JP2004119748A - Iron core structure for contactless power supply apparatus - Google Patents

Iron core structure for contactless power supply apparatus Download PDF

Info

Publication number
JP2004119748A
JP2004119748A JP2002282138A JP2002282138A JP2004119748A JP 2004119748 A JP2004119748 A JP 2004119748A JP 2002282138 A JP2002282138 A JP 2002282138A JP 2002282138 A JP2002282138 A JP 2002282138A JP 2004119748 A JP2004119748 A JP 2004119748A
Authority
JP
Japan
Prior art keywords
iron core
primary
iron
core
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002282138A
Other languages
Japanese (ja)
Inventor
Ryoichi Tsuchimoto
土本 僚一
Eiji Kondo
近藤 英二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Electric Co Ltd
Original Assignee
Aichi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Electric Co Ltd filed Critical Aichi Electric Co Ltd
Priority to JP2002282138A priority Critical patent/JP2004119748A/en
Publication of JP2004119748A publication Critical patent/JP2004119748A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an iron core structure for a contactless power supply apparatus capable of enhancing a magnetic flux linking rate from a primary side unit to a secondary side unit. <P>SOLUTION: In the contactless power supply apparatus wherein primary winding and secondary winding are respectively wound on iron leg parts of a primary iron core 9a and a secondary iron core 10a each comprising a plurality of the iron leg parts and a yoke connecting the iron leg parts and the primary iron core 9a and the secondary iron core 10a are placed opposite to each other to contactlessly supply power from the primary winding to the secondary winding, the primary iron core 9a and the secondary iron core 10a are configured such that the opposed area of a plurality of the iron leg parts provided to the primary iron core 9a and the secondary iron core 10a is selected to be a cross sectional area of each yoke or below. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電磁誘導を利用して電力の供給を効率的に行うことのできる非接触電源装置の鉄心構造に関する。
【0002】
【従来の技術】
従来から、結合トランスの1次側と2次側をそれぞれ収容してなる1次側ユニットと2次側ユニットを分離可能に構成して、前記1次側ユニットと2次側ユニットを窓ガラスや壁等の介在物を挟んで対向配置し、前記1次側ユニットから2次側ユニットへ結合トランスの電磁誘導作用を利用して電力を供給する非接触電源装置はよく知られている。
【0003】
これは、例えば、商用電源に接続した1次側ユニットを構成する1次側巻線に交流電流を流すことにより、該1次側巻線を巻回した1次側鉄心に所定の磁束を発生させ、この磁束を窓ガラスや壁等の介在物を介して1次側鉄心に対向配置する2次側ユニットの2次側鉄心に鎖交させることにより、2次側鉄心に巻回した2次側巻線に所定の交流電圧が誘起させる。
【0004】
そして、前記2次側巻線に発生した電圧を必要に応じて適宜の制御を施した後、2次側ユニットに接続した負荷に対して供給することにより、これを良好に駆動することができる(例えば、特許文献1参照。)。
【0005】
【特許文献1】
特開2001−110658号(第2,3頁、第3図)
【0006】
【発明が解決しようとする課題】
然るに、前記非接触電源装置においては、1次側ユニットと2次側ユニット間に挟まれる介在物の厚みが大きくなり、前記1次側鉄心と2次側鉄心間の距離が広くなると、前記1次側鉄心と2次側鉄心間の磁気抵抗が増加するので、2次側鉄心に鎖交する磁束が減少し、その結果、2次側巻線に誘起する交流電圧も減少する。この結果、電圧不足によって、2次側ユニットに接続される負荷を良好に動作させ得ない場合があった。
【0007】
そこで、本発明は前述した問題を解決するために、1次側ユニットと2次側ユニット間の間隔が広い場合であっても、効率的に電力を供給して、充分な値の電圧を2次側に供給することのできる非接触電源装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
以上の目的を達成するため、請求項1記載の非接触電源装置の鉄心構造は、複数の脚鉄部と、該脚鉄部同士を繋合せる継鉄部からなる1次側鉄心および2次側鉄心の前記継鉄部にそれぞれ1次側巻線と2次側巻線を巻回し、前記1次側鉄心と2次側鉄心を対向配置することによって、前記1次側巻線から2次側巻線へ非接触で電力を供給する非接触電源装置において、前記1次側鉄心および2次側鉄心は、それぞれが備える複数の脚鉄部同士の対向する面積が継鉄部の断面積以下となるように構成した。
【0009】
請求項1記載の非接触電源装置によれば、1次側鉄心および2次側鉄心が備える複数の脚鉄部同士が互いに対峙する面の面積を、前記複数の脚鉄部を繋合せる継鉄部の断面積以下となるように構成したので、前記脚鉄部同士が対峙する面の間の空間を鎖交する磁束を減少させることができ、以って、2次側鉄心に発生させ得る電圧値を増加させることができる。
【0010】
請求項2記載の非接触電源装置の鉄心構造によれば、請求項1記載の非接触電源装置の鉄心構造において、前記1次側鉄心および2次側鉄心は、互いに対向する脚鉄部の端面に、該端面と平行する方向へ向けて拡開する磁性薄体をこれと一体的に取付けて構成した。
【0011】
請求項2記載の非接触電源装置の鉄心構造によれば、1次側鉄心と2次側鉄心が互いに対向する脚鉄部の端面に磁性薄体を一体的に取付けて構成したので、1次側鉄心と2次側鉄心の対向面積が増加して、両鉄心間の磁気抵抗を減少させることができ、1次側鉄心から2次側鉄心に鎖交する磁束を増加させることができる。
【0012】
請求項3記載の非接触電源装置の鉄心構造は、請求項1記載の非接触電源装置の鉄心構造において、前記1次側鉄心および2次側鉄心は、各々の脚鉄部の厚さ方向と直交する幅方向の寸法が、前記継鉄部の長さの2倍以上となるように設定した。
【0013】
請求項3記載の非接触電源装置によれば、1次側鉄心と2次側鉄心の対向する面積を非常に簡単な構造により増加させて、1次側鉄心から2次側鉄心への磁束鎖交率を向上させることができ、2次側鉄心に巻回された2次側巻線に充分な電圧を誘起させて、負荷を良好に駆動することができる。
【0014】
【発明の実施の形態】
以下、本発明の実施例を添付図面を参照して説明する。図1は本発明に係る非接触給電装置1の使用状態の一例を示す図であり、2は窓ガラスや壁などの介在物を示している。図1に示すように、前記非接触電源装置1は、前記介在物2を挟む格好で、その1次側ユニット3と2次側ユニット4を対向配置している。
【0015】
また、1次側ユニット3は、給電コード5aによって例えば、屋内に敷設された商用電源に接続され、一方、2次側ユニット4は、接続コード5bを介して負荷(電気機器)6に接続されている。この状態で、前述した商用電源から1次側ユニット3に電力を供給することにより、1次側ユニットから2次側ユニットへ電磁誘導作用を利用して非接触で電力が供給され、前記2次側ユニット4に接続した負荷6を良好に駆動することができる。
【0016】
図2は、前記1次側ユニット3と2次側ユニット4の外箱としてのケーシング7,8内にそれぞれ収納される1次側鉄心9と2次側鉄心10、および、これに巻回される1次側巻線11と2次側巻線12を示した側面図である。
【0017】
図1に示す使用状態において、非接触電源装置1の1次側ユニット3から2次側ユニット4へ非接触で電力を供給する場合、図2に示す1次側巻線11には、図1に示す給電コード5aを通して交流電流が流れる。
【0018】
これにより、1次側巻線11内には磁束が発生するので、これを巻回した1次側鉄心9には磁路が形成される。前記1次側鉄心9に流れる磁束は、1次側鉄心9の脚鉄部の端面から介在物2内を通って2次側鉄心10に鎖交し、2次側鉄心10に巻回した2次側巻線12に所定の電圧を誘起させる。
【0019】
2次側巻線12に発生した電圧は、必要に応じて図示しない制御回路によって所定の処理が行われた後、2次側ユニット4に接続される負荷6(図1参照)に供給され、これを駆動するのである。
【0020】
すなわち、1次側ユニット3から2次側ユニット4へ非接触で電力を供給する場合、1次側鉄心9の端面から介在物2を介して2次側鉄心10に磁束が鎖交するのであるが、このとき、1次側鉄心9の一対の脚鉄部の互いに対峙する面間の磁位差に起因して、磁位の高い脚鉄部から磁位の低い脚鉄部に向って、磁束が両脚鉄部間の空間を通って流れてしまうといった問題があった。
【0021】
この脚鉄部間の磁束の流れは、1次側鉄心9と2次側鉄心10間の磁気抵抗が大きい程、また、両脚鉄部の対峙する面積が大きいことにより、該対峙する面間の磁気抵抗が小さい程増加し、それに伴い、2次側鉄心10に鎖交する磁束は減少するので、2次側ユニット4に接続した負荷6を良好に駆動することができなくなる。
【0022】
そこで、本発明は、以下に記す方法により、前述した問題を解決するものとする。つまり、図3(a)は、前記1次側鉄心9と2次側鉄心10における磁束の流れを簡略的に示した図であり、対向配置される1次側鉄心9と2次側鉄心10は、継鉄部と厚さ方向(紙面に垂直な方向)の寸法が略同一である脚鉄部を具備してC字形に形成されており、前記脚鉄部の長手方向の長さBが継鉄部の同方向の長さAに対して充分長く設定されている。
【0023】
この場合、1次側鉄心9と2次側鉄心10がそれぞれ備える一対の脚鉄部同士が対峙する面積は広くなるので、前述したように、1次側鉄心9に流れる磁束は磁位の高い脚鉄部から磁位の低い脚鉄部に向って、両脚鉄部間の空間を通って流れやすくなり、この結果、2次側鉄心10に鎖交する磁束の量が減少する。
【0024】
そして、2次側鉄心10の一方の脚鉄部から他方の脚鉄部に向って両脚鉄部間の空間を通って流れる磁束の量も増加するため、該2次側鉄心10の継鉄部に巻回される2次側巻線12に誘起される電圧値は減少し、充分な電圧を負荷6に対して供給することができなかった。
【0025】
そこで、本発明では図3(b)に示すように、脚鉄部の長手方向の長さBを短くして、1次側鉄心9aと2次側鉄心10aを構成することにより、一対の脚鉄部が対峙する面積を継鉄部の断面積以下とすることで、前記対峙する面間の磁気抵抗を増加して、磁位の高い脚鉄部から磁位の低い脚鉄部に両脚鉄部間の空間を通って流れる磁束の量を減少させるように構成した。
【0026】
この結果、磁束は1次側鉄心9aから2次側鉄心10aへ効率良く鎖交し、さらに、2次側鉄心10aにおいても、一方の脚鉄部から他方の脚鉄部に、両脚鉄部間の空間を通って流れる磁束の量を減少させることができるので、2次側鉄心10aの継鉄部に巻回した2次側巻線12に充分な大きさの電圧を誘起させることができる。
【0027】
これにより、例えば、図1に示す1次側ユニット3と2次側ユニット4間に挟まれる窓ガラスや壁などの介在物2が厚い場合でも、1次側ユニット3から2次側ユニット4へ充分な電力を確実に供給することができ、2次側ユニット4に接続した負荷6を良好に動作させることができる。
【0028】
なお、図4は、図3(b)に示す鉄心9a,10aの斜視図を示している。
【0029】
次に、本発明に係る非接触電源装置1の他の鉄心構造について図5を用いて説明する。図5に示す鉄心9b,10bにおいて、図4に示す鉄心9a,10aと異なるところは、鉄心の脚鉄部の端面に、磁性体からなる平板状の薄体(以下、磁性薄体という)13,14を前記脚鉄部と一体的に取付けた(若しくは、一塊の磁性体を加工成形することにより、図5に示す構造の鉄心9b,10bを形成してもよい)点である。
【0030】
前記磁性薄板13,14は、1次側鉄心9bおよび2次側鉄心10bのそれぞれの端面から該端面と平行する外側へ向けて拡開するように取付け、または加工されており、その大きさに特に制限はなく、図1に示す非接触電源装置1の仕様に応じて、1次側ユニット3および2次側ユニット4のケーシング7,8内に収容可能な大きさであればよい。
【0031】
図5に示すように鉄心を構成することによって、1次側鉄心9bと2次側鉄心10bの端面の面積が増大するので、1次側鉄心9bと2次側鉄心10bを図2に示すように対向配置した場合、前記両鉄心9b,10b間の磁気抵抗は図4の鉄心構造と比較して減少することになる(鉄心9b,10bの一対の脚鉄部が互いに対峙する面積は、図4に示す鉄心9a,10aに等しいものとする)。
【0032】
そのため、1次側鉄心9bの磁束は、当該1次側鉄心9bの端面から介在物2(図1参照)を介して2次側鉄心10bにより多く鎖交して、前記2次側鉄心10bに巻回した2次側巻線12に必要な電圧を確実に発生させることができ、負荷6に対して効率のよい電力供給が可能となる。
【0033】
図6は本発明のさらに他の実施例に係る非接触電源装置の鉄心構造を示す斜視図であり、図6に示す鉄心9c,10cは、脚鉄部の幅方向(前述した脚鉄部の長手方向および厚さ方向とそれぞれ直交する方向)の寸法Cを、該脚鉄部間を繋ぐ継鉄部の長さDの2倍以上に構成した。なお、この場合も、脚鉄部および継鉄部の厚さ寸法は図4に示す鉄心9a,10aと等しいものとする。、
【0034】
前記脚鉄部の幅方向の寸法Cを継鉄部の長さDの2倍以上に設定することにより、1,2次側鉄心9c,10cがそれぞれ備える脚鉄部同士が対峙する面積を増加させることなく、つまり、前記対峙する面間の磁気抵抗を減少させることなく、1次側鉄心9cと2次側鉄心10cの脚鉄部端面の対向面積を増加させることにより、1次側鉄心9cと2次側鉄心10c間の磁気抵抗を減少させて、1次側鉄心9cから2次側鉄心10cへ効率よく磁束を鎖交させることができる。
【0035】
つまり、1次側鉄心9cの一対の脚鉄部間をこの脚鉄部間の空間を通って流れる磁束を減少させるとともに、1次側鉄心9cから2次側鉄心10cへ鎖交する磁束を増加させ、また、2次側鉄心10cへ鎖交した磁束が、2次側鉄心10cの一対の脚鉄部間の空間を通って流れる磁束を増加させることなく、2次側鉄心10cに磁束を流すことができるので、1次側鉄心9cと2次側鉄心に挟まれる介在物2が厚い場合においても、2次側鉄心10cの継鉄部に巻回した2次側巻線12に、負荷6(図1参照)を駆動するのに充分な電圧を誘起させることが可能となる。
【0036】
図7は、図4に示す鉄心9a,10aの一対の脚鉄部の端面に、脚鉄部の幅方向外側へ延びる張出片15,16をそれぞれ具備して構成した鉄心9d,10dを示す斜視図である。図7に示す鉄心(1次側鉄心9d,2次側鉄心10d)を利用して1次側ユニット3から2次側ユニット4へ非接触で電力を供給する場合も前述したと同様に、1次側鉄心9dと2次側鉄心10dの脚鉄部端面(張出片13,14)を互いに対向配置させる。
【0037】
そして、1次側鉄心9dの継鉄部に巻回した1次側巻線11(図2参照)に交流電流を流すことにより1次側鉄心9dに磁束を発生させて、1次側鉄心9cの脚鉄部端面に具備した張出片15,16の、2次側鉄心10dと対向する側の面から、2次側鉄心10dの脚鉄部に具備した張出片15,16に磁束を鎖交させる。
【0038】
このとき、1次側鉄心9dと2次側鉄心10dの間は、それぞれの張出片15,16によって対向面積が増加しているので、両鉄心9d,10d間の磁気抵抗は減少しており、この結果、1次側鉄心9dから2次側鉄心10dへ効率よく磁束が鎖交する。
【0039】
2次側鉄心10dにおいては、該2次側鉄心10dが備える一対の脚鉄部同士が対峙する面積に変化はないので、該2次側鉄心10dに鎖交した磁束は、2次側鉄心10c内を確実に流れ、当該2次側鉄心の継鉄部に巻回した2次側巻線12(図2参照)に、負荷6(図1参照)を駆動するのに充分な電圧を確実に誘起させることができる。
【0040】
以上説明したように、本発明にかかる非接触電源装置1においては、その結合トランスを構成する1次側鉄心9a〜9dと2次側鉄心10a〜10dの構造を種々変更することにより、前記両鉄心9a〜9d,10a〜10dの対向面積を増加させて、1次側鉄心9a〜9dと2次側鉄心10a〜10d間の磁気抵抗を減少させることにより、1次側鉄心9a〜9cから2次側鉄心10a〜10dへの磁束の鎖交が効率的に行なえるように構成した。
【0041】
これにより、1次側鉄心9a〜9dと2次次側鉄心10a〜10d間に挟まれる窓ガラスや壁などの介在物2の幅が広い場合においても、1次側鉄心9a〜9dから2次次側鉄心10a〜10dへ負荷6を駆動するのに充分な電力を確実に供給することができる。
【0042】
【発明の効果】
請求項1記載の非接触電源装置の鉄心構造によれば、1次側鉄心と2次側鉄心がそれぞれ有する複数の脚鉄部同士が互いに対向する面積と比較して、1次側鉄心と2次側鉄心がそれぞれ有する脚鉄部の端面が互いに対向する面積が大きいため、1次側鉄心に流れる磁束は、当該1次側鉄心の一方の脚鉄部から他方の脚鉄部に、両脚鉄部間の空間を通って流れることを抑制して、2次側鉄心に効率的に鎖交するので、前記2次側鉄心を収容した2次側ユニットに、負荷を駆動するのに充分な電力を確実に供給することができ、非常に効果的である。
【0043】
請求項2記載の非接触電源装置の鉄心構造によれば、従来構造をなす鉄心の脚鉄部端面に磁性薄板を一体的に取付けるだけで、簡単に1次側鉄心と2次側鉄心の対向面積を増加させることができ、1次側ユニットから2次側ユニットへの電力供給を容易に向上させることができ、利便である。
【0044】
請求項3記載の非接触電源装置の鉄心構造によれば、1次側鉄心と2次側鉄心の脚鉄部の幅方向の寸法を増加させることにより、1次側鉄心と2次側鉄心がそれぞれ備える複数の脚鉄部同士が互いに対向する面積を増加させることなく、1次側鉄心と2次側鉄心の脚鉄部の端面同士が互いに対向する面積を確実に増やすことができ、また、その構造は、従来鉄心の構造を大きく変化させるものではなく、非常に単純な鉄心構造で1次側ユニットから2次側ユニットへの効率的な電力供給が可能となり、有効である。
【図面の簡単な説明】
【図1】本発明にかかる非接触電源装置の使用状態を示す側面図である。
【図2】前記非接触電源装置内に収容する1,2次側鉄心と1,2次側巻線の配置状態を示す側面図である。
【図3】(a)は、従来の鉄心構造にかかる1次側鉄心と2次側鉄心間の磁束の鎖交状況を説明する概略図であり、(b)は本発明にかかる鉄心構造の磁束鎖交状況を説明する概略図である。
【図4】本発明の非接触電源装置の鉄心構造の一例を示す斜視図である。
【図5】本発明の非接触電源装置の鉄心構造の一例を示す斜視図である。
【図6】本発明の非接触電源装置の鉄心構造の一例を示す斜視図である。
【図7】本発明の非接触電源装置の鉄心構造の一例を示す斜視図である。
【符号の説明】
1 非接触電電源装置
2 介在物
3 1次側ユニット
4 2次側ユニット
5a 接続コード
5b 給電コード
6 負荷
7,8 ケーシング
9,9a,9b,9c,9d 1次側鉄心
10,10a,10b,10c,10d 2次側鉄心
11 1次側巻線
12 2次側巻線
13,14 張出片
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an iron core structure of a non-contact power supply that can efficiently supply power using electromagnetic induction.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a primary unit and a secondary unit that respectively house a primary side and a secondary side of a coupling transformer are configured to be separable, and the primary unit and the secondary unit are made of window glass or the like. 2. Description of the Related Art A non-contact power supply device that is disposed to face an intervening object such as a wall and supplies power from the primary unit to the secondary unit by using an electromagnetic induction action of a coupling transformer is well known.
[0003]
This is because, for example, a predetermined magnetic flux is generated in a primary core wound around the primary winding by passing an alternating current through a primary winding constituting a primary unit connected to a commercial power supply. The magnetic flux is linked to the secondary core of the secondary unit disposed opposite to the primary core via an intervening material such as a window glass or a wall, so that the secondary coil wound around the secondary core is linked. A predetermined AC voltage is induced in the side winding.
[0004]
The voltage generated in the secondary winding is appropriately controlled as required, and then supplied to a load connected to the secondary unit, whereby it can be driven well. (For example, refer to Patent Document 1).
[0005]
[Patent Document 1]
JP-A-2001-110658 (pages 2, 3; FIG. 3)
[0006]
[Problems to be solved by the invention]
However, in the non-contact power supply device, when the thickness of the inclusion sandwiched between the primary unit and the secondary unit increases, and the distance between the primary core and the secondary core increases, Since the magnetic resistance between the secondary core and the secondary core increases, the magnetic flux linked to the secondary core decreases, and as a result, the AC voltage induced in the secondary winding also decreases. As a result, the load connected to the secondary unit may not be able to operate properly due to insufficient voltage.
[0007]
In order to solve the above-mentioned problem, the present invention efficiently supplies power even when the interval between the primary unit and the secondary unit is wide, and reduces the voltage of a sufficient value to two. It is an object to provide a non-contact power supply device that can be supplied to the next side.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the iron core structure of the non-contact power supply device according to claim 1 includes a primary iron core and a secondary iron core each including a plurality of leg portions, and a yoke portion connecting the leg portions. A primary winding and a secondary winding are wound around the yoke portion of the iron core, respectively, and the primary iron core and the secondary iron core are opposed to each other, so that the primary winding and the secondary winding are separated from the secondary winding. In the non-contact power supply device for supplying electric power to the windings in a non-contact manner, the primary-side iron core and the secondary-side iron core each have a cross-sectional area of a plurality of leg irons of each other that is equal to or less than a cross-sectional area of the yoke. It was constituted so that it might become.
[0009]
According to the non-contact power supply device of Claim 1, the area of the surface where the plurality of leg iron portions of the primary iron core and the secondary iron core face each other is changed to the yoke connecting the plurality of leg iron portions. Since the configuration is such that the cross-sectional area is equal to or less than the cross-sectional area of the portion, it is possible to reduce the magnetic flux linking the space between the surfaces where the leg iron portions face each other, and thus it is possible to generate the magnetic flux on the secondary iron core. The voltage value can be increased.
[0010]
According to the iron core structure of the non-contact power supply device according to claim 2, in the iron core structure of the non-contact power supply device according to claim 1, the primary core and the secondary iron core are end faces of the leg iron portions facing each other. Then, a magnetic thin body that expands in a direction parallel to the end face is integrally attached thereto.
[0011]
According to the iron core structure of the non-contact power supply device of the second aspect, the primary iron core and the secondary iron core are configured by integrally attaching the magnetic thin body to the end faces of the leg portions facing each other. The facing area between the side core and the secondary side core increases, so that the magnetic resistance between the two cores can be reduced, and the magnetic flux linked from the primary side core to the secondary side core can be increased.
[0012]
The iron core structure of the non-contact power supply device according to claim 3 is the iron core structure of the non-contact power supply device according to claim 1, wherein the primary iron core and the secondary iron core are in the thickness direction of each leg iron part. The dimension in the orthogonal width direction was set to be at least twice the length of the yoke.
[0013]
According to the non-contact power supply device of the third aspect, the facing area between the primary iron core and the secondary iron core is increased by a very simple structure, and the magnetic flux chain from the primary iron core to the secondary iron core. The intersection ratio can be improved, and a sufficient voltage can be induced in the secondary winding wound around the secondary core to drive the load well.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a diagram illustrating an example of a use state of a non-contact power supply device 1 according to the present invention, and 2 indicates an intervening object such as a window glass or a wall. As shown in FIG. 1, the non-contact power supply device 1 has a primary unit 3 and a secondary unit 4 facing each other with the inclusion 2 interposed therebetween.
[0015]
The primary unit 3 is connected to a commercial power supply laid indoors, for example, by a power supply cord 5a, while the secondary unit 4 is connected to a load (electric device) 6 via a connection cord 5b. ing. In this state, power is supplied from the commercial power source to the primary unit 3 so that power is supplied from the primary unit to the secondary unit in a non-contact manner using electromagnetic induction. The load 6 connected to the side unit 4 can be favorably driven.
[0016]
FIG. 2 shows a primary core 9 and a secondary core 10 housed in casings 7 and 8 as outer boxes of the primary unit 3 and the secondary unit 4, respectively, and the primary core 9 and the secondary core 10 are wound therearound. FIG. 2 is a side view showing a primary winding 11 and a secondary winding 12.
[0017]
When power is supplied from the primary unit 3 of the contactless power supply 1 to the secondary unit 4 in a contactless manner in the use state shown in FIG. 1, the primary winding 11 shown in FIG. AC current flows through the power supply cord 5a shown in FIG.
[0018]
As a result, a magnetic flux is generated in the primary winding 11, so that a magnetic path is formed in the primary iron core 9 around which the magnetic flux is wound. The magnetic flux flowing through the primary iron core 9 passes through the inclusion 2 from the end face of the leg iron portion of the primary iron core 9 to interlink with the secondary iron core 10 and is wound around the secondary iron core 10. A predetermined voltage is induced in the secondary winding 12.
[0019]
The voltage generated in the secondary winding 12 is supplied to a load 6 (see FIG. 1) connected to the secondary unit 4 after predetermined processing is performed by a control circuit (not shown) as necessary. This is driven.
[0020]
That is, when power is supplied from the primary unit 3 to the secondary unit 4 in a non-contact manner, the magnetic flux links from the end face of the primary core 9 to the secondary core 10 via the inclusion 2. However, at this time, due to the magnetic potential difference between the opposing surfaces of the pair of leg portions of the primary iron core 9, from the leg portion having a high magnetic potential to the leg portion having a low magnetic potential, There is a problem that the magnetic flux flows through the space between the two leg iron parts.
[0021]
The flow of the magnetic flux between the iron legs is such that the larger the magnetic resistance between the primary iron core 9 and the secondary iron core 10 is, and the larger the area of the both iron legs opposing each other, the larger the distance between the opposing surfaces. Since the magnetic resistance increases as the magnetic resistance decreases, the magnetic flux linked to the secondary iron core 10 decreases, so that the load 6 connected to the secondary unit 4 cannot be driven favorably.
[0022]
Therefore, the present invention solves the above-mentioned problem by the method described below. That is, FIG. 3A is a diagram schematically showing the flow of magnetic flux in the primary iron core 9 and the secondary iron core 10, and the primary iron core 9 and the secondary iron core 10 which are arranged to face each other. Is formed in a C-shape with a leg iron portion having substantially the same dimension in the thickness direction (direction perpendicular to the paper surface) as the yoke portion, and has a length B in the longitudinal direction of the leg iron portion. It is set sufficiently long with respect to the length A of the yoke portion in the same direction.
[0023]
In this case, the area where the pair of leg iron portions of the primary iron core 9 and the secondary iron core 10 respectively face each other is widened, so that the magnetic flux flowing through the primary iron core 9 has a high magnetic potential as described above. From the iron leg to the iron leg having a lower magnetic potential, it is easy to flow through the space between the two iron legs, and as a result, the amount of magnetic flux linked to the secondary iron core 10 is reduced.
[0024]
The amount of magnetic flux flowing from one leg portion of the secondary core 10 to the other leg portion through the space between the two leg portions also increases, so that the yoke portion of the secondary core 10 is increased. The value of the voltage induced in the secondary winding 12 wound around the load decreases, and a sufficient voltage cannot be supplied to the load 6.
[0025]
Therefore, in the present invention, as shown in FIG. 3 (b), the length B in the longitudinal direction of the leg iron portion is reduced to form the primary iron core 9a and the secondary iron core 10a, so that a pair of legs is provided. By making the area where the iron part confronts less than or equal to the cross-sectional area of the yoke part, the magnetic resistance between the confronting surfaces is increased, so that the iron part having a high magnetic potential is changed to the iron part having a low magnetic level. It is configured to reduce the amount of magnetic flux flowing through the space between the parts.
[0026]
As a result, the magnetic flux efficiently links from the primary iron core 9a to the secondary iron core 10a, and also in the secondary iron core 10a, from one leg to the other leg, The amount of magnetic flux flowing through the space can be reduced, and a sufficiently large voltage can be induced in the secondary winding 12 wound around the yoke portion of the secondary iron core 10a.
[0027]
Thereby, for example, even when the intervening material 2 such as a window glass or a wall sandwiched between the primary unit 3 and the secondary unit 4 shown in FIG. 1 is thick, the primary unit 3 is switched to the secondary unit 4. Sufficient power can be reliably supplied, and the load 6 connected to the secondary unit 4 can be operated satisfactorily.
[0028]
FIG. 4 is a perspective view of the iron cores 9a and 10a shown in FIG.
[0029]
Next, another core structure of the non-contact power supply device 1 according to the present invention will be described with reference to FIG. The iron cores 9b and 10b shown in FIG. 5 are different from the iron cores 9a and 10a shown in FIG. 4 in that a plate-shaped thin body (hereinafter, referred to as a magnetic thin body) 13 made of a magnetic material is provided on the end face of the iron leg portion of the iron core. , And 14 are integrally attached to the iron legs (or the iron cores 9b and 10b having the structure shown in FIG. 5 may be formed by processing and molding a mass of magnetic material).
[0030]
The magnetic thin plates 13 and 14 are attached or machined so as to expand from respective end faces of the primary-side core 9b and the secondary-side core 10b toward the outside parallel to the end faces. There is no particular limitation, as long as the size can be accommodated in the casings 7 and 8 of the primary unit 3 and the secondary unit 4 according to the specification of the non-contact power supply device 1 shown in FIG.
[0031]
By configuring the iron core as shown in FIG. 5, the area of the end faces of the primary iron core 9b and the secondary iron core 10b increases, so that the primary iron core 9b and the secondary iron core 10b are shown in FIG. When opposed to each other, the magnetic resistance between the iron cores 9b and 10b is reduced as compared with the iron core structure of FIG. 4 (the area where the pair of leg iron portions of the iron cores 9b and 10b face each other is shown in FIG. 4 are equivalent to the iron cores 9a and 10a).
[0032]
Therefore, the magnetic flux of the primary iron core 9b is more interlinked with the secondary iron core 10b from the end face of the primary iron core 9b via the inclusion 2 (see FIG. 1), and is transmitted to the secondary iron core 10b. A required voltage can be reliably generated in the wound secondary winding 12, and efficient power supply to the load 6 is possible.
[0033]
FIG. 6 is a perspective view showing an iron core structure of a non-contact power supply device according to still another embodiment of the present invention. The iron cores 9c and 10c shown in FIG. The dimension C in the direction perpendicular to the longitudinal direction and the thickness direction) was set to be at least twice the length D of the yoke portion connecting the leg portions. Also in this case, the thickness dimensions of the leg iron portion and the yoke portion are assumed to be equal to the iron cores 9a and 10a shown in FIG. ,
[0034]
By setting the dimension C in the width direction of the leg iron portion to be at least twice the length D of the yoke portion, the area where the leg iron portions of the primary and secondary iron cores 9c and 10c face each other is increased. Without increasing the magnetic resistance between the opposing surfaces, that is, by increasing the facing area between the end faces of the leg portions of the primary iron core 9c and the secondary iron core 10c. And the magnetic resistance between the secondary iron core 10c and the primary iron core 9c can be efficiently linked to the magnetic flux from the primary iron core 9c to the secondary iron core 10c.
[0035]
That is, the magnetic flux flowing between the pair of leg portions of the primary core 9c through the space between the leg portions is reduced, and the magnetic flux linking from the primary core 9c to the secondary core 10c is increased. Also, the magnetic flux linked to the secondary core 10c causes the magnetic flux to flow through the secondary core 10c without increasing the magnetic flux flowing through the space between the pair of leg portions of the secondary core 10c. Therefore, even when the inclusion 2 sandwiched between the primary iron core 9c and the secondary iron core is thick, the load 6 is applied to the secondary winding 12 wound around the yoke of the secondary iron core 10c. It is possible to induce a voltage sufficient to drive (see FIG. 1).
[0036]
FIG. 7 shows iron cores 9d and 10d which are provided with end pieces 15 and 16 extending outward in the width direction of the iron legs on the end faces of the pair of iron legs of the iron cores 9a and 10a shown in FIG. It is a perspective view. In a case where power is supplied from the primary unit 3 to the secondary unit 4 in a non-contact manner using the iron cores (primary iron core 9d and secondary iron core 10d) shown in FIG. The end faces of the leg portions (overhanging pieces 13 and 14) of the secondary iron core 9d and the secondary iron core 10d are arranged to face each other.
[0037]
Then, an alternating current is passed through the primary winding 11 (see FIG. 2) wound around the yoke portion of the primary iron core 9d to generate a magnetic flux in the primary iron core 9d. The magnetic flux is applied to the overhanging pieces 15 and 16 provided on the leg portions of the secondary iron core 10d from the surfaces of the overhanging pieces 15 and 16 provided on the end faces of the iron legs of the secondary iron core 10d. Link.
[0038]
At this time, the opposing area between the primary iron core 9d and the secondary iron core 10d is increased by the respective projecting pieces 15, 16, so that the magnetic resistance between the two iron cores 9d, 10d is reduced. As a result, the magnetic flux efficiently interlinks from the primary iron core 9d to the secondary iron core 10d.
[0039]
In the secondary iron core 10d, the area where the pair of leg irons of the secondary iron core 10d face each other does not change, so that the magnetic flux linked to the secondary iron core 10d is reduced by the secondary iron core 10c. And a voltage sufficient to drive the load 6 (see FIG. 1) to the secondary winding 12 (see FIG. 2) wound around the yoke portion of the secondary core. Can be induced.
[0040]
As described above, in the non-contact power supply device 1 according to the present invention, by changing the structure of the primary iron cores 9a to 9d and the secondary iron cores 10a to 10d constituting the coupling transformer in various ways, By increasing the opposing area of the iron cores 9a to 9d and 10a to 10d to reduce the magnetic resistance between the primary iron cores 9a to 9d and the secondary iron cores 10a to 10d, the primary iron cores 9a to 9c are connected to each other. The magnetic flux linkage to the secondary iron cores 10a to 10d can be efficiently performed.
[0041]
Thereby, even when the width of the intervening material 2 such as a window glass or a wall sandwiched between the primary iron cores 9a to 9d and the secondary iron cores 10a to 10d is wide, the secondary iron cores 9a to 9d are not used. Power sufficient to drive the load 6 can be reliably supplied to the secondary iron cores 10a to 10d.
[0042]
【The invention's effect】
According to the iron core structure of the non-contact power supply device of the first aspect, the primary iron core and the secondary iron core are compared with the areas where the plurality of leg iron portions of the primary iron core and the secondary iron core face each other. Since the end faces of the iron legs of the secondary iron core have large areas facing each other, the magnetic flux flowing through the primary iron core is transferred from one iron leg of the primary iron core to the other iron leg to the two iron legs. Sufficient electric power to drive the load is provided to the secondary unit that accommodates the secondary core, because the secondary unit efficiently accommodates the secondary core by suppressing the flow through the space between the parts. Can be reliably supplied, which is very effective.
[0043]
According to the iron core structure of the non-contact power supply according to the second aspect, the primary iron core and the secondary iron core can be easily opposed simply by integrally attaching the magnetic thin plate to the end face of the leg iron part of the iron core having the conventional structure. The area can be increased, and the power supply from the primary unit to the secondary unit can be easily improved, which is convenient.
[0044]
According to the core structure of the non-contact power supply device of the third aspect, the primary iron core and the secondary iron core are increased by increasing the widthwise dimensions of the leg iron portions of the primary iron core and the secondary iron core. The end faces of the leg iron portions of the primary iron core and the secondary iron core can reliably increase the area where the end faces of the leg iron portions of the primary iron core and the secondary iron core face each other without increasing the area where the plurality of leg iron portions provided with each other oppose each other. The structure does not greatly change the structure of the conventional iron core, and it is possible to efficiently supply power from the primary unit to the secondary unit with a very simple iron core structure, which is effective.
[Brief description of the drawings]
FIG. 1 is a side view showing a use state of a non-contact power supply device according to the present invention.
FIG. 2 is a side view showing an arrangement of primary and secondary cores and primary and secondary windings housed in the non-contact power supply device.
FIG. 3A is a schematic view for explaining a state of linkage of magnetic flux between a primary core and a secondary core according to a conventional core structure, and FIG. 3B is a schematic diagram illustrating the core structure according to the present invention; It is the schematic explaining the magnetic flux linkage situation.
FIG. 4 is a perspective view showing an example of a core structure of the non-contact power supply device of the present invention.
FIG. 5 is a perspective view showing an example of an iron core structure of the non-contact power supply device of the present invention.
FIG. 6 is a perspective view showing an example of a core structure of the non-contact power supply device of the present invention.
FIG. 7 is a perspective view showing an example of an iron core structure of the non-contact power supply device of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Non-contact electric power supply 2 Inclusion 3 Primary unit 4 Secondary unit 5a Connection cord 5b Power supply cord 6 Load 7,8 Casing 9,9a, 9b, 9c, 9d Primary iron core 10,10a, 10b, 10c, 10d Secondary iron core 11 Primary winding 12 Secondary winding 13, 14 Projection piece

Claims (3)

複数の脚鉄部と、該脚鉄部同士を繋合せる継鉄部からなる1次側鉄心および2次側鉄心の前記継鉄部にそれぞれ1次側巻線と2次側巻線を巻回し、前記1次側鉄心と2次側鉄心を対向配置することによって、前記1次側巻線から2次側巻線へ電磁誘導作用により非接触で電力を供給する非接触電源装置において、前記1次側鉄心および2次側鉄心は、それぞれが備える複数の脚鉄部同士の対峙する面積が継鉄部の断面積以下となるように構成したことを特徴とする非接触電源装置の鉄心構造。A primary winding and a secondary winding are respectively wound around the primary iron core and the secondary iron core, each of which includes a plurality of leg iron portions and a yoke portion connecting the leg iron portions. A non-contact power supply device for supplying electric power from the primary winding to the secondary winding in a non-contact manner by arranging the primary core and the secondary core to face each other; An iron core structure for a non-contact power supply device, characterized in that the secondary iron core and the secondary iron core are configured such that an area of each of a plurality of leg iron portions provided is less than or equal to a cross-sectional area of a yoke portion. 前記1次側鉄心および2次側鉄心は、互いに対向する脚鉄部の端面に、該端面と平行する方向へ向けて拡開する磁性薄体をこれと一体的に取付けて構成したことを特徴とする請求項1記載の非接触電源装置の鉄心構造。The primary iron core and the secondary iron core are configured such that a magnetic thin body that expands in a direction parallel to the end faces is integrally attached to end faces of the leg iron portions facing each other. The core structure of the contactless power supply device according to claim 1. 前記1次側鉄心および2次側鉄心は、各々の脚鉄部の厚さ方向と直交する幅方向の寸法が、前記継鉄部の長さの2倍以上となるように設定したことを特徴とする請求項1記載の非接触電源装置の鉄心構造。The primary iron core and the secondary iron core are set such that a dimension in a width direction orthogonal to a thickness direction of each leg iron part is at least twice the length of the yoke part. The core structure of the contactless power supply device according to claim 1.
JP2002282138A 2002-09-27 2002-09-27 Iron core structure for contactless power supply apparatus Pending JP2004119748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002282138A JP2004119748A (en) 2002-09-27 2002-09-27 Iron core structure for contactless power supply apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002282138A JP2004119748A (en) 2002-09-27 2002-09-27 Iron core structure for contactless power supply apparatus

Publications (1)

Publication Number Publication Date
JP2004119748A true JP2004119748A (en) 2004-04-15

Family

ID=32276364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002282138A Pending JP2004119748A (en) 2002-09-27 2002-09-27 Iron core structure for contactless power supply apparatus

Country Status (1)

Country Link
JP (1) JP2004119748A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2464945A (en) * 2008-10-29 2010-05-05 Wireless Fibre Systems Ltd Non-contact electrical connector system
US20130314188A1 (en) * 2012-05-04 2013-11-28 Ionel Jitaru Magnetic Structure for Large Air Gap
US20130314200A1 (en) * 2012-05-04 2013-11-28 Ionel Jitaru Multiple Cells Magnetic Structure for Wireless Power
KR101666426B1 (en) * 2015-07-28 2016-10-14 주식회사 피에스엔 Inductive wireless charging system and vehicle wireless charging system using it

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2464945A (en) * 2008-10-29 2010-05-05 Wireless Fibre Systems Ltd Non-contact electrical connector system
US8350653B2 (en) 2008-10-29 2013-01-08 Wfs Technologies Ltd. Electrical connector system
GB2464945B (en) * 2008-10-29 2013-07-10 Wfs Technologies Ltd Electrical connector system
US20130314188A1 (en) * 2012-05-04 2013-11-28 Ionel Jitaru Magnetic Structure for Large Air Gap
US20130314200A1 (en) * 2012-05-04 2013-11-28 Ionel Jitaru Multiple Cells Magnetic Structure for Wireless Power
EP3226266A1 (en) * 2012-05-04 2017-10-04 DET International Holding Limited Magnetic structures for large air gap
US10553351B2 (en) * 2012-05-04 2020-02-04 Delta Electronics (Thailand) Public Co., Ltd. Multiple cells magnetic structure for wireless power
US11756726B2 (en) 2012-05-04 2023-09-12 Delta Electronics (Thailand) Pcl. Magnetic structures for large air gap
KR101666426B1 (en) * 2015-07-28 2016-10-14 주식회사 피에스엔 Inductive wireless charging system and vehicle wireless charging system using it

Similar Documents

Publication Publication Date Title
JP2007124754A (en) Power feed system
WO2007006902A3 (en) Method and device for supply to a magnetic coupler
KR20070044792A (en) Induction heating apparatus
EP1202442A3 (en) Switching power supply circuits
JPH059027B2 (en)
JPH0475643B2 (en)
ES2037728T3 (en) DEVICES AND METHODS TO CONTROL ALTERNATE ELECTRIC CURRENT.
JP2004119748A (en) Iron core structure for contactless power supply apparatus
US20030067377A1 (en) Planar transformer
CA2549876A1 (en) Variable ac voltage regulation control method and apparatus
JPH09266121A (en) Non-contact type power supply
DE60318607D1 (en) TRANSFORMER
US720884A (en) Regulation of electric circuits.
JP2001268823A (en) Non-contact feeder system
JPH02503621A (en) Non-saturated magnetic amplification controller
JPS63151006A (en) Electric power transmission equipment
KR101082879B1 (en) transformer using double-core structure.
JP2001309501A (en) Noncontact power supply device
TWI396209B (en) Transformers and circuit devices for controlling transformers
KR20200100127A (en) Transformer core and transformer
JPS60196918A (en) Choke
JP2001313219A (en) Pick-up coil and its manufacturing method
JP7268494B2 (en) induction heating device
KR200336886Y1 (en) Power-saving apparatus
Raval et al. 3D inductive power transfer power system