JP4654262B2 - DC power supply system and charging method thereof - Google Patents

DC power supply system and charging method thereof Download PDF

Info

Publication number
JP4654262B2
JP4654262B2 JP2008090347A JP2008090347A JP4654262B2 JP 4654262 B2 JP4654262 B2 JP 4654262B2 JP 2008090347 A JP2008090347 A JP 2008090347A JP 2008090347 A JP2008090347 A JP 2008090347A JP 4654262 B2 JP4654262 B2 JP 4654262B2
Authority
JP
Japan
Prior art keywords
charging
assembled battery
power supply
assembled
remaining capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008090347A
Other languages
Japanese (ja)
Other versions
JP2009247107A (en
Inventor
利一 北野
尊久 正代
明宏 宮坂
明 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2008090347A priority Critical patent/JP4654262B2/en
Publication of JP2009247107A publication Critical patent/JP2009247107A/en
Application granted granted Critical
Publication of JP4654262B2 publication Critical patent/JP4654262B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は直流電源システムおよびその充電方法に関する。   The present invention relates to a DC power supply system and a charging method thereof.

一般に、直流負荷装置へ電力を供給する直流電源システムでは、商用交流電力を受け、直流48Vなどの直流電力を出力する整流器が用いられている。さらに、商用電力が停電した場合でも負荷装置への給電を継続するために、整流器の出力に蓄電池と、蓄電池を充電するための充電器を備え、バックアップ電源システムとする。蓄電池を直流電源システムに適用する場合には、通常、単セルと呼ばれる1本の蓄電池を複数個直列にしたものを1つ以上並列接続した組電池を用いる。   Generally, in a DC power supply system that supplies power to a DC load device, a rectifier that receives commercial AC power and outputs DC power such as DC 48V is used. Further, in order to continue power supply to the load device even when the commercial power is interrupted, the output of the rectifier is provided with a storage battery and a charger for charging the storage battery to provide a backup power supply system. When a storage battery is applied to a DC power supply system, an assembled battery in which one or more storage batteries called single cells are connected in parallel is used.

下記特許文献1、2には、複数の組電池が出力する電力を放電器を介して負荷に供給する電池システムが記載され、特許文献1には、組電池と放電器中のコンバータとの間の電路が共通導線によって互いに電気的に接続されていることが記載され、特許文献2には、放電器の各動作を、制御部が発信する同一の動作信号に基づいて行わせることが記載されている。
特開2007−143266号公報 特開2007−143291号公報
Patent Documents 1 and 2 below describe a battery system that supplies power output from a plurality of assembled batteries to a load via a discharger. Patent Document 1 describes a battery system and a converter in the discharger. Are described as being electrically connected to each other by a common conductor, and Patent Document 2 describes that each operation of the discharger is performed based on the same operation signal transmitted by the control unit. ing.
JP 2007-143266 A JP 2007-143291 A

整流器、蓄電池、充電器および放電器を組み合わせた直流電源システムを図5に示す。図において、商用電源1の交流電力は整流器2に供給され、整流器2は交流電力を所定の直流電力に変換して負荷3へ供給している。組電池4は、複数の蓄電池を組み合わせてなる組電池であり、その6組が搭載されている。各組電池4は、商用電源1が有効であるときは充電器5を介して充電され、商用電源1の停電時に放電器7を介して負荷3への放電を行う。   FIG. 5 shows a DC power supply system in which a rectifier, a storage battery, a charger and a discharger are combined. In the figure, the AC power of the commercial power source 1 is supplied to the rectifier 2, and the rectifier 2 converts the AC power into predetermined DC power and supplies it to the load 3. The assembled battery 4 is an assembled battery formed by combining a plurality of storage batteries, and six sets thereof are mounted. Each assembled battery 4 is charged via the charger 5 when the commercial power source 1 is active, and discharges to the load 3 via the discharger 7 when the commercial power source 1 is powered off.

各充電器5は、接続されている組電池4の残容量が低下したとき該組電池4の充電を開始し、満充電となったとき組電池4の充電を停止する、いわゆる間欠充電を行っている。組電池4は、商用電源1の停電による放電のほか、蓄電池自身の自己放電によっても残容量が低下する。ここでは、組電池4の残容量が、満充電状態に対して10%低下したとき、該組電池4に接続されている充電器5により満充電までの充電(補充電)が開始されるものとする。   Each charger 5 performs so-called intermittent charging, which starts charging the assembled battery 4 when the remaining capacity of the connected assembled battery 4 decreases, and stops charging the assembled battery 4 when full capacity is reached. ing. The remaining capacity of the assembled battery 4 is reduced not only by discharge due to a power failure of the commercial power supply 1 but also by self-discharge of the storage battery itself. Here, when the remaining capacity of the assembled battery 4 is reduced by 10% with respect to the fully charged state, charging up to full charging (complementary charging) is started by the charger 5 connected to the assembled battery 4 And

ここで、6組の組電池4が、同時に残容量が90%まで低下する場合がある。この場合、合計の残容量も90%まで低下するため、この低下分を補うための余分な蓄電池を設置する必要があり、コストや設置スペースを増加させる結果となる。また、90%までの残容量低下を回避するため、例えば95%まで残容量低下があったときに充電を開始するとした場合、充電頻度が増加することにより蓄電池の劣化が促進されるという別の問題が生じる。   Here, there are cases where the remaining capacity of the six battery packs 4 decreases to 90% at the same time. In this case, since the total remaining capacity is also reduced to 90%, it is necessary to install an extra storage battery to compensate for this reduction, resulting in an increase in cost and installation space. Further, in order to avoid a decrease in remaining capacity up to 90%, for example, when charging is started when there is a decrease in remaining capacity up to 95%, the deterioration of the storage battery is promoted by increasing the charging frequency. Problems arise.

以上のように、複数の組電池で構成される蓄電池システムにおいては、同時に全ての組電池の残容量が低下した場合に合計の残容量が低下するため余分に蓄電池を搭載する必要が生じてコストと設置スペースが増加するという問題と、この問題を回避するために充電頻度を増やすと蓄電池の劣化が促進されるという問題がある。   As described above, in a storage battery system composed of a plurality of assembled batteries, if the remaining capacity of all the assembled batteries decreases at the same time, the total remaining capacity decreases, so it is necessary to install an extra storage battery and cost There is a problem that the installation space increases, and there is a problem that deterioration of the storage battery is promoted if the charging frequency is increased in order to avoid this problem.

前記の問題は、直流電源システムだけではなく、複数の蓄電池を並列接続した蓄電池を持つシステムにおいて生じる問題である。   The above problem is a problem that occurs not only in a DC power supply system but also in a system having a storage battery in which a plurality of storage batteries are connected in parallel.

本発明は前記の、同時に全ての組電池の残容量が低下した場合に合計の残容量が低下するため余分に蓄電池を搭載する必要が生じてコストと設置スペースが増加するという問題と、この問題を回避するために充電頻度を増やすと蓄電池の劣化が促進されるという問題に鑑みてなされたものであり、本発明が解決しようとする課題は、合計の残容量の低下を防ぎつつ蓄電池の劣化を抑制する直流電源システムおよびその充電方法を提供することにある。   In the present invention, when the remaining capacity of all the assembled batteries is reduced at the same time, the total remaining capacity is lowered, so that it is necessary to mount an extra storage battery, and the cost and installation space are increased. The problem to be solved by the present invention is to prevent deterioration of the storage battery while preventing a decrease in the total remaining capacity. It is providing the direct-current power supply system which suppresses, and its charging method.

前記課題を解決するために、本発明においては、請求項1に記載のように、
複数の組電池と、充電器と、該充電器の充電スケジュールを制御する充電制御手段とを構成要素とする直流電源システムにおいて、前記組電池の組数をnとし、補充電単位時間をTとし、補充電繰り返し序数を0以上の整数mとし、各前記組電池の補充電が開始されるときの該組電池の満充電からの残容量低下割合をc[%]とし、前記組電池全体の、満充電時容量に対する所要最低残容量の割合をQmin[%]とするとき、n、Qminおよびcが
min≦100%−(c/2)(1+1/n)
を満たすように定められ、kを1からnまでの自然数とするとき、時刻(k/n+m)Tにおいて、k番目の前記組電池の補充電が開始されることを特徴とする直流電源システムを構成する。
In order to solve the above problem, in the present invention, as described in claim 1,
In a DC power supply system including a plurality of assembled batteries, a charger, and a charge control means for controlling a charging schedule of the charger, the number of assembled batteries is n, and the auxiliary charging unit time is T. The supplementary charging repetition ordinal number is an integer m of 0 or more, and the remaining capacity reduction rate from the full charge of the assembled battery when the supplementary charging of each assembled battery is started is c [%]. When the ratio of the required minimum remaining capacity to the fully charged capacity is Q min [%], n, Q min and c are Q min ≦ 100% − (c / 2) (1 + 1 / n)
A DC power supply system characterized in that, when k is a natural number from 1 to n, supplementary charging of the kth assembled battery is started at time (k / n + m) T. Constitute.

また、本発明においては、請求項2に記載のように、
複数の組電池と、充電器と、該充電器の充電スケジュールを制御する充電制御手段とを構成要素とする直流電源システムの充電方法において、前記組電池の組数をnとし、補充電単位時間をTとし、補充電繰り返し序数を0以上の整数mとし、各前記組電池の補充電が開始されるときの該組電池の満充電からの残容量低下割合をc[%]とし、前記組電池全体の、満充電時容量に対する所要最低残容量の割合をQmin[%]とするとき、n、Qminおよびcを
min≦100%−(c/2)(1+1/n)
が満たされるように定め、kを1からnまでの自然数とするとき、時刻(k/n+m)Tにおいて、k番目の前記組電池の補充電を開始することを特徴とする直流電源システムの充電方法を構成する。
In the present invention, as described in claim 2,
In a charging method of a DC power supply system comprising a plurality of assembled batteries, a charger, and a charging control means for controlling a charging schedule of the charger, the number of assembled batteries is n, and a supplementary charging unit time , T, the supplementary charging ordinal number being an integer m of 0 or more, and the remaining capacity decrease rate from the full charge of each assembled battery when the supplementary charging of each assembled battery is started, and c [%] When the ratio of the required minimum remaining capacity to the full charge capacity of the entire battery is Q min [%], n, Q min and c are Q min ≦ 100% − (c / 2) (1 + 1 / n)
The charging of the DC power supply system is characterized in that at time (k / n + m) T, supplementary charging of the k-th assembled battery is started when k is a natural number from 1 to n. Configure the method.

また、本発明においては、請求項3に記載のように、
請求項1に記載の直流電源システムにおいて、交流電力を直流電力に変換する整流器を具備し、前記組電池はそれぞれ前記組電池の放電方向にのみ電力を通すダイオードを介して並列接続され、さらに前記整流器から負荷への給電線に並列接続され、前記組電池への充電電圧の最大値は、前記整流器の出力電圧以下に設定されることを特徴とする直流電源システムを構成する。
In the present invention, as described in claim 3,
2. The DC power supply system according to claim 1, further comprising a rectifier that converts AC power into DC power, wherein each of the assembled batteries is connected in parallel via a diode that passes power only in a discharge direction of the assembled battery, and A DC power supply system is configured, which is connected in parallel to a power supply line from a rectifier to a load, and a maximum value of a charging voltage to the assembled battery is set to be equal to or lower than an output voltage of the rectifier.

また、本発明においては、請求項4に記載のように、
請求項1に記載の直流電源システムにおいて、交流電力を直流電力に変換する整流器を具備し、前記組電池はそれぞれ放電器を介して並列接続され、さらに前記整流器から負荷への給電線に並列接続され、前記放電器の出力電圧は、前記整流器の出力電圧以下に設定されることを特徴とする直流電源システムを構成する。
In the present invention, as described in claim 4,
2. The DC power supply system according to claim 1, further comprising a rectifier that converts AC power into DC power, wherein each of the assembled batteries is connected in parallel via a discharger, and further connected in parallel to a power supply line from the rectifier to a load. The output voltage of the discharger is set to be equal to or lower than the output voltage of the rectifier to constitute a DC power supply system.

本発明の直流電源システムおよびその充電方法によれば、以下のごとき効果を奏することができる。   According to the DC power supply system and the charging method of the present invention, the following effects can be obtained.

システムの合計残容量の低下を減らすことができ、余分に設置する蓄電池を減らすことができるため、コストとスペースを節約することが可能となり、また個別の組電池においては充電頻度が増加しないため蓄電池の劣化が抑制される。   The reduction of the total remaining capacity of the system can be reduced, and the number of extra storage batteries can be reduced, so that it is possible to save cost and space, and the charging frequency does not increase in individual assembled batteries. Deterioration of is suppressed.

本発明に係る直流電源システムにおいては、1つ以上の蓄電池を接続してなる組電池の複数組と、充電器と、該充電器の充電スケジュールを制御する充電制御手段とが具備され、
前記組電池の組数をnとし、補充電単位時間をTとし、補充電繰り返し序数を0以上の整数mとし、各前記組電池の補充電が開始されるときの該組電池の満充電からの残容量低下割合をc[%]とし、前記組電池全体の、満充電時容量に対する所要最低残容量の割合をQmin[%]とするとき、
n、Qminおよびcが
In the direct-current power supply system according to the present invention, a plurality of sets of assembled batteries formed by connecting one or more storage batteries, a charger, and a charging control means for controlling a charging schedule of the charger are provided.
The number of assembled battery sets is n, the auxiliary charging unit time is T, the auxiliary charging ordinal number is an integer m of 0 or more, and from the full charging of the assembled battery when the auxiliary charging of each assembled battery is started When the remaining capacity decrease rate is c [%], and the ratio of the required minimum remaining capacity to the fully charged capacity of the entire assembled battery is Q min [%],
n, Q min and c are

Figure 0004654262
を満たすよう定められ、kを1からnまでの自然数とするとき、時刻(k/n+m)Tにおいて、k番目の前記組電池の補充電が開始される。
Figure 0004654262
When k is a natural number from 1 to n, supplementary charging of the k-th assembled battery is started at time (k / n + m) T.

以下に、本発明の実施の形態について、ニッケル水素蓄電池を用いた直流バックアップ電源システムを例として説明するが、本発明はこれに限られるものではない。   Hereinafter, embodiments of the present invention will be described by taking a DC backup power supply system using a nickel-metal hydride storage battery as an example, but the present invention is not limited to this.

<実施の形態例1>
図1は、本発明の実施の形態例を説明する図である。図において、商用電源1の交流電力は整流器2に供給され、整流器2は交流電力を所定の直流電力に変換して56Vを出力し、負荷3へ供給している。組電池4は、ニッケル水素蓄電池セル(定格電圧1.2V、定格容量100Ah)を34セル直列接続した組電池(定格電圧40.8V、定格容量100Ah)であり、その2組(1系、2系)が搭載されている(n=2である)。
<Embodiment 1>
FIG. 1 is a diagram for explaining an embodiment of the present invention. In the figure, AC power from a commercial power source 1 is supplied to a rectifier 2, and the rectifier 2 converts AC power into predetermined DC power, outputs 56 V, and supplies it to a load 3. The assembled battery 4 is an assembled battery (rated voltage 40.8 V, rated capacity 100 Ah) in which 34 nickel-metal hydride storage battery cells (rated voltage 1.2 V, rated capacity 100 Ah) are connected in series. System) is mounted (n = 2).

各組電池4は、商用電源1が有効であるときは充電器5を介して充電される。各充電器5の動作は、充電制御手段8によって制御される。充電器5の出力電圧は54.4Vであり、整流器2の出力電圧(56V)より低いため、商用電源1が有効であるときは整流器2の出力が負荷3へ供給され、整流器2が商用電源1の停電などにより停止した場合、組電池4が出力する電力がダイオード6を介して負荷3へ供給される。   Each assembled battery 4 is charged via a charger 5 when the commercial power source 1 is active. The operation of each charger 5 is controlled by the charge control means 8. Since the output voltage of the charger 5 is 54.4V, which is lower than the output voltage (56V) of the rectifier 2, when the commercial power source 1 is valid, the output of the rectifier 2 is supplied to the load 3, and the rectifier 2 1 is stopped due to a power failure or the like, the power output from the assembled battery 4 is supplied to the load 3 via the diode 6.

各充電器5は、接続されている組電池4を充電するが、各組電池4がダイオード6を介して並列接続されているため、充電電流が他の組電池4へ流れることはなく、また組電池4の満充電電圧は最高でも54.4V(1セルあたり1.6V)であるため満充電まで充電することができる。組電池4は充電器5により満充電まで充電され、充電電流は零となる。   Each charger 5 charges the connected assembled battery 4, but since each assembled battery 4 is connected in parallel via a diode 6, the charging current does not flow to other assembled batteries 4, and Since the full charge voltage of the assembled battery 4 is 54.4 V (1.6 V per cell) at the maximum, it can be charged to full charge. The assembled battery 4 is charged to the full charge by the charger 5 and the charging current becomes zero.

この後、整流器2が停止することなく負荷3への給電を継続し、組電池4が負荷3へ放電することがなかったとしても、組電池4の残容量は自己放電により徐々に減少する。自己放電量は、30日間で10%(定格容量比)である。   Thereafter, even if the rectifier 2 continues to supply power to the load 3 without stopping, and the assembled battery 4 does not discharge to the load 3, the remaining capacity of the assembled battery 4 gradually decreases due to self-discharge. The self-discharge amount is 10% (rated capacity ratio) in 30 days.

よって、残容量の低下に応じて組電池4の充電を行う必要があり、1つの組電池4に対して充電を行う必要がある満充電からの残容量低下を10%(定格容量比)として、この残容量低下があったときに充電器5による充電(補充電)を行えばよい。   Therefore, it is necessary to charge the assembled battery 4 in accordance with the decrease in the remaining capacity, and the remaining capacity decrease from the full charge in which one assembled battery 4 needs to be charged is 10% (rated capacity ratio). When the remaining capacity is reduced, charging by the charger 5 (complementary charging) may be performed.

ただし、2組の組電池4が独立して満充電から10%の残容量低下を判断して補充電を行う場合、両者の残容量が同時に10%低下して全体(組電池4の2組分)の残容量も10%低下する可能性がある。そこで、満充電から10%残容量が低下する時間を30日とし、15日ごとに2組の組電池4を交互に補充電する。つまり、ある時点で1組の組電池4が補充電された後、15日経過後に残り1組が補充電され、その後、それぞれの組電池4が30日ごとに補充電されるから、合計の残容量の最低値は、図2に示すように(95%+90%)/2=92.5%となり、合計の容量低下を減らすことができる。   However, when two sets of assembled batteries 4 independently determine that the remaining capacity is reduced by 10% from full charge and perform supplementary charging, both remaining capacities are reduced by 10% at the same time (the two sets of assembled batteries 4). The remaining capacity may also be reduced by 10%. Therefore, the time for the 10% remaining capacity to decrease after full charge is 30 days, and two sets of assembled batteries 4 are alternately supplemented every 15 days. That is, after one set of assembled batteries 4 is supplementarily charged at a certain time, the remaining one set is supplemented after 15 days, and then each assembled battery 4 is supplemented every 30 days. The minimum value of the remaining capacity is (95% + 90%) / 2 = 92.5% as shown in FIG. 2, and the total capacity reduction can be reduced.

なお、補充電に関しては、1回の補充電に要する時間は補充電の繰り返し周期(補充電単位時間T)に対して無視できるほど短いので、「補充電を開始する」と「補充電を行う」とを区別せずに用いる。   Regarding supplementary charging, the time required for one supplementary charging is negligibly short with respect to the repetition period of supplementary charging (complementary charging unit time T). "Is used without distinction.

ここまで説明した組電池4が2組のシステム(図1)に対して、同じ組電池4を3組接続したシステム(図3)では、図4に示すように、ある時点で1番目(1系)の組電池4の補充電を行った後、10日後に2番目(2系)の組電池4の補充電を行い、さらに10日後に3番目(3系)の組電池4の補充電を行った後、それぞれの組電池4の補充電を30日の周期で行う。このとき、合計の残容量の、満充電時合計容量に対する割合の最低値は(96.6%+93.3%+90%)/3=93.3%である。   In the system (FIG. 3) in which three sets of the same assembled battery 4 are connected to the system of two sets of assembled batteries 4 described so far (FIG. 1) (FIG. 3), the first (1 System), the second (second system) assembled battery 4 is supplemented 10 days later, and the third (third system) assembled battery 4 is further supplemented 10 days later. After performing, supplementary charging of each assembled battery 4 is performed in a cycle of 30 days. At this time, the minimum value of the ratio of the total remaining capacity to the total capacity at full charge is (96.6% + 93.3% + 90%) / 3 = 93.3%.

組電池4がn組のシステムにおいては、ある時点を起点に、30×k÷n日目(k=1、2、…、n、kは組電池4に付した番号)にk番目の組電池4の補充電を行い、その後それぞれの組電池4の補充電を30日の周期で行う。このとき、合計残容量の、満充電時合計容量に対する割合の最低値Qmin[%]は、以下のように求められる。 In a system with n battery packs 4 set, the k-th set is 30 × k ÷ n days (k = 1, 2,..., N, k are numbers assigned to the battery pack 4) starting from a certain point in time. The auxiliary charging of the battery 4 is performed, and then the auxiliary charging of each assembled battery 4 is performed at a cycle of 30 days. At this time, the minimum value Q min [%] of the ratio of the total remaining capacity to the total capacity at full charge is obtained as follows.

Figure 0004654262
組電池4全体の、満充電時容量に対する所要最低残容量の割合(以下、所要最小割合と呼ぶ)を、同じく、Qmin[%]で表すとき、逆に、下記の式(3)を用いることで、所要最小割合Qminが先に決まっている場合に、組電池4の組数を決定することが可能である。
Figure 0004654262
Similarly, when the ratio of the required minimum remaining capacity to the fully charged capacity (hereinafter referred to as the required minimum ratio) of the entire assembled battery 4 is expressed by Q min [%], the following formula (3) is used. Thus, when the required minimum ratio Q min is determined in advance, the number of assembled batteries 4 can be determined.

Figure 0004654262
例えば、所要最小割合Qminが94%とされた場合、式(3)よりn≧5と求められるから、組電池4の組数を5とし、6日毎に順番に組電池4を補充電していくようにすればよい。
Figure 0004654262
For example, when the required minimum ratio Q min is 94%, n ≧ 5 is obtained from Equation (3). Therefore, the number of the assembled batteries 4 is set to 5, and the assembled batteries 4 are supplemented in order every six days. You should make it go.

また、所要最小割合Qminが93%とされた場合、式(3)よりn≧2.5と求められるから、組電池4の組数を3とし、10日毎に順番に組電池4を補充電していくようにすればよい。 Further, when the required minimum ratio Qmin is 93%, n ≧ 2.5 is obtained from Equation (3). Therefore, the number of assembled batteries 4 is set to 3, and the assembled batteries 4 are supplemented in order every 10 days. You should make it charge.

つまり、組電池4の組数nと合計残容量の所要最小割合Qminは、式(3)を満たし、ある時点を起点に、30×k÷n日目(k=1、2、…、n)にk番目の組電池4の補充電を行い、その後それぞれの組電池4を30日の周期で補充電することにより、合計残容量の、満充電時合計容量に対する割合が、所要最小割合Qminを下回らないように、かつ補充電頻度を抑制することが可能となる。 That is, the number n of the assembled batteries 4 and the required minimum ratio Q min of the total remaining capacity satisfy Expression (3), and start from a certain point in time 30 × k ÷ n days (k = 1, 2,... n) supplementary charging of the k-th assembled battery 4 and then supplementarily charging each assembled battery 4 in a cycle of 30 days, so that the ratio of the total remaining capacity to the total capacity at full charge is the required minimum ratio so as not to fall below the Q min, and it is possible to suppress the auxiliary charge frequency.

なお、式(3)において、nをいかに大きくしても、Qmin≦95%であるから、95%を超えて、所要最小割合Qminを設定することはできない。 In Equation (3), no matter how large n is, since Q min ≦ 95%, the required minimum ratio Q min cannot be set exceeding 95%.

次に、1組の組電池4に定める、補充電を行う必要がある満充電からの容量低下割合(ここまでの説明では10%とした)をc[%]とする(すなわち、1組の組電池4の補充電が開始されるときの該組電池4の満充電からの残容量低下割合をc[%]とする)と、nと所要最小割合Qminとの関係は以下の式で表される。 Next, the rate of capacity decrease from full charge that is required to perform supplementary charging (set to 10% in the above description) for one set of assembled batteries 4 is set to c [%] (that is, one set of battery packs 4). The rate of remaining capacity reduction from full charge of the assembled battery 4 when supplementary charging of the assembled battery 4 is started is defined as c [%]), and the relationship between n and the required minimum ratio Q min is as follows: expressed.

Figure 0004654262
電源システムの設計に際して、式(4)を用いて合計残容量の所要最小割合Qminと組電池4の組数nと補充電を行う容量低下割合c[%]とを互いに調整することで、合計残容量の、満充電時合計容量に対する割合が所要最小割合Qminを下回らないようにすることができる。
Figure 0004654262
When designing the power supply system, the required minimum ratio Q min of the total remaining capacity, the number n of the assembled batteries 4 and the capacity reduction ratio c [%] for performing supplementary charging are mutually adjusted using Equation (4). it can be the total remaining capacity, the ratio for the full charge when the total volume so as not to fall below the required minimum ratio Q min.

例えば、合計残容量の所要最小割合Qminは95%、組電池4の組数nは18と決定している場合、式(4)より補充電を行う容量低下割合cは9.47%以下と求められるから、cを9%として補充電を行うようにする。このとき満充電から9%(c)残容量が低下する日数は27日であり、1.5日(27日÷18組)ごとに18組の組電池4が順番に補充電され、合計残容量の、満充電時合計容量に対する割合は、最低95.25%にまで低下する。 For example, when the required minimum ratio Q min of the total remaining capacity is determined to be 95% and the number n of the assembled batteries 4 is determined to be 18, the capacity decrease ratio c for performing supplementary charging is 9.47% or less from the equation (4). Therefore, supplementary charging is performed by setting c to 9%. At this time, the number of days in which the remaining capacity decreases by 9% (c) from the full charge is 27 days, and 18 battery packs 4 are supplementarily charged in turn every 1.5 days (27 days ÷ 18 battery packs). The ratio of capacity to the total capacity at full charge is reduced to a minimum of 95.25%.

このように、組電池4の組数nと合計残容量の所要最小割合Qminは、式(4)を満たし、1組の組電池4の満充電から残容量がc[%]低下する時間をT(補充電単位時間)とし、ある時点を起点に時刻T×k÷n(k=1、2、…、n)にk番目の組電池の補充電を行い、その後それぞれの組電池4をTの周期で補充電することにより、合計残容量の、満充電時合計容量に対する割合が所要最小割合Qminを下回らないように、かつ補充電頻度を抑制することが可能となる。 Thus, the number n of the assembled batteries 4 and the required minimum ratio Q min of the total remaining capacity satisfy the formula (4), and the remaining capacity is reduced by c [%] from the full charge of the one assembled battery 4. Is T (auxiliary charging unit time), the auxiliary charging of the k-th assembled battery is performed at time T × k ÷ n (k = 1, 2,..., N) starting from a certain time point, and then each assembled battery 4 the by auxiliary charge with a period T, then the total remaining capacity ratio full charge when the total capacity so as not to fall below the required minimum rate Q min, and it is possible to suppress the auxiliary charge frequency.

なお、本実施の形態例において、組電池4への充電電圧の最大値は、整流器2の出力電圧以下に設定されているものとする。   In the present embodiment, the maximum value of the charging voltage to the assembled battery 4 is set to be equal to or lower than the output voltage of the rectifier 2.

<実施の形態例2>
図5を、本発明の実施の形態例の説明にも用いる。図において、商用電源1の交流電力は整流器2に供給され、整流器2は交流電力を所定の直流電力に変換して56Vを出力し、負荷3へ供給している。組電池4は、ニッケル水素蓄電池セル(定格電圧1.2V、定格容量100Ah)を40セル直列接続した組電池(定格電圧48V、定格容量100Ah)であり、6組(1系〜6系)を搭載している。
<Embodiment 2>
FIG. 5 is also used to describe the embodiment of the present invention. In the figure, AC power from a commercial power source 1 is supplied to a rectifier 2, and the rectifier 2 converts AC power into predetermined DC power, outputs 56 V, and supplies it to a load 3. The assembled battery 4 is an assembled battery (rated voltage 48 V, rated capacity 100 Ah) in which 40 nickel-metal hydride battery cells (rated voltage 1.2 V, rated capacity 100 Ah) are connected in series, and 6 sets (1 system to 6 systems) It is installed.

各組電池4はそれぞれ、商用電源1が有効であるときは接続されている充電器5を介して充電され、また、放電器7を介して、整流器2から負荷3への配線に並列接続されている。組電池4は、満充電時に64V(1セルあたり1.6V)に達するが、放電器7は降圧動作することにより出力電圧を55V以下に維持する。このように、放電器7の出力電圧は整流器2の出力電圧(56V)以下に設定されているため、商用電源1が有効であるときは整流器2の出力が負荷3へ供給され、整流器2が商用電源1の停電などにより停止した場合、組電池4が出力する電力が放電器7を介して負荷3へ供給される。なお、各充電器5の動作は、図示されていない充電制御手段によって、実施の形態例1と同様に、制御されているものとする。   Each assembled battery 4 is charged via a connected charger 5 when the commercial power source 1 is active, and is connected in parallel to a wiring from the rectifier 2 to the load 3 via a discharger 7. ing. The assembled battery 4 reaches 64 V (1.6 V per cell) when fully charged, but the discharger 7 performs a step-down operation to maintain the output voltage at 55 V or less. Thus, since the output voltage of the discharger 7 is set to be equal to or lower than the output voltage (56V) of the rectifier 2, when the commercial power source 1 is valid, the output of the rectifier 2 is supplied to the load 3, and the rectifier 2 When the commercial power supply 1 is stopped due to a power failure or the like, the power output from the assembled battery 4 is supplied to the load 3 via the discharger 7. It is assumed that the operation of each charger 5 is controlled by a charging control means (not shown) as in the first embodiment.

実施の形態例1と同様に考え、組電池4の残容量が90%まで低下(30日経過、c=10%)したときに補充電を行うとすれば、5日ごとに順番に組電池4を補充電すればよく、このとき合計残容量の、満充電時合計容量に対する割合の最低値は式(2)でn=6とすることにより94.17%と求められる。   If the remaining charge of the assembled battery 4 is reduced to 90% (30 days elapse, c = 10%) when supplementary charging is performed in the same manner as in the first embodiment, the assembled battery is sequentially installed every 5 days. 4 is sufficient, and the minimum value of the ratio of the total remaining capacity to the total capacity at full charge is 94.17% by setting n = 6 in equation (2).

本実施の形態例においても、実施の形態例1と同様に、合計残容量の所要最小割合Qmin[%]が先に決まっている場合に式(3)を用いて組電池4の組数nを求めることも可能である。また、式(4)を用いて所要最小割合Qminと組電池4の組数nと補充電を行う容量低下c[%]とを互いに調整して電源システムの設計を行い、合計残容量の、満充電時合計容量に対する割合がQmin[%]を下回らないようにすることも可能である。 Also in the present embodiment, as in the first embodiment, when the required minimum ratio Q min [%] of the total remaining capacity is determined in advance, the number of the assembled batteries 4 is set using Expression (3). It is also possible to obtain n. Further, the power supply system is designed by adjusting the required minimum ratio Q min , the number n of the assembled batteries 4 and the capacity reduction c [%] for auxiliary charging using the formula (4), and the total remaining capacity is calculated. It is also possible to prevent the ratio to the total capacity at full charge from falling below Q min [%].

以上のように、合計残容量の所要最小割合をQmin[%]、1組の前記組電池に対して再び補充電が必要であると定める満充電からの残容量低下をc[%]とするとき、n、Qminおよびcが、 As described above, the required minimum ratio of the total remaining capacity is defined as Q min [%], and the remaining capacity decrease from full charge, which determines that supplementary charging is required again for one set of the assembled batteries, is expressed as c [%]. When n, Q min and c are

Figure 0004654262
を満たし、1組の組電池4に対して満充電から残容量がc[%]低下する時間をT、kを1からnまでの自然数、mを0以上の整数とするとき、k番目の前記組電池は、時刻(k/n+m)Tに前記補充電が行われるようにすることによって、システムの合計残容量の低下を減らすことができ、余分に設置する蓄電池を減らすことができ、蓄電池の劣化を抑制することができる。
Figure 0004654262
When the time when the remaining capacity is reduced by c [%] from a full charge to a set of assembled batteries 4 is T, k is a natural number from 1 to n, and m is an integer greater than or equal to 0, the kth The assembled battery can reduce the decrease in the total remaining capacity of the system by reducing the total remaining capacity of the system by performing the auxiliary charging at time (k / n + m) T. Can be prevented.

本発明の各実施の形態においては、1組の組電池4に対して1台の充電器5を接続しているが、1台の充電器5を複数の組電池4で共有して使用することも可能である。1台の充電器5と複数の組電池4の間に切替スイッチを備え、充電対象の組電池4が充電されるように切替を行うようにすればよい。   In each embodiment of the present invention, one charger 5 is connected to one set of assembled batteries 4, but one charger 5 is shared and used by a plurality of assembled batteries 4. It is also possible. A changeover switch may be provided between one charger 5 and the plurality of assembled batteries 4 so as to perform switching so that the assembled battery 4 to be charged is charged.

また、本発明の各実施形態においては、ニッケル水素蓄電池を用いた直流電源システムを例として説明したが、鉛蓄電池やリチウムイオン蓄電池といった二次電池を搭載した直流電源システムにおいても適用することができる。さらに、直流電源システムの他に、負荷への供給を行わず、蓄電池残容量を高い状態に維持しながら保存するだけの蓄電池システムにおいても適用可能である。   In each embodiment of the present invention, a DC power supply system using a nickel metal hydride storage battery has been described as an example. However, the present invention can also be applied to a DC power supply system equipped with a secondary battery such as a lead storage battery or a lithium ion storage battery. . Further, in addition to the DC power supply system, the present invention can also be applied to a storage battery system that does not supply a load and only stores the battery while maintaining a high remaining battery capacity.

以下に、本発明によって生じる効果について説明する。
(1)複数の組電池で構成される直流電源システムにおいては、個々の組電池が独立して自己放電による残容量低下を判断して補充電を行う場合、同時に全ての組電池の残容量が低下する可能性があるため、余分に蓄電池を搭載する必要が生じてコストと設置スペースが増加するという問題がある。
Below, the effect produced by this invention is demonstrated.
(1) In a DC power supply system composed of a plurality of assembled batteries, when each assembled battery independently determines a remaining capacity drop due to self-discharge and performs supplementary charging, the remaining capacity of all the assembled batteries is simultaneously Since there is a possibility of lowering, there is a problem that it becomes necessary to mount an extra storage battery, and the cost and installation space increase.

本発明により、システムの合計残容量の低下を減らすことができ、余分に設置する蓄電池を減らすことができるため、コストとスペースを節約することが可能となる。
(2)合計残容量の低下を防ぐために、補充電頻度を増加した場合、蓄電池の劣化が促進されるという問題がある。
According to the present invention, it is possible to reduce the reduction in the total remaining capacity of the system and reduce the number of storage batteries to be installed, so that cost and space can be saved.
(2) In order to prevent a decrease in the total remaining capacity, there is a problem that deterioration of the storage battery is promoted when the auxiliary charging frequency is increased.

本発明により、補充電頻度を増加させることなく合計残容量の低下を抑制することが可能となるため、蓄電池の劣化が抑制される。   According to the present invention, it is possible to suppress a decrease in the total remaining capacity without increasing the auxiliary charging frequency, and thus it is possible to suppress the deterioration of the storage battery.

本発明の実施の形態例を説明する図である。It is a figure explaining the example of embodiment of this invention. 本発明の実施の各組電池の残容量経過を説明する図である。It is a figure explaining the remaining capacity progress of each assembled battery of implementation of this invention. 本発明の実施の形態例を説明する図である。It is a figure explaining the example of embodiment of this invention. 本発明の実施の各組電池の残容量経過を説明する図である。It is a figure explaining the remaining capacity progress of each assembled battery of implementation of this invention. 整流器と、充電器と、放電器と、複数組の組電池を組み合わせた直流バックアップ電源システムの構成図である。It is a block diagram of the direct-current backup power supply system which combined the rectifier, the charger, the discharger, and a plurality of sets of assembled batteries.

符号の説明Explanation of symbols

1:商用電源、2:整流器、3:負荷、4:組電池、5:充電器、6:ダイオード、7:放電器、8:充電制御手段。 1: commercial power supply, 2: rectifier, 3: load, 4: assembled battery, 5: charger, 6: diode, 7: discharger, 8: charge control means.

Claims (4)

複数の組電池と、充電器と、該充電器の充電スケジュールを制御する充電制御手段とを構成要素とする直流電源システムにおいて、
前記組電池の組数をnとし、補充電単位時間をTとし、補充電繰り返し序数を0以上の整数mとし、各前記組電池の補充電が開始されるときの該組電池の満充電からの残容量低下割合をc[%]とし、前記組電池全体の、満充電時容量に対する所要最低残容量の割合をQmin[%]とするとき、
n、Qminおよびcが
min≦100%−(c/2)(1+1/n)
を満たすように定められ、
kを1からnまでの自然数とするとき、
時刻(k/n+m)Tにおいて、k番目の前記組電池の補充電が開始されることを特徴とする直流電源システム。
In a DC power supply system having a plurality of assembled batteries, a charger, and a charge control means for controlling a charging schedule of the charger as components,
The number of assembled battery sets is n, the auxiliary charging unit time is T, the auxiliary charging ordinal number is an integer m of 0 or more, and from the full charging of the assembled battery when the auxiliary charging of each assembled battery is started When the remaining capacity decrease rate is c [%], and the ratio of the required minimum remaining capacity to the fully charged capacity of the entire assembled battery is Q min [%],
n, Q min and c are Q min ≦ 100% − (c / 2) (1 + 1 / n)
To meet
When k is a natural number from 1 to n,
The DC power supply system, wherein at time (k / n + m) T, supplementary charging of the k-th assembled battery is started.
複数の組電池と、充電器と、該充電器の充電スケジュールを制御する充電制御手段とを構成要素とする直流電源システムの充電方法において、
前記組電池の組数をnとし、補充電単位時間をTとし、補充電繰り返し序数を0以上の整数mとし、各前記組電池の補充電が開始されるときの該組電池の満充電からの残容量低下割合をc[%]とし、前記組電池全体の、満充電時容量に対する所要最低残容量の割合をQmin[%]とするとき、
n、Qminおよびcを
min≦100%−(c/2)(1+1/n)
が満たされるように定め、
kを1からnまでの自然数とするとき、
時刻(k/n+m)Tにおいて、k番目の前記組電池の補充電を開始することを特徴とする直流電源システムの充電方法。
In a method for charging a DC power supply system comprising a plurality of assembled batteries, a charger, and a charge control means for controlling a charging schedule of the charger, as constituent elements,
The number of assembled battery sets is n, the auxiliary charging unit time is T, the auxiliary charging ordinal number is an integer m of 0 or more, and from the full charging of the assembled battery when the auxiliary charging of each assembled battery is started When the remaining capacity decrease rate is c [%], and the ratio of the required minimum remaining capacity to the fully charged capacity of the entire assembled battery is Q min [%],
n, Q min and c are Q min ≦ 100% − (c / 2) (1 + 1 / n)
Is satisfied,
When k is a natural number from 1 to n,
A charging method for a DC power supply system, wherein at time (k / n + m) T, supplementary charging of the k-th assembled battery is started.
請求項1に記載の直流電源システムにおいて、
交流電力を直流電力に変換する整流器を具備し、
前記組電池はそれぞれ前記組電池の放電方向にのみ電力を通すダイオードを介して並列接続され、さらに前記整流器から負荷への給電線に並列接続され、
前記組電池への充電電圧の最大値は、前記整流器の出力電圧以下に設定されることを特徴とする直流電源システム。
The DC power supply system according to claim 1,
It has a rectifier that converts AC power into DC power,
Each of the assembled batteries is connected in parallel via a diode that passes power only in the discharge direction of the assembled battery, and is further connected in parallel to a power supply line from the rectifier to the load,
The maximum value of the charging voltage to the assembled battery is set to be equal to or lower than the output voltage of the rectifier.
請求項1に記載の直流電源システムにおいて、
交流電力を直流電力に変換する整流器を具備し、
前記組電池はそれぞれ放電器を介して並列接続され、さらに前記整流器から負荷への給電線に並列接続され、
前記放電器の出力電圧は、前記整流器の出力電圧以下に設定されることを特徴とする直流電源システム。
The DC power supply system according to claim 1,
It has a rectifier that converts AC power into DC power,
Each of the assembled batteries is connected in parallel via a discharger, and further connected in parallel to a power supply line from the rectifier to the load,
The output voltage of the discharger is set to be equal to or lower than the output voltage of the rectifier.
JP2008090347A 2008-03-31 2008-03-31 DC power supply system and charging method thereof Expired - Fee Related JP4654262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008090347A JP4654262B2 (en) 2008-03-31 2008-03-31 DC power supply system and charging method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008090347A JP4654262B2 (en) 2008-03-31 2008-03-31 DC power supply system and charging method thereof

Publications (2)

Publication Number Publication Date
JP2009247107A JP2009247107A (en) 2009-10-22
JP4654262B2 true JP4654262B2 (en) 2011-03-16

Family

ID=41308419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008090347A Expired - Fee Related JP4654262B2 (en) 2008-03-31 2008-03-31 DC power supply system and charging method thereof

Country Status (1)

Country Link
JP (1) JP4654262B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3100337B1 (en) * 2014-01-27 2022-01-12 Otis Elevator Company Charge algorithm for battery propelled elevator
JP6588412B2 (en) * 2016-09-30 2019-10-09 Necプラットフォームズ株式会社 Power control apparatus, power control method, and power control system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06311661A (en) * 1993-04-15 1994-11-04 Sony Corp Charger
JP2001045674A (en) * 1999-08-02 2001-02-16 Nippon Telegr & Teleph Corp <Ntt> Charging of secondary battery pack for backup, charging system, and control thereof
JP2001157384A (en) * 1999-11-25 2001-06-08 Nissin Electric Co Ltd Power storage device
JP2004120857A (en) * 2002-09-25 2004-04-15 Matsushita Electric Ind Co Ltd Power supply

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06311661A (en) * 1993-04-15 1994-11-04 Sony Corp Charger
JP2001045674A (en) * 1999-08-02 2001-02-16 Nippon Telegr & Teleph Corp <Ntt> Charging of secondary battery pack for backup, charging system, and control thereof
JP2001157384A (en) * 1999-11-25 2001-06-08 Nissin Electric Co Ltd Power storage device
JP2004120857A (en) * 2002-09-25 2004-04-15 Matsushita Electric Ind Co Ltd Power supply

Also Published As

Publication number Publication date
JP2009247107A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
EP2587623B1 (en) Dc power distribution system
CN102856946A (en) Energy storage apparatus and energy storage system
JP2015195674A (en) Power storage battery assembly control system
JP7168438B2 (en) Power supply system and power supply method
KR101560514B1 (en) Voltage conversion circuit and electronic apparatus
WO2012128252A1 (en) Power storage system
JP2004120857A (en) Power supply
US20070092763A1 (en) Fuel cell system
JP7189861B2 (en) Charging device and charging method
JP2012253849A (en) Power storage system
JP2009296719A (en) Dc backup power system and method of charging the same
JP2009148110A (en) Charger/discharger and power supply device using the same
JP2009071922A (en) Dc backup power supply device and method of controlling the same
JP4828511B2 (en) Backup power supply and control method thereof
JP6214131B2 (en) Battery pack charging system and battery pack charging method
JP4654262B2 (en) DC power supply system and charging method thereof
JP4933465B2 (en) DC power supply system and charge control method thereof
JP4724726B2 (en) DC power supply system and charging method thereof
JP5541682B2 (en) Lithium-ion battery charging system and charging method
JP5295801B2 (en) DC power supply system and discharge method
JP2009118683A (en) Charger, charging method thereof, and power supply system
WO2021215282A1 (en) Uninterruptible power supply device
JP2014222982A (en) Uninterruptible power device
JP5059674B2 (en) Power supply system and charging method
JP4896937B2 (en) DC power supply system and charging method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees