JP2004117065A - 偏波モード分散測定装置 - Google Patents

偏波モード分散測定装置 Download PDF

Info

Publication number
JP2004117065A
JP2004117065A JP2002277981A JP2002277981A JP2004117065A JP 2004117065 A JP2004117065 A JP 2004117065A JP 2002277981 A JP2002277981 A JP 2002277981A JP 2002277981 A JP2002277981 A JP 2002277981A JP 2004117065 A JP2004117065 A JP 2004117065A
Authority
JP
Japan
Prior art keywords
polarization
polarization mode
light
mode dispersion
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002277981A
Other languages
English (en)
Inventor
Yutaka Mimura
味村 裕
Kazuhiro Ikeda
池田 和浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2002277981A priority Critical patent/JP2004117065A/ja
Publication of JP2004117065A publication Critical patent/JP2004117065A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】被測定物の偏波モード分散を正確に測定することができる偏波モード分散測定装置を提供する。
【解決手段】入射光52を生成する光源54と、前記入射光52を偏光させ入射用偏光56を出力する偏波コントローラ58と、前記入射用偏光56が前記被測定物60を透過した透過光62の偏波モードを解析する偏波解析器64と、前記光源54、前記偏波コントローラ58および前記偏波解析器64を制御するコントローラ66とからなり、前記偏波コントローラ58は、偏光子58aとファラデー回転子58bが配置されている。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、信号光が伝播される際に発生する偏波モード分散(PMD;Polarization−mode dispersion)の測定装置に関するものである。
【0002】
【従来の技術】
近年の光伝送システムの進展、普及に伴い、システムの伝送容量を増大させるために、波長分割多重(WDM)方式による多チャンネル化が進められている。
【0003】
この多チャンネル化と並んで、伝送容量を増大させる方法としては、各チャンネルの光パルスのビットレートを増大させる方法があり、現在では、10Gb/sの導入が進んでいる。そして、最近では、今後実用化が期待されている40Gb/sの導入が展望されている。
【0004】
このようなハイビットレートの光パルス伝送路においては、その伝送品質の劣化を招くいくつかの要素がある。
【0005】
その一つが、偏波モード分散である。これは、光パルスの伝送路である光ファイバの中でランダムに発生する複屈折に基因して、伝送されている光パルスにおいて、本来は縮退しているべき直交偏波モードが分離してパルス幅を拡大させるという現象である。このような現象を発現した光パルスは、正しい光信号としての機能を発揮しないことになる。
【0006】
従って、最近の光ファイバでは、この偏波モード分散を測定し、小さくする努力がなされている。しかしながら、その値は、せいぜい0.25ps/km1/2程度である。そして、そのような光ファイバを用いて40Gb/sのビットレートを採用した場合、光伝送が可能な距離は、長くても100km程度であり、それ以上の距離の光伝送を実現することは出来ない。
【0007】
また、これまでに敷設されてきた古い光ファイバの偏波モード分散は、1ps/km1/2程度であるため、ビットレートを10Gb/sにするとその光伝送可能な距離は170km程度であり、ビットレート40Gb/sにすると10km程度までしか光伝送を実現することができない。
【0008】
このように、既設の光ファイバを用いた光伝送システムにおいて、ビットレートを10Gb/sに高める場合や、次世代光伝送システム用に新たな光ファイバを敷設してそのビットレートを40Gb/s以上で運転しようとする場合には、偏波モード分散の影響が顕著に現れ、その結果、伝送容量が大きく、実用的な光伝送システムの構築が困難になる。
【0009】
このため、偏波モード分散を補償するために、正確に偏波モード分散の測定を行うことが出来る測定装置が提供されているが、ここで代表的な装置を例示し、その機能について説明する。
【0010】
特開2001−337008号公報に記載されている装置について説明する(特許文献1参照)。図6は、この装置の構成概略図であり、入射された測定対象光は、この装置を伝播されると、偏波モード分散の値が得られるというものである。
【0011】
この偏波モード分散測定装置は、可変波長光源10が可変波長光を生成して、偏波コントローラ20に可変波長光が供給される。可変波長光源10は、コントローラ50からの制御に基づき、波長を二種類に変更する。二種類の波長に対応する光角周波数をω、ω+Δωとする。
【0012】
偏波コントローラ20において、可変波長光は、偏光子22により直線偏光となる。直線偏光は、二分の一波長板26によって、偏波モードが変更される。なお、直線偏光を四分の一波長板24によって、円偏光あるいは楕円偏光にしてから、二分の一波長板26によって、偏波モードを変更してもよい。二分の一波長板26は、コントローラ50からの信号に基づき、偏波モードを、三種類(例えば、0度、45度、90度)に変更する。
【0013】
二分の一波長板26によって、偏波モードを変更された光は、光ファイバなどのDUT(Device Under Test:被測定物)30に供給される。DUT30を透過した光は、偏波解析器40に入力される。
【0014】
偏波解析器40に入力された光から、DUT30のジョーンズ行列Jを求める。ジョーンズ行列Jは、可変波長光源10の生成する光の光角周波数の関数であるので、ジョーンズ行列Jは、J(ω)、J(ω+Δω)の二種が求められる。また、ジョーンズ行列Jは3自由度を有する。よって、二分の一波長板26により変更された三種類の偏波モードの光がDUT30を透過した透過光から、J(ω)、J(ω+Δω)を求める。
【0015】
Δωが微小ならば、J(ω)、J(ω+Δω)の固有値は共通である。そこで、Δωを微小にとり、J(ω)、J(ω+Δω)の固有値が共通であることを利用して、J(ω)、J(ω+Δω)、Δωから固有値を求める。ジョーンズ行列の固有値から、固有ジョーンズ行列が求められる。固有ジョーンズ行列から偏波モード分散がわかる。
【0016】
【特許文献1】特開2001−337008号公報
【0017】
【発明が解決しようとする課題】
しかしながら、従来の偏波モード分散測定装置では、偏波コントローラが、偏光子、四分の一波長板、二分の一波長板から構成され、入射された光の偏波モードを制御(例えば、直線偏光を円偏光または楕円偏光にする。)するために、四分の一波長板や二分の一波長板を物理的に回転させる必要がある。このため、偏波モードを変更するために多大な時間を必要とするため、偏波モード分散自体が変化してしまう。この結果、精度良い偏波モードの測定が出来ないという問題があった。
【0018】
【課題を解決するための手段】
本発明の第1の態様によれば、入射光を生成する光源と、前記入射光を偏光させ入射用偏光を出力する偏波コントローラと、前記入射用偏光が前記被測定物を透過した透過光の偏波モードを解析する偏波解析器と、前記光源、前記偏波コントローラおよび前記偏波解析器を制御するコントローラとからなり、前記偏波コントローラは、少なくとも一つ以上のファラデー回転子が配置されているものである。
【0019】
上記のように構成された偏波モード分散測定装置によれば、光源により生成された入射光は、ファラデー回転子を電流制御することによって偏波モードが変更される。このため、入射光の偏波モードの変更は短時間で可能であり、入射光の偏波モードを変化させずに入射用偏光を生成することができる。
【0020】
また、複数のファラデー回転子を配置することにより、各ファラデー回転子での制御範囲が小さくなるので、偏波モードの変更を精度良く行うことが出来る。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して説明する。
【0022】
図1は本発明の第一の実施形態に係わる構成を示す図である。
本装置例の分散モード補償装置50は、入射光52を生成する光源54と、前記入射光52を偏光させ入射用偏光56を出力する偏波コントローラ58と、前記入射用偏光56が被測定物60(以下DUT60と称する。)を透過した透過光62の偏波モードを解析する偏波解析器64と、前記光源54、前記偏波コントローラ58および前記偏波解析器64に接続され、それぞれの制御を行うコントローラ66とからなる。
【0023】
前記偏波コントローラ58は、一つの偏光子58aと、一つのファラデー回転子58bが順に配置されて構成されている。さらに、偏波解析器64は、ストークスアナライザで構成されている。
【0024】
なお、前記光源54と前記偏波コントローラ58は、PMF(Polarization maintaining Fiber)もしくはSMF(Single Mode Fiber)等の光ファイバで接続されている。偏光子での挿入損失を考慮すると、PMFを使用した方が好ましい。PMFの場合、光源の偏光方向と、PMFの偏光保持方向と、偏光子の透過偏光方向が同方向となるように配置される。
【0025】
この偏波モード分散測定装置は、光源54で生成された可変波長光がPMFを伝播し、偏波コントローラ58に供給される。偏波コントローラ58では、偏光子58a、ファラデー回転子58bの順に伝播され、偏波モードが変更される。ファラデー回転子58bでは、偏波モードが、二種類(例えば、0度、45度)変更される。この際、ファラデー回転子58bは、電流により制御されるが、その値は、0〜100mA程度であり、消費電力は少ない。
【0026】
L. Nelsonらのグループはミューラマトリクス法(MMM)という測定法によって測定している(R. M. Jopson, Photon. Tech. Lett., 11(9), p1153, 1999 & L. E.Nelson, Photon. Tech. Lett., 11(12), p1614, 1999)。
【0027】
まずある角周波数ωの伝送媒体のミューラマトリクスを求める。出力SOPは、数1となる。
【数1】
Figure 2004117065
【0028】
また、透過媒体のミューラマトリクス(3次元回転変換行列)は数2から求めることができる。
【数2】
Figure 2004117065
【0029】
このまま入射偏光を各ストークス基底としても良いのだが、測定した2つの入射偏光で透過媒体のミューラマトリクス(3次元回転変換行列)を求めることができる。式(1)から、
【数3】
Figure 2004117065
となるから、
【数4】
Figure 2004117065
(4)
となり、さらに、
【数5】
Figure 2004117065
(5)
であるから、結局、入射偏光だけで出力SOPが求まり、後は式(2)から透過媒体のミューラマトリクス(3次元回転変換行列)が求まる。ただし、
【数6】
Figure 2004117065
(6)
のとき、k=1(最小)となるため、ノイズを拡大せず最良の精度が得られる。
【0030】
次に、PMDベクトルの求め方を解説する。
入射光の周波数を変えると、出力SOPは1次近似の範囲ではPSPを軸として回転する。PMDベクトルと出力SOPを用いてこの関係は、
【数7】
Figure 2004117065
(7)
と表される(下付きはω微分を表す)。これを透過媒体のミューラマトリクス(3次元回転変換行列)を用いて表すと、小さな回転φに対して、
【数8】
Figure 2004117065
(8)
となるので、
【数9】
Figure 2004117065
(9)
である。ここで幾何的に考えて、微分ではなく2つの波長における出力SOPの差からその回転の軸と角度を求める。
【0031】
【数10】
Figure 2004117065
まず、2波長における出力SOPの間の回転変換を表すミューラマトリクスを求める。
また、以下のパラメータ
【数11】
Figure 2004117065
を用いると、一般の回転群の3次元表示は、
【数12】
Figure 2004117065
(12)
であるから、式(10)により求めたミューラマトリクスの回転軸と回転角は以下の式(13)〜式(16)から求まる。
【数13】
Figure 2004117065
(13)
【数14】
Figure 2004117065
(14)
【数15】
Figure 2004117065
(15)
【数16】
Figure 2004117065
(16)
【0032】
従って、下式(17)のPMDベクトルは、
【数17】
Figure 2004117065
(17)
【数18】
Figure 2004117065
および、
【数19】
Figure 2004117065
(19)
と求まる。なお、回転角φがπより大きくなった場合には、φ=2π−φとみなされてしまい、正確なDGDが算出されない。このためφはπ以下でなければならない。
【0033】
マトリクスの固有値からも回転軸のベクトルが求められるが,ストークスパラメータ測定値に誤差がある場合,固有値が常に回転軸になるとは限らないため,回転行列であると仮定した解析である幾何的な導出のほうが正確である。
【0034】
ここで、入射偏波の1つがS=1(0度)とは限らない場合、ストークス基底sunitを入射偏波sinに変換する行列Cを考えると、
【数20】
Figure 2004117065
(20)
となり、入射を基底と仮定して計算で求められるマトリクスはこのR’である。このR’について、測定から
【数21】
Figure 2004117065
(21)
として求められるため、
【数22】
Figure 2004117065
(22)
上式(22)の場合には、R’Δ=RΔとなる。
【0035】
式(22)とすると、Cをポアンカレ球上の球形を変えない何らかの1対1変換であるとして、入射偏波1と2は90度程度の角度をなしているだけでよい。つまり、入射偏波SinはS=1(0度)である必要はないが、ωとω+ΔωでCが同じである必要があり、また入射偏波1と2のなす角度は、直線偏波の場合で90度程度である必要がある。
【0036】
次に、偏波モード分散測定器の他実施例について説明する。
【0037】
図2は本発明の第二の実施形態に係わる構成を示す図である。
本装置例の分散モード補償装置80は、図1の構成と比較すると、位相子84が偏波コントローラ58とDUT60の間に配置させる以外は、同一の構成である。このため位相子84以外の説明は省略する。なお、図1と同一の部分には同一番号を付して説明する。
【0038】
位相子84は、偏波コントローラ58とDUT60の間に配置され、1/4波長板84a、ファラデー回転子84b、1/4波長板84cが、偏波コントローラ58側から順に配置されている。
【0039】
このように、位相子84を配置させた構成では、偏波コントローラ58から出射される入射用偏光56の位相を変化させて測定することができる。なお、本構成は、より精密な偏波モード分散の測定に適している。
【0040】
なお、図1および図2では、偏光子58aの後に、ファラデー回転子58bを一つ配置させたが、これは2つ以上であってもよい。図示しないが、ファラデー回転子58bを複数配置することにより、一つのファラデー回転子58bが必要とする偏波モードの変更制御範囲が小さくなるので、より精度よく偏波モード分散の測定をすることができる。
【0041】
次に、偏波モード分散測定装置の具体的な実施例について説明する。まず最初にPMDエミュレータの原理の説明を行う。複数の偏光回転子と複数の偏光保持ファイバ(PMF)または、複数の偏光回転子と複数の複屈折結晶を用いたPMDエミュレータのPMDは、再起的に計算が可能である。(n+1)セクション後の1次PMDベクトルτ(n+1)と2次PMDベクトルτω(n+1)はPMD接続関係式で表され、それは下記のように表される。
【数23】
Figure 2004117065
(23)
【数24】
Figure 2004117065
(24)
なお、τn+1はn+1番目のDGDセクションの1次PMDベクトルτ(n)は1〜nセクションの1次PMDベクトル、Rnはn番目の回転偏光子による回転接続を表すマトリクスである。
【0042】
特に2セクションのDGDで発生されるPMDの量は、2つのセクションのDGDをτ、τとし、回転接続角をθとして、下記のように表され、
【数25】
Figure 2004117065
(25)
【数26】
Figure 2004117065
(26)
これらは周波数に依存しない。下付は微分を表す。ここでτはDGD、ωは光搬送波の角周波数である。このとき、2次PMDベクトルは必ず1次ベクトルに直交するため、SOPMD(Second Order Polarization Mode Dispersion;2次PMD)の成分はPSDのみである。
【0043】
逆に、2セクションより多いDGDで発生されたPMDは周波数に関して周期的なDGDと2成分を含むSOPMDをもち、そのFSRは1つのPMFの長さにより決定される。3セクションより多い場合には、複数のFSR(Free spect−rum range)がミキシングされるが、各FSRを等しい値とすることによりエミュレータ全体として1つのFSRを持たせることが可能であり、安定したエミュレータ特性を実現できる。またFSRを同量変化させることにより、特性の形はそのままに周波数方向へ特性をシフトさせることができる。
【0044】
次に、図3を参照し、PMDエミュレータについて具体的に説明する。偏波コントローラ18は、偏光回転子として機能する3つのファラデー回転子である。偏波コントローラ18には、それぞれ接続された4つのDGD付与部16が接続されているが、これらはPMFで構成されている。
【0045】
決まったFSRを持つように、すべてのDGD付与部16のPMFは同じ長さとした。すべてのPMFのDGDは7.5psである。FSRは13.3GHzであるが、すべての位相が同じになるように調整した。この位相についてすべてのDGD付与部16において同量シフトさせることにより、PMDの形を変えずに周波数シフトをさせることが可能である。位相のシフトは位相シフタ32(図2〜図5を参照)やDGD付与部の温度調節(図示しないが、ペルチェ、ヒータ等を使用する。)で実現できる。
【0046】
DGD付与部16は4セクションであるが、一部の回転接続角を0度に設定することによりセクション数を減らすことができ、周波数依存性のない2セクションも実現できる。
【0047】
DGD、PCD(Polarization Chromatic Dispersion)、PSD(Polarization−state Depolarization)、SOPMDは性質上関連しているので、完全に自由に独立して値を選択することはできないが、1つより大きい目標プロファイルに対して同時に非線形フィッティングを行なうことにより、可能な範囲の回転接続角度を求めることができるようにした。図1〜図5に示したPMDエミュレータでは、回転接続角を偏波コントローラ(ファラデー回転子)で調節できるようにし、算出した接続角を±3度以内の精度で実現できるようになっている。
【0048】
次に、図1に示した偏波モード分散測定器50により、偏波モード分散示す。この偏波モード分散測定器50は、通常の偏光解析法であり、偏波コントローラ58として、偏光子58aと、偏光回転子の機能を有するファラデー回転子58bを用いた。
【0049】
入射偏波状態はストークス空間で直交する2点からミューラーマトリクス法(MMM)によりPMDベクトルを求めた。PMDベクトルを求めるのには波長が2点必要だが、2次PMDを求めるには波長がもう1点必要である。よって、ある波長における2次PMDを正確に求めるためには、波長3点における偏波状態2状態について偏波状態が時間的に変化しないうちに測定する必要がある。
【0050】
今回、反応速度の早い偏波コントローラ(ファラデー回転子)を用いることにより、測定時間が短くなり、PMDベクトルを正確に測定することが可能となった。この結果、2成分の2次PMD量を正確にすることができるようになった。ファラデー回転子のπ/2回転に要する時間は0.2ms未満である。
【0051】
次に、PMDエミュレータの再現性について説明する。周波数依存性をもつDGDの周波数特性を固定して、2次PMD量の異なる状態をPMDエミュレータで再現した。中心波長1548nmにおけるDGDの値が20ps、SOPMDの値が全周波数域において75,100,125psとなるように目標値を設定した。ファラデー回転子による回転角は下記のとおりである。
SOPMD  75ps2 : 31.0, 67.5, 31.0 [deg.]
SOPMD 100ps2 : 26.4, 65.2, 26.4 [deg.]
SOPMD 125ps2 : 21.8, 63.5, 21.8 [deg.]
【0052】
このときのPMDエミュレータのPMD特性と理論計算値を図4、図5に示す。図4がDGD値、図5がSOPMD値である。PMDエミュレータにより生成されたPMD特性は再現性があり、理論計算値と良く一致していることがわかる。
【0053】
SOPMD値が100psであるものについて、図6にSOPMDをPCDの絶対値とPSDに分解して表示した。PCDとPSDを精度良く分解して生成、測定できていることが分かる。DGDの周期的性質から、中心波長においてPCDが0であるため、中心波長においてSOPMDの成分はPSDのみ、中心波長から離れるに従ってPCSの割合が増し、半周期のところで再度PSD成分になるという特性をもつ。
【0054】
周波数依存性のない状態は2セクションのDGDでエミュレートでき、このとき2次PMDは同じように75、100、125psに設定することができる。このPMDエミュレータを用いて、同じSOPMD値をもつ状態を2種類以上実現でき、このエミュレータを用いることにより、光通信システムにおける2成分の2次PMDによる性能低下を見積もることが可能となるであろう。
【0055】
上述したように、偏波コントローラ(ファラデー回転子)を用いたプログラム可能なPMDエミュレータと偏波モード分散測定装置により正確な測定が可能となる。なお、このPMDエミュレータは安定であり、PMDエミュレータで発生したPMDを偏波モード分散測定装置で測定したDGDと2次PMDの2成分は理論計算と良く一致した。
【0056】
【発明の効果】
以上のように、本発明によれば、光源により生成された入射光は、ファラデー回転子を物理的にではなく、電気的に制御することによって偏波モードが変更される。このため、入射光の偏波モードの変更は短時間で可能であり、入射光の偏波モードを変化させない状態で入射用偏光を生成することができる。この結果、精度良く偏波モード分散の測定を行うことができる。
【図面の簡単な説明】
【図1】本発明の偏波モード分散測定装置の一構成例を示す図である。
【図2】図1の偏波モード分散測定装置の他構成例を示す図である。
【図3】PMDエミュレータの一構成例を示す図である。
【図4】PMDエミュレータのPMD特性と理論計算値をDGD値により示したグラフである。
【図5】PMDエミュレータのPMD特性と理論計算値をSOPMD値により示したグラフである。
【図6】PMDエミュレータのPMD特性と理論計算値を、SOPMD値をPCDの絶対値とPSDに分解して示したグラフである。
【図7】従来の偏波モード分散測定装置を示す図である。
【符号の説明】
50、80 偏波モード分散測定装置
52 入射光
54 光源
56 入射用偏光
58 偏波コントローラ
60 被測定物(DUT)
62 透過光
64 偏波解析器
66 コントローラ
84 位相子

Claims (3)

  1. 光を透過する被測定物の偏波モード分散を測定する装置であって、
    入射光を生成する光源と、前記入射光を入射用偏光として出力する偏波コントローラと、前記入射用偏光が前記被測定物を透過した透過光の偏波モードを解析する偏波解析器と、前記光源、前記偏波コントローラおよび前記偏波解析器を制御するコントローラとからなる偏波モード分散測定装置において、
    前記偏波コントローラは、偏光子と少なくとも一つ以上のファラデー回転子が配置されていることを特徴とする偏波モード分散測定装置。
  2. 前記偏波コントローラは、偏光子と、ファラデー回転子と、位相子とが配置されていることを特徴とする請求項1記載の偏波モード分散測定装置。
  3. 前記光源と前記偏波コントローラとが、偏波保持ファイバーで接続されていることを特徴とする請求項1または2記載の偏波モード分散測定装置。
JP2002277981A 2002-09-24 2002-09-24 偏波モード分散測定装置 Pending JP2004117065A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002277981A JP2004117065A (ja) 2002-09-24 2002-09-24 偏波モード分散測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002277981A JP2004117065A (ja) 2002-09-24 2002-09-24 偏波モード分散測定装置

Publications (1)

Publication Number Publication Date
JP2004117065A true JP2004117065A (ja) 2004-04-15

Family

ID=32273422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002277981A Pending JP2004117065A (ja) 2002-09-24 2002-09-24 偏波モード分散測定装置

Country Status (1)

Country Link
JP (1) JP2004117065A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011115293A1 (ja) * 2010-03-19 2011-09-22 古河電気工業株式会社 偏波無依存波長変換器および偏波無依存波長変換方法
CN103063411A (zh) * 2012-12-13 2013-04-24 华中科技大学 一种高功率线偏振激光光束性能的测量装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011115293A1 (ja) * 2010-03-19 2011-09-22 古河電気工業株式会社 偏波無依存波長変換器および偏波無依存波長変換方法
JPWO2011115293A1 (ja) * 2010-03-19 2013-07-04 古河電気工業株式会社 偏波無依存波長変換器および偏波無依存波長変換方法
US8873898B2 (en) 2010-03-19 2014-10-28 Furukawa Electric Co., Ltd. Polarization independent wavelength converter and polarization independent wavelength conversion method
CN103063411A (zh) * 2012-12-13 2013-04-24 华中科技大学 一种高功率线偏振激光光束性能的测量装置

Similar Documents

Publication Publication Date Title
US7436569B2 (en) Polarization measurement and self-calibration based on multiple tunable optical polarization rotators
US7466471B2 (en) Optical instrument and measurements using multiple tunable optical polarization rotators
US7218436B2 (en) Optical instrument and measurements using multiple tunable optical polarization rotators
US7027198B2 (en) Generation and analysis of state of polarization using tunable optical polarization rotators
US6859268B2 (en) Compensating polarization mode dispersion in fiber optic transmission systems
US6856710B2 (en) Polarization mode dispersion compensation in optical transmission media
US7889352B2 (en) Integrated polarization beam splitter with quarter-wave plate for polarimeter and PMD compensation applications
US7257290B2 (en) Multi-wavelength CD and PMD compensator
JP4241252B2 (ja) 光ファイバ特性測定装置および光ファイバ特性測定方法
US7106979B1 (en) Polarization mode dispersion compensating apparatus, system, and method
US6891674B2 (en) Methods and apparatus for frequency shifting polarization mode dispersion spectra
EP1901052B1 (en) Measuring polarization mode dispersion
WO2004029699A1 (ja) Pmdエミュレータ
JP2005505010A (ja) 偏光モード分散補償のための補償器
JP2004117065A (ja) 偏波モード分散測定装置
JP3977085B2 (ja) 偏波コントローラ
Wang et al. A complete spectral polarimeter design for lightwave communication systems
JP4767086B2 (ja) 2光束干渉計の偏波依存性測定方法および装置
Mimura et al. PMD compensator and PMD emulator
Kun et al. A novel method of automatic polarization measurement and its application to the higher-order PMD measurement
Madsen et al. Integrated optical spectral polarimeter for signal monitoring and feedback to a polarization-mode dispersion compensator
Hatano et al. Development of a High-Precision DOP Measuring Instrument
Musara Polarization mode dispersion emulation and the impact of high first-order PMD segments in optical telecommunication systems
JP2005283544A (ja) 偏波分散測定方法
Ives Polarisation mode dispersion compensation. Techniques and measurement requirements.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070405

A131 Notification of reasons for refusal

Effective date: 20070410

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070803