JP2004119840A - Nonlinear resistor and its manufacturing method - Google Patents

Nonlinear resistor and its manufacturing method Download PDF

Info

Publication number
JP2004119840A
JP2004119840A JP2002283623A JP2002283623A JP2004119840A JP 2004119840 A JP2004119840 A JP 2004119840A JP 2002283623 A JP2002283623 A JP 2002283623A JP 2002283623 A JP2002283623 A JP 2002283623A JP 2004119840 A JP2004119840 A JP 2004119840A
Authority
JP
Japan
Prior art keywords
mol
resistance layer
oxide
temperature
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002283623A
Other languages
Japanese (ja)
Inventor
Masahiro Kobayashi
小林 正洋
Naomi Horie
堀江 直美
Junichi Shimizu
清水 淳一
Hiroki Kajino
楫野 宏樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002283623A priority Critical patent/JP2004119840A/en
Publication of JP2004119840A publication Critical patent/JP2004119840A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonlinear resistor at a low cost and to provide a method for manufacturing the same. <P>SOLUTION: The nonlinear resistor comprises a zinc oxide (ZnO) as a main component and also comprises as additives 0.66-0.8 mol% of a bismuth oxide (Bi<SB>2</SB>O<SB>3</SB>), 0.05-0.2 mol% of an antimony oxide (Sb<SB>2</SB>O<SB>3</SB>), 0.033-0.67 mol% each of a cobalt oxide (Co<SB>3</SB>O<SB>4</SB>) and a manganese oxide (Mn<SB>3</SB>O<SB>4</SB>), 0.01-0.5 mol% of a chromium oxide (Cr<SB>2</SB>O<SB>3</SB>), 0.4-2 mol% of a boric acid (H<SB>3</SB>BO<SB>3</SB>), and 0.001-0.01 mol% of an aluminum nitrate (Al(NO<SB>3</SB>)<SB>3</SB>-9H<SB>2</SB>O). The method for manufacturing the nonlinear resistor comprises steps for forming an element assembly 1 in which the total of the main component and the additives is 100 mol%, burning an electrode surface at a temperature of 950-1,050°C without being in contact with a burn table, forming a high resistance layer 2 on side faces of the assembly 1 at a thickness of 50-100μm by providing glass which has been obtained by vitrifying low melting glass at a temperature of 500-600°C, and thereafter forming an electrode 3 throughout the entire electrode-forming surface without polishing the same. Thus, since burning can be carried out at a lower temperature comparing with a conventional process in which burning is carried out at a high temperature of 1,200°C, the nonlinear resistor can be manufactured at a low cost. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は非直線抵抗体の製造方法に関し、特に酸化亜鉛を主成分とする避雷器素子およびその製造方法に関するものである。
【0002】
【従来の技術】
従来の非直線抵抗体は、まず、ZnOの粉末に合計量に対し、Bi 0.5モル%、Co 0.5モル%、MnO 0.5モル%、Sb1.0モル%、Cr 0.5モル%,SiO 0.5モル%を加え、純水、バインダー、分散劑とともに例えばボールミルにて充分に混合、粉砕した後、スプレードライヤーにて乾燥、造粒して原料粉を得た。この原料粉を直径40mm、厚さ30mmの大きさに圧縮成形し、500℃以上の温度条件にて脱脂処理した。その後、1100〜1250℃の温度範囲で焼成し、焼結体を得た。
【0003】
次に、被覆用ガラスペーストを例えば曲面スクリーン印刷機にて125〜250メッシュのスクリーンを用いて前記焼結体の側面に印刷した。その後、350〜700℃の温度条件にて被覆用ガラスペーストの焼き付け処理を行ない、焼結体に側面高抵抗層を形成した。次に、この焼結体の両端面を平面研磨し、アルミニウムのメタリコン電極を形成し、酸化亜鉛バリスタを得た(例えば、特許文献1参照)。
【0004】
また、従来の非直線抵抗体素体は、配合として、酸化亜鉛(ZnO)を主成分とし、添加物としてそれぞれ0.1〜2モル%の酸化ビスマス(Bi)、酸化アンチモン(Sb)、酸化コバルト(CoO)、酸化マンガン(MnO)、酸化クロム(Cr)、酸化珪素(SiO)、およびそれぞれ0.001〜0.01モル%のほう酸(HBO)、硝酸アルミニウム(Al(NO・9HO)を選び、これらを粉砕、混合、造粒、成形した後1200℃で焼成した(例えば、特許文献2参照)。
【0005】
【特許文献1】
特開平9−162016号公報([0010][0016][0017]、図1)
【特許文献2】
特公平5−22362号公報(第2頁)
【0006】
【発明が解決しようとする課題】
従来の非直線抵抗体の製造方法は以上のようであり、
(1)成形。
(2)脱脂焼成(500℃以上)。
(3)焼成(1100℃〜1250℃)。
(4)側面高抵抗層の材料塗布および焼き付け。
(5)両端面の研磨。
(6)メタリコン電極形成。
の工程が必要であり、非直線抵抗体を製造するためには、高温での焼成を含む多数の工程を必要とする。そのために、非直線抵抗体の製造コストは大変高価なものとなってしまうという問題点があった。
【0007】
この発明は上記のような問題点を解消するためになされたもので、安価な非直線抵抗体およびその製造方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
この発明の非直線抵抗体は、素体が、主成分を酸化亜鉛(ZnO)とし、添加物として酸化ビスマス(Bi)を0.66〜0.8モル%、酸化アンチモン(Sb)を0.05〜0.2モル%、酸化コバルト(Co)と酸化マンガン(Mn)とをそれぞれ0.033〜0.67モル%、酸化クロム(Cr)を0.01〜0.5モル%、ほう酸(HBO)を0.4〜2モル%、硝酸アルミニウム(Al(NO・9HO)を0.001〜0.01モル%の割合とし、上記主成分と添加物との総和を100モル%としたものである。
【0009】
【発明の実施の形態】
実施の形態1.
図1はこの発明の非直線抵抗体を示す断面図である。図に示すように、非直線抵抗体はエネルギーを吸収する円柱状の素体1と、円柱状の素体側面に設けられ、縁面放電を防ぐ側面高抵抗層2と、円柱状の素体の両底面に設けられ、素体1に均一な電流を流すための電極3とからなる。
【0010】
次に、この発明の非直線抵抗体の製造方法について説明する。まず、素体1の材料として主成分を酸化亜鉛(ZnO)とし、添加物として、酸化ビスマス(Bi)を0.66〜0.8モル%、酸化アンチモン(Sb)を0.05〜0.2モル%、酸化コバルト(Co)と酸化マンガン(Mn)とをそれぞれ0.033〜0.67モル%、酸化クロム(Cr)を0.01〜0.5モル%、ほう酸(HBO)を0.4〜2モル%、硝酸アルミニウム(Al(NO・9HO)を0.001〜0.01モル%の割合とし、主成分と添加物との総和を100モル%とした。さらに、酸化ニッケル(NiO)などを加えて総和を100モル%としても良い。
【0011】
この素体1を成形するための添加物材料の配合は、上記従来技術で説明したものに比べると、酸化ビスマス(Bi)をやや少なめの0.66〜0.8モル%と限定した上で、酸化アンチモン(Sb)は少なめに、酸化コバルト(Co)と酸化マンガン(Mn)とは同量、酸化クロム(Cr)は少なめ、ほう酸(HBO)はかなり多く、硝酸アルミニウム(Al(NO・9HO)は同量とし、酸化珪素(SiO)および酸化ニッケル(NiO)は無添加とした。
【0012】
これら添加物を粉砕したものと酸化亜鉛との混合体に水とバインダー用のポリビニルアルコール(PVA)とを少量加えて良く混合してスラリーを作った後、造粒し、この造粒粉を成形して円柱状の素体1を形成する。
次に、素体1を焼成台に載置して第1の温度である950〜1050℃で焼成し、バインダー除去とともに素子焼成を行なう。これは上記従来技術よりも低い温度であるが、実施の形態1の素体1の材料の配合を用いることにより低い温度でも充分に緻密に焼成できる。
【0013】
さらに、円柱状の素体1は、例えば、焼成台に固定部としてV字型等の切り込み等の溝を形成し、その溝で素体1の曲面を固定するといった方法を用いて、両底面ではなく側面で焼成台に固定して焼成する。従って、電極面を焼成台に接触させることなく焼成できる。
【0014】
次に、樹脂材料であるエポキシ変成シリコーンをシンナーで希釈したものを素体1側面に塗布して、側面高抵抗層2を形成する。このとき、電極面はカバーされており、電極面に側面高抵抗層材料が液だれすることはない。また、樹脂材料は第1の温度より低い第2の温度である100〜200℃の熱処理で焼きつけることができ、従来行なっていた側面高抵抗層2形成後の焼成温度をさらに低くすることができる。
【0015】
次に、素体1周辺から1mm内側までマスクをしてメタリコン作業を行ない、素体1の両底面に電極3を形成する。このマスクは素体1の成形時にできる素体1周辺部の約0.5mm程度の凹みを避けるためである。
このとき、焼成時において、素体1の両底面は焼成台に接触していず、さらに側面高抵抗層2形成時においても電極形成面はカバーされていることから、素体1の両底面を研磨することなく電極3付けが行える。
【0016】
【表1】

Figure 2004119840
【0017】
表1は従来品と実施の形態1に示す発明品との電気特性について示した表である。表1において、従来品および発明品の試料をそれぞれ10個について、小電流域平坦性および大電流域平坦性について測定し、その平均値を、従来品を100として表したものである。
【0018】
表1に示すように、発明品は従来品より小電流域平坦性および大電流域平坦性が小さくなっている。これは、発明品は従来品より常時における漏れ電流が小さく、雷時の電圧抑制効果が大きいことを示している。従って、本発明は従来品に比べて優れた電気特性を示していることが分かる。
【0019】
このように、側面高抵抗層2をエポキシ系樹脂材料で形成し、950〜1050℃、一回で素体1の焼成を可能とし、焼成時および側面高抵抗層2形成時において電極面の処理台への接触および異物の付着を防止したので、電極3形成前に行なっていた研磨および洗浄工程を省略することができる。従って、非直線抵抗体の製造において従来技術よりも低い温度で一回焼成にて素子を緻密に焼き固めることができるとともに工程数を削減することができ、非直線抵抗体を安価に製造することができる。
【0020】
実施の形態2.
上記実施の形態1において、少ない工程数で良好な電気特性を有する非直線抵抗体の製造方法について説明したが、ここではさらに、耐量性能の良好な非直線抵抗体の得られる製造方法について説明する。
【0021】
上記実施の形態1と同様にして非直線抵抗体を形成する。但し、試料1は側面高抵抗層2の厚みを30μmとしたもの、試料2は側面高抵抗層2の厚みを60μmとしたものを作成した。耐量性能試験は、従来品と試料1と試料2とをそれぞれ10個ずつ準備し、150A,2msの方形波を10回通電して異常がないことを確認する方法で行なった。表2は耐量試験後、素子に異常が認められないものを合格品としてその割合を示した表である。
【0022】
【表2】
Figure 2004119840
【0023】
表2より、従来品と試料2とは同等に良好な性能を有することがわかる。さらに、発明者の実験によれば、実施の形態1に示す非直線抵抗体の製造方法において、側面高抵抗層2を50〜100μm程度形成すれば、方形波耐量性能が良好で従来品に劣ることのない非直線抵抗体を簡単に、安価に形成することができる。
【0024】
実施の形態3.
上記実施の形態1および2では側面高抵抗層をエポキシ樹脂で形成したものについて説明を行なったが、ここでは側面高抵抗層を低融点ガラスで形成した場合について説明する。
【0025】
上記実施の形態1と同様にして非直線抵抗体を形成する。但し、側面高抵抗層2として、素体1に影響を及ぼさない温度である500〜600℃でガラス化できる低融点ガラスを素体1側面に厚さ50〜100μm程度形成する。その後、上記実施の形態1とほぼ同様に、素体1の両底面に電極3を形成する。
表3は、側面高抵抗層2である低融点ガラスの厚みは同じ50〜100μmであるが、電極の形成範囲を変えて形成した試料を用いて行なった耐量性能試験の結果を示したものである。
【0026】
【表3】
Figure 2004119840
【0027】
表3において、試料3はマスクを用いずに素体1周辺から0mm内側まで電極3(全面電極)を形成したもの、試料4はマスクを用いて素体1周辺から1mm内側まで電極3を形成したもの、試料5はマスクを用いて素体1周辺から2mm内側まで電極3を形成したものをそれぞれ10個ずつ準備し、150A,2msの方形波を10回通電して異常がないことを確認する方法で行なった。
【0028】
表3から分かるように、側面高抵抗層として低融点ガラスを用いた場合、厚みが50〜100μmのものについては、電極3の大きさが素体1周辺から0〜2mmの範囲では良好な耐量性能が得られた。特に、側面高抵抗層として低融点ガラスを用いた場合、厚みが50〜100μmのものについては、全面電極を形成しても従来品に劣ることのない良好な非直線抵抗体を得ることができた。
これは、低融点ガラスが上記実施の形態1で用いた樹脂に比べてカバレッジが良く、素体1周辺部の凹みはガラスにより被覆することができることによると思われる。
【0029】
また、表4は側面高抵抗層2である低融点ガラスの厚みを変えて形成した試料を用いて行なった耐量性能試験の結果を示したものである。
【0030】
【表4】
Figure 2004119840
【0031】
表4において、試料3は全面電極で、側面高抵抗層2である低融点ガラスの厚みを50〜100μmとしたもので表3で用いたものと同じである。さらに、試料6は全面電極で、低融点ガラスの厚みを30μmとしたものである。それぞれ10個ずつ準備し、150A,2msの方形波を10回通電して異常がないことを確認する方法で行なった。
【0032】
表4から分かるように、側面高抵抗層として厚みが50〜100μmの低融点ガラスを用いた場合、全面電極を形成しても良好な非直線抵抗体を得ることができる。
【0033】
つまり、側面高抵抗層として厚みが50〜100μmの低融点ガラスを用い、全面電極を形成すれば、非直線抵抗体の製造方法における電極形成工程時のマスクの形成も削除することができ、より簡単に安価に非直線抵抗体を製造することができる。
【0034】
実施の形態4.
上記実施の形態1ないし3で説明を行なった本発明の製造方法を用いて作成された直線抵抗体を用いた避雷器素子のバリスタ電圧について説明する。
表5は本発明の製造方法で作成された素子において、1mm厚み当たりのバリスタ電圧を変化させた試料を用いて行なった耐量性能試験の結果を示したものである。
【0035】
【表5】
Figure 2004119840
【0036】
表5において、試料7はバリスタ電圧が100V/mm,試料8はバリスタ電圧が150V/mm,試料9はバリスタ電圧が250V/mm,試料10はバリスタ電圧が400V/mm,のものをそれぞれ10個ずつ準備し、150A,2msの方形波を10回通電して異常がないことを確認する方法で行なった。試料7〜10はすべて、ZnOを主成分とした素体1を一回焼成した後、側面高抵抗層2としてガラスを厚み50〜100μm形成し、研磨せずに全面電極を形成したものである。
【0037】
表5から分かるように、バリスタ電圧が250V/mmまでのものについては良好な耐量性能を有することがわかる。但し、試料7の100V/mmのものは耐量性能は良いが、実際に避雷器として使用する際には、使用枚数が多く必要となる。従って、避雷器が大きくなってしまい、避雷器としての価格は高くなってしまう。
【0038】
また、試料10のバリスタ電圧が400V/mmのものについては、耐量性能に問題がある。150A通電時に電解が大きくなり過ぎて素体1の側面端部の凹みへの電解集中が大きくなり破壊するものと考えられる。
【0039】
従って、バリスタ電圧150〜250V/mmの非直線抵抗体を簡単で安価な工程を用いて得ることができ、避雷器を簡単で安価に提供することができる。
【0040】
【発明の効果】
以上のようにこの発明によれば、素体は、主成分を酸化亜鉛(ZnO)とし、添加物として酸化ビスマス(Bi)を0.66〜0.8モル%、酸化アンチモン(Sb)を0.05〜0.2モル%、酸化コバルト(Co)と酸化マンガン(Mn)とをそれぞれ0.033〜0.67モル%、酸化クロム(Cr)を0.01〜0.5モル%、ほう酸(HBO)を0.4〜2モル%、硝酸アルミニウム(Al(NO・9HO)を0.001〜0.01モル%の割合とし、上記主成分と添加物との総和を100モル%としたので、従来行なっていた1200℃程度の高温の焼成工程を従来より低い950〜1050℃の温度で行え、非直線抵抗体を安価に製造することができる。
【図面の簡単な説明】
【図1】この発明の非直線高抵抗体を示す断面図である。
【符号の説明】
1 素体、2 側面高抵抗層、3 電極。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a nonlinear resistor, and more particularly to a lightning arrester element containing zinc oxide as a main component and a method for manufacturing the same.
[0002]
[Prior art]
Conventional non-linear resistors include, in the ZnO powder, 0.5 mol% of Bi 2 O 3, 0.5 mol% of Co 2 O 3, 0.5 mol% of MnO 2 , and Sb 2 O with respect to the total amount. 3 1.0 mol%, Cr 2 O 3 0.5 mol%, SiO 2 0.5 mol% was added, pure water, a binder, thoroughly mixed in with the dispersion劑for example, a ball mill, was ground, the spray dryer The mixture was dried and granulated to obtain a raw material powder. This raw material powder was compression-molded to a size of 40 mm in diameter and 30 mm in thickness, and degreased under a temperature condition of 500 ° C. or more. Then, it was fired in a temperature range of 1100 to 1250 ° C to obtain a sintered body.
[0003]
Next, the glass paste for coating was printed on the side surface of the sintered body by using, for example, a screen of 125 to 250 mesh using a curved screen printer. Thereafter, the coating glass paste was baked under a temperature condition of 350 to 700 ° C. to form a side surface high resistance layer on the sintered body. Next, both end surfaces of the sintered body were polished to form an aluminum metallikon electrode, and a zinc oxide varistor was obtained (for example, see Patent Document 1).
[0004]
Further, conventional non-linear resistor element body, as a blending, a zinc oxide (ZnO) as a main component, respectively 0.1 to 2 mole% of bismuth oxide as an additive (Bi 2 O 3), antimony oxide (Sb 2 O 3 ), cobalt oxide (CoO), manganese oxide (MnO), chromium oxide (Cr 2 O 3 ), silicon oxide (SiO 2 ), and 0.001 to 0.01 mol% of boric acid (H 3 BO) 3 ) and aluminum nitrate (Al (NO 3 ) 3 .9H 2 O) were selected, pulverized, mixed, granulated and molded, and then fired at 1200 ° C. (for example, see Patent Document 2).
[0005]
[Patent Document 1]
JP-A-9-162016 ([0010] [0016] [0017], FIG. 1)
[Patent Document 2]
Japanese Patent Publication No. 5-22362 (page 2)
[0006]
[Problems to be solved by the invention]
The conventional method for manufacturing a nonlinear resistor is as described above.
(1) Molding.
(2) Degreasing firing (500 ° C. or higher).
(3) firing (1100 ° C to 1250 ° C);
(4) Material application and baking of the side high resistance layer.
(5) Polishing of both end faces.
(6) Metallicon electrode formation.
In order to manufacture a non-linear resistor, a number of steps including firing at a high temperature are required. For this reason, there is a problem that the manufacturing cost of the non-linear resistor becomes very expensive.
[0007]
The present invention has been made to solve the above problems, and has as its object to provide an inexpensive nonlinear resistor and a method of manufacturing the same.
[0008]
[Means for Solving the Problems]
Nonlinear resistor of the invention, element body, and the main component zinc oxide (ZnO), from 0.66 to 0.8 mol% of bismuth oxide (Bi 2 O 3) as an additive, antimony oxide (Sb 2 O 3 ) in an amount of 0.05 to 0.2 mol%, cobalt oxide (Co 3 O 4 ) and manganese oxide (Mn 3 O 4 ) in an amount of 0.033 to 0.67 mol%, and chromium oxide (Cr 2 O). 3) 0.01 to 0.5 mol%, boric acid (H 3 BO 3) and 0.4 to 2 mol%, aluminum nitrate (Al (NO 3) the 3 · 9H 2 O) 0.001~0. The ratio is 01 mol%, and the total of the main component and the additive is 100 mol%.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a sectional view showing a nonlinear resistor according to the present invention. As shown in the figure, the non-linear resistor is a columnar element 1 that absorbs energy, a side high-resistance layer 2 provided on the side of the columnar element to prevent edge discharge, and a columnar element. And electrodes 3 for supplying a uniform electric current to the element body 1.
[0010]
Next, a method of manufacturing the non-linear resistor according to the present invention will be described. First, as a principal component zinc oxide as the material of the element body 1 (ZnO), as an additive, 0.66 to 0.8 mol% of bismuth oxide (Bi 2 O 3), an antimony oxide (Sb 2 O 3) 0.05 to 0.2 mol%, cobalt oxide (Co 3 O 4 ) and manganese oxide (Mn 3 O 4 ) are 0.033 to 0.67 mol%, respectively, and chromium oxide (Cr 2 O 3 ) is 0. .01~0.5 mol%, boric acid (H 3 BO 3) and 0.4 to 2 mol%, aluminum nitrate (Al (NO 3) 3 · 9H 2 O) of 0.001-0.01 mole% And the total of the main component and the additive was 100 mol%. Further, nickel oxide (NiO) or the like may be added to make the total amount 100 mol%.
[0011]
The mixing of the additive material for forming the element body 1 is limited to a slightly smaller amount of bismuth oxide (Bi 2 O 3 ) of 0.66 to 0.8 mol% than that described in the related art. Then, antimony oxide (Sb 2 O 3 ) was less, cobalt oxide (Co 3 O 4 ) and manganese oxide (Mn 3 O 4 ) were the same, chromium oxide (Cr 2 O 3 ) was less, and boric acid was used. (H 3 BO 3) is significantly more, aluminum nitrate (Al (NO 3) 3 · 9H 2 O) is the same amount, silicon oxide (SiO 2) and nickel oxide (NiO) was not added.
[0012]
A small amount of water and polyvinyl alcohol (PVA) for a binder is added to a mixture of the crushed additive and zinc oxide, mixed well to form a slurry, and then granulated to form a granulated powder. Thus, a columnar element body 1 is formed.
Next, the element body 1 is placed on a firing table and fired at a first temperature of 950 to 1050 ° C., and the element is fired while removing the binder. Although this is a lower temperature than the above-mentioned conventional technique, it is possible to sinter sufficiently and densely even at a low temperature by using the composition of the material of the element body 1 of the first embodiment.
[0013]
Further, the columnar element body 1 is formed, for example, by forming a groove such as a V-shaped notch as a fixing portion on a firing table and fixing the curved surface of the element body 1 with the groove. Instead, it is fixed on the firing table on the side and fired. Therefore, firing can be performed without bringing the electrode surface into contact with the firing table.
[0014]
Next, an epoxy-modified silicone, which is a resin material, diluted with a thinner is applied to the side surface of the element body 1 to form the side surface high-resistance layer 2. At this time, the electrode surface is covered, and the side surface high-resistance layer material does not drip on the electrode surface. In addition, the resin material can be baked by a heat treatment at 100 to 200 ° C., which is a second temperature lower than the first temperature, and the sintering temperature after the formation of the side surface high-resistance layer 2 conventionally performed can be further reduced. .
[0015]
Next, a metallikon operation is performed using a mask from the periphery of the body 1 to 1 mm inside, and electrodes 3 are formed on both bottom surfaces of the body 1. This mask is for avoiding a dent of about 0.5 mm in the peripheral portion of the element body 1 formed during the molding of the element body 1.
At this time, at the time of firing, both bottom surfaces of the element body 1 are not in contact with the firing table, and the electrode forming surfaces are also covered at the time of forming the side surface high-resistance layer 2. The electrode 3 can be attached without polishing.
[0016]
[Table 1]
Figure 2004119840
[0017]
Table 1 is a table showing electrical characteristics of the conventional product and the invention product described in the first embodiment. In Table 1, the flatness of the small current region and the flatness of the large current region were measured for ten samples each of the conventional product and the invention product, and the average value was represented as 100 for the conventional product.
[0018]
As shown in Table 1, the invention product has smaller small current region flatness and large current region flatness than the conventional product. This indicates that the invention product has a smaller leakage current at all times than the conventional product and has a greater voltage suppression effect during lightning. Therefore, it can be seen that the present invention shows superior electrical characteristics as compared with the conventional product.
[0019]
As described above, the side surface high-resistance layer 2 is formed of the epoxy-based resin material, and the element body 1 can be fired at 950 to 1050 ° C. once, and the electrode surface is treated during firing and when the side surface high-resistance layer 2 is formed. Since the contact with the table and the attachment of foreign matter are prevented, the polishing and cleaning steps performed before the formation of the electrode 3 can be omitted. Therefore, in the production of a non-linear resistor, the element can be densely hardened by a single firing at a lower temperature than the conventional technology, the number of steps can be reduced, and the non-linear resistor can be manufactured at low cost. Can be.
[0020]
Embodiment 2 FIG.
In the first embodiment, a method of manufacturing a non-linear resistor having good electric characteristics with a small number of steps has been described. Here, a method of manufacturing a non-linear resistor having good withstand performance will be further described. .
[0021]
A non-linear resistor is formed in the same manner as in the first embodiment. However, sample 1 was prepared with the side high-resistance layer 2 having a thickness of 30 μm, and sample 2 was prepared with the side high-resistance layer 2 having a thickness of 60 μm. The tolerance test was performed by preparing 10 pieces each of a conventional product, sample 1 and sample 2, and applying a square wave of 150 A and 2 ms 10 times to confirm that there was no abnormality. Table 2 is a table showing the ratios of those having no abnormality in the devices after the proof test as acceptable products.
[0022]
[Table 2]
Figure 2004119840
[0023]
From Table 2, it can be seen that the conventional product and Sample 2 have equally good performance. Further, according to an experiment conducted by the inventor, in the method of manufacturing the nonlinear resistor shown in the first embodiment, if the side high-resistance layer 2 is formed to have a thickness of about 50 to 100 μm, the square wave withstand capability is good and the conventional product is inferior. A non-linear resistor without any problem can be formed easily and inexpensively.
[0024]
Embodiment 3 FIG.
In the first and second embodiments, the case where the side surface high resistance layer is formed of epoxy resin has been described. Here, the case where the side surface high resistance layer is formed of low melting point glass will be described.
[0025]
A non-linear resistor is formed in the same manner as in the first embodiment. However, low-melting-point glass that can be vitrified at a temperature that does not affect the element 1 at 500 to 600 ° C. is formed on the side of the element 1 as the side surface high-resistance layer 2 with a thickness of about 50 to 100 μm. Thereafter, the electrodes 3 are formed on both bottom surfaces of the element body 1 in substantially the same manner as in the first embodiment.
Table 3 shows the results of a proof test performed using a sample formed by changing the electrode formation range while the thickness of the low melting point glass as the side surface high resistance layer 2 is the same of 50 to 100 μm. is there.
[0026]
[Table 3]
Figure 2004119840
[0027]
In Table 3, Sample 3 was formed by forming an electrode 3 (entire electrode) from the periphery of the body 1 to 0 mm inside without using a mask, and Sample 4 was formed by using a mask to form the electrode 3 from the periphery of the body 1 to 1 mm inside. The sample 5 was prepared by forming 10 electrodes 3 each from the periphery of the element body 1 to 2 mm inside from the periphery of the element body 1 using a mask, and a square wave of 150 A, 2 ms was supplied 10 times to confirm that there was no abnormality. Was performed in the following manner.
[0028]
As can be seen from Table 3, when the low-melting glass is used as the side surface high-resistance layer, when the electrode 3 has a thickness of 50 to 100 μm and the electrode 3 has a size of 0 to 2 mm from the periphery of the element body 1, it has a good resistance. Performance was obtained. In particular, when a low-melting glass is used as the side high-resistance layer, when the thickness is 50 to 100 μm, a good non-linear resistor that is not inferior to the conventional product can be obtained even if the entire surface electrode is formed. Was.
This is presumably because the low-melting glass has better coverage than the resin used in the first embodiment, and the depression around the element body 1 can be covered with the glass.
[0029]
Table 4 shows the results of a proof test performed using samples formed by changing the thickness of the low-melting glass, which is the side surface high-resistance layer 2.
[0030]
[Table 4]
Figure 2004119840
[0031]
In Table 4, Sample 3 is a full-surface electrode, in which the thickness of the low-melting glass, which is the side surface high-resistance layer 2, is 50 to 100 μm, which is the same as that used in Table 3. Sample 6 is a full-surface electrode in which the thickness of the low-melting glass is 30 μm. Ten pieces each were prepared, and a square wave of 150 A, 2 ms was supplied 10 times to confirm that there was no abnormality.
[0032]
As can be seen from Table 4, when a low-melting glass having a thickness of 50 to 100 μm is used as the side high-resistance layer, a good non-linear resistor can be obtained even if the entire surface electrode is formed.
[0033]
That is, if low-melting-point glass having a thickness of 50 to 100 μm is used as the side surface high-resistance layer and the entire surface electrode is formed, the formation of a mask in the electrode forming step in the method for manufacturing a non-linear resistor can be eliminated. A non-linear resistor can be easily and inexpensively manufactured.
[0034]
Embodiment 4 FIG.
A varistor voltage of a lightning arrester element using a linear resistor produced by using the manufacturing method of the present invention described in the first to third embodiments will be described.
Table 5 shows the results of a proof performance test performed on a device manufactured by the manufacturing method of the present invention, using a sample in which the varistor voltage per 1 mm thickness was changed.
[0035]
[Table 5]
Figure 2004119840
[0036]
In Table 5, Sample 7 has a varistor voltage of 100 V / mm, Sample 8 has a varistor voltage of 150 V / mm, Sample 9 has a varistor voltage of 250 V / mm, and Sample 10 has 10 varistor voltages of 400 V / mm. Each was prepared, and a square wave of 150 A, 2 ms was applied 10 times to confirm that there was no abnormality. In all of Samples 7 to 10, after firing the element body 1 containing ZnO as a main component once, a glass having a thickness of 50 to 100 μm was formed as the side high-resistance layer 2 and the entire surface electrode was formed without polishing. .
[0037]
As can be seen from Table 5, those having a varistor voltage up to 250 V / mm have good withstand performance. However, the sample 7 having 100 V / mm has good withstand capability, but when actually used as a lightning arrester, a large number of sheets must be used. Therefore, the surge arrester becomes large, and the price as the surge arrester increases.
[0038]
Further, when the varistor voltage of the sample 10 is 400 V / mm, there is a problem in the withstand capacity performance. It is conceivable that the electrolysis becomes too large when the current of 150 A is applied, so that the concentration of the electrolysis in the dent at the side end of the element body 1 increases and the element 1 is broken.
[0039]
Therefore, a non-linear resistor having a varistor voltage of 150 to 250 V / mm can be obtained using a simple and inexpensive process, and a lightning arrester can be provided simply and inexpensively.
[0040]
【The invention's effect】
According to the invention, as described above, the element body has a main component of zinc oxide (ZnO), from .66 to 0.8 mol% of bismuth oxide (Bi 2 O 3) as an additive, antimony oxide (Sb 2 O 3 ) of 0.05 to 0.2 mol%, cobalt oxide (Co 3 O 4 ) and manganese oxide (Mn 3 O 4 ) of 0.033 to 0.67 mol%, and chromium oxide (Cr 2 O 3) 0.01 to 0.5 mol%, boric acid (H 3 BO 3) and 0.4 to 2 mol%, aluminum nitrate (Al (NO 3) the 3 · 9H 2 O) 0.001~0 0.01 mol%, and the sum of the main component and the additive was 100 mol%, so that the conventional high-temperature baking process of about 1200 ° C. can be performed at a lower temperature of 950 to 1050 ° C. Non-linear resistors can be manufactured at low cost.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a non-linear high-resistance body of the present invention.
[Explanation of symbols]
1 body, 2 side high resistance layer, 3 electrodes.

Claims (9)

柱状の素体と、上記素体の側面に設けられた側面高抵抗層と、上記素体の両底面に設けられた電極とからなる非直線抵抗体において、
上記素体は、主成分を酸化亜鉛(ZnO)とし、添加物として酸化ビスマス(Bi)を0.66〜0.8モル%、酸化アンチモン(Sb)を0.05〜0.2モル%、酸化コバルト(Co)と酸化マンガン(Mn)とをそれぞれ0.033〜0.67モル%、酸化クロム(Cr)を0.01〜0.5モル%、ほう酸(HBO)を0.4〜2モル%、硝酸アルミニウム(Al(NO・9HO)を0.001〜0.01モル%の割合とし、上記主成分と上記添加物との総和を100モル%としたことを特徴とする非直線抵抗体。
In a columnar element, a side-surface high-resistance layer provided on a side surface of the element, and a nonlinear resistor composed of electrodes provided on both bottom surfaces of the element,
The element body, and the main component zinc oxide (ZnO), from 0.66 to 0.8 mol% of bismuth oxide (Bi 2 O 3) as an additive, 0.05 to antimony oxide (Sb 2 O 3) 0.2 mol%, cobalt oxide (Co 3 O 4 ) and manganese oxide (Mn 3 O 4 ) are 0.033 to 0.67 mol%, respectively, and chromium oxide (Cr 2 O 3 ) is 0.01 to 0 mol%. .5 mol%, boric acid (H 3 BO 3) and 0.4 to 2 mol%, aluminum nitrate (Al (NO 3) 3 · 9H 2 O) and a ratio of 0.001 to 0.01 mol%, the A non-linear resistor, wherein the total sum of a main component and the additive is 100 mol%.
上記側面高抵抗層が、エポキシ系樹脂または低融点ガラスでなることを特徴とする請求項1に記載の非直線抵抗体。The non-linear resistor according to claim 1, wherein the side surface high resistance layer is made of an epoxy resin or a low melting point glass. 上記側面高抵抗層の厚さが50〜100μmであることを特徴とする請求項1および2に記載の非直線抵抗体。3. The non-linear resistor according to claim 1, wherein the thickness of the side high resistance layer is 50 to 100 [mu] m. 柱状の素体を第1の温度で焼成する工程と、上記焼成された素体の側面に側面高抵抗層を塗布した後、上記側面高抵抗層を上記第1の温度よりも低い第2の温度で焼き付ける工程と、上記素体の両底面に電極を形成する工程とを備えた非直線抵抗体の製造方法において、
上記素体を上記第1の温度で焼成する工程は、上記素体の材質が、主成分を酸化亜鉛(ZnO)とし、添加物として酸化ビスマス(Bi)を0.66〜0.8モル%、酸化アンチモン(Sb)を0.05〜0.2モル%、酸化コバルト(Co)と酸化マンガン(Mn)とをそれぞれ0.033〜0.67モル%、酸化クロム(Cr)を0.01〜0.5モル%、ほう酸(HBO)を0.4〜2モル%、硝酸アルミニウム(Al(NO・9HO)を0.001〜0.01モル%の割合とし、上記主成分と上記添加物との総和が100モル%でなり、上記第1の温度を950〜1050℃として焼成する工程であることを特徴とする非直線抵抗体の製造方法。
A step of firing the columnar element at a first temperature, and applying a side surface high-resistance layer to a side surface of the fired element body, and then applying the side surface high-resistance layer to a second temperature lower than the first temperature. Baking at a temperature, and a method of manufacturing a nonlinear resistor comprising a step of forming electrodes on both bottom surfaces of the element body,
Firing said body at said first temperature, the material of the element body, the main component and zinc oxide (ZnO), bismuth oxide as an additive of (Bi 2 O 3) 0.66~0. 8 mol%, 0.05 to 0.2 mol% of antimony oxide (Sb 2 O 3), and cobalt oxide (Co 3 O 4) manganese oxide (Mn 3 O 4) and respectively 0.033 to 0.67 mole%, 0.01 to 0.5 mole% of chromium oxide (Cr 2 O 3), boric acid (H 3 BO 3) 0.4~2 mol%, aluminum nitrate (Al (NO 3) 3 · 9H 2 O) in a ratio of 0.001 to 0.01 mol%, the total of the main component and the additive is 100 mol%, and the first temperature is 950 to 1050 ° C. for firing. A method for manufacturing a non-linear resistor.
上記焼成された素体に側面高抵抗層を塗布した後、上記側面高抵抗層を上記第1の温度よりも低い第2の温度で焼き付ける工程において、上記側面高抵抗層がエポキシ系樹脂からなり、上記第2の温度を100〜200℃として焼き付けることを特徴とする請求項4に記載の非直線抵抗体の製造方法。After applying the side surface high resistance layer to the fired body, in the step of baking the side surface high resistance layer at a second temperature lower than the first temperature, the side surface high resistance layer is made of an epoxy resin. 5. The method according to claim 4, wherein the second temperature is set to 100 to 200 [deg.] C. for baking. 上記焼成された素体に上記側面高抵抗層を塗布した後、側面高抵抗層を上記第1の温度よりも低い第2の温度で焼き付ける工程において、上記側面高抵抗層が低融点ガラスからなり、上記第2の温度を500〜600℃として焼き付けることを特徴とする請求項4に記載の非直線抵抗体の製造方法。After applying the side surface high-resistance layer to the fired body, in the step of baking the side surface high-resistance layer at a second temperature lower than the first temperature, the side surface high-resistance layer is made of low-melting glass. 5. The method for manufacturing a nonlinear resistor according to claim 4, wherein the second temperature is set at 500 to 600 [deg.] C. for baking. 上記側面高抵抗層の厚さが50〜100μmであることを特徴とする請求項4ないし6のいずれかに記載の非直線抵抗体の製造方法。The method for manufacturing a non-linear resistor according to any one of claims 4 to 6, wherein the thickness of the side surface high resistance layer is 50 to 100 µm. 素体を載置して焼成する焼成台に上記素体の電極面以外の面を固定するための固定部を設け、上記固定部にて上記素体の電極面以外の面を固定して上記素体を焼成することを特徴とする非直線抵抗体の製造方法。A fixing unit for fixing a surface other than the electrode surface of the element body is provided on a firing table on which the element body is placed and fired, and the surface other than the electrode surface of the element body is fixed by the fixing unit. A method for manufacturing a non-linear resistor, characterized by firing an elementary body. 上記請求項8において、上記側面高抵抗層が低融点ガラスの場合、上記素体の電極面に電極を形成する工程は、上記電極面を研磨せずに全面に上記電極を形成する工程であることを特徴とする非直線抵抗体の製造方法。In the eighth aspect, when the side surface high-resistance layer is a low-melting glass, the step of forming an electrode on the electrode surface of the element is a step of forming the electrode on the entire surface without polishing the electrode surface. A method for producing a non-linear resistor.
JP2002283623A 2002-09-27 2002-09-27 Nonlinear resistor and its manufacturing method Pending JP2004119840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002283623A JP2004119840A (en) 2002-09-27 2002-09-27 Nonlinear resistor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002283623A JP2004119840A (en) 2002-09-27 2002-09-27 Nonlinear resistor and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004119840A true JP2004119840A (en) 2004-04-15

Family

ID=32277436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002283623A Pending JP2004119840A (en) 2002-09-27 2002-09-27 Nonlinear resistor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004119840A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008162820A (en) * 2006-12-27 2008-07-17 Mitsubishi Electric Corp Voltage nonlinear resistor, and manufacturing method of the same
US9419192B2 (en) 2013-10-03 2016-08-16 Kabushiki Kaisha Toshiba Composite resin and electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008162820A (en) * 2006-12-27 2008-07-17 Mitsubishi Electric Corp Voltage nonlinear resistor, and manufacturing method of the same
US9419192B2 (en) 2013-10-03 2016-08-16 Kabushiki Kaisha Toshiba Composite resin and electronic device

Similar Documents

Publication Publication Date Title
JP5208703B2 (en) Current-voltage nonlinear resistor and method for manufacturing the same
US4349496A (en) Method for fabricating free-standing thick-film varistors
JP5337073B2 (en) Current-voltage nonlinear resistor and method for manufacturing the same
JP2004119840A (en) Nonlinear resistor and its manufacturing method
JP2010103440A (en) Current-voltage nonlinear resistor and method of manufacturing the same
JPH08172002A (en) Manufacture of voltage nonlinear resistor
JP5282332B2 (en) Manufacturing method of zinc oxide laminated chip varistor
CN112335001A (en) Ceramic material, varistor and method for producing the ceramic material and varistor
JP4012915B2 (en) Varistor sheet paste manufacturing method, multilayer chip varistor manufacturing method, and multilayer chip varistor
JP2001052907A (en) Ceramic element and manufacturing method
KR20090021433A (en) Surge absorber and method of manufacturing the surge absorber
EP2367178A1 (en) Voltage nonlinear resistor, lightning arrester loaded with voltage nonlinear resistor, and process for producing voltage nonlinear resistor
JP2006245111A (en) Bismuth-based zinc oxide varistor
JPH0555010A (en) Manufacture of voltage-dependent nonlinear element
JP3377372B2 (en) Stacked voltage non-linear resistor
JP2003109806A (en) Nonlinear resistor and its manufacturing method
JP5306135B2 (en) Current-voltage nonlinear resistor and method for manufacturing the same
JP2012231091A (en) Current-voltage nonlinear resistor
KR20210007123A (en) ZnO-BASED VARISTOR COMPOSITION AND MANUFACTURING METHOD AND VARISTOR THEREOF
JPH07130506A (en) Manufacture of resisting body nonlinear in voltage
JP2000068112A (en) Voltage nonlinear resistor and porcelain composition thereof
JPS62101002A (en) Manufacture of nonlinear resistance element
JPS61139002A (en) Manufacture of non-linear resistor
JPH10289807A (en) Functional ceramic element
JP2004079697A (en) Manufacturing method of nonlinear voltage resistor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050822

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091222