電圧VRを少しだけ低下させる期間、期間T33は待機期間、期間T34は電池電圧VBが低下していく放電期間でかつ昇圧手段9が非動作中の期間、期間T35は電池電圧VBが低下していく放電期間でかつ昇圧手段9が動作中の期間を示す。また、VLは負荷2に供給される電圧を、VOは負荷2が動作可能である電圧範囲を示す。
【0033】
図2において、期間T1(初期充電期間)の開始時(電池交換時)に、電池ECU7が、第1の組電池41に対する充電開始要求(CSTART1)を発すると、これを受けて、MPU10は、充電制御手段5の対応するパワースイッチ素子をオン状態に制御し、第1の組電池41に対する充電(例えば、10Aの定電流充電)が行われる。
【0034】
次に、電池ECU7が第1の組電池41の残存容量SOC1が満充電(100%)に達したことを検出すると、充電電流制御要求CC1を発して、第1の組電池41に対して例えば3Aの充電を所定時間行わせ、充電開始要求(CSTART1)を解除する。この状態で、第1の組電池41はバックアップ用電源としての待機状態に入る。
【0035】
同時に、電池ECU7は、第2の組電池42に対する充電開始要求(CSTART2)を発し、これを受けて、MPU10は、充電制御手段5の対応するパワースイッチ素子をオン状態に制御し、第2の組電池42に対する充電(例えば、10Aの定電流充電)が行われる。
【0036】
次に、電池ECU7が第2の組電池42の残存容量SOC2が満充電(100%)に達したことを検出すると、充電電流制御要求CC2を発して、第2の組電池42に対して例えば3Aの充電を所定時間行わせ、充電開始要求(CSTART2)を解除する。この状態で、第2の組電池42はバックアップ用電源としての待機状態に入る。
【0037】
第1の組電池41および第2の組電池42が待機状態にある期間T2において、組電池の自己放電に起因して、残存容量SOC1、SOC2が低下する。第1の組電池41の残存容量SOC1が第1の残存容量値SOCt1(例えば、80%)まで低下すると、電池ECU7は、第1の組電池41に対する充電開始要求(CSTART1)を発し、これを受けて、MPU10は、充電制御手段5の対応するパワースイッチ素子をオン状態に制御し、第1の組電池41に対する充電(例えば、10Aの定電流充電)が行われる。
【0038】
次に、電池ECU7は、第1の組電池41の残存容量SOC1が満充電(100%)に達したことを検出すると、充電電流制御要求CC1を発して、第1の組電池41に対して例えば3Aの充電を所定時間行わせ、充電開始要求(CSTART1)を解除する。これにより、第1の組電池41に対して補充電が行われる。
【0039】
また、第2の組電池42の残存容量SOC2が第1の残存容量値SOCt1(例えば、80%)まで低下すると、電池ECU7は、第2の組電池42に対する充電開始要求(CSTART2)を発し、これを受けて、MPU10は、充電制御手段5の対応するパワースイッチ素子をオン状態に制御し、第2の組電池42に対する充電(例えば、10Aの定電流充電)が行われる。
【0040】
次に、電池ECU7は、第2の組電池42の残存容量SOC2が満充電(100%)に達したことを検出すると、充電電流制御要求CC2を発して、第2の組電池42に対して例えば3Aの充電を所定時間行わせ、充電開始要求(CSTART2)を解除する。これにより、第2の組電池42に対して補充電が行われる。
【0041】
このようにして、期間T2では、第1の組電池41および第2の組電池42の自己放電と、それによる残存容量の低下を補償するための補充電とが繰り返し行われる。
【0042】
期間T3では、電池の劣化状態を判定するために、MPU10により、例えば交換時から6ヶ月毎に電池の放電容量試験が実施される。ここでは、第2の組電池42を放電容量試験の対象とする場合について説明する。まず、試験待機中フラグ(WAIT)が立てられ、所定時間経過した後、試験待機中フラグ(WAIT)が下げられると同時に、試験充電中フラグ(TCS)が立てられる。電池ECU7は、MPU10からの試験要求を受けて、第2の組電池42に対する充電開始要求(CSTART2)を発し、これを受けて、MPU10は、充電制御手段5の対応するパワースイッチ素子をオン状態に制御し、第2の組電池42に対する充電(例えば、10Aの定電流充電)が行われる。
【0043】
次に、電池ECU7は、第2の組電池42の残存容量SOC2が満充電(100%)に達したことを検出すると、充電電流制御要求CC2を発して、第2の組電池42に対して例えば3Aの充電を所定時間行わせ、充電開始要求(CSTART2)を解除する。
【0044】
同時に、電池ECU7は、第2の組電池42に対する放電容量試験中に停電などが発生し、また放電容量試験の結果、劣化判定対象である第2の組電池42が劣化している、または寿命であると判定された場合に備えて、バックアップ用の第1の組電池41に対する充電開始要求(CSTART1)を発し、これを受けて、MPU10は、充電制御手段5の対応するパワースイッチ素子をオン状態に制御し、第1の組電池41に対する充電(例えば、10Aの定電流充電)が行われる。
【0045】
次に、電池ECU7は、第1の組電池41の残存容量SOC1が満充電(100%)に達したことを検出すると、充電電流制御要求CC1を発して、第1の組電池41に対して例えば3Aの充電を所定時間行わせ、充電開始要求(CSTART1)を解除する。
【0046】
これにより、試験充電中フラグ(TCS)が下げられ、試験充電終了フラグ(TCE)が所定時間立てられる。
【0047】
試験充電終了フラグ(TCE)が下げられると、電池ECU7は、第1の組電池41に対する放電停止要求(DSTOP1)を発し、これを受けて、MPU10は、放電制御手段6の対応するパワースイッチ素子をオフ状態に制御し、第1の組電池41からの放電を禁止する。この後、電池ECU7は、第2の組電池42に対する放電開始要求(DSTART2)を発し、これを受けて、MPU10は、試験中フラグTESTを立て、放電制御手段6の対応するパワースイッチ素子をオン状態に制御するとともに、整流器2を制御してその出力電圧VRを第2の電圧値(例えば、45ボルト)にまで低下させて(図4Aの期間T34)、第2の組電池42からの試験放電が開始される。
【0048】
ここで、整流器2の出力電圧VRが下がり、第2の組電池42からの放電により電池電圧VBが低下して、負荷3に供給される電圧VLが第1の電圧値(例えば、46ボルト)に達する(図4Aの期間T34)と、昇圧手段9が動作し、電池電圧VBを昇圧して、負荷3に供給する電圧VLを第1の電圧値(例えば、46ボルト)に維持する(図4Aの期間T35)。これにより、負荷3に動作保証電圧を供給することができる。
【0049】
次に、電池ECU7は、電圧情報V11〜V14、V21〜V24から電池電圧が放電下限電圧値に相当する第3の電圧値(例えば、43ボルト)に達したことを検出すると、試験終了をMPU10に通知する。これを受けて、MPU10は、試験終了フラグ(TEND)を立てる。このとき、電池ECU7は、図4Bに示すように、放電電流Iから放電終了時の放電電気量Qを算出し、放電電気量Qが第1の閾値(例えば、電池の定格容量の80%に相当する80Ah)以上であるか否かを判定する。判定した結果、放電電気量Qが第1の閾値以上である場合、蓄電能力の劣化が無く正常であるとして、放電電気量Qが第1の閾値未満でかつ第2の閾値(例えば、70Ah)以上である場合、蓄電能力の劣化有りとして、放電電気量Qが第2の閾値未満である場合、第2の組電池42は寿命であるとして、電池ECU7は、MPU10に試験結果を報告する。
【0050】
このようにして放電容量試験が終了すると、期間T4において、電池ECU7は、第1の組電池41に対する放電停止要求(DSTOP1)を解除するとともに、第2の組電池42に対する充電開始要求(CSTART2)を発し、これを受けて、MPU10は、充電制御手段5の対応するパワースイッチ素子をオン状態に制御し、第2の組電池42に対する充電(例えば、10Aの定電流充電)が行われる。
【0051】
次に、電池ECU7は、第2の組電池42の残存容量SOC2が満充電(100%)に達したことを検出すると、充電電流制御要求CC2を発して、第2の組電池42に対して例えば3Aの充電を所定時間行わせ、充電開始要求(CSTART2)を解除する。
【0052】
以降の期間T5では、期間T2と同様に、第1の組電池41および第2の組電池42の自己放電と、それによる残存容量の低下を補償するための補充電とが繰り返し行われる。
【0053】
図3は、図1の電源装置における充電中断が発生した場合の充放電動作を示す図であるが、期間T2およびT4は、図2のそれらと同様である。図3が図2と異なる点は、初期充電期間である期間T1において、第2の組電池42に対して初期充電の中断が発生し、また電池容量試験期間である期間T3において、第1の組電池41に対して補充電の中断が発生している点にある。
【0054】
図3の期間T1において、第2の組電池42への初期充電中に、電池ECU7が、温度情報Tb2から第2の組電池42の温度が所定温度(例えば、60℃)以上になったことを検出した場合、高温により充電効率が劣化しているため、立ち上げていた充電開始要求(CSTART2)を一旦解除して、充電を中断する。
【0055】
充電の中断により、第2の組電池42の温度が所定温度(例えば、60℃)未満にまで低下した場合、電池ECU7は、充電開始要求(CSTART2)を再度発して、第2の組電池42への充電を再開する。
【0056】
また、図3の期間T3において、第1の組電池41への補充電中に、電池ECU7が、温度情報Tb1から第1の組電池41の温度が所定温度(例えば、60℃)以上になったことを検出した場合、高温により充電効率が劣化しているため、立ち上げていた充電開始要求(CSTART1)を一旦解除して、充電を中断する。
【0057】
充電の中断により、第1の組電池41の温度が所定温度(例えば、60℃)未満にまで低下した場合、電池ECU7は、充電開始要求(CSTART1)を再度発して、第1の組電池41への充電を再開する。
【0058】
以上のように、本実施形態によれば、劣化判定対象の組電池に対して放電容量試験を行い、負荷に供給される電圧が低下したとしても、昇圧手段により、電池電圧を昇圧して負荷に供給することができ、停電時などにおいても通信設備のバックアップが可能になる。また、劣化判定対象の組電池に対する放電容量試験の結果、劣化判定対象の組電池が劣化している、または寿命であると判定されたとしても、劣化判定対象外の組電池を満充電にまで充電しているので、劣化判定対象外の組電池により、通信設備を確実にバックアップすることができる。
【0059】
なお、上記実施形態においては、劣化判定対象の組電池と劣化判定対象外の組電池のいずれも満充電まで充電させたうえで、劣化判定対象の組電池に対する放電容量試験を実施する例について述べたが、劣化判定対象の組電池と劣化判定対象外の組電池の少なくとも一方を充電させたうえで、劣化判定対象の組電池に対する放電容量試験を行っても良い。劣化判定対象の組電池を補充電せずに放電容量試験を行ったり、満充電に到達する前に放電容量試験を行った場合には、試験結果に若干の誤差が生じる可能性があるが、試験時間を短くできると共に、本発明の目的である通信設備のバックアップに対しては支障は生じない。
【0060】
また、本実施形態において、放電制御手段6が降圧手段としての機能を兼ねることもできる。満充電に近い状態において電池電圧が上昇して第4の電圧値(例えば、55ボルト)に達した場合、降圧手段が動作し、電池電圧を降圧して、負荷3に供給する電圧を第4の電圧値(例えば、55ボルト)に維持する。これにより、負荷3に動作保証電圧を供給することができる。
【0061】
また、本実施形態において、放電制御手段6が過放電防止手段としての機能を兼ねることもできる。電池ECU7は、電池電圧が放電終端電圧値にまで低下したことにより深放電を検出した場合、放電停止要求を発して、放電制御手段6に組電池からの放電を停止させる。これにより、過放電を容易に防止することができる。
【0062】
また、本実施形態において、電源装置が組電池に対する冷却手段(例えば、冷却ファン)を備えてもよい。この場合、電池ECU7は、組電池への充電を行っている間、また充電終了後も電池温度が高ければ、冷却ファンをオンにし、組電池を冷却させる。これにより、組電池の充電効率の低下を抑えて、最適な充電制御を行うことができる。
【0063】
【発明の効果】
以上説明したように、本発明によれば、エネルギー密度が高く(すなわち、コンパクトにエネルギーを蓄積できる)、出力密度も高いニッケル−水素二次電池を用いて、その残存容量に応じて充放電制御を行うことで、高容量化や省スペース化、また長寿命化を図ったバックアップ用電源を塔載した電源装置を実現することができる。
【0064】
また、劣化判定対象の組電池に対して放電容量試験を行い、負荷に供給される電圧が低下したとしても、昇圧手段により、電池電圧を昇圧して負荷に供給することができ、停電時などにおいても通信設備のバックアップが可能になる。また、劣化判定対象の組電池に対する放電容量試験の結果、劣化判定対象の組電池が劣化している、または寿命であると判定されたとしても、劣化判定対象外の組電池を満充電にまで充電しているので、劣化判定対象外の組電池により、通信設備を確実にバックアップすることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る電源装置の構成例を示すブロック図
【図2】図1の電源装置における基本的な充放電動作を示す図
【図3】図1の電源装置における充電中断が発生した場合の充放電動作を示す図
【図4A】放電容量試験中における各部電圧の時間変化を示す図
【図4B】放電電流(I)および放電電気量(Q)の時間変化を示す図
【符号の説明】
1 商用電源
2 整流器
3 負荷
41 第1の組電池
42 第2の組電池
5 充電制御手段
6 放電制御手段
7 電池監視手段(電池ECU)
81、82 電流センサ
9 昇圧手段
10 監視制御部(MPU)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power supply device, and more particularly to a communication DC power supply device that is installed in a wireless communication base station or the like and has a nickel-hydrogen secondary battery mounted as a backup power supply at the time of a power failure or the like.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a lead storage battery has been used as a backup power supply at the time of power failure or maintenance in a communication DC power supply device installed in a base station such as a mobile phone (for example, see Patent Document 1). This lead storage battery is float-charged by a DC voltage obtained by rectifying an AC voltage of a commercial power supply with a rectifier, and no charge control is performed.
[0003]
One of the methods for determining the deterioration and life of a lead-acid battery used in such a power supply device is that the internal resistance of the battery increases with the progress of the deterioration depending on the environmental temperature. There is a method of detecting and determining the degree of descent. As another deterioration determination method, there is a method in which a lead storage battery is periodically subjected to a discharge test, and the amount of discharged electricity is calculated and determined.
[0004]
[Patent Document 1]
JP-A-5-315015
[Problems to be solved by the invention]
In recent years, power demand for communication DC power supplies has been increasing, and their installation space is also limited. However, when a lead-acid battery is used as a backup power supply for a communication DC power supply, there is a problem in terms of high capacity and space saving, and the service life due to aging is short, and costs increase due to maintenance and inspection. There is also the problem of doing.
[0006]
In addition, as described above, the method of periodically performing a discharge test on a lead storage battery and calculating the amount of discharged electricity to determine deterioration is performed when the lead storage battery is backing up a communication facility or the like. However, there is a possibility that the communication equipment may be stopped due to a power outage or the like, so that the communication cannot be performed.
[0007]
The present invention has been made in view of such a problem, and an object of the present invention is to use a nickel-hydrogen secondary battery instead of a lead storage battery to achieve high capacity, space saving, and long life. It is another object of the present invention to provide a power supply device capable of backing up even in the event of a power failure during battery deterioration determination.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a power supply device according to the present invention includes a plurality of assembled batteries in which a plurality of nickel-hydrogen secondary batteries are connected in series and a plurality of assembled batteries connected in parallel, and a commercial power supply. A rectifier that rectifies AC power to supply DC power to a load including communication equipment and a plurality of assembled batteries, and charging that receives DC power from the rectifier and controls charging of the amount of electricity to the plurality of assembled batteries. Control means, discharge control means for controlling the discharge of the amount of electricity charged in the plurality of assembled batteries, voltage information (V11, V12, V13, V14; V21, V22, V23, V24) of the plurality of assembled batteries, current Battery monitoring means for calculating at least the remaining capacity (SOC1; SOC2) of at least a plurality of assembled batteries based on the information (I1; I2) and the temperature information (Tb1; Tb2), and monitoring the states of the plurality of assembled batteries ( A battery ECU (Electronic Control Unit), a monitoring control unit (MPU) that controls the output voltage of the rectifier, and controls the charge control unit and the discharge control unit in response to an instruction from the battery monitoring unit. Boosting means for boosting the voltage supplied to the load and maintaining the voltage at the first voltage value when the voltage falls below a first voltage value (for example, 46 volts) at which the load can operate. When performing a discharge capacity test on the battery pack subject to deterioration determination among the batteries, in response to a test request from the monitoring control unit, the battery monitoring unit issues a charge start request (CSTART1; CSTART2) to the monitoring control unit. The charging control means charges a battery pack subject to deterioration determination and / or a battery pack not subject to deterioration determination, and then performs a discharge capacity test. You.
[0009]
According to this configuration, the discharge capacity test is performed on the battery pack subject to the deterioration determination, and even if the voltage supplied to the load decreases, the battery voltage can be boosted by the booster and supplied to the load. In addition, communication equipment can be backed up even during a power failure. In addition, as a result of the discharge capacity test for the battery cell subject to deterioration determination, even if it is determined that the battery cell subject to deterioration determination is deteriorated or has reached the end of its life, the battery pack not subject to deterioration determination is being charged. Therefore, the communication equipment can be reliably backed up by the battery pack not subject to the deterioration determination.
[0010]
In the power supply device according to the present invention, after charging the battery pack subject to the deterioration determination and / or the battery pack not subject to the deterioration determination to full charge, the monitoring control unit causes the discharge control unit to output the battery pack not subject to the deterioration determination. After the discharge from the battery pack is prohibited, the discharge from the battery pack to be deteriorated is started.
[0011]
Further, during the discharge capacity test, the monitoring control unit reduces the output voltage of the rectifier to a second voltage value (for example, 45 volts) lower than the first voltage value (for example, 46 volts). And
[0012]
In addition, the battery monitoring unit reduces the voltage of the battery pack to be deteriorated to a third voltage value (for example, 43 volts) lower than the second voltage value (for example, 45 volts) based on the voltage information. If it is determined that the battery pack is to be deteriorated, a discharge stop request (CSTOP1; CSTOP2) is issued to the monitoring control unit to terminate the discharge from the battery pack subject to deterioration determination.
[0013]
Further, the battery monitoring means calculates the amount of discharged electricity from the start time to the end time of the discharge of the battery pack subject to the deterioration determination, and calculates the calculated amount of discharged electricity as a first threshold (for example, 80% of the rated capacity of the battery). (80Ah), which is equivalent to the above, the battery pack to be deteriorated is notified to the monitor control unit that the battery pack is deteriorated or has reached the end of its life. In this case, when the calculated amount of discharged electricity falls below a second threshold (for example, 70 Ah) lower than the first threshold, the battery monitoring unit determines that the battery pack to be deteriorated has reached the end of its life. Is notified.
[0014]
According to this configuration, at the time of the discharge capacity test, when the amount of discharged electricity is equal to or more than the first threshold, the battery pack to be deteriorated is determined to be normal. If the battery charge is equal to or more than the threshold value of 2, the battery pack to be deteriorated is determined to be deteriorated, and if the amount of discharged electricity is less than the second threshold value, the battery pack to be deteriorated is determined to have reached the end of its life. Can be.
[0015]
The power supply device according to the present invention further reduces the voltage supplied to the load when the voltage supplied to the load exceeds a fourth voltage value at which the load can operate (eg, 55 volts). It is preferable to provide a step-down means for maintaining the pressure.
[0016]
According to this configuration, when the battery pack is almost fully charged and the battery voltage is rising, it is possible to supply the operation assurance voltage to the load by decreasing the battery voltage.
[0017]
In the power supply device according to the present invention, it is preferable that the discharge control unit also functions as a step-down unit. Thereby, the step-down means can be easily configured.
[0018]
It is preferable that the power supply device according to the present invention further includes an overdischarge prevention unit that stops discharging to the load when a deep discharge of the battery pack is detected. In this case, the discharge control unit has a function of the overdischarge prevention unit. It is preferable to also serve as
[0019]
In the power supply device according to the present invention, when the battery monitoring unit determines that the temperature of the assembled battery has reached a predetermined temperature (for example, 60 ° C.) or more based on the temperature information while charging the assembled battery. Preferably, a charge stop request (CSTOP1; CSTOP2) is issued to cause the charge control means to interrupt charging of the assembled battery.
[0020]
In this case, after issuing the charge stop request, the battery monitoring unit sets the temperature of the assembled battery to a predetermined temperature (for example, 60 ° C.) based on the temperature information while the charging control unit suspends the charging of the assembled battery. ), It is preferable to issue a charge start request (CSTART1; CSTART2) to cause the charge control means to restart charging the assembled battery.
[0021]
According to this configuration, when the temperature of the assembled battery is high, the charging efficiency is deteriorated. Therefore, the charging of the assembled battery is temporarily stopped, and after the temperature of the assembled battery is lowered, the charging is restarted. Optimum charge control can be performed on the assembled battery.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[0023]
FIG. 1 is a block diagram illustrating a configuration example of a power supply device according to an embodiment of the present invention. In FIG. 1, 1 is a 50 Hz or 60 Hz commercial power supply, 2 is a rectifier that rectifies the AC power of the commercial power supply 1 to generate DC power (for example, nominal voltage VCC = −48 V), and 3 is a load including communication equipment and the like. (The current rating is, for example, 60 A).
[0024]
Reference numeral 41 denotes a first assembled battery (for example, a capacity of 100 Ah) in which four unit batteries (for example, battery modules) each composed of a nickel-hydrogen secondary battery are connected in series, and reference numeral 42 denotes a unit battery composed of a nickel-hydrogen secondary battery. (For example, a battery module) is a second assembled battery in which four are connected in series and connected in parallel with the first assembled battery 41. Although FIG. 1 illustrates a case where two assembled batteries are connected in parallel, it goes without saying that three or more assembled batteries may be connected as needed.
[0025]
Reference numeral 5 denotes charging control means for receiving the DC power from the rectifier 2 and controlling charging of the amount of electricity to the first assembled battery 41 and the second assembled battery 42, and 6 designates the first assembled battery 41 and the second assembled battery This is a discharge control means for controlling the discharge of the amount of electricity charged in 42. The charge control means 5 and the discharge control means 6 are configured to include two sets of power switch elements and a backflow prevention diode corresponding to the first assembled battery 41 and the second assembled battery 42, respectively. .
[0026]
Reference numeral 7 denotes a battery monitoring unit (battery ECU (Electronic Control Unit)), which includes voltage information (V11, V12, V13, V14) of the first assembled battery 41, current information (I1) of the first assembled battery 41, And at least the remaining capacity SOC1 of the first assembled battery 41 is calculated based on the temperature information (Tb1) of the first assembled battery 41 and the voltage information (V21, V22, V23, V24) of the second assembled battery 42. ), The remaining capacity SOC2 of at least the second assembled battery 42 is calculated based on the current information (I2) of the second assembled battery 42 and the temperature information (Tb2) of the second assembled battery 42, The status of the assembled battery 41 and the second assembled battery 42 is monitored.
[0027]
Reference numeral 81 denotes a current sensor that detects a charge / discharge current flowing through the first assembled battery 41, and reference numeral 82 denotes a current sensor that detects a charge / discharge current flowing through the second assembled battery 42.
[0028]
Reference numeral 9 denotes a step-up means, which reduces the DC voltage from the rectifier 2 at the time of a power failure or a battery discharge capacity test, and reduces the voltage of the first assembled battery 41 and the second assembled battery 42 at the end of discharging. When the voltage falls below a first voltage value (a battery voltage value higher than the lower limit value of the operation guarantee voltage of the load 3, for example, 46 volts), the voltage supplied to the load 3 is boosted and maintained at the first voltage value. Work.
[0029]
Reference numeral 10 denotes a monitoring control unit (MPU) which controls an output voltage from the rectifier 2 and performs an instruction (charging) from the battery ECU 7 during a discharge capacity test of the first assembled battery 41 and the second assembled battery 42. In response to a start request (CSTART), a charge stop request (CSTOP), a discharge start request (DSTART), a discharge stop request (DSTOP), and the like, the charge / discharge operation by the charge control unit 5 and the discharge control unit 6 is controlled.
[0030]
Next, the charging / discharging operation of the power supply device configured as described above will be described with reference to FIGS. 2, 3, 4A, and 4B in addition to FIG.
[0031]
FIG. 2 is a diagram showing a basic charge / discharge operation in the power supply device of FIG. 1, and FIG. 3 is a diagram showing a charge / discharge operation in the case where a charge interruption occurs in the power supply device of FIG. The upper part of FIGS. 2 and 3 shows the time change of the remaining capacity SOC1 of the first assembled battery 41 and the time change of the remaining capacity SOC2 of the second assembled battery 42 due to charging and discharging. The lower side shows flags indicating various requests and states.
[0032]
FIG. 4A is a diagram showing a time change of each part voltage during a discharge capacity test, and FIG. 4B is a diagram showing a time change of a discharge current (I) and a discharge electric quantity (Q). In FIG. 4A, a period T31 is a period of a steady state, a period T32 is a period for slightly lowering the output voltage VR of the rectifier 2 to confirm the circuit operation, a period T33 is a standby period, and a period T34 is a period when the battery voltage VB is lower. The period T35 is a discharging period in which the battery voltage VB is falling and a period in which the boosting unit 9 is operating, and the period T35 is a period in which the boosting unit 9 is not operating. Further, VL indicates a voltage supplied to the load 2 and VO indicates a voltage range in which the load 2 can operate.
[0033]
In FIG. 2, when the battery ECU 7 issues a charge start request (CSTART1) for the first assembled battery 41 at the start of the period T1 (initial charge period) (at the time of battery replacement), the MPU 10 receives the request. The corresponding power switch element of the charging control means 5 is controlled to be turned on, and charging of the first assembled battery 41 (for example, constant current charging of 10 A) is performed.
[0034]
Next, when the battery ECU 7 detects that the state of charge SOC1 of the first assembled battery 41 has reached a full charge (100%), the battery ECU 7 issues a charge current control request CC1 to the first assembled battery 41, for example. 3A is charged for a predetermined time, and the charge start request (CSTART1) is released. In this state, the first assembled battery 41 enters a standby state as a backup power supply.
[0035]
At the same time, the battery ECU 7 issues a charge start request (CSTART2) to the second assembled battery 42, and in response to this, the MPU 10 controls the corresponding power switch element of the charge control means 5 to the ON state, and Charging of the assembled battery 42 (for example, constant current charging of 10 A) is performed.
[0036]
Next, when the battery ECU 7 detects that the state of charge SOC2 of the second assembled battery 42 has reached a full charge (100%), the battery ECU 7 issues a charge current control request CC2 to the second assembled battery 42, for example. 3A is charged for a predetermined time, and the charge start request (CSTART2) is released. In this state, the second assembled battery 42 enters a standby state as a backup power supply.
[0037]
In a period T2 in which the first assembled battery 41 and the second assembled battery 42 are in the standby state, the remaining capacities SOC1 and SOC2 decrease due to the self-discharge of the assembled battery. When the state of charge SOC1 of the first assembled battery 41 decreases to the first state of charge SOCt1 (for example, 80%), the battery ECU 7 issues a charge start request (CSTART1) to the first assembled battery 41, and issues this request. In response, the MPU 10 controls the corresponding power switch element of the charging control means 5 to the on state, and the first assembled battery 41 is charged (for example, constant current charging of 10 A).
[0038]
Next, when detecting that the state of charge SOC1 of the first assembled battery 41 has reached full charge (100%), the battery ECU 7 issues a charge current control request CC1 to the first assembled battery 41. For example, 3A charging is performed for a predetermined time, and the charging start request (CSTART1) is released. Thereby, the auxiliary battery 41 is supplementarily charged.
[0039]
When the state of charge SOC2 of the second assembled battery 42 decreases to the first state of charge SOCt1 (for example, 80%), the battery ECU 7 issues a charge start request (CSTART2) to the second assembled battery 42, In response to this, the MPU 10 controls the corresponding power switch element of the charging control means 5 to the on state, and the second assembled battery 42 is charged (for example, constant current charging of 10 A).
[0040]
Next, when detecting that the state of charge SOC2 of the second assembled battery 42 has reached the full charge (100%), the battery ECU 7 issues a charge current control request CC2 to the second assembled battery 42. For example, the charging of 3A is performed for a predetermined time, and the charging start request (CSTART2) is released. As a result, auxiliary charging is performed on the second assembled battery 42.
[0041]
In this manner, in the period T2, the self-discharge of the first assembled battery 41 and the second assembled battery 42 and the supplementary charge for compensating the decrease in the remaining capacity due to the self-discharge are repeatedly performed.
[0042]
In the period T3, in order to determine the deterioration state of the battery, the MPU 10 performs a battery discharge capacity test, for example, every six months from the time of replacement. Here, a case in which the second assembled battery 42 is subjected to a discharge capacity test will be described. First, the test waiting flag (WAIT) is set, and after a predetermined time has elapsed, the test waiting flag (WAIT) is lowered and, at the same time, the test charging flag (TCS) is set. The battery ECU 7 receives a test request from the MPU 10 and issues a charge start request (CSTART2) for the second assembled battery 42. In response to this, the MPU 10 turns on the corresponding power switch element of the charge control unit 5 in the on state. And the second assembled battery 42 is charged (for example, constant current charging of 10 A).
[0043]
Next, when detecting that the state of charge SOC2 of the second assembled battery 42 has reached the full charge (100%), the battery ECU 7 issues a charge current control request CC2 to the second assembled battery 42. For example, the charging of 3A is performed for a predetermined time, and the charging start request (CSTART2) is released.
[0044]
At the same time, the battery ECU 7 determines that a power failure or the like has occurred during the discharge capacity test on the second assembled battery 42, and as a result of the discharge capacity test, the second assembled battery 42 that is the subject of the deterioration determination The MPU 10 turns on the corresponding power switch element of the charge control unit 5 in response to the request to start charging the backup first assembled battery 41 (CSTART1). The state is controlled, and charging of the first assembled battery 41 (for example, constant current charging of 10 A) is performed.
[0045]
Next, when detecting that the state of charge SOC1 of the first assembled battery 41 has reached full charge (100%), the battery ECU 7 issues a charge current control request CC1 to the first assembled battery 41. For example, 3A charging is performed for a predetermined time, and the charging start request (CSTART1) is released.
[0046]
As a result, the test charging flag (TCS) is lowered, and the test charging end flag (TCE) is set for a predetermined time.
[0047]
When the test charge end flag (TCE) is lowered, the battery ECU 7 issues a discharge stop request (DSTOP1) to the first assembled battery 41, and in response, the MPU 10 causes the corresponding power switch element of the discharge control means 6 to operate. Is turned off, and discharge from the first assembled battery 41 is prohibited. Thereafter, the battery ECU 7 issues a discharge start request (DSTART2) to the second assembled battery 42, and in response, the MPU 10 sets the test-in-progress flag TEST, and turns on the corresponding power switch element of the discharge control means 6. While controlling the state, the rectifier 2 is controlled to reduce its output voltage VR to a second voltage value (for example, 45 volts) (period T34 in FIG. 4A), and the test from the second assembled battery 42 is performed. Discharge starts.
[0048]
Here, the output voltage VR of the rectifier 2 decreases, the battery voltage VB decreases due to the discharge from the second assembled battery 42, and the voltage VL supplied to the load 3 becomes the first voltage value (for example, 46 volts). (Period T34 in FIG. 4A), the booster 9 operates to boost the battery voltage VB and maintain the voltage VL supplied to the load 3 at a first voltage value (for example, 46 volts) (FIG. 4). 4A period T35). Thereby, the operation assurance voltage can be supplied to the load 3.
[0049]
Next, when detecting that the battery voltage has reached the third voltage value (for example, 43 volts) corresponding to the discharge lower limit voltage value from the voltage information V11 to V14 and V21 to V24, the battery ECU 7 notifies the MPU 10 of the end of the test. Notify In response, the MPU 10 sets a test end flag (TEND). At this time, as shown in FIG. 4B, the battery ECU 7 calculates a discharge electric quantity Q at the end of discharge from the discharge current I, and sets the discharge electric quantity Q to a first threshold value (for example, 80% of the rated capacity of the battery). It is determined whether it is equal to or greater than 80 Ah). If the result of the determination is that the amount of discharged electricity Q is greater than or equal to the first threshold, it is determined that the storage capacity is normal without any deterioration of the storage capacity, and that the amount of discharged electricity Q is less than the first threshold and a second threshold (for example, 70 Ah). If the above is the case, the storage capacity is degraded, and if the amount of discharged electricity Q is less than the second threshold, the second assembled battery 42 is determined to have reached the end of life, and the battery ECU 7 reports the test result to the MPU 10.
[0050]
When the discharge capacity test is completed in this way, in the period T4, the battery ECU 7 cancels the discharge stop request (DSTOP1) for the first assembled battery 41 and requests the start of charge (CSTART2) for the second assembled battery 42. In response to this, the MPU 10 controls the corresponding power switch element of the charge control means 5 to the ON state, and the second assembled battery 42 is charged (for example, constant current charging of 10 A).
[0051]
Next, when detecting that the state of charge SOC2 of the second assembled battery 42 has reached the full charge (100%), the battery ECU 7 issues a charge current control request CC2 to the second assembled battery 42. For example, the charging of 3A is performed for a predetermined time, and the charging start request (CSTART2) is released.
[0052]
In the subsequent period T5, as in the period T2, the self-discharge of the first assembled battery 41 and the second assembled battery 42 and the supplementary charge for compensating the decrease in the remaining capacity due to the self-discharge are repeatedly performed.
[0053]
FIG. 3 is a diagram showing a charging / discharging operation when charging is interrupted in the power supply device of FIG. 1, and periods T2 and T4 are the same as those of FIG. 2. FIG. 3 differs from FIG. 2 in that during the period T1 which is the initial charging period, the interruption of the initial charging of the second assembled battery 42 occurs, and in the period T3 which is the battery capacity testing period, the first charging is stopped. The point is that the supplementary charging of the assembled battery 41 is interrupted.
[0054]
During the period T1 in FIG. 3, during the initial charging of the second assembled battery 42, the battery ECU 7 determines that the temperature of the second assembled battery 42 has become equal to or higher than the predetermined temperature (for example, 60 ° C.) from the temperature information Tb2. Is detected, the charging efficiency has been degraded due to the high temperature. Therefore, the charging start request (CSTART2) that has been started is temporarily released, and charging is interrupted.
[0055]
When the temperature of the second assembled battery 42 drops below a predetermined temperature (for example, 60 ° C.) due to the interruption of charging, the battery ECU 7 issues a charge start request (CSTART2) again, and the second assembled battery 42 Resume charging.
[0056]
Further, during the period T3 of FIG. 3, during the supplementary charging of the first assembled battery 41, the battery ECU 7 determines that the temperature of the first assembled battery 41 becomes equal to or higher than the predetermined temperature (for example, 60 ° C.) from the temperature information Tb1. When it is detected that the charging efficiency is deteriorated due to the high temperature, the charging start request (CSTART1) that has been started is temporarily released, and the charging is interrupted.
[0057]
When the temperature of the first assembled battery 41 decreases to a temperature lower than a predetermined temperature (for example, 60 ° C.) due to the interruption of the charging, the battery ECU 7 issues a charge start request (CSTART1) again, and the first assembled battery 41 Resume charging.
[0058]
As described above, according to the present embodiment, the discharge capacity test is performed on the battery pack subject to deterioration determination, and even if the voltage supplied to the load decreases, the battery voltage is boosted by the booster to increase the load. The communication equipment can be backed up even during a power failure. Also, as a result of the discharge capacity test for the battery cell subject to the deterioration determination, even if the battery cell subject to the deterioration determination is determined to be deteriorated or has reached the end of its life, the battery cells not subject to the deterioration determination are fully charged. Since the battery is charged, the communication equipment can be reliably backed up by a battery pack that is not subject to deterioration determination.
[0059]
Note that, in the above-described embodiment, an example is described in which both the battery pack subject to deterioration determination and the battery pack not subject to deterioration determination are charged to full charge, and then a discharge capacity test is performed on the battery pack subject to deterioration determination. However, a discharge capacity test may be performed on at least one of the battery pack subject to the deterioration determination and the battery pack not subject to the deterioration determination after the battery is charged. If the discharge capacity test is performed without supplementary charging of the battery to be judged for deterioration or the discharge capacity test is performed before reaching the full charge, there may be a slight error in the test results, The test time can be shortened, and there is no hindrance to the backup of the communication equipment, which is the object of the present invention.
[0060]
Further, in the present embodiment, the discharge control means 6 can also function as a step-down means. When the battery voltage rises and reaches a fourth voltage value (for example, 55 volts) in a state close to full charge, the step-down means operates to step down the battery voltage and change the voltage supplied to the load 3 to the fourth voltage. (For example, 55 volts). Thereby, the operation assurance voltage can be supplied to the load 3.
[0061]
Further, in this embodiment, the discharge control means 6 can also function as an overdischarge prevention means. When the battery ECU 7 detects a deep discharge due to the battery voltage dropping to the discharge termination voltage value, it issues a discharge stop request and causes the discharge control means 6 to stop discharging from the assembled battery. Thus, overdischarge can be easily prevented.
[0062]
Further, in the present embodiment, the power supply device may include a cooling unit (for example, a cooling fan) for the battery pack. In this case, the battery ECU 7 turns on the cooling fan to cool the battery pack while charging the battery pack and when the battery temperature is high even after the charging is completed. Thereby, it is possible to perform optimal charging control while suppressing a decrease in charging efficiency of the battery pack.
[0063]
【The invention's effect】
As described above, according to the present invention, a nickel-hydrogen secondary battery having a high energy density (that is, capable of storing energy compactly) and a high output density is used, and charge / discharge control is performed according to the remaining capacity. By doing so, it is possible to realize a power supply device equipped with a backup power supply that achieves high capacity, space saving, and long life.
[0064]
Also, a discharge capacity test is performed on the battery pack subject to deterioration determination, and even if the voltage supplied to the load is reduced, the battery voltage can be boosted by the boosting means and supplied to the load. In this case, communication equipment can be backed up. Also, as a result of the discharge capacity test for the battery cell subject to the deterioration determination, even if the battery cell subject to the deterioration determination is determined to be deteriorated or has reached the end of its life, the battery cells not subject to the deterioration determination are fully charged. Since the battery is charged, the communication equipment can be reliably backed up by a battery pack that is not subject to deterioration determination.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration example of a power supply device according to an embodiment of the present invention; FIG. 2 is a diagram showing basic charge / discharge operations in the power supply device of FIG. 1; FIG. FIG. 4A is a diagram showing a charge / discharge operation when a charge interruption occurs. FIG. 4A is a diagram showing a time change of each part voltage during a discharge capacity test. Diagrams [Description of symbols]
DESCRIPTION OF SYMBOLS 1 Commercial power supply 2 Rectifier 3 Load 41 1st assembled battery 42 2nd assembled battery 5 Charge control means 6 Discharge control means 7 Battery monitoring means (battery ECU)
81, 82 Current sensor 9 Step-up means 10 Monitoring control unit (MPU)

Claims (13)

ニッケル−水素二次電池を複数個直列に接続して成る組電池が複数個並列に接続された複数の組電池と、
商用電源からの交流電力を整流して負荷および前記複数の組電池に対して直流電力を供給する整流器と、
前記整流器からの直流電力を受けて前記複数の組電池に対する電気量の充電を制御する充電制御手段と、
前記複数の組電池に充電された電気量の放電を制御する放電制御手段と、
前記複数の組電池の電圧情報、電流情報、および温度情報に基づいて、少なくとも前記複数の組電池の残存容量を演算し、前記複数の組電池の状態を監視する電池監視手段と、
前記整流器の出力電圧を制御するとともに、前記電池監視手段からの指示に応じて前記充電制御手段および前記放電制御手段を制御する監視制御部と、
前記負荷に供給される電圧が前記負荷の動作可能な第1の電圧値を下回った場合、前記負荷に供給する電圧を昇圧して前記第1の電圧値に維持する昇圧手段とを備え、
前記複数の組電池のうち劣化判定対象の組電池に対する放電容量試験を行うに際して、前記監視制御部からの試験要求に応答して、前記電池監視手段は、充電開始要求を前記監視制御部に発して、前記充電制御手段に、前記劣化判定対象の組電池および/または劣化判定対象外の組電池を充電させたうえで、前記放電容量試験を行うことを特徴とする電源装置。
A plurality of assembled batteries in which a plurality of nickel-hydrogen secondary batteries are connected in parallel, and
A rectifier that rectifies AC power from a commercial power supply and supplies DC power to the load and the plurality of battery packs;
Charge control means for receiving the DC power from the rectifier and controlling the charging of the amount of electricity to the plurality of assembled batteries,
Discharge control means for controlling the discharge of the amount of electricity charged to the plurality of assembled batteries,
Battery monitoring means for calculating at least the remaining capacity of the plurality of assembled batteries based on the voltage information, the current information, and the temperature information of the plurality of assembled batteries, and monitoring states of the plurality of assembled batteries,
A monitoring control unit that controls the output voltage of the rectifier and controls the charge control unit and the discharge control unit in accordance with an instruction from the battery monitoring unit;
Boosting means for boosting the voltage supplied to the load and maintaining the first voltage value when the voltage supplied to the load falls below a first voltage value at which the load can operate;
When performing a discharge capacity test on the battery pack subject to deterioration determination among the plurality of battery packs, in response to a test request from the monitoring control unit, the battery monitoring unit issues a charge start request to the monitoring control unit. A power supply apparatus, wherein the charge control means charges the battery pack subject to the deterioration determination and / or the battery pack not subject to the deterioration determination, and then performs the discharge capacity test.
前記劣化判定対象の組電池および/または前記劣化判定対象外の組電池を満充電まで充電させた後、前記監視制御部は、前記放電制御手段に、前記劣化判定対象外の組電池からの放電を禁止させた後、前記劣化判定対象の組電池からの放電を開始させることを特徴とする請求項1記載の電源装置。After charging the battery pack subject to the deterioration determination and / or the battery pack not subject to the deterioration determination to full charge, the monitoring control unit causes the discharge control unit to discharge the battery pack not subject to the deterioration determination. 2. The power supply device according to claim 1, wherein after the battery pack is prohibited, the discharge from the battery pack to be deteriorated is started. 前記放電容量試験時に、前記監視制御部は、前記整流器の出力電圧を、前記第1の電圧値よりも低い第2の電圧値にまで低下させることを特徴とする請求項2記載の電源装置。3. The power supply device according to claim 2, wherein at the time of the discharge capacity test, the monitoring control unit reduces the output voltage of the rectifier to a second voltage value lower than the first voltage value. 4. 前記電池監視手段は、前記電圧情報に基づいて前記劣化判定対象の組電池の電圧が前記第2の電圧値よりも低い第3の電圧値にまで低下したと判断した場合、前記監視制御部に放電停止要求を発して、前記劣化判定対象の組電池からの放電を終了させることを特徴とする請求項3記載の電源装置。When the battery monitoring means determines that the voltage of the battery pack to be deteriorated has decreased to a third voltage value lower than the second voltage value based on the voltage information, 4. The power supply device according to claim 3, wherein a discharge stop request is issued to end discharging from the battery pack to be deteriorated. 前記電池監視手段は、前記劣化判定対象の組電池に対する放電の開始時点から終了時点までの放電電気量を算出し、算出した前記放電電気量が第1の閾値を下回った場合、前記劣化判定対象の組電池は劣化または寿命である旨を前記監視制御部に通知することを特徴とする請求項4記載の電源装置。The battery monitoring means calculates an amount of discharged electricity from a start time to an end time of discharging of the battery pack to be deteriorated, and when the calculated amount of discharged electricity falls below a first threshold value, The power supply device according to claim 4, wherein the monitoring control unit is notified that the assembled battery is deteriorated or has reached the end of its life. 前記電池監視手段は、算出した前記放電電気量が前記第1の閾値よりも低い第2の閾値を下回った場合、前記劣化判定対象の組電池は寿命である旨を前記監視制御部に通知することを特徴とする請求項5記載の電源装置。When the calculated amount of discharged electricity is lower than a second threshold value lower than the first threshold value, the battery monitoring unit notifies the monitoring control unit that the battery pack to be deteriorated has reached the end of its life. The power supply device according to claim 5, wherein: 前記電源装置はさらに、前記負荷に供給される電圧が前記負荷の動作可能な第4の電圧値を上回った場合、前記負荷に供給する電圧を降圧して前記第4の電圧値に維持する降圧手段を備えたことを特徴とする請求項1記載の電源装置。When the voltage supplied to the load exceeds a operable fourth voltage value of the load, the power supply device further reduces the voltage supplied to the load to maintain the voltage at the fourth voltage value. 2. The power supply device according to claim 1, further comprising means. 前記放電制御手段が前記降圧手段の機能を兼ねることを特徴とする請求項7記載の電源装置。8. The power supply device according to claim 7, wherein said discharge control means also functions as said step-down means. 前記電源装置はさらに、前記組電池の深放電が検出された場合、前記負荷への放電を停止する過放電防止手段を備えたことを特徴とする請求項1記載の電源装置。2. The power supply device according to claim 1, further comprising an overdischarge prevention unit that stops discharging to the load when a deep discharge of the battery pack is detected. 前記放電制御手段が前記過放電防止手段の機能を兼ねることを特徴とする請求項9記載の電源装置。10. The power supply device according to claim 9, wherein said discharge control means also functions as said overdischarge prevention means. 前記電池監視手段は、前記組電池への充電を行っている間に、前記温度情報に基いて前記組電池の温度が所定温度以上になったと判断した場合、充電停止要求を発して前記充電制御手段に前記組電池への充電を中断させることを特徴とする請求項1記載の電源装置。The battery monitoring unit issues a charge stop request and performs the charge control when determining that the temperature of the assembled battery has become equal to or higher than a predetermined temperature based on the temperature information while charging the assembled battery. 2. The power supply device according to claim 1, wherein said means interrupts charging of said battery pack. 前記電池監視手段は、前記充電停止要求を発した後、前記充電制御手段に前記組電池への充電を中断させている間に、前記温度情報に基いて前記組電池の温度が前記所定温度未満になったと判断した場合、前記充電開始要求を発して前記充電制御手段に前記組電池への充電を再開させることを特徴とする請求項11記載の電源装置。The battery monitoring unit, after issuing the charging stop request, while the charging control unit suspends charging of the battery pack, the temperature of the battery pack is lower than the predetermined temperature based on the temperature information. 12. The power supply device according to claim 11, wherein when it is determined that the charging has started, the charging start request is issued to cause the charging control means to restart charging the battery pack. 前記負荷は、通信機器を含むことを特徴とする請求項1から12のいずれか一項記載の電源装置。The power supply device according to claim 1, wherein the load includes a communication device.
JP2002278865A 2002-09-25 2002-09-25 Power supply Pending JP2004120856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002278865A JP2004120856A (en) 2002-09-25 2002-09-25 Power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002278865A JP2004120856A (en) 2002-09-25 2002-09-25 Power supply

Publications (1)

Publication Number Publication Date
JP2004120856A true JP2004120856A (en) 2004-04-15

Family

ID=32274035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002278865A Pending JP2004120856A (en) 2002-09-25 2002-09-25 Power supply

Country Status (1)

Country Link
JP (1) JP2004120856A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024541A (en) * 2005-07-12 2007-02-01 Hitachi Koki Co Ltd Battery life determination device
JP2007205878A (en) * 2006-02-01 2007-08-16 Ntt Facilities Inc Secondary battery capacity estimation system, program, and secondary battery capacity estimation method
JP2007205880A (en) * 2006-02-01 2007-08-16 Ntt Facilities Inc Secondary battery capacity estimation system, program, and secondary battery capacity estimation method
JP2007205879A (en) * 2006-02-01 2007-08-16 Ntt Facilities Inc Secondary battery capacity estimation system, program, and secondary battery capacity estimation method
JP2007306662A (en) * 2006-05-09 2007-11-22 Sanyo Electric Co Ltd Power supply device
WO2008044360A1 (en) 2006-10-05 2008-04-17 Nippon Telegraph And Telephone Corporation Discharger and discharge control method
JP2010104178A (en) * 2008-10-24 2010-05-06 Sanyo Electric Co Ltd Power supply device and electric vehicle
JP2011029009A (en) * 2009-07-27 2011-02-10 Ntt Facilities Inc Lithium ion battery pack management device, control method, and lithium ion battery pack system
JP2011200023A (en) * 2010-03-19 2011-10-06 Commuture Corp Uninterruptible power supply device
JP2012186951A (en) * 2011-03-07 2012-09-27 Nippon Telegr & Teleph Corp <Ntt> Power supply system and discharge test method
JP2012205437A (en) * 2011-03-28 2012-10-22 Toshiba Corp Charge/discharge determination device and charge/discharge determination program
JP2013210348A (en) * 2012-03-30 2013-10-10 Gs Yuasa Corp Method for diagnosing deterioration of battery pack and charge/discharge monitoring control system
JP2014054083A (en) * 2012-09-07 2014-03-20 Nissan Motor Co Ltd System for predicting battery deterioration
JP2014110692A (en) * 2012-12-03 2014-06-12 Sumitomo Electric Ind Ltd Power storage system, and deterioration diagnostic method for storage battery
WO2016181657A1 (en) * 2015-05-13 2016-11-17 セイコーエプソン株式会社 Control apparatus, electronic device, and contactless power transmission system
WO2020129378A1 (en) * 2018-12-21 2020-06-25 株式会社日立製作所 Power supply system, diagnosis device, and uninterruptible power supply device
WO2021084901A1 (en) * 2019-10-29 2021-05-06 京セラ株式会社 Electric storage system and management method

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024541A (en) * 2005-07-12 2007-02-01 Hitachi Koki Co Ltd Battery life determination device
JP2007205878A (en) * 2006-02-01 2007-08-16 Ntt Facilities Inc Secondary battery capacity estimation system, program, and secondary battery capacity estimation method
JP2007205880A (en) * 2006-02-01 2007-08-16 Ntt Facilities Inc Secondary battery capacity estimation system, program, and secondary battery capacity estimation method
JP2007205879A (en) * 2006-02-01 2007-08-16 Ntt Facilities Inc Secondary battery capacity estimation system, program, and secondary battery capacity estimation method
JP4503536B2 (en) * 2006-02-01 2010-07-14 株式会社Nttファシリティーズ Secondary battery capacity estimation system, program, and secondary battery capacity estimation method
JP4615453B2 (en) * 2006-02-01 2011-01-19 株式会社Nttファシリティーズ Secondary battery capacity estimation system, program, and secondary battery capacity estimation method
JP2007306662A (en) * 2006-05-09 2007-11-22 Sanyo Electric Co Ltd Power supply device
JP4688725B2 (en) * 2006-05-09 2011-05-25 三洋電機株式会社 Power supply
US8278781B2 (en) 2006-10-05 2012-10-02 Nippon Telegraph And Telephone Corporation Discharger and discharger control method
WO2008044360A1 (en) 2006-10-05 2008-04-17 Nippon Telegraph And Telephone Corporation Discharger and discharge control method
US8390258B2 (en) 2006-10-05 2013-03-05 Nippon Telegraph And Telephone Corporation Discharger and discharger control method including a manual switch to provide power to a control means from an input of the discharger
JP2010104178A (en) * 2008-10-24 2010-05-06 Sanyo Electric Co Ltd Power supply device and electric vehicle
JP2011029009A (en) * 2009-07-27 2011-02-10 Ntt Facilities Inc Lithium ion battery pack management device, control method, and lithium ion battery pack system
JP2011200023A (en) * 2010-03-19 2011-10-06 Commuture Corp Uninterruptible power supply device
JP2012186951A (en) * 2011-03-07 2012-09-27 Nippon Telegr & Teleph Corp <Ntt> Power supply system and discharge test method
JP2012205437A (en) * 2011-03-28 2012-10-22 Toshiba Corp Charge/discharge determination device and charge/discharge determination program
JP2013210348A (en) * 2012-03-30 2013-10-10 Gs Yuasa Corp Method for diagnosing deterioration of battery pack and charge/discharge monitoring control system
JP2014054083A (en) * 2012-09-07 2014-03-20 Nissan Motor Co Ltd System for predicting battery deterioration
JP2014110692A (en) * 2012-12-03 2014-06-12 Sumitomo Electric Ind Ltd Power storage system, and deterioration diagnostic method for storage battery
US10291082B2 (en) 2015-05-13 2019-05-14 Seiko Epson Corporation Control device, electronic apparatus, and contactless power transmission system
JP2016214028A (en) * 2015-05-13 2016-12-15 セイコーエプソン株式会社 Control device, electronic apparatus, and contactless power transmission system
CN107534317A (en) * 2015-05-13 2018-01-02 精工爱普生株式会社 Control device, electronic equipment and non-contact power transmitting system
WO2016181657A1 (en) * 2015-05-13 2016-11-17 セイコーエプソン株式会社 Control apparatus, electronic device, and contactless power transmission system
CN107534317B (en) * 2015-05-13 2020-08-21 精工爱普生株式会社 Control device, electronic apparatus, and contactless power transmission system
WO2020129378A1 (en) * 2018-12-21 2020-06-25 株式会社日立製作所 Power supply system, diagnosis device, and uninterruptible power supply device
JP2020102343A (en) * 2018-12-21 2020-07-02 株式会社日立製作所 Power supply system, diagnosis device, and uninterruptible power supply device
JP7149836B2 (en) 2018-12-21 2022-10-07 株式会社日立製作所 Power supply system, diagnostic equipment and uninterruptible power supply
WO2021084901A1 (en) * 2019-10-29 2021-05-06 京セラ株式会社 Electric storage system and management method
JPWO2021084901A1 (en) * 2019-10-29 2021-11-25 京セラ株式会社 Power storage system and management method

Similar Documents

Publication Publication Date Title
JP3469228B2 (en) Power storage device charge / discharge control device, charge / discharge control method, and power storage system
US8581554B2 (en) Battery charging method and apparatus
JP2004120856A (en) Power supply
US8278781B2 (en) Discharger and discharger control method
US8938323B2 (en) Power storage system and method of controlling the same
KR101420340B1 (en) Vehicle operating system and method for controlling the same
JP2004120857A (en) Power supply
WO2006073101A1 (en) Mobile telephone terminal charging control device and charging control method
JP2003092805A (en) Power supply unit for hybrid car
KR101312263B1 (en) Vehicle and method for controlling the same
CN107478996B (en) Detection and maintenance method and device for server power supply system
KR20180014957A (en) battery pack and energy storage system including the same
JP2004120855A (en) Power supply
JP2013160582A (en) Battery pack system and management method of battery pack system
JP2007202241A (en) Power supply system, program for controlling power supply system, and recording medium stored with the program
JP2004159405A (en) Uninterruptible power supply device
CN110875622B (en) Method for recovering deep discharge battery module and uninterrupted power supply system thereof
JP2009095107A (en) Uninterruptible backup power supply device
JP4346881B2 (en) Power supply
CN113013980B (en) UPS system, control method and device of UPS system
JP2002058175A (en) Independent power supply system
KR20180049543A (en) Energy storage system considered extensibility of battery pack and method for controlling therefor
JP4654262B2 (en) DC power supply system and charging method thereof
JP2002190326A (en) Secondary cell device
JP2004288537A (en) Battery pack, secondary battery charging device, and secondary battery charging method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060515