JP2004119673A - Method and device for measuring warpage of semiconductor wafer - Google Patents

Method and device for measuring warpage of semiconductor wafer Download PDF

Info

Publication number
JP2004119673A
JP2004119673A JP2002280781A JP2002280781A JP2004119673A JP 2004119673 A JP2004119673 A JP 2004119673A JP 2002280781 A JP2002280781 A JP 2002280781A JP 2002280781 A JP2002280781 A JP 2002280781A JP 2004119673 A JP2004119673 A JP 2004119673A
Authority
JP
Japan
Prior art keywords
semiconductor wafer
warpage
light
amount
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002280781A
Other languages
Japanese (ja)
Inventor
Masayuki Yamamoto
山本 雅之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2002280781A priority Critical patent/JP2004119673A/en
Publication of JP2004119673A publication Critical patent/JP2004119673A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring method for easily, stably and quantitatively measuring the warpage of a wafer without the need of special skill. <P>SOLUTION: Parallel light L having a prescribed width in the thickness direction of the wafer is projected from one side of the semiconductor wafer W. Parallel light L is received on the other side of the semiconductor wafer W. Thus, the warpage δ of the semiconductor wafer W is calculated by a difference between a light projection width h1 and a light reception width h2. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、裏面加工後に反りの生じた半導体ウエハ(以下、単に「ウエハ」という)の反り量を測定する方法およびこれに用いる測定装置に関する。
【0002】
【従来の技術】
表面にパターン形成処理された後のウエハを薄型化するためにウエハ裏面に施す加工手段として、研削、研磨、あるいは、エッチング、などの機械的あるいは化学的手段がある。これらの加工を行う場合には、パターンが形成されたウエハ表面に保護テープを貼付けた後、ウエハ裏面に加工を施すのが一般的となっている。
【0003】
研削手段では、保護テープが貼付けられたウエハの表面をチャックテーブルで吸着保持してウエハ裏面を砥石で研削する処理が行われる。
【0004】
【発明が解決しようとする課題】
ウエハに薄型加工を施すとウエハの強度や剛性が低下することになり、そのために、ウエハ表面のパターン形状やコーティング膜からの力学的な影響を受けやすくなる。その結果、反りや歪が発生することがある。
【0005】
そこで、品質管理などのために、発生した反りや歪を測定することが望まれており、種々の方法が試みられている。しかし、異なる方法で測定した測定値同士を比較すると、大きなバラツキがあるとともに、定量的に測定することが困難となっている。
【0006】
例えば、水平に置かれたウエハの上方に光学的な測距センサを配置し、センサからウエハ表面までの距離をウエハ各部位で測定することで、反りや歪を測定しようとした方法が提案・実施されている。
【0007】
しかし、ウエハ表面の反りや歪によって照射した測定光が乱反射してしまってうまく捉えることができず、精度の高い測定を行うことができない。
【0008】
本発明は、このような事情に鑑みてなされたものであって、ウエハの反り量を、特殊な技能を要することなく簡単に、安定して、かつ、定量的に測定することができる測定方法および測定装置を提供することを主たる目的とするものである。
【0009】
【課題を解決するための手段】
この発明は、上記目的を達成するために次のような構成をとる。
【0010】
すなわち、請求項1に記載の発明は、半導体ウエハの一側方から半導体ウエハ厚さ方向に所定の幅を有する平行光を投光し、その平行光を半導体ウエハの他側方で受光し、この受光量に基づいて半導体ウエハの反り量を求めることを特徴とするものである。
【0011】
(作用・効果)半導体ウエハの反りの量に応じて平行光が遮光され、その分だけ受光幅が減少する。このとき受光幅に基づいて半導体ウエハの反り量を求めることができる。したがって、半導体ウエハに側方から平行光を投光するだけで半導体ウエハの反り量を定量的に、かつ、正確に測定することができる。
【0012】
また、特別な技術を要することなく簡単に、しかも、半導体ウエハにダメージを与えない非接触状態で測定を行うことができる。さらに品質管理や解析などに活用できる有用なデータを容易に得ることができる。
【0013】
また、請求項2に記載の発明は、半導体ウエハを載置する測定テーブルと、所定の上下幅の平行光を半導体ウエハの側方から投光する投光器と、前記平行光を半導体ウエハの他側方で受光する受光器と、投光幅と受光幅との差を演算する演算手段とを備えたことを特徴とするものである。
【0014】
(作用・効果)測定テーブルに載置した半導体ウエハを挟んで投光器から投光した平行光を受光器で受光し、投光幅と受光幅とからその差を演算手段で算出することにより、請求項1に記載の半導体ウエハの反り量測定方法を好適に実現することができる。
【0015】
また、請求項3に記載の発明は、請求項2に記載の半導体ウエハの反り量測定装置発明において、前記測定テーブルを旋回可能に構成したことを特徴とするものである。
【0016】
(作用・効果)測定テーブルを回転させて異なった回転位相での測定を行うことで、半導体ウエハの反り量の大小や最大値、さらには、反りの方向や向きなどを測定することができる。したがって、半導体ウエハの所望の回転位相での反り量を簡単かつ正確に測定することができ、反りの方向、大きさ、分布などの詳細なデータを得て、各種の解析に有効に活用することができる。
【0017】
また、請求項4に記載の発明は、請求項2に記載の半導体ウエハの反り量測定装置発明において、前記投光器と前記受光器とを半導体ウエハを挟んで対向配備するとともに、半導体ウエハ周りに投光器と受光器とが一体的に回転移動するように構成したことを特徴とするものである。
【0018】
(作用・効果)測定テーブルに載置された半導体ウエハを挟んで対向配備した投光器と受光器とを半導体ウエハ周りに一体的に回転させて異なった回転位相での測定を行うことで、半導体ウエハの反り量の大小や最大値、さらには、反りの方向や向きなどを測定することができる。また、測定テーブルを回転させずに半導体ウエハを安定状態に維持したまま反り量を測定することができ、一層正確な反り量を測定することができる。
【0019】
【発明の実施の形態】
以下、図面を参照して本発明の実施形態の一例を説明する。
【0020】
図1に、本発明に係る半導体ウエハ(以下、単に「ウエハ」という)の反り量測定装置の全体を示す斜視図、図2は、その平面図、図3は、その正面図である。
【0021】
この反り量測定装置は、平坦な基台1の上に、ウエハWを載置する測定テーブル2、この測定テーブル2の左右の対角位置に対向して配置された投光器3と受光器4、アンプユニット5、および電源ユニット6等を搭載して構成されている。なお、測定テーブル2は軸受けユニット7に縦軸支P周りに旋回可能に軸支され、テーブル上面に突設したノブ8を持って手回しで自由に旋回操作できるようになっている。
【0022】
投光器3は、縦向きの投光口3aから所定の上下幅(例えば30mm)で所定の横方向幅(例えば2mm)の平行光(例えばレーザー光などL)を水平に投光するように構成されている。
【0023】
受光器4は、投光器3からの平行光Lを縦向きの受光口4aで受けるように構成されている。受光器4としては、投光器3からの平行光Lを受光したときに、その変化量を検知できるものであればよい。例えば、CCDラインセンサを用いて受光幅の変化を画素単位で検出するようにしてもよいし、太陽電池などのような光導電セルを用いて受光量に応じて変化する起電力を検出するようにしてもよい。
【0024】
アンプユニット5は、図3に示すように、投光器3からの投光幅hと受光器4で検知された受光幅hとを用いて差分演算処理を行ないウエハWの反り量の最大値δを求めるようになっている。
【0025】
具体的には、先ず測定対象となるウエハWを測定テーブル2の中心上に載置し、測定テーブル2を旋回させながら投光器3から投光する平行光Lを受光器4で逐次に検出する。このとき、ウエハWに反りが発生していると、図4に示すように、ウエハWが1回転する間に受光位置に応じて受光幅が変化する。
【0026】
この受光幅の変化量は、図5のブロック図に示すアンプユニット5に逐次に入力され、この入力された複数のデータを比較処理し、受光幅のMIN値(最小値)5aを検出する。つまり、ウエハWの反り量が最大値となる箇所の受光幅を検出する。
【0027】
検出されたMIN値5aは、減算器5cに入力される。減算器5cでは、さらに予め設定された投光器3からの投光幅である基準値5bが入力され、この基準値5bとMIN値5aとの差分演算を行ない、ウエハWの反り量の最大値δを出力する。
【0028】
反り量の表示としては、例えば図示しないモニターなどの表示装置に数値表示する。
【0029】
なお、光導電セルを用いるときは、ウエハWの反りによって変化する受光量に対応した起電力を予め実験などにより求め、この求めた値と実測により検出された実測値とを比較処理し、両値が一致したときのウエハWの反り量を出力するようにすればよい。この場合、起電力の最小値がウエハWの反り量の最大値となる。
【0030】
以上のように、ウエハWを挟んで配置した投光器3から投光した平行光を受光器4で検出し、投光幅の基準値と受光幅の差分をアンプユニット5で算出することにより、非接触の状態で、定量的かつ正確にウエハWの反り量を測定することができる。
【0031】
本発明は、上記実施例に限らず、次のように変形実施することもできる。
(1)上記実施例では、ウエハWに貼り付けられた保護テープの厚みを考慮することなくウエハWの反り量を測定していたが、保護テープの厚みを予め考慮した状態で、ウエハWの反り量を測定してもよい。
【0032】
例えば、ウエハWの厚さと保護テープの厚さを予め測定して入力しておくことで、ウエハWの反り量を正確に算出することができる。
【0033】
(2)上記実施例では、測定テーブル2を手回しで旋回させていたが、測定テーブル2をモータなどの回転駆動手段によって定速回転させるとともに、所定回転位相ごとに投光を行って、多数のデータを自動的に得るように構成してもよい。この場合、測定テーブル2の回転位相をロータリエンコーダなどで検出して、測定した回転位相を測定データとして取り込むことで、ウエハWの反り量の大小はもちろんのこと、反りの方向や向きなどを測定することができる。
【0034】
また、測定テーブル2ではなく、投光器3と受光器4を対向配備した状態で、測定テーブル2の周りを一体的に回転移動するように構成してもよい。
【0035】
(3)上記実施例では、ウエハWの反り量の最大値δのみを演算にて求めて出力するようにしていたが、測定テーブル2を所定角度づつ旋回させて逐次に得られた測定データを所望の情報処理装置に入力して記憶格納し、必要に応じてモニターなどの表示装置に出力表示するようにしてもよい。
【0036】
【発明の効果】
以上の説明から明らかなように、本発明によれば、半導体ウエハに側方から平行光を投光するだけで半導体ウエハの反り量を定量的に、かつ、正確に測定することができ、特別な技術を要することなく簡単に、しかも、半導体ウエハにダメージを与えない非接触状態で測定を行うことができる。また、品質管理や解析などに活用できる有用なデータとしての反り量等を容易に得ることができる。
【図面の簡単な説明】
【図1】反り量測定装置の斜視図である。
【図2】反り量測定装置の平面図である。
【図3】反り量測定形態の概念を示す正面図である。
【図4】ウエハの反り量を示す図である。
【図5】アンプユニットの構成を示すブッロク図である。
【符号の説明】
2 … 測定テーブル
3 … 投光器
4 … 受光器
W … 半導体ウエハ
L … 平行光
 … 投光幅
 … 受光幅
δ … 反り量(最大値)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for measuring the amount of warpage of a semiconductor wafer (hereinafter, simply referred to as a “wafer”) that has warped after backside processing and a measuring apparatus used for the method.
[0002]
[Prior art]
There are mechanical or chemical means such as grinding, polishing, or etching as processing means applied to the back surface of the wafer in order to reduce the thickness of the wafer after the pattern formation processing on the front surface. When performing these processes, it is common to apply a protective tape to the surface of the wafer on which the pattern is formed, and then process the back surface of the wafer.
[0003]
In the grinding means, a process is performed in which the front surface of the wafer to which the protective tape is attached is suction-held by a chuck table and the back surface of the wafer is ground with a grindstone.
[0004]
[Problems to be solved by the invention]
When thin processing is performed on a wafer, the strength and rigidity of the wafer are reduced, and therefore, the wafer is easily affected by the pattern shape of the wafer surface and the mechanical influence from the coating film. As a result, warpage and distortion may occur.
[0005]
Therefore, it is desired to measure the generated warpage and distortion for quality control and the like, and various methods have been tried. However, when comparing measurement values measured by different methods, there is a large variation, and it is difficult to measure quantitatively.
[0006]
For example, a method was proposed in which an optical distance measurement sensor was placed above a horizontally placed wafer, and the distance from the sensor to the wafer surface was measured at each part of the wafer to measure warpage and distortion. It has been implemented.
[0007]
However, the measurement light irradiated due to the warpage or distortion of the wafer surface is irregularly reflected and cannot be captured properly, so that highly accurate measurement cannot be performed.
[0008]
The present invention has been made in view of such circumstances, and a measurement method capable of easily, stably, and quantitatively measuring the amount of warpage of a wafer without requiring special skills. And a measuring device.
[0009]
[Means for Solving the Problems]
The present invention has the following configuration to achieve the above object.
[0010]
That is, the invention according to claim 1 emits parallel light having a predetermined width in the thickness direction of the semiconductor wafer from one side of the semiconductor wafer, and receives the parallel light on the other side of the semiconductor wafer, It is characterized in that the amount of warpage of the semiconductor wafer is obtained based on the amount of received light.
[0011]
(Operation / Effect) The parallel light is blocked according to the amount of warpage of the semiconductor wafer, and the light receiving width is reduced by that amount. At this time, the amount of warpage of the semiconductor wafer can be obtained based on the light receiving width. Therefore, the amount of warpage of the semiconductor wafer can be quantitatively and accurately measured only by projecting parallel light onto the semiconductor wafer from the side.
[0012]
In addition, the measurement can be performed easily without a special technique and in a non-contact state that does not damage the semiconductor wafer. Further, useful data that can be used for quality control, analysis, and the like can be easily obtained.
[0013]
According to another aspect of the present invention, there is provided a measurement table on which a semiconductor wafer is placed, a projector for projecting parallel light having a predetermined vertical width from the side of the semiconductor wafer, and the other side of the semiconductor wafer for projecting the parallel light. And a calculating means for calculating a difference between the light emitting width and the light receiving width.
[0014]
(Function / Effect) A parallel light emitted from the light emitter is received by the light receiver with the semiconductor wafer placed on the measurement table interposed therebetween, and a difference between the light emission width and the light reception width is calculated by the calculating means. The method for measuring the amount of warpage of a semiconductor wafer according to item 1 can be suitably realized.
[0015]
A third aspect of the present invention is the semiconductor wafer warpage amount measuring apparatus according to the second aspect, wherein the measuring table is configured to be pivotable.
[0016]
(Operation / Effect) By rotating the measurement table and performing measurements at different rotational phases, it is possible to measure the magnitude and maximum value of the amount of warpage of the semiconductor wafer, as well as the direction and direction of the warpage. Therefore, it is possible to easily and accurately measure the amount of warpage of a semiconductor wafer at a desired rotation phase, obtain detailed data such as the direction, size, and distribution of the warp, and effectively utilize the data for various analyses. Can be.
[0017]
According to a fourth aspect of the present invention, in the device for measuring the amount of warpage of a semiconductor wafer according to the second aspect, the light emitter and the light receiver are arranged to face each other with the semiconductor wafer interposed therebetween, and the light emitter is arranged around the semiconductor wafer. And the light receiver are integrally rotated and moved.
[0018]
(Function / Effect) The semiconductor wafer mounted on the measurement table is rotated by integrally rotating the light emitter and the light receiver, which are disposed opposite to each other with the semiconductor wafer placed on the measurement table, around the semiconductor wafer. The magnitude and maximum value of the amount of warpage, as well as the direction and direction of the warpage can be measured. In addition, the amount of warpage can be measured while the semiconductor wafer is kept in a stable state without rotating the measurement table, and a more accurate amount of warpage can be measured.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings.
[0020]
FIG. 1 is a perspective view showing an entire device for measuring the amount of warpage of a semiconductor wafer (hereinafter, simply referred to as “wafer”) according to the present invention, FIG. 2 is a plan view thereof, and FIG. 3 is a front view thereof.
[0021]
This warpage amount measuring apparatus includes a measurement table 2 on which a wafer W is placed on a flat base 1, a projector 3 and a light receiver 4 which are arranged opposite to left and right diagonal positions of the measurement table 2, It is configured by mounting an amplifier unit 5, a power supply unit 6, and the like. The measurement table 2 is pivotally supported by the bearing unit 7 so as to be rotatable around a vertical axis P, and can be freely rotated by hand with a knob 8 protruding from the upper surface of the table.
[0022]
The light projector 3 is configured to horizontally project parallel light (for example, laser light L or the like) having a predetermined vertical width (for example, 30 mm) and a predetermined horizontal width (for example, 2 mm) from the vertical light emitting port 3a. ing.
[0023]
The light receiver 4 is configured to receive the parallel light L from the light projector 3 at a vertically oriented light receiving port 4a. The light receiver 4 only needs to be able to detect the amount of change when the parallel light L from the light projector 3 is received. For example, a change in the light receiving width may be detected in units of pixels using a CCD line sensor, or an electromotive force that changes according to the amount of received light may be detected using a photoconductive cell such as a solar cell. It may be.
[0024]
Amplifier unit 5, as shown in FIG. 3, the light projection width h 1 and warpage of the maximum value of the wafer W subjected to a difference operation with the light receiving width h 2 detected by the light receiver 4 from the projector 3 δ is determined.
[0025]
Specifically, first, the wafer W to be measured is placed on the center of the measurement table 2, and the parallel light L emitted from the light projector 3 is sequentially detected by the light receiver 4 while rotating the measurement table 2. At this time, if the wafer W is warped, the light receiving width changes according to the light receiving position during one rotation of the wafer W, as shown in FIG.
[0026]
The amount of change in the light receiving width is sequentially input to the amplifier unit 5 shown in the block diagram of FIG. 5, and the input data is compared to detect a MIN value (minimum value) 5a of the light receiving width. That is, the light receiving width at the position where the amount of warpage of the wafer W is the maximum value is detected.
[0027]
The detected MIN value 5a is input to the subtractor 5c. The subtractor 5c further receives a reference value 5b, which is a preset light projection width from the light projector 3, performs a difference operation between the reference value 5b and the MIN value 5a, and obtains the maximum value δ of the amount of warpage of the wafer W. Is output.
[0028]
As the display of the amount of warpage, for example, a numerical value is displayed on a display device such as a monitor (not shown).
[0029]
When a photoconductive cell is used, an electromotive force corresponding to the amount of received light that changes due to the warpage of the wafer W is obtained in advance by an experiment or the like, and the obtained value is compared with an actually measured value detected by actual measurement to compare the two values. What is necessary is just to output the amount of warpage of the wafer W when the values match. In this case, the minimum value of the electromotive force is the maximum value of the amount of warpage of the wafer W.
[0030]
As described above, the parallel light emitted from the light emitter 3 disposed with the wafer W interposed therebetween is detected by the light receiver 4, and the difference between the reference value of the light emission width and the light reception width is calculated by the amplifier unit 5. In the contact state, the amount of warpage of the wafer W can be quantitatively and accurately measured.
[0031]
The present invention is not limited to the above embodiment, but can be modified as follows.
(1) In the above embodiment, the amount of warpage of the wafer W was measured without considering the thickness of the protective tape attached to the wafer W. The amount of warpage may be measured.
[0032]
For example, by measuring and inputting the thickness of the wafer W and the thickness of the protective tape in advance, the amount of warpage of the wafer W can be accurately calculated.
[0033]
(2) In the above embodiment, the measurement table 2 was turned by hand. However, the measurement table 2 was rotated at a constant speed by a rotation driving means such as a motor, and light was emitted at predetermined rotation phases to obtain a large number. You may comprise so that data may be acquired automatically. In this case, the rotational phase of the measurement table 2 is detected by a rotary encoder or the like, and the measured rotational phase is taken in as measurement data, so that not only the magnitude of the warp of the wafer W but also the direction and direction of the warp are measured. can do.
[0034]
In addition, instead of the measurement table 2, the projector 3 and the light receiver 4 may be configured to rotate integrally around the measurement table 2 in a state where they are opposed to each other.
[0035]
(3) In the above embodiment, only the maximum value δ of the amount of warpage of the wafer W is calculated and output, but the measurement data obtained by rotating the measurement table 2 by a predetermined angle is used. The information may be input to a desired information processing device, stored and stored, and output and displayed on a display device such as a monitor as needed.
[0036]
【The invention's effect】
As is apparent from the above description, according to the present invention, the amount of warpage of the semiconductor wafer can be quantitatively and accurately measured only by projecting parallel light from the side to the semiconductor wafer. The measurement can be easily performed without requiring any special technique and in a non-contact state that does not damage the semiconductor wafer. Further, it is possible to easily obtain the amount of warpage as useful data that can be used for quality control, analysis, and the like.
[Brief description of the drawings]
FIG. 1 is a perspective view of a warpage amount measuring device.
FIG. 2 is a plan view of the warpage amount measuring device.
FIG. 3 is a front view showing the concept of a warpage amount measurement mode.
FIG. 4 is a diagram showing the amount of warpage of a wafer.
FIG. 5 is a block diagram showing a configuration of an amplifier unit.
[Explanation of symbols]
2 ... measurement table 3 ... projector 4 ... photoreceiver W ... semiconductor wafer L ... parallel light h 1 ... projection width h 2 ... light-receiving width [delta] ... warpage (maximum value)

Claims (4)

半導体ウエハの一側方から半導体ウエハ厚さ方向に所定の幅を有する平行光を投光し、その平行光を半導体ウエハの他側方で受光し、この受光量に基づいて半導体ウエハの反り量を求めることを特徴とする半導体ウエハの反り量測定方法。A parallel light beam having a predetermined width is projected from one side of the semiconductor wafer in the thickness direction of the semiconductor wafer, and the parallel light beam is received by the other side of the semiconductor wafer. A method for measuring the amount of warpage of a semiconductor wafer, characterized in that: 半導体ウエハを載置する測定テーブルと、
所定の上下幅の平行光を半導体ウエハの側方から投光する投光器と、
前記平行光を半導体ウエハの他側方で受光する受光器と、
投光幅と受光幅との差を演算する演算手段と
を備えたことを特徴とする半導体ウエハの反り量測定装置。
A measurement table on which a semiconductor wafer is placed;
A projector that projects parallel light having a predetermined vertical width from the side of the semiconductor wafer,
A light receiver for receiving the parallel light on the other side of the semiconductor wafer,
A device for measuring the amount of warpage of a semiconductor wafer, comprising: a calculating means for calculating a difference between a light emitting width and a light receiving width.
請求項2に記載の半導体ウエハの反り量測定装置において、
前記測定テーブルを旋回可能に構成したことを特徴とする半導体ウエハの反り量測定装置。
An apparatus for measuring the amount of warpage of a semiconductor wafer according to claim 2,
An apparatus for measuring the amount of warpage of a semiconductor wafer, wherein the measurement table is configured to be pivotable.
請求項2に記載の半導体ウエハの反り量測定装置において、
前記投光器と前記受光器とを半導体ウエハを挟んで対向配備するとともに、半導体ウエハ周りに投光器と受光器とが一体的に回転移動するように構成したことを特徴とする半導体ウエハの反り量測定装置。
An apparatus for measuring the amount of warpage of a semiconductor wafer according to claim 2,
A semiconductor wafer warpage measuring device, wherein the light emitter and the light receiver are arranged opposite to each other with a semiconductor wafer interposed therebetween, and the light emitter and the light receiver are integrally rotated around the semiconductor wafer. .
JP2002280781A 2002-09-26 2002-09-26 Method and device for measuring warpage of semiconductor wafer Pending JP2004119673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002280781A JP2004119673A (en) 2002-09-26 2002-09-26 Method and device for measuring warpage of semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002280781A JP2004119673A (en) 2002-09-26 2002-09-26 Method and device for measuring warpage of semiconductor wafer

Publications (1)

Publication Number Publication Date
JP2004119673A true JP2004119673A (en) 2004-04-15

Family

ID=32275395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002280781A Pending JP2004119673A (en) 2002-09-26 2002-09-26 Method and device for measuring warpage of semiconductor wafer

Country Status (1)

Country Link
JP (1) JP2004119673A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007136066A1 (en) * 2006-05-22 2007-11-29 Tokyo Electron Limited Basal plate deformation detecting system and deformation detecting method
KR101104880B1 (en) 2010-12-21 2012-01-17 주식회사 루셈 Wafer ring frame inspection unit used in semiconductor packaging process
TWI448660B (en) * 2007-09-28 2014-08-11 Lam Res Corp Apparatus and method for quantifying a bow of a wafer
US20140347465A1 (en) * 2013-05-27 2014-11-27 Tokyo Electron Limited Ready for rotation state detection device, method of detecting ready for rotation state and substrate processing apparatus
JP2016092330A (en) * 2014-11-10 2016-05-23 株式会社アルバック Gate valve device and substrate transfer method
KR20190005759A (en) * 2017-07-07 2019-01-16 도쿄엘렉트론가부시키가이샤 Substrate warpage detection device, substrate warpage detection method, and substrate processing apparatus and substrate processing method using the same
EP3764165A1 (en) * 2019-07-12 2021-01-13 ASML Netherlands B.V. Substrate shape measuring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07110966A (en) * 1993-10-13 1995-04-25 Nikon Corp Method and apparatus for measurement of warp of substance
JPH10189674A (en) * 1996-12-24 1998-07-21 Sony Corp Semiconductor manufacturing device
JP2001189351A (en) * 1999-12-28 2001-07-10 Mitsui Mining & Smelting Co Ltd Measuring device for warpage of film carrier tape for mounting electronic component, and measuring method of warpage of film carrier tape for mounting electronic component

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07110966A (en) * 1993-10-13 1995-04-25 Nikon Corp Method and apparatus for measurement of warp of substance
JPH10189674A (en) * 1996-12-24 1998-07-21 Sony Corp Semiconductor manufacturing device
JP2001189351A (en) * 1999-12-28 2001-07-10 Mitsui Mining & Smelting Co Ltd Measuring device for warpage of film carrier tape for mounting electronic component, and measuring method of warpage of film carrier tape for mounting electronic component

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007136066A1 (en) * 2006-05-22 2007-11-29 Tokyo Electron Limited Basal plate deformation detecting system and deformation detecting method
TWI448660B (en) * 2007-09-28 2014-08-11 Lam Res Corp Apparatus and method for quantifying a bow of a wafer
KR101104880B1 (en) 2010-12-21 2012-01-17 주식회사 루셈 Wafer ring frame inspection unit used in semiconductor packaging process
US10002417B2 (en) * 2013-05-27 2018-06-19 Tokyo Electron Limited Ready for rotation state detection device, method of detecting ready for rotation state and substrate processing apparatus
CN104183518A (en) * 2013-05-27 2014-12-03 东京毅力科创株式会社 Ready for rotation state detection device, method of detecting ready for rotation state and substrate processing apparatus using same
JP2014229861A (en) * 2013-05-27 2014-12-08 東京エレクトロン株式会社 Rotatable state detecting device and rotatable state detecting method, and substrate processing apparatus and substrate processing method using the same
KR101736538B1 (en) * 2013-05-27 2017-05-16 도쿄엘렉트론가부시키가이샤 Rotation state detecting device and rotation state detecting method and method and device of processing substrate through the use of the same
US20140347465A1 (en) * 2013-05-27 2014-11-27 Tokyo Electron Limited Ready for rotation state detection device, method of detecting ready for rotation state and substrate processing apparatus
CN104183518B (en) * 2013-05-27 2018-12-28 东京毅力科创株式会社 It can rotation state detecting device and method and the substrate board treatment using the device and the substrate processing method using same using this method
JP2016092330A (en) * 2014-11-10 2016-05-23 株式会社アルバック Gate valve device and substrate transfer method
KR20190005759A (en) * 2017-07-07 2019-01-16 도쿄엘렉트론가부시키가이샤 Substrate warpage detection device, substrate warpage detection method, and substrate processing apparatus and substrate processing method using the same
JP2019016714A (en) * 2017-07-07 2019-01-31 東京エレクトロン株式会社 Substrate warp detector and substrate warp detection method, and substrate processing device and method using the detector and detection method
KR102354048B1 (en) 2017-07-07 2022-01-24 도쿄엘렉트론가부시키가이샤 Substrate warpage detection device, substrate warpage detection method, and substrate processing apparatus and substrate processing method using the same
EP3764165A1 (en) * 2019-07-12 2021-01-13 ASML Netherlands B.V. Substrate shape measuring device
WO2021008781A1 (en) * 2019-07-12 2021-01-21 Asml Netherlands B.V. Substrate shape measuring device
JP2022539984A (en) * 2019-07-12 2022-09-14 エーエスエムエル ネザーランズ ビー.ブイ. Substrate shape measuring device
US11726411B2 (en) 2019-07-12 2023-08-15 Asml Nelherlands B.V. Substrate shape measuring device, substrate handling device, substrate shape measuring unit and method to handle substrates

Similar Documents

Publication Publication Date Title
US11017524B2 (en) Thickness measurement of substrate using color metrology
TWI757154B (en) Color imaging for cmp monitoring
TWI457685B (en) Offset correction methods and arrangement for positioning and inspecting substrates
TWI635929B (en) Polishing apparatus and polished-state monitoring method
JP4560163B2 (en) Endpoint detection using light beams of different wavelengths
JP3450651B2 (en) Polishing method and polishing apparatus using the same
TWI431704B (en) Offset correction techniques for positioning substrates
TWI837057B (en) Thickness measurement of substrate using color metrology
JP2004006692A (en) Chemimechanical polishing apparatus and its control method
CN111174716B (en) Epitaxial layer thickness testing device and method
TW200908196A (en) Methods and apparatus for finding a substrate notch center
US8339594B2 (en) Method for measuring semiconductor wafer profile and device for measuring the same used therefor
JP2004119673A (en) Method and device for measuring warpage of semiconductor wafer
KR20220123069A (en) Film thickness estimation from machine learning based processing of substrate images
JP2005005608A (en) Teaching apparatus for substrate transfer robot and teaching method
US20230178359A1 (en) Wafer manufacturing method and grinding apparatus
JP2015185648A (en) Positional deviation detection method, positional deviation detection device, drawing device and substrate examination device
JPH08240413A (en) Film thickness measuring device and polishing device
JP2006010466A (en) Method and apparatus for measuring flatness of board
JP2997360B2 (en) Positioning device
TWI830864B (en) Thickness measurement of substrate using color metrology
JP2009250802A (en) Thickness measuring method for wafer
JP2009262239A (en) Grinder for plate form object and plate thickness calculating method
TW202027910A (en) Residue detection using a luminance histogram
TW202249137A (en) Displacement measurements in semiconductor wafer processing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070627

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070724