【0001】
【発明の属する技術分野】
本発明は、高密度磁気記録に適する磁気記録媒体に関し、特に垂直磁気記録用のディスク状磁気記録媒体に関する。
【0002】
【従来の技術】
現在実用化されている磁気ディスク装置は、面内磁気記録方式を採用している。ディスク基板面と平行な方向に磁化し易い面内磁気記録媒体に基板と平行な面内磁区を高密度に形成することが技術課題となっている。
【0003】
この方式で面記録密度、特に線記録密度を伸ばすためには、面内磁気記録媒体の保磁力を向上するとともに記録磁性膜の厚さを低減することが必要である。しかしながら保磁力が4kOeを超えると、磁気ヘッドによる記録が困難になり、また磁性膜の厚さがCo合金系磁性膜では15nm以下になると熱揺らぎのために記録磁化強度が時間の経過につれて減少する問題が発生する。面内記録方式は、隣接する記録ビットの磁化が互いに向あっており境界に幅をもった磁化遷移領域が形成されるという本質的な問題があるため、主として前記の理由が原因で200Gb/in2以上の面記録密度を実現するためには、技術的な困難が予想されている。
【0004】
垂直磁気記録方式は薄膜媒体の膜面に垂直に磁化を形成する方式で、記録原理や媒体ノイズの発現機構が従来の面内磁気記録媒体の場合とは異なる。垂直磁気記録方式は隣接する磁化が反平行になるために、本質的に高密度磁気記録に適した方式として注目され、垂直磁気記録に適した媒体の構造などが提案されている。
【0005】
垂直磁気記録方式には単層の垂直記録層を用いる方式と垂直記録層に軟磁性下地層を設ける方式がある。軟磁性下地層を持つ2層垂直磁気記録媒体、特に垂直磁気記録媒体として、パーマロイなどの軟磁性層からなる裏打層上にCo−Cr系合金からなる垂直記録層を設けた垂直磁気記録媒体は、例えば、非特許文献1に開示されている。
【0006】
この軟磁性層を有する2層垂直記録媒体は、単磁極型ヘッドと組合わせることにより、軟磁性下地層を持たない単層垂直磁気記録媒体に比べてほほ2倍の信号強度が得られるため、効率のよい記録再生ができるという特徴があるが、一方、2層膜垂直記録媒体においては、信号記録後に媒体を回転させているだけで、時間とともに減磁して、信号強度が減衰してしまう(減磁現象)という問題点がある。
【0007】
この減磁現象は、媒体が回転する際に、地磁気などの外部磁界の影響により軟磁性下地層の磁化の向きが容易に変化して、強い垂直磁界を発生する磁壁が移動することにより、垂直磁気記録層の記録情報が消去されるためと考えられている。
【0008】
また、この磁壁から発生する磁界は、スパイクノイズと呼ばれる媒体ノイズを大きくする原因ともなる。2層垂直磁気記録媒体を用いる垂直磁気記録方式により高密度磁気記録が可能な磁気記憶装置を実用化するためには、このような媒体ノイズの低減が不可欠である。
【0009】
媒体ノイズは、垂直記録層と軟磁性層の双方から発生しており、特に軟磁性層から発生するスパイク状のノイズ(スパイクノイズ)が問題となっていた。このようなノイズの例も、例えば非特許文献1に開示されている。
【0010】
スパイク状のノイズ(スパイクノイズ)の問題に対応するために、軟磁性層の下部に硬磁性ピンニング層を形成する方法が、例えば非特許文献2に開示されている。また、硬磁性ピンニング層を使用した3層構造の垂直磁気記録媒体が例えば、特許文献1あるいは特許文献2に開示されている。
【0011】
さらに、基板と軟磁性下地層との間に反強磁性層または強磁性層を配置し、さらに軟磁性層を2層以上に多層化し、それぞれの軟磁性層の間に非磁性層を挟んで、軟磁性層同士を反強磁性結合させることにより、軟磁性下地層のトータルの厚みを確保しながら、外部磁界に対して安定にすべく交換結合磁界も確保する方法が、例えば特許文献3に開示されている。
【0012】
【非特許文献1】
IEEE Transaction on Magnetics, Vol.MAG−20, No.5, September 1984, pp.663−668, ”Crucial Points in Perpendicular Recording”
【非特許文献2】
日本応用磁気学会誌,Vol.21, Supplement No.S1, pp.104−108,“3層垂直媒体の高S/N化及び記録信号の安定性”
【特許文献1】
特開平5−258274号公報
【特許文献2】
特開平7−129946号公報
【特許文献3】
特開2001−155322号公報
【0013】
【発明が解決しようとする課題】
上述した非特許文献1、特許文献1あるいは特許文献2に開示されている磁気記録媒体によれば、硬磁性ピンニング層により軟磁性下地層の磁区は単磁区化し、減磁現象やスパイクノイズの原因となる磁壁が生じない。ところで、2層垂直媒体と単磁極型の記録ヘッドとを組み合わせた磁気記録系では、記録ヘッドの記録効率をあげるために、記録ヘッドから漏洩する磁束の記録ヘッドへの速やかな回帰を促す必要があり、軟磁性下地層の厚さは記録用の垂直記録層の厚さに比べて少なくとも数倍以上が必要とされている。このような理由で軟磁性下地層の厚みを大きくした場合、硬磁性層と軟磁性層との間の交換結合磁界が小さくなりピンニング効果が小さくくなる。その結果、外部磁界に対して軟磁性層の磁化方向が変動する現象が生じ、磁壁の発生によって垂直記録層の信号劣化やスパイクノイズが発生するという問題点があった。
【0014】
また、前記のような問題点を解決するため、特許文献3には、軟磁性層の磁化方向(磁化容易軸方向)がディスク基板の円周方向に向くことが開示されている。また、上述した垂直磁気記録用の記録ヘッドは、主に単磁極ヘッドが使われており、この単磁極ヘッドは、ディスクの記録層を磁化するための磁界を出す主磁極と、主磁極から出た磁界が戻るための補助磁極とがあり、それぞれディスクの円周方向に数μmの距離で前後して配置される。主磁極から出た磁界は、記録層下にある軟磁性下地層を通って補助磁極に戻る。
【0015】
従って、軟磁性下地層は磁束が通りやすい方が、つまり、下地層の透磁率が大きい方が記録するときの効率が高くなる。また、磁性体(軟磁性体)には磁化容易軸と磁化困難軸があり、高周波磁界では、透磁率は磁化困難軸方向の方が磁化容易軸方向より大きくなる。従って、軟磁性下地層の磁化容易軸がディスク円周方向を向くと、円周方向の透磁率は相対的に低くなり、記録時のヘッドからの磁束が下地層を通りにくくなるため、記録効率が落ちることになる。
【0016】
これを改善する方法は、上述したように特許文献3に開示されているが、しかしながら、特許文献3に開示されている垂直磁気記録媒体によれば軟磁性層の円周方向の透磁率が小さくなるため、記録再生効率が悪くなるという問題点があった。
【0017】
【課題を解決するための手段】
上述した問題点を解決するために本発明は、非磁性基板上に少なくとも硬磁性層、軟磁性下地層、および記録層を有するディスク状磁気記録媒体であって、前記軟磁性下地層は非磁性層で互いに分離された2層以上の軟磁性下地層を含んで構成されており、前記非磁性層によって分離された軟磁性層は、隣接する軟磁性下地層に対して磁化容易軸が互いに反平行であり、前記磁化容易軸は前記非磁性基板の半径方向であることを特徴とするディスク状磁気記録媒体を提供する。
【0018】
また、上述した問題点を解決するために本発明は、 非磁性基板上に少なくとも反強磁性層、軟磁性下地層、および記録層を有するディスク状磁気記録媒体であって、前記軟磁性下地層は非磁性層で互いに分離された2層以上の軟磁性下地層を含んで構成されており、前記非磁性層によって分離された軟磁性下地層は、隣接する軟磁性下地層に対して磁化容易軸が互いに反平行であり、前記磁化容易軸は前記非磁性基板の半径方向であることを特徴とするディスク状磁気記録媒体を提供する。
【0019】
【発明の実施の形態】
本発明は、効率のよい記録再生ができるという2層垂直磁気記録媒体のメリットを確保しつつ、従来からの大きな問題となっていた垂直磁気記録層の減磁現象や、軟磁性下地層に固有のスパイクノイズを防ぐ方法を提供することにより、低ノイズ特性、記録ヘッドの高記録効率性を有する高密度記録密度を実現するための垂直磁気記録媒体を提供し、高密度記録再生装置の実現を容易にすることにある。
【0020】
基板と軟磁性下地層との間に強磁性層(または反強磁性層)を配置し、強磁性層(または反強磁性層)のピンニング効果によって軟磁性下地層の磁化容易軸方向をディスク状基板の半径方向に配向する。これによって円周方向の透磁率が大きくなり、記録効率が増す。
【0021】
さらに軟磁性層を2層以上に多層化し、それぞれの軟磁性層の間に非磁性層を挟んで、軟磁性下地層同士を反強磁性結合させることにより、軟磁性下地層のトータルの厚みを確保しながら、交換結合磁界をも確保することができる。これによって記録再生効率を確保しながら、軟磁性下地層の磁化方向が外部磁界に対して動きにくく、記録層の減磁現象やスパイクノイズの発生しない安定な媒体となる。
【0022】
図1及び図4を参照しながら、本発明によるディスク状磁気記録媒体(垂直磁気記録媒体)の一例の構造および作用について説明する。図1は本発明のディスク状磁気記録媒体(垂直磁気記録媒体)の一例の断面模式図、図4は図1に示したディスク状磁気記録媒体(垂直磁気記録媒体)の軟磁性層の磁化方向を示すA−A断面模式図、および図5は図1に示したディスク状磁気記録媒体(垂直磁気記録媒体)の軟磁性層の磁化方向を示すB−B断面模式図、および図6は図1に示したディスク状磁気記録媒体(垂直磁気記録媒体)の軟磁性層の磁化方向を示すC−C断面模式図である。
【0023】
本発明では、軟磁性下地層の基本構造として、記録ヘッドの記録効率を特に向上するために設ける軟磁性下地層13,15が互いに非磁性層14で分離されている構造を採用する。
【0024】
図1は、ピンニング層に硬磁性層を使用し、軟磁性下地層が2層の場合を示した。なお、本来は垂直記録層16上には保護層や潤滑剤が形成されるが、図面では省略してある。
【0025】
本発明では、図1、および図4に示すように、基板(ディスク)11と軟磁性下地層13との間に、全ての磁化の向き(磁化方向)42が基板11の半径方向(図4では外周向き)である硬磁性層12を配置することにより、硬磁性層12と軟磁性下地層13とを交換結合させる。これにより、図5に示すように軟磁性下地層13の磁化の向き(磁化方向)52を硬磁性層12と同じ向きで、かつ基板11の半径方向(図5では外周向き)に配向・固定することができる。その結果、軟磁性下地層13の磁区(磁壁)の発生を防止することができる。また基板11の周方向の硬磁性層12の透磁率を上げることができるため、単磁極ヘッドの主磁極−補助磁極間に相当する軟磁性下地層13の透磁率が大きくなり、高い記録再生効率が得られる。
【0026】
さらに、図1に示すように軟磁性下地層13を非磁性層14で互いに分離された2層以上の軟磁性下地層13、15という構成にすることにより、非磁性層14によって分離された軟磁性層13、15は、隣接する軟磁性下地層15、13に対して磁化方向を磁気エネルギー的に互いに反平行になるように反強磁性結合させ、図6に示すように軟磁性下地層15の磁化方向62を軟磁性下地層13と反対向きで、かつ基板の半径方向(図6では内周向き)に配向させる。
【0027】
反強磁性結合を得るためには、軟磁性下地層13、15および非磁性層14を適当な厚みに設定する必要がある。このような構成にすることにより、軟磁性下地層13,15のトータルの厚みを確保しながら硬磁性層12と軟磁性下地層13,15の間の交換結合磁界も確保でき、軟磁性下地層13,15の磁区(磁壁)の発生を防止することができるため、外部磁界に対して安定でスパイクノイズの発生がない垂直磁気記録媒体が得られる。
【0028】
次に図2を参照しながら、本発明のディスク状磁気記録媒体(垂直磁気記録媒体)の他の例の構造について説明する。図2はディスク状磁気記録媒体(垂直磁気記録媒体)の他の例の断面模式図である。図2には、ピンニング層に反強磁性層を使用し、軟磁性下地層が2層の場合を示した。
【0029】
図2に示すように、基板(ディスク)21と軟磁性下地層23との間に、全ての磁化方向が前記基板の半径方向(内周向きまたは外周向き)である反強磁性層22を配置することにより、反強磁性層22と軟磁性下地層23とを交換結合させる。これにより、軟磁性下地層23の磁化方向を反強磁性層22と反対向きで、かつ基板21の半径方向(内周向きまたは外周向き)に配向・固定することができる。
【0030】
その結果、軟磁性下地層の磁区(磁壁)の発生を防止することができる。またディスク基板の周方向の軟磁性下地層の透磁率を上げることができるため、単磁極ヘッドの主磁極−補助磁極間に相当する軟磁性下地層の透磁率が大きくなり、高い記録再生効率が得られる。
【0031】
さらに、軟磁性下地層を非磁性層24で互いに分離された2層以上の軟磁性下地層23、25という構成にすることにより、非磁性層24によって分離された軟磁性下地層23、25は、隣接する軟磁性下地層に対して磁化方向を磁気エネルギー的に互いに反平行になるように反強磁性結合させ、軟磁性下地層25の磁化方向を軟磁性下地層23と反対向きで、かつ基板21の半径方向(内周向きまたは外周向き)に配向させる。反強磁性結合を得るためには、軟磁性下地層23、25および非磁性層24を適当な厚みに設定する必要がある。
【0032】
このような構成にすることにより、軟磁性下地層のトータルの厚みを確保しなが反強磁性層と軟磁性下地層との間の交換結合磁界も確保でき、軟磁性下地層の磁区(磁壁)の発生を防止することができるため、外部磁界に対して安定でスパイクノイズの発生がない垂直磁気記録媒体が得られる。
【0033】
次に図3を参照しながら、本発明に関わる他の実施例を説明する。図3はその断面模式図である。図3には、ピンニング層に硬磁性層を使用し、軟磁性下地層が4層の場合を示した。
【0034】
図3に示すように、基板(ディスク)31と軟磁性下地層33との間に、全ての磁化方向が前記基板の半径方向(内周向きまたは外周向き)である硬磁性層32を配置することにより、硬磁性層32と軟磁性下地層33とを交換結合させる。これにより、軟磁性下地層33の磁化方向を硬磁性層32と反対向きで、かつ基板31の半径方向(内周向きまたは外周向き)に配向・固定することができる。その結果、軟磁性下地層の磁区(磁壁)の発生を防止することができる。また基板の31周方向の軟磁性下地層の透磁率を上げることができるため、単磁極ヘッドの主磁極−補助磁極間に相当する軟磁性下地層の透磁率が大きくなり、高い記録再生効率が得られる。
【0035】
さらに、軟磁性下地層33、35、37、39を非磁性層34、36、38で互いに分離された4層の構成にすることにより、非磁性層34、36、38によって分離された軟磁性下地層33、35、37、39は、隣接する軟磁性下地層に対して磁化方向を磁気エネルギー的に互いに反平行になるように反強磁性結合させ、かつ基板31の半径方向内周向き、または外周向きに配向させる。反強磁性結合を得るためには、軟磁性下地層33、35、37、39および非磁性層34、36、38を適当な厚みに設定する必要がある。このような構成にすることにより、軟磁性下地層のトータルの厚みを確保しながら前記硬磁性層と軟磁性層の間の交換結合磁界も確保でき、軟磁性下地層の磁区(磁壁)の発生を防止することができるため、外部磁界に対して安定でスパイクノイズの発生がない垂直磁気記録媒体が得られる。
【0036】
上述したように硬磁性層および反強磁性層および軟磁性下地層の磁化容易軸方向を基板の半径方向に配向させるためには、薄膜形成プロセス中もしくは形成後に、基板に対して半径方向の磁場を印加すれば良い。そのためには、成膜時にプレーナマグネトロンスパッタのターゲットからの漏れ磁界を半径方向に印加する方法や、成膜時に基板の内周あるいは外周にリング状磁石を配置し、基板の半径方向に磁界を印加する方法や、成膜後に基板の内周あるいは外周にリング状磁石を配置し、基板の半径方向に磁界を印加して熱処理を行う方法などあるが、いずれの方法でも良い。
【0037】
また、上述した垂直記録層の材料として、例えばCo−Pt、Fe−PtなどのCo系多結晶合金、あるいはCo,Co合金とPt,Pt合金からなる多結晶多層膜、あるいはCo,Co合金とPd,Pd合金からなる多結晶多層膜などが可能である。また、稀土類元素を含む非晶質膜からなる垂直記録層を用いることができる。
【0038】
硬磁性層の材料としては、例えばCo−Sm,Nd−Fe−Bなどの稀土類元素を含む非晶質膜、Co−Cr,Co−Cr−Ta,Co−PtなどのCo系合金、またはハードフェライト系などの酸化物などを用いることができる。
【0039】
反強磁性層の材料としては、Pt−Mn,Fe−Mn,Ni−Mn,NiO,などを用いることができる。
【0040】
軟磁性下地層の材料としては、例えばFe基のFe−Ni,Fe−Si,Fe−Al,Fe−Al−Si,Fe−Cr系合金、Ni基のNi−Fe,Ni−Mn系合金、Co基のCo−Nb,Co−Zr,Co−Fe系合金あるいはMO・Fe3O4(M=Fe,Mn,Ni,Co,Mg,Zn,Cd)で表されるソフトフェライトを用いることができる。この材料が非晶質もしくは微結晶の場合、その上に形成する垂直記録層の結晶粒も微細化しやすく、しかも強い垂直磁気異方性を付与させるために好適である。
【0041】
軟磁性下地層の間を分離する非磁性層の材料としては、例えばB,C,Mg,Al,Si,Ti,V,Cr,Cu,Zr,Nb,Mo,Ru,Hf,Ta,W,Auから選ばれた元素もしくはこれらの元素を主成分とする合金、Si3N4,BN,B4C,NiO,Al2O3,SiO2,CaO,ZrO2,MgOから選ばれた化合物もしくはこれらの化合物の混晶のいずれかを用いることができる。磁気記録の高周波記録特性を改善するたためには、非磁性材料として電気抵抗の高いB,C,Si,Si3N4,BN,B4C,NiO,Al2O3,SiO2,CaOから選ばれた材料もしくはこれらいずれかの材料を主成分とする混晶材料が適当である。
【0042】
【発明の効果】
本発明によれば、軟磁性下地層の磁区(磁壁)の発生を防止することができるため、外部磁界に対して安定で記録層の減磁現象がなくなり、また、スパイクノイズの発生がなくなるため、S/Nが大幅に改善され、高記録密度の磁気記録再生が可能なディスク状磁気記録媒体が得られ、また、この媒体を用いた装置の小型化や大容量化が容易になる。
【図面の簡単な説明】
【図1】本発明によるディスク状磁気記録媒体(垂直磁気記録媒体)の一例を示す断面模式図
【図2】本発明によるディスク状磁気記録媒体(垂直磁気記録媒体)の他の例を示す断面模式図
【図3】本発明によるディスク状磁気記録媒体(垂直磁気記録媒体)の他の例を示す断面模式図
【図4】軟磁性層の磁化方向を説明する断面模式図
【図5】軟磁性層の磁化方向を説明する断面模式図
【図6】軟磁性層の磁化方向を説明する断面模式図
【符号の説明】
11…基板、
12…硬磁性層、
13…軟磁性下地層、
14…非磁性層、
15…軟磁性下地層、
16…垂直記録層、
21…基板、
22…反強磁性層、
23…軟磁性下地層、
24…非磁性層、
25…軟磁性下地層、
26…垂直記録層、
31…基板、
32…硬磁性層、
33…軟磁性下地層、
34…非磁性層、
35…軟磁性下地層、
36…非磁性層、
37…軟磁性下地層、
38…非磁性層、
39…軟磁性下地層、
40…垂直記録層、
42…磁化の向き、
52…磁化の向き、
62…磁化の向き[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetic recording medium suitable for high-density magnetic recording, and more particularly to a disk-shaped magnetic recording medium for perpendicular magnetic recording.
[0002]
[Prior art]
Magnetic disk devices currently in practical use employ an in-plane magnetic recording system. It is a technical problem to form in-plane magnetic domains parallel to the substrate at high density on an in-plane magnetic recording medium which is easily magnetized in a direction parallel to the disk substrate surface.
[0003]
In order to increase the areal recording density, particularly the linear recording density, by this method, it is necessary to improve the coercive force of the longitudinal magnetic recording medium and to reduce the thickness of the recording magnetic film. However, when the coercive force exceeds 4 kOe, recording by the magnetic head becomes difficult, and when the thickness of the magnetic film becomes less than 15 nm in the case of a Co alloy magnetic film, the recording magnetization intensity decreases with time due to thermal fluctuation. Problems arise. The in-plane recording method has an essential problem that the magnetizations of adjacent recording bits face each other and a magnetic transition region having a width is formed at the boundary, and therefore, mainly due to the above-mentioned reason, 200 Gb / in2. Technical difficulties are expected to achieve the above areal recording density.
[0004]
The perpendicular magnetic recording method is a method in which magnetization is formed perpendicularly to the film surface of a thin film medium, and the recording principle and medium noise generating mechanism are different from those of the conventional longitudinal magnetic recording medium. The perpendicular magnetic recording method attracts attention as a method suitable for high-density magnetic recording because adjacent magnetizations are antiparallel, and a medium structure suitable for perpendicular magnetic recording has been proposed.
[0005]
The perpendicular magnetic recording method includes a method using a single perpendicular recording layer and a method in which a soft magnetic underlayer is provided on the perpendicular recording layer. A two-layer perpendicular magnetic recording medium having a soft magnetic underlayer, in particular, a perpendicular magnetic recording medium in which a perpendicular recording layer made of a Co—Cr alloy is provided on a backing layer made of a soft magnetic layer such as permalloy, For example, it is disclosed in Non-Patent Document 1.
[0006]
The two-layer perpendicular recording medium having this soft magnetic layer can provide almost twice the signal intensity as compared with a single-layer perpendicular magnetic recording medium having no soft magnetic underlayer by combining with a single pole type head. The feature is that efficient recording / reproduction can be performed. On the other hand, in the case of a two-layer perpendicular recording medium, the signal intensity is attenuated with time only by rotating the medium after signal recording, and the signal intensity is attenuated. (Demagnetization phenomenon).
[0007]
This demagnetization phenomenon occurs when the medium rotates, the direction of magnetization of the soft magnetic underlayer easily changes due to the influence of an external magnetic field such as terrestrial magnetism, and the domain wall that generates a strong perpendicular magnetic field moves, so that the perpendicular wall moves. It is considered that the information recorded on the magnetic recording layer is erased.
[0008]
In addition, the magnetic field generated from the domain wall causes an increase in medium noise called spike noise. In order to put into practical use a magnetic storage device capable of high-density magnetic recording by a perpendicular magnetic recording method using a two-layer perpendicular magnetic recording medium, it is essential to reduce such medium noise.
[0009]
The medium noise is generated from both the perpendicular recording layer and the soft magnetic layer. In particular, spike noise (spike noise) generated from the soft magnetic layer has been a problem. An example of such noise is also disclosed in Non-Patent Document 1, for example.
[0010]
For example, Non-Patent Document 2 discloses a method of forming a hard magnetic pinning layer below a soft magnetic layer in order to cope with the problem of spike noise (spike noise). Further, a three-layer perpendicular magnetic recording medium using a hard magnetic pinning layer is disclosed in, for example, Patent Document 1 or Patent Document 2.
[0011]
Further, an antiferromagnetic layer or a ferromagnetic layer is disposed between the substrate and the soft magnetic underlayer, and the soft magnetic layer is further multilayered into two or more layers, with a nonmagnetic layer sandwiched between each soft magnetic layer. For example, Patent Document 3 discloses a method in which the soft magnetic layers are antiferromagnetically coupled to each other to secure the total thickness of the soft magnetic underlayer and also secure the exchange coupling magnetic field to stabilize against the external magnetic field. It has been disclosed.
[0012]
[Non-patent document 1]
IEEE Transactions on Magnetics, Vol. MAG-20, No. 5, September 1984, pp. 146-64. 663-668, "Crucial Points in Perpendicular Recording"
[Non-patent document 2]
Journal of the Japan Society of Applied Magnetics, Vol. 21, Supplement No. 21; S1, pp. 104-108, "High S / N ratio of three-layer perpendicular medium and stability of recording signal"
[Patent Document 1]
JP-A-5-258274 [Patent Document 2]
Japanese Patent Application Laid-Open No. 7-129946 [Patent Document 3]
JP 2001-155322 A
[Problems to be solved by the invention]
According to the magnetic recording media disclosed in Non-Patent Document 1, Patent Document 1 or Patent Document 2 described above, the magnetic domain of the soft magnetic underlayer is converted into a single magnetic domain by the hard magnetic pinning layer, which causes demagnetization and spike noise. Does not occur. In a magnetic recording system combining a two-layer perpendicular medium and a single-pole type recording head, it is necessary to promptly return magnetic flux leaking from the recording head to the recording head in order to increase the recording efficiency of the recording head. In addition, the thickness of the soft magnetic underlayer is required to be at least several times larger than the thickness of the perpendicular recording layer for recording. When the thickness of the soft magnetic underlayer is increased for such a reason, the exchange coupling magnetic field between the hard magnetic layer and the soft magnetic layer is reduced, and the pinning effect is reduced. As a result, a phenomenon occurs in which the magnetization direction of the soft magnetic layer fluctuates with respect to an external magnetic field, and there is a problem that the generation of domain walls causes signal degradation and spike noise of the perpendicular recording layer.
[0014]
Further, in order to solve the above problems, Patent Document 3 discloses that the magnetization direction (the direction of the easy axis) of the soft magnetic layer is oriented in the circumferential direction of the disk substrate. The above-described recording head for perpendicular magnetic recording mainly uses a single-pole head. The single-pole head includes a main pole that outputs a magnetic field for magnetizing the recording layer of the disk, and a single-pole head that outputs a magnetic field. There are auxiliary magnetic poles for returning the magnetic field, which are arranged in front and back of the disk at a distance of several μm in the circumferential direction. The magnetic field from the main pole returns to the auxiliary pole through the soft magnetic underlayer below the recording layer.
[0015]
Therefore, the recording efficiency is higher when the soft magnetic underlayer easily passes the magnetic flux, that is, when the magnetic permeability of the underlayer is large. Further, a magnetic material (soft magnetic material) has an easy axis of magnetization and a hard axis of magnetization. In a high-frequency magnetic field, the permeability in the direction of the hard axis is larger than that in the direction of the easy axis. Therefore, when the axis of easy magnetization of the soft magnetic underlayer is oriented in the circumferential direction of the disk, the magnetic permeability in the circumferential direction becomes relatively low, and it becomes difficult for the magnetic flux from the head to pass through the underlayer during recording. Will fall.
[0016]
A method for improving this is disclosed in Patent Document 3 as described above. However, according to the perpendicular magnetic recording medium disclosed in Patent Document 3, the magnetic permeability of the soft magnetic layer in the circumferential direction is small. Therefore, there is a problem that the recording / reproducing efficiency is deteriorated.
[0017]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a disk-shaped magnetic recording medium having at least a hard magnetic layer, a soft magnetic underlayer, and a recording layer on a nonmagnetic substrate, wherein the soft magnetic underlayer is nonmagnetic. The soft magnetic layer separated by the non-magnetic layer has two or more soft magnetic underlayers separated from each other by a layer. The disk-shaped magnetic recording medium is parallel, and the easy axis is in a radial direction of the nonmagnetic substrate.
[0018]
According to another aspect of the present invention, there is provided a disk-shaped magnetic recording medium having at least an antiferromagnetic layer, a soft magnetic underlayer, and a recording layer on a nonmagnetic substrate. Is composed of two or more soft magnetic underlayers separated from each other by a nonmagnetic layer, and the soft magnetic underlayer separated by the nonmagnetic layer is easily magnetized with respect to the adjacent soft magnetic underlayer. The disk-shaped magnetic recording medium is provided, wherein the axes are antiparallel to each other, and the easy axis is in a radial direction of the nonmagnetic substrate.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention secures the merit of a two-layer perpendicular magnetic recording medium that enables efficient recording and reproduction, and also reduces the demagnetization phenomenon of the perpendicular magnetic recording layer, which has been a major problem in the past, and the soft magnetic underlayer. A perpendicular magnetic recording medium for realizing high density recording density with low noise characteristics and high recording efficiency of the recording head by providing a method for preventing spike noise of To make it easier.
[0020]
A ferromagnetic layer (or antiferromagnetic layer) is placed between the substrate and the soft magnetic underlayer, and the direction of the easy axis of the soft magnetic underlayer is shaped like a disk by the pinning effect of the ferromagnetic layer (or antiferromagnetic layer). Orient in the radial direction of the substrate. Thereby, the magnetic permeability in the circumferential direction increases, and the recording efficiency increases.
[0021]
Furthermore, the total thickness of the soft magnetic underlayer is increased by forming the soft magnetic layer into two or more layers, sandwiching a nonmagnetic layer between the soft magnetic layers, and antiferromagnetically coupling the soft magnetic underlayers. While securing, the exchange coupling magnetic field can also be secured. As a result, while the recording / reproducing efficiency is secured, the magnetization direction of the soft magnetic underlayer hardly moves with respect to an external magnetic field, and a stable medium free from demagnetization phenomenon and spike noise of the recording layer is obtained.
[0022]
The structure and operation of an example of a disk-shaped magnetic recording medium (perpendicular magnetic recording medium) according to the present invention will be described with reference to FIGS. FIG. 1 is a schematic cross-sectional view of an example of a disk-shaped magnetic recording medium (perpendicular magnetic recording medium) according to the present invention, and FIG. 4 is a magnetization direction of a soft magnetic layer of the disk-shaped magnetic recording medium (perpendicular magnetic recording medium) shown in FIG. FIG. 5 is a schematic cross-sectional view taken along the line AA, FIG. 5 is a schematic cross-sectional view taken along the line BB showing the magnetization direction of the soft magnetic layer of the disk-shaped magnetic recording medium (perpendicular magnetic recording medium) shown in FIG. FIG. 2 is a schematic CC sectional view showing the magnetization direction of a soft magnetic layer of the disk-shaped magnetic recording medium (perpendicular magnetic recording medium) shown in FIG.
[0023]
In the present invention, as the basic structure of the soft magnetic underlayer, a structure in which the soft magnetic underlayers 13 and 15 provided to particularly improve the recording efficiency of the recording head are separated from each other by the nonmagnetic layer 14 is employed.
[0024]
FIG. 1 shows a case where a hard magnetic layer is used as a pinning layer and two soft magnetic underlayers are used. Although a protective layer and a lubricant are originally formed on the perpendicular recording layer 16, they are omitted in the drawings.
[0025]
In the present invention, as shown in FIG. 1 and FIG. 4, between the substrate (disk) 11 and the soft magnetic underlayer 13, all magnetization directions (magnetization directions) 42 are set in the radial direction of the substrate 11 (FIG. In this case, the hard magnetic layer 12 (which faces the outer periphery) is exchange-coupled between the hard magnetic layer 12 and the soft magnetic underlayer 13. Thereby, as shown in FIG. 5, the magnetization direction (magnetization direction) 52 of the soft magnetic underlayer 13 is oriented and fixed in the same direction as that of the hard magnetic layer 12 and in the radial direction of the substrate 11 (outer periphery in FIG. 5). can do. As a result, generation of magnetic domains (domain walls) of the soft magnetic underlayer 13 can be prevented. In addition, since the magnetic permeability of the hard magnetic layer 12 in the circumferential direction of the substrate 11 can be increased, the magnetic permeability of the soft magnetic underlayer 13 corresponding to between the main magnetic pole and the auxiliary magnetic pole of the single-pole head increases, resulting in high recording and reproducing efficiency. Is obtained.
[0026]
Further, as shown in FIG. 1, by forming the soft magnetic underlayer 13 as two or more soft magnetic underlayers 13 and 15 separated from each other by the nonmagnetic layer 14, the soft magnetic underlayer 13 is separated by the nonmagnetic layer 14. The magnetic layers 13 and 15 are antiferromagnetically coupled to the adjacent soft magnetic underlayers 15 and 13 so that their magnetization directions are antiparallel to each other in terms of magnetic energy. As shown in FIG. Is oriented in the opposite direction to the soft magnetic underlayer 13 and in the radial direction of the substrate (inward in FIG. 6).
[0027]
In order to obtain antiferromagnetic coupling, it is necessary to set the soft magnetic underlayers 13 and 15 and the nonmagnetic layer 14 to appropriate thicknesses. With such a configuration, the exchange coupling magnetic field between the hard magnetic layer 12 and the soft magnetic underlayers 13 and 15 can be secured while the total thickness of the soft magnetic underlayers 13 and 15 is secured. Since the generation of magnetic domains (domain walls) 13 and 15 can be prevented, a perpendicular magnetic recording medium which is stable against an external magnetic field and free from spike noise can be obtained.
[0028]
Next, the structure of another example of the disk-shaped magnetic recording medium (perpendicular magnetic recording medium) of the present invention will be described with reference to FIG. FIG. 2 is a schematic sectional view of another example of a disk-shaped magnetic recording medium (perpendicular magnetic recording medium). FIG. 2 shows a case where an antiferromagnetic layer is used as the pinning layer and the soft magnetic underlayer has two layers.
[0029]
As shown in FIG. 2, an antiferromagnetic layer 22 having all magnetization directions in the radial direction (inward or outward) of the substrate is disposed between the substrate (disk) 21 and the soft magnetic underlayer 23. As a result, the antiferromagnetic layer 22 and the soft magnetic underlayer 23 are exchange-coupled. Thereby, the magnetization direction of the soft magnetic underlayer 23 can be oriented and fixed in the opposite direction to the antiferromagnetic layer 22 and in the radial direction (inner or outer circumference) of the substrate 21.
[0030]
As a result, generation of magnetic domains (domain walls) of the soft magnetic underlayer can be prevented. Further, since the magnetic permeability of the soft magnetic underlayer in the circumferential direction of the disk substrate can be increased, the magnetic permeability of the soft magnetic underlayer corresponding to between the main magnetic pole and the auxiliary magnetic pole of the single-pole head is increased, and high recording and reproducing efficiency is improved. can get.
[0031]
Further, by forming the soft magnetic underlayer as two or more soft magnetic underlayers 23 and 25 separated from each other by the nonmagnetic layer 24, the soft magnetic underlayers 23 and 25 separated by the nonmagnetic layer 24 can be formed. Anti-ferromagnetic coupling with the adjacent soft magnetic underlayer such that the magnetization directions are antiparallel to each other in terms of magnetic energy, the magnetization direction of the soft magnetic underlayer 25 is opposite to that of the soft magnetic underlayer 23, and The substrate 21 is oriented in the radial direction (inner or outer circumference). In order to obtain antiferromagnetic coupling, it is necessary to set the soft magnetic underlayers 23 and 25 and the nonmagnetic layer 24 to appropriate thicknesses.
[0032]
With such a configuration, the exchange coupling magnetic field between the antiferromagnetic layer and the soft magnetic underlayer can be secured while securing the total thickness of the soft magnetic underlayer, and the magnetic domain (domain wall) of the soft magnetic underlayer can be secured. ) Can be prevented, so that a perpendicular magnetic recording medium that is stable against an external magnetic field and free of spike noise can be obtained.
[0033]
Next, another embodiment according to the present invention will be described with reference to FIG. FIG. 3 is a schematic sectional view thereof. FIG. 3 shows a case where a hard magnetic layer is used as the pinning layer and the soft magnetic underlayer has four layers.
[0034]
As shown in FIG. 3, a hard magnetic layer 32 whose magnetization direction is the radial direction (inner or outer circumference) of the substrate is disposed between a substrate (disk) 31 and a soft magnetic underlayer 33. As a result, the hard magnetic layer 32 and the soft magnetic underlayer 33 are exchange-coupled. Thereby, the magnetization direction of the soft magnetic underlayer 33 can be oriented and fixed in the opposite direction to the hard magnetic layer 32 and in the radial direction (inner or outer circumference) of the substrate 31. As a result, generation of magnetic domains (domain walls) of the soft magnetic underlayer can be prevented. Further, since the magnetic permeability of the soft magnetic underlayer in the 31 circumferential direction of the substrate can be increased, the magnetic permeability of the soft magnetic underlayer corresponding to between the main pole and the auxiliary magnetic pole of the single pole head becomes large, and high recording / reproducing efficiency is improved. can get.
[0035]
Further, by forming the soft magnetic underlayers 33, 35, 37, and 39 into four layers separated from each other by the nonmagnetic layers 34, 36, and 38, the soft magnetic layers separated by the nonmagnetic layers 34, 36, and 38 can be used. The underlayers 33, 35, 37, and 39 are antiferromagnetically coupled to adjacent soft magnetic underlayers so that their magnetization directions are antiparallel to each other in terms of magnetic energy. Or it is oriented in the outer peripheral direction. In order to obtain antiferromagnetic coupling, it is necessary to set the soft magnetic underlayers 33, 35, 37, 39 and the nonmagnetic layers 34, 36, 38 to appropriate thicknesses. With such a configuration, the exchange coupling magnetic field between the hard magnetic layer and the soft magnetic layer can be ensured while the total thickness of the soft magnetic underlayer is ensured. Therefore, a perpendicular magnetic recording medium that is stable against an external magnetic field and free from spike noise can be obtained.
[0036]
As described above, the direction of the easy axis of magnetization of the hard magnetic layer, the antiferromagnetic layer, and the soft magnetic underlayer is oriented in the radial direction of the substrate. May be applied. For this purpose, a method of applying a leakage magnetic field from a target of a planar magnetron sputter in the radial direction at the time of film formation, or disposing a ring-shaped magnet on the inner or outer periphery of the substrate at the time of film formation and applying a magnetic field in the radial direction of the substrate Or a method in which a ring-shaped magnet is arranged on the inner or outer periphery of the substrate after film formation, and a magnetic field is applied in the radial direction of the substrate to perform heat treatment, but any method may be used.
[0037]
As a material for the above-mentioned perpendicular recording layer, for example, a Co-based polycrystalline alloy such as Co-Pt or Fe-Pt, a polycrystalline multilayer film composed of Co, Co alloy and Pt, Pt alloy, or a Co, Co alloy is used. A polycrystalline multilayer film made of Pd or a Pd alloy can be used. Further, a perpendicular recording layer made of an amorphous film containing a rare earth element can be used.
[0038]
As a material of the hard magnetic layer, for example, an amorphous film containing a rare earth element such as Co-Sm or Nd-Fe-B, a Co-based alloy such as Co-Cr, Co-Cr-Ta, or Co-Pt, or An oxide such as a hard ferrite can be used.
[0039]
As a material of the antiferromagnetic layer, Pt-Mn, Fe-Mn, Ni-Mn, NiO, or the like can be used.
[0040]
Examples of the material for the soft magnetic underlayer include Fe-based alloys of Fe-Ni, Fe-Si, Fe-Al, Fe-Al-Si, and Fe-Cr, Ni-based Ni-Fe, Ni-Mn-based alloys, and the like. A soft ferrite represented by a Co-based Co-Nb, Co-Zr, Co-Fe alloy or MO.Fe3O4 (M = Fe, Mn, Ni, Co, Mg, Zn, Cd) can be used. When this material is amorphous or microcrystalline, the crystal grains of the perpendicular recording layer formed thereon are easily miniaturized, and it is suitable for imparting strong perpendicular magnetic anisotropy.
[0041]
Examples of the material of the nonmagnetic layer that separates the soft magnetic underlayers include B, C, Mg, Al, Si, Ti, V, Cr, Cu, Zr, Nb, Mo, Ru, Hf, Ta, W, An element selected from Au or an alloy containing these elements as a main component, a compound selected from Si3N4, BN, B4C, NiO, Al2O3, SiO2, CaO, ZrO2, MgO, or a mixed crystal of these compounds; Can be used. In order to improve the high-frequency recording characteristics of magnetic recording, a material selected from B, C, Si, Si3N4, BN, B4C, NiO, Al2O3, SiO2, and CaO having high electric resistance as a nonmagnetic material, or any of these materials A mixed crystal material whose main component is a material is suitable.
[0042]
【The invention's effect】
According to the present invention, the occurrence of magnetic domains (domain walls) in the soft magnetic underlayer can be prevented, so that the recording layer is stable against an external magnetic field and the demagnetization phenomenon of the recording layer is eliminated, and the generation of spike noise is eliminated. , S / N is greatly improved, and a disk-shaped magnetic recording medium capable of high-density magnetic recording / reproducing can be obtained, and the size and capacity of an apparatus using this medium can be easily reduced.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of a disk-shaped magnetic recording medium (perpendicular magnetic recording medium) according to the present invention. FIG. 2 is a cross-sectional view showing another example of a disk-shaped magnetic recording medium (perpendicular magnetic recording medium) according to the present invention. FIG. 3 is a schematic cross-sectional view showing another example of the disk-shaped magnetic recording medium (perpendicular magnetic recording medium) according to the present invention. FIG. 4 is a schematic cross-sectional view illustrating the magnetization direction of a soft magnetic layer. FIG. 6 is a schematic cross-sectional view illustrating a magnetization direction of a magnetic layer. FIG. 6 is a schematic cross-sectional view illustrating a magnetization direction of a soft magnetic layer.
11 ... substrate,
12: Hard magnetic layer,
13 ... Soft magnetic underlayer,
14 ... non-magnetic layer,
15 ... Soft magnetic underlayer,
16: perpendicular recording layer,
21 ... substrate,
22 ... Antiferromagnetic layer,
23 ... Soft magnetic underlayer,
24 ... Non-magnetic layer,
25 ... Soft magnetic underlayer,
26: perpendicular recording layer,
31 ... substrate,
32 ... hard magnetic layer,
33 ... Soft magnetic underlayer,
34 ... nonmagnetic layer,
35 ... Soft magnetic underlayer,
36 ... non-magnetic layer,
37 ... Soft magnetic underlayer,
38: non-magnetic layer,
39 ... Soft magnetic underlayer,
40: perpendicular recording layer,
42 ... magnetization direction,
52 ... magnetization direction,
62: Direction of magnetization