JP2004119949A - Compound semiconductor light-emitting element and its manufacturing method - Google Patents

Compound semiconductor light-emitting element and its manufacturing method Download PDF

Info

Publication number
JP2004119949A
JP2004119949A JP2002285297A JP2002285297A JP2004119949A JP 2004119949 A JP2004119949 A JP 2004119949A JP 2002285297 A JP2002285297 A JP 2002285297A JP 2002285297 A JP2002285297 A JP 2002285297A JP 2004119949 A JP2004119949 A JP 2004119949A
Authority
JP
Japan
Prior art keywords
light emitting
layer
emitting layer
compound semiconductor
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002285297A
Other languages
Japanese (ja)
Inventor
Naoya Sunaji
砂地 直也
Haruhiko Watanabe
渡辺 治彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2002285297A priority Critical patent/JP2004119949A/en
Publication of JP2004119949A publication Critical patent/JP2004119949A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Weting (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means which easily improves light-emitting output of a compound semiconductor light-emitting element. <P>SOLUTION: The compound semiconductor light-emitting element 1 is so constituted that it has a double-heterostructure, by sandwiching both sides of a light-emitting layer 2 with clad layers 3, 4 and the area of the light-emitting layer 2 is smaller than that of the clad layers 3, 4 in a state viewed from the laminating direction of the light-emitting layer 2 and the clad layers 3, 4. The compound semiconductor light-emitting element 1 is manufactured, by selectively etching the peripheral edge part of the light-emitting layer 2, after dicing. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は,表示素子,センサー光源等に用いられる化合物半導体発光素子とその製造方法に関する。
【0002】
【従来の技術】
発光ダイオード,半導体レーザ等の化合物半導体発光素子が,オプトエレクトロニクスの分野において広く利用されている。従来より,光を発する発光層(活性層)の両側を,屈折率の低いクラッド層で挟んだ二重ヘテロ構造(DH構造)の化合物半導体発光素子が知られている。
【0003】
図5は,一般的な二重ヘテロ構造の化合物半導体発光素子(LED)10の説明図である。この化合物半導体発光素子10は,P型発光層11の上下に,N型クラッド層12とP型クラッド層13を積層した構成である。この化合物半導体発光素子10において,上面の電極15と,下面の電極(図示せず)を介して電流を流すと,N型クラッド層12とP型発光層11の界面(PN界面)近傍で発光現象がおきる。そして,発生した光は,N型クラッド層12とP型クラッド層13を通って外部へ取り出される。
【0004】
このような化合物半導体発光素子は,成膜工程と加工工程を経て製造される。成膜工程では,LPE(液相エピタキシャル成長)法,MOCVD(有機金属化学気相成長)法等のエピタキシャル成長技術により,単結晶基板上に化合物半導体の膜を積層していく。そして加工工程において,エピタキシャル成長ウェハの厚み調整や電極形成を施した後,所望のチップサイズに加工することで化合物半導体素子が得られる。
【0005】
化合物半導体素子から外部に実際に取り出される光量(外部発光効率)は,PN界面での内部発光効率と,発光した光の外部取り出し効率に影響される。内部発光効率は,主としてエピタキシャル成長層に依存する。外部取出し効率は,エピタキシャル成長層の他に,光を通すN型クラッド層やP型クラッド層の形状などといった化合物半導体発光素子の構造にも影響される。
【0006】
化合物半導体発光素子の発光出力は,高いものが望まれることが多いが,エピタキシャル膜構造や組成といったエピタキシャル成膜条件は,材料のもつ基本的な性質や素子利用の際の制約などから容易に変更できない場合がある。また,エピタキシャル膜の構造決定は,長い検討期間を要するのが通常である。そこで従来,特開平6−151959号では,化合物半導体発光素子の側面に微細な凹凸を形成し,発光した光を内部反射によって結晶に吸収させずに,外部へより多く射出させる方法を開示している。
【0007】
【特許文献1】
特開平6−151959号公報(例えば請求項1,図1)
【0008】
【発明が解決しようとする課題】
しかしながら,特開平6−151959号の方法では,加工歪みのない平坦な表面に加工処理する工程と,その側面に微細な凹凸を形成する工程といった2つの異なる工程が必要となり,加工が複雑となる。
【0009】
本発明の目的は,化合物半導体発光素子の発光出力を容易に向上させる手段を提供することにある。
【0010】
【課題を解決するための手段】
この目的を達成するために,本発明にあっては,発光層の両側をクラッド層で挟んだ二重ヘテロ構造の化合物半導体発光素子であって,前記発光層とクラッド層の積層方向から見た状態において,前記発光層の面積が前記クラッド層の面積よりも小さいことを特徴としている。この場合,例えば前記発光層とクラッド層は,何れもAl,Ga及びAsからなる混晶であり,前記発光層は,前記クラッド層よりもAl組成比率が低い。
【0011】
また,本発明にあっては,発光層の両側をクラッド層で挟んだ二重ヘテロ構造の化合物半導体発光素子を製造する方法であって,ダイシング後,発光層の周縁部をエッチングすることを特徴としている。この場合,前記発光層を選択的にエッチングするエッチャントを用いることが好ましい。
【0012】
【発明の実施の形態】
以下,本発明の好ましい実施の形態を,図面を参照にして説明する。図1,2は,化合物半導体発光素子の一例であるAlGaAs発光素子1を,その製造過程に従って示した側面図である。図1はエッチング前の状態を示し,図2は,エッチングされた状態の本発明の実施の形態にかかるAlGaAs発光素子1を示している。図3は,本発明の実施の形態にかかるAlGaAs発光素子1の平面図である。
【0013】
先ず,AlGaAsをエピタキシャル成長させたウェハからGaAs基板を除去し,電極等の加工を施した後,所望のチップサイズへダイシングし,エッチング前のAlGaAs発光素子1を得る。このエッチング前のAlGaAs発光素子1は,P型発光層2を,N型クラッド層3とP型クラッド層4によって上下から挟んだ二重ヘテロ構造を有している。このエッチング前のAlGaAs発光素子1の上面(N型クラッド層3の上面)には電極5が形成されている。N型クラッド層3とP型クラッド層4は,光の透過率を上げるために,P型発光層2と比較してAl組成比率が高くなっている。P型発光層2,N型クラッド層3,P型クラッド層4の組成比率をAlGa1−XAsと表せば,P型発光層2では,例えばX=0.35であり,N型クラッド層3とP型クラッド層4では,例えばX=0.65である。また,各層のドーパントとして,例えばP型発光層2とP型クラッド層4にはZnがドープされ,N型クラッド層3にはTeがドープされている。
【0014】
このエッチング前のAlGaAs発光素子1を,例えばNHOH:H:HO等のエッチャントを用いてエッチングする。すると,P型発光層2のAl組成比率が,N型クラッド層3とP型クラッド層4のAl組成比率よりも低いために,P型発光層2はエッチングが進むが,Al組成比率の高いN型クラッド層3とP型クラッド層4は,表面にAlの保護膜が形成され,エッチングがほとんど進行しない。これにより,P型発光層2が周縁部から選択的にエッチングされることとなる。
【0015】
こうして,図2に示す如き,P型発光層2の周縁部が除去されたAlGaAs発光素子1を得ることができる。このAlGaAs発光素子1は,P型発光層2の周縁部が除去されたことにより,図3に示されるように,P型発光層2とN型クラッド層3とP型クラッド層4の積層方向から見た状態では,P型発光層2の面積が,N型クラッド層3とP型クラッド層4の面積よりも小さくなっている。
【0016】
なお,P型発光層2のエッチング量(P型発光層2の周縁部の除去量)は,エッチャント濃度やエッチング時間を調整することにより,容易に変更でき,P型発光層2とN型クラッド層3とP型クラッド層4の積層方向から見た状態でのP型発光層2とN型クラッド層3及びP型クラッド層4の面積比率は,容易に所望のものとすることができる。
【0017】
このようにP型発光層2を選択的にエッチングする場合,N型クラッド層3とP型クラッド層4の表面に形成されるAl膜は,厚くなると剥がれ落ちてしまう場合がある。そして,剥がれ落ちたAlがP型発光層2の周り(N型クラッド層3とP型クラッド層4の間に形成される隙間)に溜まると,エッチャントが充分にP型発光層2の周囲にまで浸透しなくなり,エッチングの進行が妨げられる心配を生じる。そこで,N型クラッド層3やP型クラッド層4から剥がれ落ちたAl膜を除去するために,HCl:HO等のエッチャントによるエッチングを,NHOH:H:HO等のエッチャントを用いたエッチングと交互に繰り返して行うと良い。
【0018】
こうして製造されたAlGaAs発光素子1にあっては,P型発光層2の周縁部を除去したことにより,P型発光層2に対するN型クラッド層3とP型クラッド層4の面積比率が高くなり,外部発光効率が向上する。
【0019】
以上,本発明の好ましい実施の形態の一例を示したが,本発明はここで説明した形態に限定されない。例えば,AlGaAs発光素子以外の他の化合物半導体発光素子について,本発明を適用しても良い。
【0020】
【実施例】
(実施例)
ダイシング及び基板除去された二重ヘテロ構造のAlGaAs発光素子を準備した。発光層と各クラッド層の組成比率は,実施の形態で説明した場合と同じであり,AlGa1−XAsとすれば,P型発光層ではX=0.35,N型クラッド層とP型クラッド層ではX=0.65である。ダイシング後のAlGaAs発光素子の大きさは,280μm角,厚み170μmであり,上面電極は直径140μmとなるように加工した。このAlGaAs発光素子を整列させて貼り付けたダイシングテープをエキスパンドし,各AlGaAs発光素子間の隙間を広げ,30℃のNHOH:H:HO=1:2:100のエッチャントを用いた4分間のエッチングと,HCl:HO=3:100のエッチャントを用いた2分間のエッチングを交互に行った。NHOH:H:HOによるエッチングとHCl:HOによるエッチングを,交互に3回ずつ行った場合,交互に2回ずつ行った場合,交互に1回ずつ行った場合についてそれぞれ検討した。
【0021】
エッチング終了後のAlGaAs発光素子を壁開し,発光層のエッチング深さを調べたところ,NHOH:H:HOによるエッチングとHCl:HOによるエッチングを交互に3回ずつ行った場合のエッチング深さは約15μm,2回ずつ行った場合のエッチング深さは約10μm,1回ずつ行った場合のエッチング深さは約5μmであった。
【0022】
NHOH:H:HOによるエッチングとHCl:HOによるエッチングを交互に3回ずつ行った場合についていえば,発光層は250μm角となった。なお,この場合のエッチグ後の各寸法を,図2,3中に適宜記載した。この図2,3に示す例では,発光層と各クラッド層の積層方向から見た発光層の面積は,250×250=62,500μm,クラッド層の表面積は,上面+側面+エッチングによる増分=(280×280−70×70π)+(280×170×4)+(280×280−250×250)×2=285,207μmとなり,面積比率:クラッド層表面積/発光層面積=4.56となった。なお,同様にして,NHOH:H:HOによるエッチングとHCl:HOによるエッチングを交互に2回ずつ行った場合,1回ずつ行った場合についても,面積比率をそれぞれ求めた。
【0023】
(比較例)
実施例1における発光層のエッチングを省略し,発光層の周縁部が除去されていないAlGaAs発光素子を得た。
【0024】
実施例のAlGaAs発光素子の光出力を,比較例のAlGaAs発光素子の光出力と比較した。図4は,エッチングを施していない比較例のAlGaAs発光素子の光出力を1とした場合の,各実施例のAlGaAs発光素子の光出力変化率(各実施例のAlGaAs発光素子の光出力/比較例のAlGaAs発光素子の光出力)を,各実施例の面積比率(クラッド層表面積/発光層面積)との関係において示したグラフである。NHOH:H:HOによるエッチングとHCl:HOによるエッチングを交互に3回ずつ行った実施例では,比較例に比べて1.4倍の光出力が得られた。
【0025】
【発明の効果】
本発明によれば,発光層の面積を小さくし,クラッド層(光透過層)の表面積比率を上げることにより,光出力を向上させることができる。
【図面の簡単な説明】
【図1】エッチング前のAlGaAs発光素子の側面図である。
【図2】本発明の実施の形態にかかるAlGaAs発光素子の側面図である。
【図3】本発明の実施の形態かかるAlGaAs発光素子の平面図である。
【図4】本発明の実施例と比較例の光出力を比較したグラフである。
【図5】一般的な二重ヘテロ構造の化合物半導体発光素子の説明図である。
【符号の説明】
1  AlGaAs発光素子
2  P型発光層
3  N型クラッド層
4  P型クラッド層
5  電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a compound semiconductor light emitting device used for a display device, a sensor light source, and the like, and a method for manufacturing the same.
[0002]
[Prior art]
Compound semiconductor light emitting devices such as light emitting diodes and semiconductor lasers are widely used in the field of optoelectronics. Conventionally, a compound semiconductor light emitting device having a double hetero structure (DH structure) in which both sides of a light emitting layer (active layer) that emits light are sandwiched between cladding layers having a low refractive index has been known.
[0003]
FIG. 5 is an explanatory diagram of a compound semiconductor light emitting device (LED) 10 having a general double hetero structure. The compound semiconductor light emitting device 10 has a configuration in which an N-type cladding layer 12 and a P-type cladding layer 13 are stacked on and under a P-type light-emitting layer 11. In the compound semiconductor light emitting device 10, when a current is passed through the upper electrode 15 and the lower electrode (not shown), light is emitted near the interface (PN interface) between the N-type cladding layer 12 and the P-type light emitting layer 11. A phenomenon occurs. Then, the generated light is extracted outside through the N-type cladding layer 12 and the P-type cladding layer 13.
[0004]
Such a compound semiconductor light emitting device is manufactured through a film forming process and a processing process. In the film forming process, a compound semiconductor film is laminated on a single crystal substrate by an epitaxial growth technique such as an LPE (liquid phase epitaxial growth) method or an MOCVD (metal organic chemical vapor deposition) method. In the processing step, after adjusting the thickness of the epitaxial growth wafer and forming electrodes, the compound semiconductor element is obtained by processing to a desired chip size.
[0005]
The amount of light actually extracted from the compound semiconductor device to the outside (external light emission efficiency) is affected by the internal light emission efficiency at the PN interface and the external light extraction efficiency of emitted light. The internal luminous efficiency mainly depends on the epitaxial growth layer. The external extraction efficiency is affected not only by the epitaxial growth layer but also by the structure of the compound semiconductor light emitting device such as the shape of the N-type cladding layer or the P-type cladding layer that transmits light.
[0006]
It is often desired that the compound semiconductor light emitting device has a high light output, but the epitaxial film forming conditions such as the structure and composition of the epitaxial film cannot be easily changed due to the basic properties of the material and restrictions on the use of the device. There are cases. In addition, the determination of the structure of the epitaxial film usually requires a long study period. Conventionally, Japanese Unexamined Patent Publication No. Hei 6-151959 discloses a method in which fine irregularities are formed on the side surface of a compound semiconductor light emitting device and emitted light is more emitted to the outside without being absorbed by the crystal by internal reflection. I have.
[0007]
[Patent Document 1]
JP-A-6-151959 (for example, claim 1, FIG. 1)
[0008]
[Problems to be solved by the invention]
However, the method of Japanese Patent Application Laid-Open No. 6-151959 requires two different steps, namely, a step of processing a flat surface without processing distortion and a step of forming fine irregularities on the side surface, and the processing becomes complicated. .
[0009]
An object of the present invention is to provide a means for easily improving the light emission output of a compound semiconductor light emitting device.
[0010]
[Means for Solving the Problems]
In order to achieve this object, according to the present invention, there is provided a compound semiconductor light emitting device having a double hetero structure in which both sides of a light emitting layer are sandwiched by cladding layers, viewed from the laminating direction of the light emitting layer and the cladding layer. In this state, the area of the light emitting layer is smaller than the area of the cladding layer. In this case, for example, each of the light emitting layer and the cladding layer is a mixed crystal made of Al, Ga, and As, and the light emitting layer has a lower Al composition ratio than the cladding layer.
[0011]
The present invention also relates to a method of manufacturing a compound semiconductor light emitting device having a double hetero structure in which both sides of a light emitting layer are sandwiched by cladding layers, wherein after dicing, the periphery of the light emitting layer is etched. And In this case, it is preferable to use an etchant for selectively etching the light emitting layer.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. 1 and 2 are side views showing an AlGaAs light emitting device 1 as an example of a compound semiconductor light emitting device according to a manufacturing process. FIG. 1 shows a state before etching, and FIG. 2 shows an AlGaAs light emitting device 1 according to an embodiment of the present invention in an etched state. FIG. 3 is a plan view of the AlGaAs light emitting device 1 according to the embodiment of the present invention.
[0013]
First, the GaAs substrate is removed from the wafer on which AlGaAs has been epitaxially grown, electrodes and other processing are performed, and then dicing is performed to a desired chip size to obtain the AlGaAs light emitting element 1 before etching. The AlGaAs light emitting device 1 before the etching has a double hetero structure in which a P-type light emitting layer 2 is sandwiched between an N-type cladding layer 3 and a P-type cladding layer 4 from above and below. An electrode 5 is formed on the upper surface of the AlGaAs light emitting device 1 before etching (the upper surface of the N-type cladding layer 3). The N-type cladding layer 3 and the P-type cladding layer 4 have a higher Al composition ratio than the P-type light emitting layer 2 in order to increase the light transmittance. If the composition ratio of the P-type light-emitting layer 2, the N-type clad layer 3, and the P-type clad layer 4 is expressed as Al X Ga 1-X As, for the P-type light-emitting layer 2, for example, X = 0.35, and the N-type For the cladding layer 3 and the P-type cladding layer 4, for example, X = 0.65. Further, as a dopant of each layer, for example, the P-type light emitting layer 2 and the P-type cladding layer 4 are doped with Zn, and the N-type cladding layer 3 is doped with Te.
[0014]
The AlGaAs light emitting element 1 before the etching is etched by using an etchant such as NH 4 OH: H 2 O 2 : H 2 O. Then, since the Al composition ratio of the P-type light emitting layer 2 is lower than the Al composition ratio of the N-type cladding layer 3 and the P-type cladding layer 4, the etching of the P-type light emitting layer 2 proceeds, but the Al composition ratio is high. The N-type cladding layer 3 and the P-type cladding layer 4 have a protective film of Al 2 O 3 formed on the surface, and the etching hardly proceeds. Thus, the P-type light emitting layer 2 is selectively etched from the peripheral portion.
[0015]
Thus, as shown in FIG. 2, the AlGaAs light emitting device 1 in which the peripheral portion of the P-type light emitting layer 2 has been removed can be obtained. In the AlGaAs light emitting device 1, as shown in FIG. 3, the P-type light emitting layer 2, the N-type cladding layer 3, and the P-type cladding layer 4 are stacked in a direction in which the peripheral portion of the P-type light emitting layer 2 is removed. When viewed from above, the area of the P-type light emitting layer 2 is smaller than the areas of the N-type cladding layer 3 and the P-type cladding layer 4.
[0016]
The etching amount of the P-type light emitting layer 2 (the removal amount of the peripheral portion of the P-type light emitting layer 2) can be easily changed by adjusting the etchant concentration and the etching time. The area ratio of the P-type light emitting layer 2, the N-type cladding layer 3, and the P-type cladding layer 4 when viewed from the laminating direction of the layer 3 and the P-type cladding layer 4 can be easily set as desired.
[0017]
When the P-type light emitting layer 2 is selectively etched as described above, the Al 2 O 3 film formed on the surfaces of the N-type cladding layer 3 and the P-type cladding layer 4 may come off when it becomes thick. When the peeled-off Al 2 O 3 accumulates around the P-type light emitting layer 2 (a gap formed between the N-type cladding layer 3 and the P-type cladding layer 4), the etchant is sufficiently supplied to the P-type light emitting layer 2. Does not penetrate into the surrounding area, and there is a fear that the progress of etching is hindered. Therefore, in order to remove the Al 2 O 3 film peeled off from the N-type cladding layer 3 and the P-type cladding layer 4, etching with an etchant such as HCl: H 2 O is performed using NH 4 OH: H 2 O 2 : H. It is preferable to alternately repeat the etching with an etchant such as 2O.
[0018]
In the AlGaAs light emitting device 1 manufactured as described above, the area ratio of the N-type cladding layer 3 and the P-type cladding layer 4 to the P-type light emitting layer 2 is increased by removing the peripheral portion of the P-type light emitting layer 2. , External luminous efficiency is improved.
[0019]
The preferred embodiment of the present invention has been described above, but the present invention is not limited to the embodiment described here. For example, the present invention may be applied to a compound semiconductor light emitting device other than the AlGaAs light emitting device.
[0020]
【Example】
(Example)
An AlGaAs light emitting device having a double hetero structure from which dicing and substrate removal were performed was prepared. The composition ratio of the light emitting layer and each cladding layer is the same as that described in the embodiment. If Al x Ga 1-x As, X = 0.35 in the P type light emitting layer and N in the N type cladding layer. X = 0.65 in the P-type cladding layer. The size of the AlGaAs light emitting device after dicing was 280 μm square and 170 μm in thickness, and the upper electrode was processed to have a diameter of 140 μm. The dicing tape on which the AlGaAs light emitting elements are aligned and adhered is expanded to widen the gap between the AlGaAs light emitting elements, and the NH 4 OH: H 2 O 2 : H 2 O = 1: 2: 100 at 30 ° C. For 4 minutes and etching for 2 minutes using an etchant of HCl: H 2 O = 3: 100 were performed alternately. When the etching with NH 4 OH: H 2 O 2 : H 2 O and the etching with HCl: H 2 O are performed alternately three times, two times alternately, and one time alternately Were examined individually.
[0021]
When the AlGaAs light emitting device after the etching was cleaved and the etching depth of the light emitting layer was examined, the etching with NH 4 OH: H 2 O 2 : H 2 O and the etching with HCl: H 2 O were alternately performed three times. The etching depth when performing each of the steps was about 15 μm, the etching depth when performing each of the steps twice was about 10 μm, and the etching depth when performing each of the steps twice was about 5 μm.
[0022]
In the case where etching with NH 4 OH: H 2 O 2 : H 2 O and etching with HCl: H 2 O were alternately performed three times, the light emitting layer was 250 μm square. The dimensions after the etching in this case are appropriately described in FIGS. In the examples shown in FIGS. 2 and 3, the area of the light emitting layer viewed from the laminating direction of the light emitting layer and each clad layer is 250 × 250 = 62,500 μm 2 , and the surface area of the clad layer is incremented by upper surface + side surface + etching. = (280 × 280−70 × 70π) + (280 × 170 × 4) + (280 × 280−250 × 250) × 2 = 285,207 μm 2 and the area ratio: cladding layer surface area / light emitting layer area = 4. 56. In the same manner, the area ratio is also determined when the etching with NH 4 OH: H 2 O 2 : H 2 O and the etching with HCl: H 2 O are alternately performed twice each and once. I asked for each.
[0023]
(Comparative example)
The etching of the light emitting layer in Example 1 was omitted, and an AlGaAs light emitting device in which the peripheral portion of the light emitting layer was not removed was obtained.
[0024]
The light output of the AlGaAs light emitting device of the example was compared with the light output of the AlGaAs light emitting device of the comparative example. FIG. 4 shows the light output change rate of the AlGaAs light emitting device of each embodiment when the light output of the AlGaAs light emitting device of the comparative example without etching was set to 1 (light output of the AlGaAs light emitting device of each embodiment / comparison). 3 is a graph showing the relationship between the area ratio (cladding layer surface area / light emitting layer area) and the area ratio (cladding layer surface area / light emitting layer area) of each example. In the example in which the etching with NH 4 OH: H 2 O 2 : H 2 O and the etching with HCl: H 2 O were alternately performed three times, a light output 1.4 times higher than that of the comparative example was obtained. .
[0025]
【The invention's effect】
According to the present invention, the light output can be improved by reducing the area of the light emitting layer and increasing the surface area ratio of the cladding layer (light transmitting layer).
[Brief description of the drawings]
FIG. 1 is a side view of an AlGaAs light emitting device before etching.
FIG. 2 is a side view of the AlGaAs light emitting device according to the embodiment of the present invention.
FIG. 3 is a plan view of the AlGaAs light emitting device according to the embodiment of the present invention.
FIG. 4 is a graph comparing the light output of the example of the present invention and the comparative example.
FIG. 5 is an explanatory diagram of a compound semiconductor light emitting device having a general double hetero structure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 AlGaAs light emitting element 2 P type light emitting layer 3 N type clad layer 4 P type clad layer 5 Electrode

Claims (4)

発光層の両側をクラッド層で挟んだ二重ヘテロ構造の化合物半導体発光素子であって,
前記発光層とクラッド層の積層方向から見た状態において,前記発光層の面積が前記クラッド層の面積よりも小さいことを特徴とする,化合物半導体発光素子。
A compound semiconductor light emitting device having a double hetero structure in which both sides of a light emitting layer are sandwiched by cladding layers,
A compound semiconductor light emitting device, wherein the area of the light emitting layer is smaller than the area of the cladding layer when viewed from the laminating direction of the light emitting layer and the cladding layer.
前記発光層とクラッド層は,何れもAl,Ga及びAsからなる混晶であり,前記発光層は,前記クラッド層よりもAl組成比率が低いことを特徴とする,請求項1に記載の化合物半導体発光素子。The compound according to claim 1, wherein the light emitting layer and the cladding layer are all mixed crystals of Al, Ga and As, and the light emitting layer has a lower Al composition ratio than the cladding layer. Semiconductor light emitting device. 発光層の両側をクラッド層で挟んだ二重ヘテロ構造の化合物半導体発光素子を製造する方法であって,
ダイシング後,発光層の周縁部をエッチングすることを特徴とする,化合物半導体発光素子の製造方法。
A method for manufacturing a compound semiconductor light emitting device having a double hetero structure in which both sides of a light emitting layer are sandwiched by cladding layers,
A method for manufacturing a compound semiconductor light emitting device, comprising etching a peripheral portion of a light emitting layer after dicing.
前記発光層を選択的にエッチングするエッチャントを用いることを特徴とする,請求項3に記載の化合物半導体発光素子の製造方法。4. The method according to claim 3, wherein an etchant for selectively etching the light emitting layer is used.
JP2002285297A 2002-09-30 2002-09-30 Compound semiconductor light-emitting element and its manufacturing method Pending JP2004119949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002285297A JP2004119949A (en) 2002-09-30 2002-09-30 Compound semiconductor light-emitting element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002285297A JP2004119949A (en) 2002-09-30 2002-09-30 Compound semiconductor light-emitting element and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004119949A true JP2004119949A (en) 2004-04-15

Family

ID=32278639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002285297A Pending JP2004119949A (en) 2002-09-30 2002-09-30 Compound semiconductor light-emitting element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004119949A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054954A (en) * 2015-09-10 2017-03-16 株式会社東芝 Light emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054954A (en) * 2015-09-10 2017-03-16 株式会社東芝 Light emitting device
CN106531864A (en) * 2015-09-10 2017-03-22 株式会社东芝 Light-emitting device

Similar Documents

Publication Publication Date Title
US10586891B2 (en) Light emitting device with improved extraction efficiency
TWI228323B (en) Semiconductor light emitting device and its manufacturing method, integrated semiconductor light emitting device and manufacturing method thereof, image display device and its manufacturing method, illumination device and manufacturing method thereof
US7180088B2 (en) Nitride based semiconductor light-emitting device
KR101218869B1 (en) Manufacturing methods of ⅲ nitride semiconductor crystal and ⅲ nitride semiconductor device
US9082934B2 (en) Semiconductor optoelectronic structure with increased light extraction efficiency
TWI377697B (en) Method for growing a nitride-based iii-v group compound semiconductor
JP5074396B2 (en) Method and optoelectronic component for lateral cutting of a semiconductor wafer
KR100649769B1 (en) Semiconductor light emitting diode and method for fabricating the same
US9142619B2 (en) Group III nitride semiconductor device and method for manufacturing the same
US6613461B1 (en) Gallium nitride-based compound semiconductor chip and method for producing the same, and gallium nitride-based compound semiconductor wafer
JP2011071540A (en) Manufacturing method of nitride semiconductor light emitting element
JP2001176823A (en) Method for manufacturing nitride semiconductor chip
JP2001085736A (en) Method for manufacturing nitride semiconductor chip
WO2007145300A1 (en) Gallium nitride compound semiconductor light emitting element
CN101558535A (en) Semiconductor laser device
JP2007123436A (en) Semiconductor light-emitting device and manufacturing method thereof
JP2008047850A (en) Nitride semiconductor light emitting diode
JP2004119949A (en) Compound semiconductor light-emitting element and its manufacturing method
JP2004128107A (en) Optical semiconductor device
CN107735870B (en) Light emitting module and method for manufacturing light emitting module
TWI845501B (en) Method for adjusting light distribution characteristics of light emitting element and method for manufacturing light emitting element
JP2011071449A (en) Method of manufacturing semiconductor light emitting device
JP2008047854A (en) Nitride semiconductor light emitting diode
JP3630212B2 (en) Light emitting diode
KR20230112144A (en) Semiconductor substrate, semiconductor substrate manufacturing method, semiconductor substrate manufacturing apparatus, electronic parts and electronic devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081202