JP2004116846A - Drying system - Google Patents

Drying system Download PDF

Info

Publication number
JP2004116846A
JP2004116846A JP2002278762A JP2002278762A JP2004116846A JP 2004116846 A JP2004116846 A JP 2004116846A JP 2002278762 A JP2002278762 A JP 2002278762A JP 2002278762 A JP2002278762 A JP 2002278762A JP 2004116846 A JP2004116846 A JP 2004116846A
Authority
JP
Japan
Prior art keywords
valve
pressure
tank
heat
dryer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002278762A
Other languages
Japanese (ja)
Other versions
JP3970731B2 (en
Inventor
Masaaki Tanaka
田中 正昭
Hitoshi Ozaki
尾崎 仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP2002278762A priority Critical patent/JP3970731B2/en
Publication of JP2004116846A publication Critical patent/JP2004116846A/en
Application granted granted Critical
Publication of JP3970731B2 publication Critical patent/JP3970731B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Abstract

<P>PROBLEM TO BE SOLVED: To reduce initial cost and running cost of a drying system. <P>SOLUTION: This drying system has a drier 1 having a pressure-proof sealed structure shape, a tank 22 for temporarily storing moisture from the drier 1, a steam exhaust passage 9 for communicating the drier 1 with the tank 22, a heat pump 19, a waste heat recovery unit 11 for exchanging heat between a part of the steam exhaust passage 9 and the cold heat side of the heat pump 19, a first valve 23 arranged in the steam exhaust passage 9 between the tanks 22 from the waste heat recovery unit 11, a second valve 24 for discharging liquid outside in a lower part of the tank 22, a decompressing means 25, a branch pipe for piping the decompressing means 25 by branching off from between the first valve 23 and the second valve 24 and a third valve 26 arranged in the branch pipe. A part of the hot heat side of the heat pump 19 is arranged so as to tranfer heat to the drier 1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、含水物の乾燥システムに関するものである。
【0002】
【従来の技術】
従来の乾燥システムとしては、乾燥器とヒートポンプとを組み合わせたものがある(例えば、特許文献1参照)。
【0003】
以下、上記従来の乾燥システムについて図面を参照しながら説明する。
【0004】
図8に示すように、従来の乾燥システムは、耐圧密閉容器状に構成された乾燥器1とヒートポンプ式チラーユニット2とを有する。乾燥器1には、被乾燥物を投入する投入口3と乾燥物を取り出す排出口4が設けられると共に乾燥を促進させるために被乾燥物を撹拌する撹拌装置5と補助加熱装置6が装備されている。
【0005】
撹拌装置5は、スクリュー7とスクリュー7を回転駆動するモーター8とからなり、スクリュー7は下方の被乾燥物を上方に持ち上げて乾燥器1側壁内周面に沿って落下させることができるように、周縁が乾燥器1の側壁内周面と若干間隔を有し、しかも上方に延びるに従ってその間隔が漸増するように形成されている。補助加熱装置6については後述する。
【0006】
また、乾燥器1は、上部から水蒸気排出通路9が取り出されると共に側壁部に水ジャケット10が設けられる。水蒸気排出通路9は、端末が大気に開放されており、中途部には廃熱回収器11と水封式真空ポンプ12が介設される。
【0007】
水ジャケット10には、第1の循環ポンプ13を介装する熱媒循環路14が接続される。従って水ジャケット10循環流動する熱媒を乾燥器1と熱交換して乾燥器1を加熱する乾燥器加熱用熱交換器を構成する。尚、熱媒は温水である。
【0008】
廃熱回収器11は、乾燥器1と水封式真空ポンプ12との間において水蒸気排出通路9に設けられ、内部に水蒸気排出通路9を蛇行状に通すと共に第2の循環ポンプ15を介装する冷媒循環路16を接続する。
【0009】
水封式真空ポンプ12は、円形ケーシングと該ケーシング内に偏心して取り付けられた羽根車とにより本体を構成して、ケーシング内に適当量の水を入れた従来周知の構造形態を有し、羽根車を回転させると水が遠心力によりケーシングと同心の円形状の水膜を作り、これにより水膜と隣接する羽根と羽根とによって密閉された空間が生じ、羽根車が回転するにしたがって空間が容積変化して、吸入、圧縮、排出を連続的に行うものである。
【0010】
一方、ヒートポンプ式チラーユニット2はフロン等の冷媒を封入した閉塞循環管路にコンプレッサー17とキャピラリーチューブ18を介装したヒートポンプ19に、その冷媒の流動方向においてコンプレッサー17とキャピラリーチューブ18の間に凝縮器20、キャピラリーチューブ18とコンプレッサー17の間に蒸発器21を備えており、熱媒循環路14が凝縮器20内を、冷媒循環路16が蒸発器21内を夫々貫通して設けられる。
【0011】
而して、斯る真空乾燥処理装置は、乾燥器1内に例えば、生ゴミ等の被乾燥物を入れて密閉し、水封式真空ポンプ12を駆動させ、乾燥器1内を水の沸点が外気温と同等になるまで減圧して、ヒートポンプ19のコンプレッサー17を駆動させると、ヒートポンプ19がキャピラリーチューブ18の部分の通過抵抗によりコンプレッサー17とキャピラリーチューブ18の間では高圧となり、冷媒の凝縮が起こって温度が上昇し、キャピラリーチューブ18とコンプレッサー17の間では低圧となって冷媒の蒸発が起こり温度が低下する。
【0012】
ヒートポンプ19で発生する冷熱をチラーユニット2の蒸発器21において冷媒循環路16を循環流動する水と熱交換して、水の熱を吸収し水を冷却すると共に、ヒートポンプ19の温熱をチラーユニット2の凝縮器20で熱媒循環路14を循環流動する温水と熱交換して温水を加熱する。
【0013】
チラーユニット2の凝縮器20で加熱された温水は、乾燥器加熱用熱交換器10へ流れて乾燥器1を加熱し、その加熱エネルギーにより乾燥器1内部の被乾燥物を温めて水分を蒸発させる。
【0014】
これにより乾燥器1内の蒸気圧力が高まり、乾燥器1内の水蒸気は水封式真空ポンプ12の作動と相俟って水蒸気排出通路9へ吸引される。
【0015】
一方、チラーユニット2の蒸発器21で冷却された冷水は、廃熱回収器11へ流れて、水蒸気排出通路9を流れる水蒸気から廃熱を回収してこれを凝縮する。
【0016】
これにより、水蒸気は、容積を小さくされ水封式真空ポンプ12を介してドレン水として排出される。従って、乾燥器1内部において蒸発が連続的に起こり被乾燥物が乾燥する。
【0017】
この装置にあっては、乾燥器1はその加熱のためにヒートポンプ19の温熱を水と熱交換して間接的に利用し、廃熱回収器11は水蒸気の廃熱回収及び凝縮のためにヒートポンプ19の冷熱を水と熱交換して間接的に利用する。即ち、乾燥器1内部で蒸発のために消費した熱エネルギーは廃熱回収器11で回収され、ヒートポンプ19で元の乾燥器1へ戻され、リサイクル利用される。
【0018】
また、乾燥の最終段階において、被乾燥物をカラッと乾燥させる必要がある場合には補助加熱装置6を使用する。
【0019】
この補助加熱装置6は遠赤外線を発生するチューブ型ガスバーナーであり、被乾燥物をカラッと乾燥させる必要がある場合以外にも冬場において運転初期の段階で冷水の温度が低すぎて運転不能になることを防ぐため一時的に使用する場合もある。
【0020】
補助加熱装置6を併用すると乾燥器1と廃熱回収器11へ送り込まれる熱エネルギーのバランスが崩れるため、ファン等からなる補助放熱器(図示せず)を熱媒循環路14に設けて余分の熱を放出するようになす。
【0021】
以上より、従来の乾燥システムを用いて生ゴミを乾燥した場合には、一般的な真空乾燥の効果として、低温乾燥により乾燥終了後に直ちに容易に回収可能である、水分の大幅減少により軽量化できる、真空時の特定種細菌の死滅により衛生的である、薬品等を使用しないため、回収したゴミは肥料や飼料として再利用も可能あると共に焼却も容易となる、蒸発され取り除かれる水分は言わば蒸留水であるので、そのまま放流しても水質汚染の心配がない等の効果がある。
【0022】
さらに、上記効果に加えて、エネルギーを大気中に放散して無駄に消費することがなく非常に経済的であり、被乾燥物から蒸発した水蒸気は廃熱回収器で凝縮して容積を小さくするので、水封式真空ポンプの排出効率が高くなり、小型小能力のポンプを用いることができ、装置全体の小型化や低価格化を図ることは勿論、電力使用などのランニングコストの低減を狙ったものである。
【0023】
【特許文献1】
特公平7−35946号公報
【0024】
【発明が解決しようとする課題】
しかしながら、上記従来の乾燥システムでは、使用初期には水蒸気排気通路9の水封式真空ポンプ12手前に凝縮水が無いことから、水封式真空ポンプ12の排気能力が低下し、所定真空に到達するのに時間がかかる。あるいは、最悪事態では、熱媒循環路14の熱媒により加熱された乾燥器1内温度にて乾燥器1内の被乾燥物の水分が蒸発するに至る蒸発圧力まで減圧せず、乾燥時間が極端に遅くなる。
【0025】
このように圧力が所定圧力まで減圧されない時は、被乾燥物の水分の蒸発温度が熱媒循環路14の熱媒の温度より高くなるため、被乾燥物の水分蒸発時の蒸発潜熱を与えることができず、熱媒循環路14の熱媒は熱量を多く奪われないままヒートポンプ19の凝縮器20にリターンする。
【0026】
これにより、凝縮器20にてヒートポンプ19内の冷媒の凝縮潜熱を奪う能力が低下しヒートポンプ19の効率が低下する。仮に、このような使用初期に能力を合わせて設計した場合は、通常時に能力不足となるのは言うまでもない。
【0027】
また、両者を満足するシステムを組んでいると仮定すると、熱媒の能力過多となる使用初期に十分に被乾燥物に熱を伝えるために乾燥器1と熱媒循環路14との熱交換面積を多くとる必要があり非常に大型化し、通常時は無駄になる。
【0028】
更に、水封式真空ポンプ12は油拡散式真空ポンプやドライ真空ポンプと比較すると高価であることに加えて、乾燥処理中は水封式ポンプ12は連続運転であることから消耗が激しく寿命が短くなる。
【0029】
また、従来例には特にヒートポンプ19内の冷媒については記載はないが、フロンを使用するのが一般的であり、この場合は凝縮器20の凝縮温度は50℃程度であり、この温度で少なくとも乾燥器1内の被乾燥物の水分を蒸発するためには、乾燥器1と熱媒循環路14との熱交換面積を大きくとり且つ乾燥器1内の圧力を約10kPa程度に減圧するか、あるいは、乾燥器1内の圧力を10kPaより更に減圧して、その減圧分に相当する水の蒸発温度と熱媒との温度差増加分だけ乾燥器1と熱媒循環路14との熱交換面積を小さくするかの対策が必要であるため、前者では乾燥器1と熱媒循環路14との熱交換面積及び熱媒循環路14と凝縮器20との熱交換面積の大型化に伴うコストアップや装置の大型化してしまうという課題があり、後者では高能力真空ポンプが必要であると共に、乾燥器1や水蒸気排出通路9等の減圧される部分は強固な耐圧構造が必要であり高価である。
【0030】
このことから、運転初期の早期減圧による乾燥処理時間の短縮化、安価な真空ポンプ利用による低イニシャルコスト化、真空ポンプの稼動時間短縮における省エネルギー化と寿命延命化やヒートポンプの効率的運転による低ランニングコスト化が求められてるという課題があった。
【0031】
本発明は、上記従来の課題に鑑み、一般的な真空乾燥による効果及び従来例における効果に加えて、低ランニングコストや低イニシャルコストで乾燥時間を短縮する乾燥システムを提供することを目的とする。
【0032】
【課題を解決するための手段】
上記目的を達成するために本発明の請求項1記載の乾燥システムの発明は、耐圧密閉構造状の乾燥器と、前記乾燥器から蒸発した水分が溜まるように配置されたタンクと、前記乾燥器と前記タンクを連通する水蒸気排出通路と、ヒートポンプと、前記水蒸気排出通路の一部または全部と前記ヒートポンプの冷熱発生側とが熱交換する廃熱回収器と、前記廃熱回収器から前記タンクの間に位置する水蒸気排出通路途中に設置された第1の弁と、前記タンク下方に位置しタンク内部と外部とを連通する排液経路途中に設置された第2の弁と、減圧手段と、前記第1の弁もしくは第1の弁と第2の弁の間の配管もしくはタンクより分岐して前記減圧手段とを配管した分岐配管と、前記分岐配管の途中に設置された第3の弁とを備え、前記ヒートポンプの温熱発生側の一部は前記乾燥器に伝熱するように配置されたものである。
【0033】
上記構成において、使用初期は第1の弁及び第3の弁を開、第2の弁を閉の状態で減圧手段を作動させる。そして、ヒートポンプを作動させた場合の温熱側温度以下の温度にて水が蒸発する蒸発圧力以下の所定圧力まで乾燥器内圧力を減圧した後、ヒートポンプを作動させる。その後は、ヒートポンプの温熱が乾燥器に伝熱し、その熱で被乾燥物の水分が蒸発する。そして、蒸発した水蒸気は廃熱回収器にてヒートポンプの冷熱側の冷熱にて冷却凝縮する。
【0034】
本発明では、運転初期に所定圧力に減圧した後にヒートポンプを作動してヒートポンプの凝縮器の温熱源を乾燥時の水蒸気発生用熱源として利用し、冷熱源を水蒸気凝縮用熱源として利用することで所定圧力を維持する。
【0035】
これにより、使用初期及び運転初期において、乾燥器内の空気は外気温相当の低温の飽和空気または不飽和空気であるため減圧手段は油拡散真空ポンプやその他の多くの種類の真空ポンプが利用可能でありイニシャルコストが低減すると共に、早期に所定圧力に減圧できるので乾燥時間が短縮する。更に、ヒートポンプ作動時は所定圧力に減圧した後に行うので効率の良いポイントでヒートポンプを運転することが可能となり省エネルギーとなり低ランニングコストとなる。
【0036】
また、請求項2記載の乾燥システムの発明は、請求項1の発明における廃熱回収器部分の水蒸気排出通路が下流側が常に上流側の下方に位置する構成であり、タンクが廃熱回収器の下方に設置されたものである。
【0037】
上記構成において、乾燥器から蒸発した水蒸気は水蒸気排出通路の廃熱回収器入口部分から冷却凝縮し、凝縮した水は未凝縮水蒸気と共に水蒸気排出通路の廃熱回収器出口側となる後流側に流れる。そして、水蒸気排出通路の廃熱回収器出口部分にて水蒸気の多くは凝縮水となりタンク落下して一時貯留される。そして、被乾燥物が乾燥して運転終了した後にタンク内に貯留された水を外部に排出する。
【0038】
本発明では、水蒸気排出通路等の減圧手段の排気経路に前回運転修了後の残水量が少なくなり、運転初期における減圧手段作動時の減圧手段への水分吸気量が減少するため、強固な耐水性を有する減圧手段を使用しなくても良く、その場合はメンテナンス期間が延長する。
【0039】
これにより、減圧手段は油拡散真空ポンプやその他の多くの種類の真空ポンプが利用可能であり低イニシャルコストとなると共に、運転初期に早期に所定圧力に減圧できるので乾燥時間が短縮し、ヒートポンプ作動時は所定圧力に減圧した後に行うので効率の良いポイントでヒートポンプを運転でき省エネルギーとなり低ランニングコストとなる。加えて、水蒸気排出通路等の減圧手段の排気経路に前回運転修了後の残水量が少なくなり、運転初期における減圧手段作動時の減圧手段への水分吸気量が減少するため、強固な耐水性を有しないポンプであってもメンテナンス期間が延長し、更なる低ランニングコストとなる。
【0040】
また、請求項3記載の乾燥システムの発明は、請求項1または請求項2の発明において、第1の弁と第3の弁が開で第2の弁が閉にて減圧手段を作動させて乾燥器と水蒸気排出通路とタンクとを大気圧以下に減圧する第1のステップと、第1の弁が開で第2の弁と第3の弁が閉にてヒートポンプを作動させる第2のステップと、第1の弁が閉と第2の弁が開で第3の弁は閉または開にてタンク内の液体を排水する第3のステップと、第1の弁と第2の弁は閉で第3の弁は開にて減圧手段を作動させてタンク内を所定圧力まで減圧する第4のステップとからなり、運転初期に第1から第4のステップを順次行った後に、第2のステップから第4のステップを順次行う乾燥サイクルを少なくとも1サイクル以上行うものである。
【0041】
上記構成において、第1ステップにて、ヒートポンプを作動させた場合の温熱側温度以下の温度にて水が蒸発する蒸発圧力以下の所定圧力まで乾燥器内圧力を減圧した後、第1ステップが終了し第2ステップに入る。第2ステップでは、ヒートポンプの温熱により乾燥器から蒸発した水蒸気は廃熱回収器にてヒートポンプの冷熱側の冷熱にて冷却凝縮する。凝縮した水はタンクに一時貯留される。そして、所定時間経過後に、第2ステップから第3ステップに入り、タンク内に貯留した水を外部に排水する共に外気が流入し大気圧となる。そして、タンク内の水の排水が終了しタンク内が外気で満たされると、第3ステップから第4ステップに入る。第4ステップにてタンク内を乾燥器内と同圧力以下まで減圧し、第2ステップに移行する。以降は第2ステップから第4ステップを順次行うサイクルを1サイクル以上行うことで、乾燥器内圧力上昇を抑制しながらタンク内の水を定期的に外部に排出する。
【0042】
これにより、減圧手段は油拡散真空ポンプやその他の多くの種類の真空ポンプが利用可能であり低イニシャルコストとなると共に、運転初期に早期に所定圧力に減圧できるので乾燥時間が短縮し、ヒートポンプ作動時は所定圧力に減圧した後に行うので、効率の良いポイントでヒートポンプを運転でき省エネルギーとなり低ランニングコストとなる。加えて、凝縮水を定期的に外部に排水することでタンクを小型化でき、更なる低イニシャルコストとなり省スペースとなると共に、減圧手段は稼動が断続運転となるため省エネルギーとなり寿命も延命するので更なる低ランニングコストとなる。
【0043】
また、請求項4記載の乾燥システムの発明は、請求項1の発明において、ヒートポンプはコンプレッサーと凝縮器と膨張機構と蒸発器とを機能的に環状に配管して内部に二酸化炭素冷媒を封入した冷却サイクルである。
【0044】
上記構成において、減圧手段は油拡散真空ポンプやその他の多くの種類の真空ポンプが利用可能であり低イニシャルコストとなると共に、運転初期に早期に所定圧力に減圧できるので乾燥時間が短縮し、ヒートポンプ作動時は所定圧力に減圧した後に行うので効率の良いポイントでヒートポンプを運転でき省エネルギーとなり低ランニングコストとなる。加えて、万が一にヒートポンプ内の冷媒が漏洩した場合、環境負荷が極めて小さいと共に、発火の危険性を低減できる。更に、近年、二酸化炭素冷媒を使用した給湯用ヒートポンプが商品化されており、温熱側温度が最高90℃となるため、本乾燥システムに適用した場合、乾燥器内圧力が従来と同真空度であれば被乾燥物の減圧下での蒸発温度と凝縮器との温度差が大きくなるので凝縮器と乾燥器との伝熱面積を小さくでき省スペースとなり、あるいは、凝縮器と被乾燥物の蒸発温度とを同温度差と設計するならば乾燥器内圧力を上昇できるので減圧手段の低能力化が可能で低イニシャルコストとなる。
【0045】
また、請求項5記載の乾燥システムの発明は、耐圧密閉構造状の乾燥器と、前記乾燥器と外部とを連通する水蒸気排出通路と、前記水蒸気排出通路の途中に設けられた第4の弁と、前記乾燥器を減圧する減圧手段と、ヒートポンプと、前記第4の弁より乾燥器側に位置した前記水蒸気排出通路の一部または全部と前記ヒートポンプの蒸発器とが熱交換する廃熱回収部とを備え、前記ヒートポンプはコンプレッサーと、凝縮能力を可変可能な能力調整用凝縮器と前記乾燥器の加熱用凝縮器との少なくとも2つ以上の凝縮器と、膨張機構と、蒸発器とを機能的に環状に配管したものであり、前記第4の弁より乾燥器側に位置する水蒸気排出通路と減圧手段を配管したものである。
【0046】
上記構成において、水分の少ない初期に減圧手段で所定圧力に減圧した後のヒートポンプ作動時に、ヒートポンプの凝縮器の能力と蒸気器の能力とが同等になるようにヒートポンプを制御することで、乾燥器内の被乾燥物の水分蒸発に与える熱量と蒸発した水蒸気を凝縮する熱量が同等となり、乾燥器内の所定圧力を減圧手段の運転なしで長時間維持できる。
【0047】
これにより、使用初期及び運転初期において、乾燥器内の空気は外気温相当の低温の飽和空気または不飽和空気であるため減圧手段は油拡散真空ポンプやその他の多くの種類の真空ポンプが利用可能でありイニシャルコストが低減すると共に、早期に所定圧力に減圧できるので乾燥時間が短縮する。更に、ヒートポンプ作動時は所定圧力に減圧した後に行うので効率の良いポイントでヒートポンプを運転でき省エネルギーとなり低ランニングコストとなる。加えて、減圧手段の稼動時間が極端に短縮するので、減圧手段は省エネルギーであり寿命が延命して更なる低ランニングコストとなる。
【0048】
【発明の実施の形態】
以下、本発明の乾燥システムの実施の形態について、図1から図7を用いて説明する。なお、従来と同一構成については、同一符号を付して詳細な説明を省略する。
【0049】
(実施の形態1)
本発明による実施の形態1について、図面を参照しながら説明する。
【0050】
図1は本発明の実施の形態1における乾燥システムの概略構成図である。
【0051】
図1に示すように、本実施の形態の乾燥システムは、タンク22、第1の弁23、第2の弁24、減圧手段25、第3の弁26、ヒートポンプ19を構成する膨張機構27、乾燥器1内の圧力を検知する第1の圧力センサ28、タンク22内に水が無い場合最低部を測定可能な位置に設置されてタンク22内に貯留した水の水位を検知する水位センサ29、乾燥器1に投入された被乾燥物の温度を測定可能な位置に設置された温度センサ30を有する。
【0052】
そして、本実施の形態の乾燥システムは、耐圧密閉構造状の乾燥器1と、乾燥器1から蒸発した水分が溜まるように配置されたタンク22と、乾燥器1とタンク22を連通する水蒸気排出通路9と、ヒートポンプ19と、水蒸気排出通路9の一部または全部とヒートポンプ19の冷熱発生側とが熱交換する廃熱回収器11と、廃熱回収器11からタンク22の間に位置する水蒸気排出通路9の途中に設置された第1の弁23と、タンク22の下方に位置しタンク22内部と外部とを連通する排液経路途中に設置された第2の弁22と、減圧手段25と、タンク22より分岐して減圧手段25とを配管した分岐配管と、この分岐配管の途中に設置された第3の弁26とを備え、ヒートポンプ19の温熱発生側の一部である凝縮器20が乾燥器1に伝熱するように配置されたものである。
【0053】
以上のように構成された乾燥システムについて、以下にその動作を説明する。
【0054】
図示しない被乾燥物を投入口3の図示しない蓋を開して乾燥器1に入れる。投入後は投入口3の蓋を閉めることで投入口3は密閉状態となる。そして、図示しない操作パネルにて乾燥処理開始ポタンを押すと、閉状態であった第2の弁24は開状態となり、第1の弁23は開状態のまま維持し、第3の弁26は閉状態から開状態となり、一定時間経過後に第1の弁23及び第3の弁26は開状態を維持して第2の弁24が閉となると同時に減圧手段25が作動する。
【0055】
そして、乾燥器1、水蒸気排出通路9、タンク22の空気を外部に排出して減圧し、第1の圧力センサ28にて乾燥器1内の圧力が3kPaになると、第3の弁26を閉にし減圧手段25を停止すると同時に、コンプレッサー17を駆動させてヒートポンプ19内部の冷媒をコンプレッサー17で圧縮して凝縮器20、膨張機構27、蒸発器21と流通させて一般的な蒸気圧縮式の冷却サイクルを作動する。
【0056】
このヒートポンプ19の作動により凝縮器20は高温となり、蒸発器21は低温となる。そして、凝縮器20は24℃を超える温度で乾燥器1内を加熱し、被乾燥物の水分は3kPaの蒸発温度24℃以上にて蒸発する。蒸発した水蒸気は水蒸気排出通路9を通って廃熱回収器11部分にてヒートポンプ19の蒸発器21の冷却により凝縮して水となってタンク22に貯留される。
【0057】
そして、温度センサ30により被乾燥物の昇温スピードが所定値以上になると、コンプレッサー17を停止してヒートポンプ19を停止すると共に、第2の弁24を開放してタンク22内の貯留水を外部に排水して乾燥を終了する。そして、タンク22内の水が排水を終了する一定時間後に第2の弁24を閉じる。
【0058】
このとき、排水が円滑に行われるように配管内径及び第2の弁24の口径は所定以上の大きさであることと、タンク22の最高水位は減圧手段25のタンク22との接続位置より低い位置に設定されていることは言うまでもない。
【0059】
尚、タンク22の排水用の配管や第2の弁24の内径を大きくとれない場合は、円滑に排水を行うため別途タンク22と外部を連通する配管とその配管途中に開閉弁を設けて、タンク22の排水時にその弁を開放しても良い。
【0060】
以上より、減圧手段25は乾燥運転初期の空気を排出するため、水分を吸引する量が従来に対して格段に減少し、従来では使用できなかった真空ポンプを使用可能にできることや、従来にて使用は可能であってもメンテナンス期間が極端に短くなるような真空ポンプのメンテナンス期間を格段に延長できる。
【0061】
よって、減圧手段25選定時に幅広い方式のものから選ぶことができるので安価なものを選定可能となる。また、メンテナンス回数が減少する。また、減圧後にヒートポンプ19を作動させるので効率の良いサイクルでヒートポンプ19が運転して省エネルギーとなる。
【0062】
このように、安価な減圧手段25を利用可能となりイニシャルコストが低減すると共に、減圧手段25のメンテナンス期間延長と効率的ヒートポンプ19の運転によりランニングコストが低減する。
【0063】
尚、被乾燥物が生ゴミ等のように悪臭を放つ可能性がある物の乾燥では、停止中は第2の弁24を閉状態で維持するため、悪臭が外部に流出しないと共に、処理中においても乾燥時間短縮により悪臭が低減する。
【0064】
また、減圧手段25の逆流防止には第3の弁26を用いているが、第1の弁23と一体化して、必要機能を有する3方弁を用いてもよい。
【0065】
また、本発明の形態のヒートポンプ19の膨張機構27はキャピラリーや膨張弁等が利用可能であり、膨張弁を利用時は被乾燥物の量や投入時の温度が変化した場合等の凝縮器20の負荷変動に対応し易くなる。つまり、膨張弁の絞り量を変化させることで冷媒の凝縮圧力を変化させて凝縮温度を所定の温度にでき、凝縮器20の負荷変動やヒートポンプ19のサイクル変動時においても、常に被乾燥物との温度差を得るように制御が容易となり、熱交換が円滑となる。
【0066】
(実施の形態2)
次に、本発明による実施の形態2について、図面を参照しながら説明する。なお、実施の形態1と同一構成については、同一符号を付して、その詳細な説明を省略する。
【0067】
図2は本発明の実施の形態2における乾燥システムの概略構成図である。
【0068】
図2に示すように、廃熱回収器11部を含むそれより下流に位置する水蒸気排出通路9は下流側、つまり、タンク22側になるにつれて下方に位置するように設置されている。更に、タンク22は廃熱回収器11より下方に設置され、タンク22の排水経路、つまり、第2の弁24が設置されタンク22と外部を連通する配管経路はタンク22の下方に取り付けられている。
【0069】
本実施の形態は、図1に示す実施の形態1の乾燥システムの構成において、廃熱回収器11部分の水蒸気排出通路9を下流側が常に上流側の下方に位置する構成とし、タンク22を廃熱回収器11の下方に設置したものである。
【0070】
以上のように構成された乾燥システムについて、以下にその動作を説明する。
【0071】
ヒートポンプ19が作動すると、乾燥器1は凝縮器20により加熱され、乾燥器1内の被乾燥物の水分は蒸気となって蒸発し、蒸発した水蒸気は水蒸気排出通路9を通って廃熱回収器11部分にて蒸発器21の冷却により凝縮して水となる。
【0072】
そして、凝縮した水は下方に位置する下流側配管に流れる。廃熱回収器11の下流側に進むに従い水蒸気の割合が減少して凝縮水の割合が増加し、廃熱回収器11の出口部分の水蒸気排出通路9ではほとんどが水となって円滑にタンク22に流れて貯留される。
【0073】
そして、被乾燥物の乾燥が終了するとタンク22内の排水を行い、ほとんど排水が終了する所定時間経過後に第2の弁24を閉じる。このとき、第3の弁26は閉状態のままである。
【0074】
ここで、水蒸気排出通路9内の水分のほとんどはタンク22の排水時に排水される。更に、終了後の停止中において、水蒸気排出通路9に残留した極々少量の水分はタンク22に滴下して貯留する。そして、任意の時間停止後に、被乾燥物を投入後、第2の弁24を開放すると、停止中にタンク22に貯留した水が外部に排水される。
【0075】
そして、排水後に第2の弁24を閉状態とし、第1の弁23及び第3の弁26を開放し、減圧手段25が作動する。減圧手段25の作動により乾燥器1、水蒸気排出通路9、タンク22内の空気と極々少量水分を排気して減圧を行い、所定圧力まで減圧するとヒートポンプ19が作動して被乾燥物の乾燥が行われる。
【0076】
以上より、安価な減圧手段25を利用可能となりイニシャルコストが低減すると共に、減圧手段25のメンテナンス期間延長と効率的ヒートポンプ19の運転によりランニングコストが低減するといった実施の形態1に加えて、運転初期における減圧手段25の作動時の減圧手段25への水分吸気量が更に減少するため、強固な耐水性を有しないものであってもメンテナンス期間が延長し、更なる低ランニングコストとなる。
【0077】
(実施の形態3)
本発明による実施の形態3について、図面を参照しながら説明する。なお、実施の形態1及び2と同一構成については、同一符号を付して詳細な説明を省略する。
【0078】
図3は本発明の実施の形態3における乾燥システムの概略構成図、図4は同実施の形態の乾燥システムの動作を示すフローチャートである。
【0079】
図3に示すように、第2の圧力センサ31はタンク22内の圧力を検知する。水位検知手段29はタンク22内の貯留水が無い場合は0mmを示す。
【0080】
また、図4において、図示しないタイマーカウンタにてカウントする初期排水時間をHで、第1の圧力センサ28の出力値である乾燥器内圧力値をP1で、水位検出手段29にて検出するタンク水位をLで、減圧手段25とタンク22を配管する配管経路のタンク22の接合部高さ未満のタンク最高水位をAで、温度センサ30にて検出する被乾燥物温度をTで、第2の圧力センサ31にて検出するタンク内圧力をP2で、それぞれ、表している。
【0081】
STEP1では、減圧手段25がOFF(停止)、第1の弁23が開、第2の弁24及び第3の弁26が開、ヒートポンプ19がOFFしてる状態を図示しないタイマーカウンタにてカウントした一定時間である初期排水時間H1だけ維持する。
【0082】
STEP2では、第1の弁23及び第3の弁26が開、第2の弁24が閉、ヒートポンプ19がOFF、減圧手段25がON(作動)する状態を、乾燥器内圧力値P1が3kPa未満に減圧されるまで維持する。
【0083】
STEP3では、第1の弁23が開、第2の弁24及び第3の弁26が閉、減圧手段25がOFF、ヒートポンプ19がONの状態を、タンク水位LがAmmを越えるか、あるいは、乾燥器内圧力P1が3kPaを越えるか、あるいは、乾燥器内圧力P1が3kPa以下で且つ被乾燥物温度Tが30℃以下まで維持する。
【0084】
STEP4では、減圧手段25がOFF、第1の弁23及び第3の弁26が閉、第2の弁24が開、ヒートポンプ19がOFFの状態を、タンク水位Lが1mm未満となるまで維持する。
【0085】
STEP5では、減圧手段25がON、第1の弁23及び第2の弁24が閉、第3の弁26が開、ヒートポンプ19がOFFの状態を、タンク内圧力P2が3kPa未満に減圧するまで維持する。
【0086】
STEP6では、減圧手段25がOFF、第1の弁23及び第3の弁26が閉、第2の弁24が開、ヒートポンプ19がOFFの状態を、タンク水位Lが1mm未満になるまで維持する。
【0087】
STEP7では、減圧手段25がOFF、第1の弁23が開、第2の弁24及び第3の弁26が閉、ヒートポンプ19がOFFの状態である。
【0088】
以上のように構成された乾燥システムについて、以下にその動作を説明する。
【0089】
まず、第1の弁23が開放、第2の弁24及び第3の弁26が閉状態、減圧手段25やヒートポンプ19等の各機器が停止状態において、被乾燥物を乾燥器1の投入口3より投入し、図示しない蓋を閉めて密閉する。
【0090】
そして、図示しない操作パネルの乾燥開始ボタンを押すと乾燥処理が開始されSTEP1となり、乾燥処理停止中に貯留した少量の水が第2の弁24を通って外部に排水される。そして、初期排水時間H経過後にSTEP2に移行して乾燥器1、水蒸気排出通路9、タンク22を減圧する。
【0091】
乾燥器内圧力P1が3kPa未満になるとSTEP3に入り、ヒートポンプ19の凝縮器20で乾燥器1が加熱され、被乾燥物は24℃の蒸発温度となり水分が蒸発する。蒸発した水蒸気は廃熱回収器11でヒートポンプ19の蒸発器21で冷却され凝縮してタンク22に貯留し、被乾燥物の水分をタンク22へ移動させることで乾燥を行う。
【0092】
そして、タンク水位Lが最高水位Ammを越えると、減圧手段25への配管内への水の流入防止のためにSTEP4へ移行し、タンク水位LがAmm以下であっても、被乾燥物の蒸発温度が上昇して凝縮器20との温度差がとれないために伝熱量が減少して水分乾燥が阻害されるのを防止するため、つまり、被乾燥物の蒸発温度を24℃に維持して凝縮器20の熱で蒸発できるようにするために、温度差乾燥器内圧力P1が3kPaを越えるとSTEP4へ移行する。
【0093】
また、3kPa以下では水の蒸発温度は24℃以下であることから、乾燥器内圧力P1が3kPa以下で被乾燥物温度Tが30℃の条件では被乾燥物の水蒸発が終了したと判断するとSTEP6へ移行する。つまり、タンク水位LがAmm以下で且つ乾燥器内圧力P1が3kPa以下で温度センサ30の被乾燥物温度Tが30℃を越えると、STEP6へ移行する。
【0094】
そして、STEP4に移行した場合は、タンク内に貯留した水が外部に排水され、タンク22内の水のほとんどが排水されると、タンク水位Lは1mm未満となりSTEP5へ移行する。
【0095】
STEP5では、乾燥器1内への大気流入を防止、つまり、乾燥器内圧力P1の3kPa以下を維持するために、第1の弁23を開放する前にタンク22内を減圧し、タンク内圧力P2が3kPa以下に減圧されるとSTEP3に戻り、同様の動作を繰り返す。
【0096】
また、STEP6に移行した場合は、タンク22内の水を排水し、タンク水位Lが1mm未満となると排水が完了したと判断してSTEP7へ移行する。
【0097】
STEP7では、乾燥器1及び水蒸気排出通路9及びタンク22内の空気やガスと外部空気との対流が無いように外部と連通する可能性のある第2の弁24及び第3の弁26を閉し、水蒸気排出通路9の少量の残留水がタンク22に貯留するように第1の弁23は開放した状態で次回の乾燥開始まで維持し、乾燥処理の全工程を終了する。
【0098】
以上より、減圧手段25は油拡散真空ポンプやその他の多くの種類の真空ポンプが利用可能であり低イニシャルコストとなると共に、早期に所定圧力に減圧できるので乾燥時間が短縮し、ヒートポンプ25の作動時は所定圧力に減圧した後に行うので効率の良いポイントでヒートポンプ19を運転でき省エネルギーとなり低ランニングコストとなるといった実施の形態1の効果に加えて、凝縮水を定期的に外部に排水することでタンク22を小型化でき、更なる低イニシャルコストとなり省スペースとなると共に、減圧手段25は稼動が断続運転となるため省エネルギーとなり寿命も延命するので更なる低ランニングコストとなる。
【0099】
(実施の形態4)
本発明による実施の形態4について、図面を参照しながら説明する。なお、実施の形態1と同一構成については、同一符号を付して詳細な説明を省略する。
【0100】
図5は本発明の実施の形態4における乾燥システムの概略構成図である。
【0101】
図5において、ヒートポンプ19内には二酸化炭素が冷媒として封入されている。乾燥器1と凝縮器20との熱交換面は小型化されている。
【0102】
以上のように構成された乾燥システムについて、以下にその動作を説明する。
【0103】
ヒートポンプ19の運転時は凝縮器20の二酸化炭素冷媒の入口と出口の平均温度は約70℃であり、乾燥器1内の圧力は3kPaであるため被乾燥物の水分の蒸発中は約24℃で安定するので、凝縮器20と被乾燥物温度との温度差が大きい状態で乾燥する。
【0104】
これにより、同乾燥時間であれば乾燥器1と凝縮器20との熱交換面積を小さくでき低コスト化とコンパクト化が可能であり、同熱交換面積ならば乾燥時間の短縮化が可能となる。
【0105】
なお、本実施の形態では、従来と同じ乾燥器内圧力3kPaであり、被乾燥物の水分蒸発温度が24℃であるが、例えば、熱交換面積を従来と同じにした場合、つまり、凝縮器20と乾燥器1内の温度差を従来と同じにした場合は、従来のフロン冷媒やHC冷媒を用いたときの凝縮温度は約50℃以下であり、50℃とすると従来の凝縮器20と乾燥器1内との温度差は約26℃となるのに対し、二酸化炭素冷媒のヒートポンプ19では凝縮器20の平均温度が75℃とすると乾燥器1内の被乾燥物の蒸発温度は51℃で良いことになる。
【0106】
つまり、乾燥器1内の圧力は約13kPaで良いことになり、耐圧真空構造面で簡素化できると共に減圧手段の低能力化も可能となる。更に、乾燥器1の被乾燥物から蒸発した水蒸気は廃熱回収器11に至るまでの水蒸気排出通路9が断熱されている場合、廃熱回収器11に入るときの温度は約50℃であり、従来の24℃に対して温度が高いので蒸発器21との温度差が大きくなるので、その分に相当する廃熱回収器11の蒸発器21と水蒸気排出通路9との熱交換面積を小さくできる。
【0107】
以上説明したように、減圧手段25は油拡散真空ポンプやその他の多くの種類の真空ポンプが利用可能であり低イニシャルコストとなると共に、早期に所定圧力に減圧できるので乾燥時間が短縮し、ヒートポンプ19の作動時は所定圧力に減圧した後に行うので効率の良いポイントでヒートポンプ19を運転でき省エネルギーとなり低ランニングコストとなるといった実施の形態1の効果に加えて、万が一にヒートポンプ19内の冷媒が漏洩した場合、環境負荷が極めて小さいと共に、発火の危険性を低減できる。
【0108】
また、乾燥器1内の圧力が従来と同真空度であれば、凝縮器20と乾燥器1との伝熱面積を小さくでき省スペースとなり、凝縮器20と被乾燥物の蒸発温度とを同温度差と設計するならば、低能力な減圧手段25の適用にて低イニシャルコストとなる。
【0109】
(実施の形態5)
本発明による実施の形態5について、図面を参照しながら説明する。なお、実施の形態1と同一構成については、同一符号を付して詳細な説明を省略する。
【0110】
図6は本発明の実施の形態5における乾燥システムの概略構成図であり、図7は冷媒としてHFCやHC系を用いた場合のヒートポンプのP−h線図である。
【0111】
図6に示すように、第4の弁32が水蒸気排出通路9の廃熱回収部37の外気開放部側に設けられ、第5の弁33が第4の弁32より上方で且つ乾燥器1側の水蒸気排出通路9部と減圧手段25とを配管する配管途中に設けられる。また、コンプレッサー17、風量を可変可能なファン35により冷却される能力調整用凝縮器34、乾燥器1を加熱する加熱用凝縮器36、膨張機構27、水蒸気排出通路9を通って廃熱回収部37に流入した水蒸気を冷却する蒸発器21とを順次環状に連接してヒートポンプ19を構成している。
【0112】
また、図7において、コンプレッサー17にて圧縮後のエンタルピーからコンプレッサー17吸入部のエンタルピー(蒸発器21出口のエンタルピー)を差し引いた圧縮仕事量をh1で、能力調整用凝縮器34における冷媒凝縮熱量である第1の凝縮熱量をh2で、加熱用凝縮器36における冷媒凝縮熱量である第2の凝縮熱量をh3で、コンプレッサー17にて圧縮後のエンタルピーから膨張機構27入口部のエンタルピーを差し引いた全凝縮熱量(第1の凝縮熱量h2と第2の凝縮熱量h3との和に等しい)をh4で、膨張機構27の入口のエンタルピーをh5で、それぞれ表している。なお、膨張機構27の入口のエンタルピーh5は、膨張機構27の出口のエンタルピーでもある蒸発器21の入口部のエンタルピーから蒸発器21の出口のエンタルピーでもあるコンプレッサー17の吸入部のエンタルピーを差し引いた冷凍効果である。
【0113】
以上のように構成された乾燥システムについて、以下にその動作を説明する。
【0114】
乾燥運転の開始されると、第4の弁32と第5の弁33とが共に開放され、一定時間維持した後に第4の弁32が閉となり減圧手段25が作動する。そして、乾燥器1内及び水蒸気排出通路9内の一部を3kPa未満、例えば、2.5kPaまで減圧した後、減圧手段が停止し第5の弁33が閉となる。
【0115】
そして、コンプレッサー17の作動によりヒートポンプ19が機能を開始し、ヒートポンプ19の作動初期は第2の凝縮熱量h3が冷凍効果h5より小さくなるように、ファン35を運転して能力調整用凝縮器34の第1の凝縮熱量h2を制御する。
【0116】
その後、乾燥器1内の圧力検知手段である第1の圧力サンサ28により乾燥器1内の圧力が2.5kPaを超えるまでファン35の風量を低下させる。2.5kPaを超えた圧力、例えば、3kPaにてファン35の風量を維持する。このとき、第2の凝縮熱量h3と冷凍効果h5が等しくなり、乾燥器1内の圧力は3kPaを維持する。つまり、加熱用凝縮器36の第2の凝縮熱量h3により被乾燥物から蒸発した水分は蒸発器21ですべて凝縮する。
【0117】
また、外気温変動等の何らかの理由により乾燥器1内の圧力が所定の3kPaを超えた場合は、第1の圧力センサ28により検知してファン35の風量を増加させ、第1の凝縮熱量h2を増加させる。つまり、冷凍効果h5より第2の凝縮熱量h3が小さくなるように第1の凝縮熱量h2を増加させることで、乾燥器1内の圧力を一時的に3kPa未満まで低下させてた後、ファン35の風量を低下させて所定圧力になった時点でファン35の風量を低下を止めて、その風量を維持することで所定圧力を維持する。
【0118】
また、外気温が低下した場合は、逆に、乾燥器1内の圧力が低下する可能性があるのでファン35の風量を低下させることで乾燥器1内の圧力を所定の約3kPaに維持する。
【0119】
このように、減圧手段25は運転初期の水分をほとんど含まない空気を排出する時だけ運転するため、耐水性の強固なものを使用しなくてよく、例えば、油拡散ポンプ等でも一般的なメンテナンス期間で利用可能であるので、安価なものが利用できると共に、稼動時間が短くなるので長寿命となる。
【0120】
以上説明したように、使用初期及び運転初期において、乾燥器1内の空気は外気温相当の低温の飽和空気または不飽和空気であるため減圧手段25は油拡散真空ポンプやその他の多くの種類の真空ポンプが利用可能であり、イニシャルコストが低減すると共に、早期に所定圧力に減圧できるので乾燥時間が短縮する。更に、ヒートポンプ19の作動時は所定圧力に減圧した後に行うので効率の良いポイントでヒートポンプ19を運転でき省エネルギーとなり低ランニングコストとなる。
【0121】
加えて、減圧手段の稼動時間が極端に短縮するので、減圧手段25は省エネルギーであり寿命が延命して更なる低ランニングコストとなる。
【0122】
尚、本発明の形態では凝縮器は能力調整用凝縮器34と加熱用凝縮器36だけであるが、加熱用凝縮器36と膨張機構27の間に外気温と熱交換する過冷却安定用凝縮器を設けて、乾燥器1内の圧力上昇における被乾燥物の蒸発温度上昇時に、膨張機構27の入口の過冷却度変動を抑制し、常に外気温相当の一定温度の過冷却度を維持するようにしてもよい。
【0123】
【発明の効果】
以上、説明したように本発明の請求項1記載の乾燥システムの発明によれば、運転初期に所定圧力に減圧した後にヒートポンプを作動してヒートポンプの凝縮器の温熱源を乾燥時の水蒸気発生用熱源として利用し、冷熱源を水蒸気凝縮用熱源として利用することで所定圧力を維持するので、減圧手段は油拡散真空ポンプやその他の多くの種類の真空ポンプが利用可能でありイニシャルコストが低減すると共に、早期に所定圧力に減圧できるので乾燥時間が短縮するという効果がある。更に、ヒートポンプ作動時は所定圧力に減圧した後に行うので効率の良いポイントでヒートポンプを運転でき省エネルギーとなり低ランニングコストとなるという効果がある。
【0124】
また、請求項2記載の乾燥システムの発明によれば、廃熱回収器部分の水蒸気排出通路は下流側が常に上流側の下方に位置する構成としたので、強固な耐水性を有する減圧手段を使用しなくても良く、強固な耐水性を有しないポンプであってもメンテナンス期間が延長し、更なる低ランニングコストとなるという効果がある。
【0125】
また、請求項3記載の乾燥システムの発明によれば、凝縮水を定期的に外部に排水することでタンクを小型化でき、更なる低イニシャルコストとなり省スペースとなるという請求項2記載と同等の効果に加えて、減圧手段は稼動が断続運転となるため省エネルギーとなり寿命も延命するので更なる低ランニングコストとなるという効果がある。
【0126】
また、請求項4記載の乾燥システムの発明によれば、ヒートポンプはコンプレッサーと凝縮器と膨張機構と蒸発器とを機能的に環状に配管して内部に二酸化炭素冷媒を封入した冷却サイクルであるであるので、万が一にヒートポンプ内の冷媒が漏洩した場合、環境負荷が極めて小さいと共に、発火の危険性を低減できるという効果がある。また、乾燥器内圧力が従来と同真空度であれば凝縮器と乾燥器との伝熱面積を小さくでき省スペースとなり、凝縮器と被乾燥物の蒸発温度とを同温度差と設計するならば低能力な減圧手段の適用にて低イニシャルコストとなるという効果がある。
【0127】
また、請求項5記載の乾燥システムの発明によれば、減圧手段の稼動時間が極端に短縮するので、減圧手段は省エネルギーであり寿命が延命して更なる低ランニングコストとなる効果がある。
【図面の簡単な説明】
【図1】本発明の実施の形態1における乾燥システムの概略構成図
【図2】本発明の実施の形態2における乾燥システムの概略構成図
【図3】本発明の実施の形態3における乾燥システムの概略構成図
【図4】同実施の形態による乾燥システムの動作を示すフローチャート
【図5】本発明の実施の形態4における乾燥システムの概略構成図
【図6】本発明の実施の形態5における乾燥システムの概略構成図
【図7】同実施の形態におけるヒートポンプのP−h線図
【図8】従来の乾燥システムの概略構成図
【符号の説明】
1  乾燥器
9  水蒸気排出通路
11 廃熱回収器
17 コンプレッサー
19 ヒートポンプ
20 凝縮器
21 蒸発器
22 タンク
23 第1の弁
24 第2の弁
25 減圧手段
26 第3の弁
27 膨張機構
32 第4の弁
34 能力調整用凝縮器
36 加熱用凝縮器
37 廃熱回収部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydrate drying system.
[0002]
[Prior art]
As a conventional drying system, there is a combination of a dryer and a heat pump (for example, see Patent Document 1).
[0003]
Hereinafter, the conventional drying system will be described with reference to the drawings.
[0004]
As shown in FIG. 8, the conventional drying system includes a dryer 1 and a heat pump chiller unit 2 configured in a pressure-resistant closed container shape. The dryer 1 is provided with an inlet 3 for charging the object to be dried and an outlet 4 for extracting the material to be dried, and is equipped with a stirrer 5 and an auxiliary heating device 6 for stirring the object to be dried to promote drying. ing.
[0005]
The stirrer 5 includes a screw 7 and a motor 8 for driving the screw 7 to rotate. The screw 7 lifts the material to be dried downward so as to drop it along the inner peripheral surface of the side wall of the dryer 1. The peripheral edge has a slight distance from the inner peripheral surface of the side wall of the dryer 1 and is formed such that the distance gradually increases as it extends upward. The auxiliary heating device 6 will be described later.
[0006]
In the dryer 1, the water vapor discharge passage 9 is taken out from the upper part, and a water jacket 10 is provided on a side wall part. The terminal of the steam discharge passage 9 is open to the atmosphere, and a waste heat recovery unit 11 and a water ring vacuum pump 12 are provided in the middle.
[0007]
The water jacket 10 is connected to a heat medium circulation path 14 in which a first circulation pump 13 is interposed. Therefore, the heat medium for circulating and flowing through the water jacket 10 exchanges heat with the dryer 1 to heat the dryer 1, thereby constituting a dryer heating heat exchanger. The heating medium is hot water.
[0008]
The waste heat recovery unit 11 is provided in the steam discharge passage 9 between the dryer 1 and the water-sealed vacuum pump 12, passes through the steam discharge passage 9 in a meandering shape, and has a second circulation pump 15 interposed therebetween. The refrigerant circulation path 16 is connected.
[0009]
The water-sealed vacuum pump 12 has a conventionally well-known structure in which a main body is constituted by a circular casing and an impeller mounted eccentrically in the casing, and an appropriate amount of water is filled in the casing. When the car is rotated, the water creates a circular water film concentric with the casing due to the centrifugal force, which creates a space enclosed by the water film and the adjacent blades and blades, and the space increases as the impeller rotates. By changing the volume, suction, compression and discharge are continuously performed.
[0010]
On the other hand, the heat pump type chiller unit 2 condenses the heat between the compressor 17 and the capillary tube 18 in the flow direction of the refrigerant in the heat pump 19 in which the compressor 17 and the capillary tube 18 are interposed in a closed circulation pipe filled with a refrigerant such as Freon. An evaporator 21 is provided between the condenser 20, the capillary tube 18 and the compressor 17, and the heat medium circulation path 14 is provided in the condenser 20, and the refrigerant circulation path 16 is provided in the evaporator 21.
[0011]
In the vacuum drying apparatus, for example, an object to be dried such as garbage is put in the dryer 1 and hermetically closed, and the water ring vacuum pump 12 is driven to drive the inside of the dryer 1 to the boiling point of water. When the compressor 17 of the heat pump 19 is driven by reducing the pressure until the temperature becomes equal to the outside temperature, the heat pump 19 becomes high pressure between the compressor 17 and the capillary tube 18 due to the passage resistance of the capillary tube 18, and the refrigerant condenses. As a result, the temperature rises, and the pressure between the capillary tube 18 and the compressor 17 becomes low, so that the refrigerant evaporates and the temperature decreases.
[0012]
The heat generated by the heat pump 19 is exchanged with the water circulating through the refrigerant circuit 16 in the evaporator 21 of the chiller unit 2 to absorb the heat of the water and cool the water. The condenser 20 heats the hot water by exchanging heat with the hot water circulating in the heat medium circulation path 14.
[0013]
The hot water heated by the condenser 20 of the chiller unit 2 flows to the heat exchanger 10 for heating the dryer, heats the dryer 1, and heats the material to be dried inside the dryer 1 by the heating energy to evaporate the water. Let it.
[0014]
Thereby, the steam pressure in the dryer 1 is increased, and the steam in the dryer 1 is sucked into the steam discharge passage 9 together with the operation of the water ring vacuum pump 12.
[0015]
On the other hand, the cold water cooled by the evaporator 21 of the chiller unit 2 flows to the waste heat recovery unit 11, and recovers and condenses waste heat from the steam flowing through the steam discharge passage 9.
[0016]
As a result, the steam is reduced in volume and discharged as drain water via the water ring vacuum pump 12. Therefore, evaporation occurs continuously inside the dryer 1 to dry the object to be dried.
[0017]
In this apparatus, the dryer 1 indirectly uses the heat of the heat pump 19 by exchanging heat with water for heating, and the waste heat recovery unit 11 uses a heat pump for recovering and condensing waste heat of steam. The cold energy of 19 is exchanged with water for indirect use. That is, the heat energy consumed for evaporation inside the dryer 1 is recovered by the waste heat recovery unit 11, returned to the original dryer 1 by the heat pump 19, and recycled.
[0018]
In the final stage of drying, when it is necessary to dry the object to be dried, the auxiliary heating device 6 is used.
[0019]
The auxiliary heating device 6 is a tube-type gas burner that generates far-infrared rays. In addition to the case where the object to be dried needs to be dried quickly, the temperature of the cold water is too low in the early stage of operation in winter, and the operation becomes impossible. It may be used temporarily to prevent this.
[0020]
When the auxiliary heating device 6 is used in combination, the balance of the thermal energy sent to the dryer 1 and the waste heat recovery device 11 is lost, so an auxiliary radiator (not shown) including a fan or the like is provided in the heat medium circulation path 14 to Release heat.
[0021]
As described above, when the garbage is dried using the conventional drying system, as a general vacuum drying effect, it can be easily recovered immediately after the drying is completed by low-temperature drying, and the weight can be reduced by drastically reducing the amount of water. It is sanitary due to the elimination of specific species of bacteria in a vacuum. No chemicals are used, so the collected garbage can be reused as fertilizer and feed, and can be easily incinerated. Since it is water, there is an effect that there is no fear of water pollution even if it is discharged as it is.
[0022]
Furthermore, in addition to the above-mentioned effects, energy is dissipated into the atmosphere, so that it is very economical without wasteful consumption. Water vapor evaporated from the material to be dried is condensed by the waste heat recovery unit to reduce the volume. Therefore, the discharge efficiency of the water ring vacuum pump is increased, and a small-sized and small-capacity pump can be used. In addition to reducing the size and cost of the entire apparatus, the aim is to reduce running costs such as power consumption. It is a thing.
[0023]
[Patent Document 1]
Japanese Patent Publication No. 7-35946
[0024]
[Problems to be solved by the invention]
However, in the above-mentioned conventional drying system, since there is no condensed water in front of the water ring vacuum pump 12 in the water vapor exhaust passage 9 in the initial stage of use, the exhaust capacity of the water ring vacuum pump 12 is reduced, and a predetermined vacuum is reached. Takes time to do. Alternatively, in the worst case, the drying time is not reduced at the temperature in the dryer 1 heated by the heat medium in the heat medium circulation path 14 to the evaporation pressure at which the moisture of the material to be dried in the dryer 1 evaporates. Extremely slow.
[0025]
When the pressure is not reduced to the predetermined pressure as described above, the evaporation temperature of the moisture of the object to be dried becomes higher than the temperature of the heat medium in the heat medium circulation path 14, so that the latent heat of evaporation during the evaporation of the water of the object to be dried is given. Therefore, the heat medium in the heat medium circulation path 14 returns to the condenser 20 of the heat pump 19 without depriving a large amount of heat.
[0026]
As a result, the ability of the condenser 20 to remove the latent heat of condensation of the refrigerant in the heat pump 19 is reduced, and the efficiency of the heat pump 19 is reduced. It is needless to say that, if such an ability is designed in the early stage of use, the ability is insufficient at normal times.
[0027]
Further, assuming that a system that satisfies both is constructed, in order to sufficiently transfer heat to the object to be dried in the initial stage of use when the capacity of the heat medium becomes excessive, the heat exchange area between the dryer 1 and the heat medium circulation path 14 is required. It is necessary to take a large amount, and it becomes very large, and is usually wasted.
[0028]
Further, the water ring vacuum pump 12 is more expensive than the oil diffusion vacuum pump and the dry vacuum pump, and in addition, the water ring pump 12 is continuously operated during the drying process, so that the water ring type vacuum pump 12 is worn out and has a long life. Be shorter.
[0029]
Although the conventional example does not particularly describe the refrigerant in the heat pump 19, it is common to use chlorofluorocarbon. In this case, the condensation temperature of the condenser 20 is about 50 ° C. In order to evaporate the moisture of the object to be dried in the dryer 1, a large heat exchange area between the dryer 1 and the heat medium circulation path 14 is required, and the pressure in the dryer 1 is reduced to about 10 kPa, or Alternatively, the pressure in the dryer 1 is further reduced from 10 kPa, and the heat exchange area between the dryer 1 and the heat medium circulation path 14 is increased by the temperature difference between the evaporation temperature of water and the heat medium corresponding to the reduced pressure. In the former case, the cost increases due to an increase in the heat exchange area between the dryer 1 and the heat medium circulation path 14 and the heat exchange area between the heat medium circulation path 14 and the condenser 20. There is a problem that the size of the equipment and equipment will increase In the latter with a required high capacity vacuum pumps, vacuum is the portions such as the dryer 1 and the steam discharge passage 9 is expensive and requires a strong pressure-resistant structure.
[0030]
From this, it is possible to shorten the drying process time by early decompression in the early stage of operation, reduce the initial cost by using an inexpensive vacuum pump, save energy and extend the life of the vacuum pump operation time, and reduce the running time by efficient operation of the heat pump. There was a problem that cost reduction was required.
[0031]
The present invention has been made in view of the above-described conventional problems, and has as its object to provide a drying system that reduces drying time with low running costs and low initial costs, in addition to the effects of general vacuum drying and the effects of the conventional example. .
[0032]
[Means for Solving the Problems]
In order to achieve the above object, an invention of a drying system according to claim 1 of the present invention comprises a drier having a pressure-tight structure, a tank arranged so as to store moisture evaporated from the drier, and the drier And a steam discharge passage communicating the tank, a heat pump, a waste heat recovery unit for exchanging heat between a part or all of the steam discharge passage and the cold heat generation side of the heat pump; and A first valve installed in the middle of a steam discharge passage located between the second valve and a second valve installed in the middle of a drainage path located below the tank and communicating the inside and outside of the tank; A branch pipe that branches from the pipe or tank between the first valve or the first valve and the second valve and pipes the pressure reducing unit, and a third valve that is installed in the middle of the branch pipe. The heat pon Some of the heat generating side is one that is arranged to heat transfer to the drier.
[0033]
In the above configuration, the first valve and the third valve are opened at the beginning of use, and the pressure reducing means is operated with the second valve closed. Then, the pressure inside the dryer is reduced to a predetermined pressure equal to or lower than the evaporation pressure at which water evaporates at a temperature not higher than the temperature on the warm side when the heat pump is operated, and then the heat pump is operated. Thereafter, the heat of the heat pump is transferred to the dryer, and the heat evaporates the moisture of the object to be dried. Then, the evaporated water vapor is cooled and condensed in the waste heat recovery device by the cold heat on the cold side of the heat pump.
[0034]
In the present invention, the pressure is reduced to a predetermined pressure in the early stage of operation, and then the heat pump is operated to use the heat source of the condenser of the heat pump as a heat source for generating steam during drying and to use the cold source as a heat source for condensing steam. Maintain pressure.
[0035]
As a result, in the initial stage of use and operation, the air inside the dryer is saturated air or unsaturated air at a low temperature equivalent to the outside air temperature, so that an oil diffusion vacuum pump and many other types of vacuum pumps can be used as the pressure reducing means. Thus, the initial cost can be reduced and the drying time can be shortened because the pressure can be reduced to the predetermined pressure at an early stage. Furthermore, since the heat pump is operated after the pressure has been reduced to a predetermined pressure, the heat pump can be operated at an efficient point, thereby saving energy and reducing running costs.
[0036]
In the drying system according to the second aspect of the present invention, the steam discharge passage of the waste heat recovery unit in the first aspect of the invention is configured such that the downstream side is always located below the upstream side, and the tank is provided with the waste heat recovery unit. It is installed below.
[0037]
In the above configuration, the water vapor evaporated from the dryer is cooled and condensed from the waste heat recovery unit inlet portion of the water vapor discharge passage, and the condensed water together with the uncondensed water vapor is supplied to the downstream side of the water vapor discharge passage which is the waste heat recovery unit outlet side. Flows. Most of the steam becomes condensed water at the outlet of the waste heat recovery unit in the steam discharge passage, and is dropped and temporarily stored in the tank. Then, after the material to be dried is dried and the operation is completed, the water stored in the tank is discharged to the outside.
[0038]
In the present invention, the amount of residual water after the previous operation is completed is reduced in the exhaust path of the pressure reducing means such as the steam discharge passage, and the amount of water suctioned into the pressure reducing means at the time of operation of the pressure reducing means in the initial operation is reduced. Need not be used, in which case the maintenance period is extended.
[0039]
As a result, an oil diffusion vacuum pump or many other types of vacuum pumps can be used as the decompression means, resulting in a low initial cost and a drying time can be reduced because the pressure can be reduced to a predetermined pressure at an early stage of the operation. In this case, the heat pump operation is performed after the pressure is reduced to a predetermined pressure, so that the heat pump can be operated at an efficient point, thereby saving energy and reducing running costs. In addition, the amount of residual water after the previous operation is completed is reduced in the exhaust path of the pressure reducing means such as a steam discharge passage, and the amount of water intake to the pressure reducing means at the time of operation of the pressure reducing means in the initial operation is reduced, so that strong water resistance is provided. Even if the pump does not have a pump, the maintenance period is extended and the running cost is further reduced.
[0040]
Further, the invention of the drying system according to the third aspect is the invention according to the first or second aspect, wherein the first valve and the third valve are opened and the second valve is closed to operate the pressure reducing means. A first step of reducing the pressure of the dryer, the steam discharge passage, and the tank below the atmospheric pressure, and a second step of operating the heat pump when the first valve is open and the second and third valves are closed. A third step of draining liquid in the tank when the first valve is closed and the second valve is open and the third valve is closed or open; and the first valve and the second valve are closed. The third valve comprises a fourth step of opening the tank to reduce the pressure in the tank to a predetermined pressure by operating the pressure reducing means when the valve is opened. The first to fourth steps are sequentially performed in the initial stage of the operation, and then the second step is performed. At least one drying cycle in which the steps from the fourth step are sequentially performed is performed.
[0041]
In the above configuration, in the first step, the pressure in the dryer is reduced to a predetermined pressure equal to or lower than an evaporation pressure at which water evaporates at a temperature equal to or lower than the heating side temperature when the heat pump is operated, and then the first step is completed. Then enter the second step. In the second step, the water vapor evaporated from the dryer by the heat of the heat pump is cooled and condensed by the waste heat recovery device by the cold heat on the cold side of the heat pump. The condensed water is temporarily stored in a tank. After a lapse of a predetermined time, the process enters the third step from the second step, in which the water stored in the tank is drained to the outside, and the outside air flows into the tank to reach atmospheric pressure. Then, when the drainage of the water in the tank is completed and the inside of the tank is filled with the outside air, the process proceeds from the third step to the fourth step. In the fourth step, the pressure in the tank is reduced to the same pressure or less as that in the dryer, and the process proceeds to the second step. Thereafter, the cycle in which the second step to the fourth step are sequentially performed is performed one or more times, so that the water in the tank is periodically discharged to the outside while suppressing the pressure increase in the dryer.
[0042]
As a result, an oil diffusion vacuum pump or many other types of vacuum pumps can be used as the decompression means, resulting in a low initial cost and a drying time can be reduced because the pressure can be reduced to a predetermined pressure at an early stage of the operation. Since the heating is performed after the pressure is reduced to a predetermined pressure, the heat pump can be operated at an efficient point, thereby saving energy and reducing running cost. In addition, by periodically discharging condensed water to the outside, the tank can be made smaller, further lowering initial costs and saving space.In addition, since the decompression means operates intermittently, it saves energy and extends its life. Further lower running costs.
[0043]
Further, in the invention of a drying system according to claim 4, in the invention of claim 1, the heat pump has a compressor, a condenser, an expansion mechanism, and an evaporator, which are functionally annularly piped, and a carbon dioxide refrigerant is sealed therein. It is a cooling cycle.
[0044]
In the above configuration, as the pressure reducing means, an oil diffusion vacuum pump or many other types of vacuum pumps can be used, resulting in a low initial cost, and a reduced drying time because the pressure can be reduced to a predetermined pressure early in the initial operation, and the heat pump is reduced. Since the operation is performed after the pressure has been reduced to a predetermined pressure, the heat pump can be operated at an efficient point, saving energy and reducing running costs. In addition, if the refrigerant in the heat pump leaks, the environmental load is extremely small and the risk of ignition can be reduced. Furthermore, in recent years, a heat pump for hot water supply using a carbon dioxide refrigerant has been commercialized, and the temperature on the heating side is up to 90 ° C. Therefore, when applied to the present drying system, the pressure inside the dryer is the same as the conventional vacuum degree. If this is the case, the difference between the evaporation temperature of the object to be dried under reduced pressure and the temperature between the condenser and the condenser increases, so that the heat transfer area between the condenser and the dryer can be reduced, saving space, or evaporating the condenser and the object to be dried. If the temperature is designed to be the same as the temperature difference, the internal pressure of the dryer can be increased, so that the capacity of the pressure reducing means can be reduced and the initial cost can be reduced.
[0045]
According to a fifth aspect of the present invention, there is provided a drying system having a pressure tight structure, a steam discharge passage communicating the dryer with the outside, and a fourth valve provided in the middle of the steam discharge passage. Pressure reducing means for reducing the pressure in the dryer, a heat pump, and waste heat recovery in which a part or all of the steam discharge passage located closer to the dryer than the fourth valve exchanges heat with the evaporator of the heat pump. Unit, the heat pump comprises a compressor, at least two or more condensers of a capacity adjusting condenser capable of varying the condensation capacity and a heating condenser of the dryer, an expansion mechanism, and an evaporator. It is a pipe which is functionally arranged in an annular shape, and is a pipe in which a steam discharge passage located on the dryer side with respect to the fourth valve and a pressure reducing means are provided.
[0046]
In the above configuration, the dryer is controlled by controlling the heat pump so that the capacity of the condenser of the heat pump becomes equal to the capacity of the steamer at the time of operating the heat pump after the pressure is reduced to the predetermined pressure by the pressure reducing means in the initial stage with less moisture. The amount of heat given to the water evaporation of the material to be dried and the amount of heat condensing the evaporated water vapor become equal, and the predetermined pressure in the dryer can be maintained for a long time without operating the pressure reducing means.
[0047]
As a result, in the initial stage of use and operation, the air inside the dryer is saturated air or unsaturated air at a low temperature equivalent to the outside air temperature, so that an oil diffusion vacuum pump and many other types of vacuum pumps can be used as the pressure reducing means. Thus, the initial cost can be reduced and the drying time can be shortened because the pressure can be reduced to the predetermined pressure at an early stage. Further, since the heat pump is operated after the pressure has been reduced to a predetermined pressure, the heat pump can be operated at an efficient point, thereby saving energy and reducing running costs. In addition, since the operation time of the decompression means is extremely shortened, the decompression means is energy saving, has a longer life, and further lowers running costs.
[0048]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the drying system of the present invention will be described with reference to FIGS. In addition, about the same structure as a conventional one, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
[0049]
(Embodiment 1)
Embodiment 1 of the present invention will be described with reference to the drawings.
[0050]
FIG. 1 is a schematic configuration diagram of a drying system according to Embodiment 1 of the present invention.
[0051]
As shown in FIG. 1, the drying system according to the present embodiment includes a tank 22, a first valve 23, a second valve 24, a pressure reducing unit 25, a third valve 26, an expansion mechanism 27 constituting a heat pump 19, A first pressure sensor 28 for detecting the pressure in the dryer 1, a water level sensor 29 installed at a position where the lowest part can be measured when there is no water in the tank 22 and detecting the level of water stored in the tank 22. And a temperature sensor 30 installed at a position where the temperature of the object to be dried put into the dryer 1 can be measured.
[0052]
The drying system according to the present embodiment includes a drier 1 having a pressure-resistant hermetic structure, a tank 22 arranged to store moisture evaporated from the drier 1, and a steam discharge communicating the drier 1 and the tank 22. A waste heat recovery unit 11 for exchanging heat between the passage 9, the heat pump 19, and a part or all of the water vapor discharge passage 9 and the cold heat generation side of the heat pump 19, and a water vapor positioned between the waste heat recovery unit 11 and the tank 22. A first valve 23 installed in the middle of the discharge passage 9, a second valve 22 installed in the middle of a drainage path located below the tank 22 and communicating between the inside and the outside of the tank 22, and a pressure reducing unit 25. And a third valve 26 installed in the middle of the branch pipe, the condenser being a part of the heat pump 19 on the heat generation side. 20 is the dryer 1 In which are arranged to heat transfer.
[0053]
The operation of the drying system configured as described above will be described below.
[0054]
An object to be dried (not shown) is put into the dryer 1 by opening a cover (not shown) of the inlet 3. After the charging, the lid of the charging port 3 is closed, so that the charging port 3 is in a closed state. When the user presses a drying start button on an operation panel (not shown), the second valve 24, which has been closed, is opened, the first valve 23 is kept open, and the third valve 26 is opened. The state changes from the closed state to the open state, and after a lapse of a predetermined time, the first valve 23 and the third valve 26 are maintained in the open state, the second valve 24 is closed, and at the same time, the pressure reducing means 25 operates.
[0055]
Then, the air in the dryer 1, the steam discharge passage 9, and the tank 22 is discharged to the outside to reduce the pressure. When the pressure in the dryer 1 becomes 3 kPa by the first pressure sensor 28, the third valve 26 is closed. At the same time as the decompression means 25 is stopped, the compressor 17 is driven to compress the refrigerant inside the heat pump 19 by the compressor 17 and to flow through the condenser 20, the expansion mechanism 27, and the evaporator 21 to perform a general vapor compression type cooling. Activate the cycle.
[0056]
By the operation of the heat pump 19, the temperature of the condenser 20 becomes high, and the temperature of the evaporator 21 becomes low. Then, the condenser 20 heats the inside of the dryer 1 at a temperature exceeding 24 ° C., and the moisture of the material to be dried evaporates at an evaporating temperature of 3 kPa or higher at 24 ° C. or higher. The evaporated water vapor passes through the water vapor discharge passage 9 and is condensed by the cooling of the evaporator 21 of the heat pump 19 at the portion of the waste heat recovery device 11 to be converted into water and stored in the tank 22.
[0057]
When the temperature rising speed of the object to be dried reaches a predetermined value or more by the temperature sensor 30, the compressor 17 is stopped to stop the heat pump 19, and the second valve 24 is opened to discharge the stored water in the tank 22 to the outside. Drain to finish drying. Then, the second valve 24 is closed after a certain time when the water in the tank 22 finishes draining.
[0058]
At this time, the inner diameter of the pipe and the diameter of the second valve 24 are larger than a predetermined value so that drainage is performed smoothly, and the maximum water level of the tank 22 is lower than the connection position of the pressure reducing means 25 with the tank 22. Needless to say, the position is set.
[0059]
If the inside diameter of the drain pipe for the tank 22 or the second valve 24 cannot be made large, a separate pipe for communicating the tank 22 with the outside and an on-off valve in the middle of the pipe are provided for smooth drainage. The valve may be opened when the tank 22 is drained.
[0060]
As described above, since the decompression means 25 discharges the air in the early stage of the drying operation, the amount of sucking the water is significantly reduced as compared with the conventional one, and the vacuum pump which could not be used conventionally can be used. The maintenance period of the vacuum pump, which can be used but the maintenance period becomes extremely short, can be significantly extended.
[0061]
Therefore, when the pressure reducing means 25 is selected, a wide range of methods can be selected, so that an inexpensive one can be selected. Also, the number of maintenance operations is reduced. In addition, since the heat pump 19 is operated after the pressure is reduced, the heat pump 19 operates in an efficient cycle to save energy.
[0062]
As described above, the inexpensive decompression unit 25 can be used, and the initial cost can be reduced, and the running cost can be reduced by extending the maintenance period of the decompression unit 25 and operating the efficient heat pump 19.
[0063]
In the drying of an object to be dried, such as garbage, which may give off a bad odor, the second valve 24 is kept in a closed state during stoppage, so that the bad odor does not flow out to the outside and during the processing, Also, the odor is reduced by shortening the drying time.
[0064]
Further, although the third valve 26 is used to prevent the backflow of the pressure reducing means 25, a three-way valve having a necessary function may be used by being integrated with the first valve 23.
[0065]
The expansion mechanism 27 of the heat pump 19 according to the embodiment of the present invention can use a capillary, an expansion valve, or the like. When the expansion valve is used, the amount of the material to be dried or the temperature of the condenser 20 when the input is changed. It becomes easy to cope with the load fluctuation. That is, the condensing temperature can be set to a predetermined temperature by changing the condensing pressure of the refrigerant by changing the throttle amount of the expansion valve, and even when the load of the condenser 20 or the cycle of the heat pump 19 fluctuates, the condensing temperature is always kept constant. And the heat exchange becomes smooth.
[0066]
(Embodiment 2)
Next, a second embodiment of the present invention will be described with reference to the drawings. The same components as those of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
[0067]
FIG. 2 is a schematic configuration diagram of a drying system according to Embodiment 2 of the present invention.
[0068]
As shown in FIG. 2, the steam discharge passage 9 which is located downstream of the waste heat recovery unit 11 and includes the waste heat recovery unit 11 is provided so as to be located downstream, that is, the lower the tank 22 side. Further, the tank 22 is installed below the waste heat recovery unit 11, and a drainage path of the tank 22, that is, a piping path in which the second valve 24 is installed and communicates with the outside of the tank 22 is attached below the tank 22. I have.
[0069]
In the present embodiment, in the configuration of the drying system according to the first embodiment shown in FIG. 1, the steam discharge passage 9 of the waste heat recovery unit 11 is configured such that the downstream side is always located below the upstream side, and the tank 22 is eliminated. It is installed below the heat recovery unit 11.
[0070]
The operation of the drying system configured as described above will be described below.
[0071]
When the heat pump 19 is operated, the dryer 1 is heated by the condenser 20, the moisture of the material to be dried in the dryer 1 evaporates as steam, and the evaporated water vapor passes through the steam discharge passage 9 to collect the waste heat At the eleventh portion, water is condensed by cooling of the evaporator 21 to become water.
[0072]
Then, the condensed water flows to the downstream pipe located below. As the steam proceeds to the downstream side of the waste heat recovery unit 11, the ratio of the water vapor decreases and the ratio of the condensed water increases. It flows and is stored.
[0073]
Then, when the drying of the object to be dried is completed, the water in the tank 22 is drained, and the second valve 24 is closed after a lapse of a predetermined time when the drainage is almost completed. At this time, the third valve 26 remains closed.
[0074]
Here, most of the water in the steam discharge passage 9 is drained when the tank 22 is drained. Further, during the stop after the termination, an extremely small amount of water remaining in the steam discharge passage 9 is dropped and stored in the tank 22. Then, after stopping the drying for an arbitrary time, the second valve 24 is opened after the material to be dried is introduced, and the water stored in the tank 22 during the stop is drained to the outside.
[0075]
Then, after draining, the second valve 24 is closed, the first valve 23 and the third valve 26 are opened, and the pressure reducing means 25 operates. By operating the pressure reducing means 25, the air in the dryer 1, the water vapor discharge passage 9, and the tank 22 and a very small amount of moisture are exhausted to reduce the pressure. When the pressure is reduced to a predetermined pressure, the heat pump 19 is operated to dry the object to be dried. Is
[0076]
As described above, in addition to the first embodiment in which the inexpensive decompression unit 25 can be used and the initial cost is reduced, the maintenance period of the decompression unit 25 is extended, and the running cost is reduced by the efficient operation of the heat pump 19, the initial operation is reduced. In this case, the amount of water suctioned into the pressure reducing means 25 when the pressure reducing means 25 is operated is further reduced, so that even if the pressure reducing means 25 does not have strong water resistance, the maintenance period is extended and the running cost is further reduced.
[0077]
(Embodiment 3)
Embodiment 3 of the present invention will be described with reference to the drawings. In addition, about the same structure as Embodiment 1 and 2, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
[0078]
FIG. 3 is a schematic configuration diagram of a drying system according to the third embodiment of the present invention, and FIG. 4 is a flowchart illustrating an operation of the drying system according to the third embodiment.
[0079]
As shown in FIG. 3, the second pressure sensor 31 detects the pressure in the tank 22. The water level detecting means 29 indicates 0 mm when there is no stored water in the tank 22.
[0080]
In FIG. 4, an initial drainage time counted by a timer counter (not shown) is H, a pressure value in the dryer as an output value of the first pressure sensor 28 is P1, and a tank detected by the water level detecting means 29. The water level is L, the tank maximum water level less than the junction height of the tank 22 in the piping path connecting the pressure reducing means 25 and the tank 22 is A, the drying object temperature detected by the temperature sensor 30 is T, The pressure in the tank detected by the pressure sensor 31 is represented by P2.
[0081]
In STEP 1, the state in which the pressure reducing means 25 is OFF (stopped), the first valve 23 is open, the second valve 24 and the third valve 26 are open, and the heat pump 19 is OFF is counted by a timer counter (not shown). The initial drainage time H1, which is a fixed time, is maintained.
[0082]
In STEP 2, the first valve 23 and the third valve 26 are opened, the second valve 24 is closed, the heat pump 19 is turned off, and the pressure reducing unit 25 is turned on (operating). Maintain until the pressure is reduced to below.
[0083]
In STEP3, the first valve 23 is opened, the second valve 24 and the third valve 26 are closed, the pressure reducing means 25 is OFF, and the heat pump 19 is ON, the tank water level L exceeds Amm, or The internal pressure P1 of the dryer exceeds 3 kPa, or the internal pressure P1 of the dryer is 3 kPa or less, and the temperature T of the material to be dried is maintained at 30 ° C. or less.
[0084]
In STEP 4, the state where the pressure reducing means 25 is OFF, the first valve 23 and the third valve 26 are closed, the second valve 24 is open, and the heat pump 19 is OFF is maintained until the tank water level L becomes less than 1 mm. .
[0085]
In STEP5, the pressure reducing means 25 is turned on, the first valve 23 and the second valve 24 are closed, the third valve 26 is opened, and the heat pump 19 is turned off until the tank pressure P2 is reduced to less than 3 kPa. maintain.
[0086]
In STEP 6, the state where the pressure reducing means 25 is OFF, the first valve 23 and the third valve 26 are closed, the second valve 24 is open, and the heat pump 19 is OFF is maintained until the tank water level L becomes less than 1 mm. .
[0087]
In STEP 7, the pressure reducing means 25 is OFF, the first valve 23 is open, the second valve 24 and the third valve 26 are closed, and the heat pump 19 is OFF.
[0088]
The operation of the drying system configured as described above will be described below.
[0089]
First, when the first valve 23 is open, the second valve 24 and the third valve 26 are closed, and the devices such as the pressure reducing means 25 and the heat pump 19 are stopped, the material to be dried is put into the inlet of the dryer 1. 3 and closed by closing a lid (not shown).
[0090]
Then, when a drying start button on an operation panel (not shown) is pressed, the drying process is started, and the flow goes to STEP 1, and a small amount of water stored while the drying process is stopped is drained to the outside through the second valve 24. Then, after the elapse of the initial drainage time H, the process proceeds to STEP 2 to depressurize the dryer 1, the steam discharge passage 9, and the tank 22.
[0091]
When the pressure P1 in the dryer becomes less than 3 kPa, the process proceeds to STEP3, where the dryer 1 is heated by the condenser 20 of the heat pump 19, and the material to be dried has an evaporating temperature of 24 ° C. to evaporate moisture. The evaporated water vapor is cooled in the evaporator 21 of the heat pump 19 in the waste heat recovery unit 11, condensed, stored in the tank 22, and dried by moving the moisture of the material to be dried to the tank 22.
[0092]
When the tank water level L exceeds the maximum water level Amm, the process proceeds to STEP 4 in order to prevent water from flowing into the pipe to the pressure reducing means 25. To prevent the amount of heat transfer from decreasing due to a rise in temperature and a temperature difference from the condenser 20 being not taken, thereby preventing moisture drying, that is, by keeping the evaporation temperature of the material to be dried at 24 ° C. If the pressure P1 in the temperature difference dryer exceeds 3 kPa so as to enable evaporation by the heat of the condenser 20, the process proceeds to STEP4.
[0093]
Also, since the water evaporation temperature is 24 ° C. or less at 3 kPa or less, when it is determined that the water evaporation of the material to be dried is completed under the condition that the pressure P1 in the dryer is 3 kPa or less and the temperature T of the material to be dried is 30 ° C. Move to STEP6. That is, when the tank water level L is Amm or less, the dryer internal pressure P1 is 3 kPa or less, and the temperature T of the object to be dried of the temperature sensor 30 exceeds 30 ° C., the process proceeds to STEP6.
[0094]
When the process proceeds to STEP4, the water stored in the tank is drained to the outside, and when most of the water in the tank 22 is drained, the tank water level L becomes less than 1 mm, and the process proceeds to STEP5.
[0095]
In STEP 5, in order to prevent the air from flowing into the dryer 1, that is, to maintain the pressure P 1 in the dryer at 3 kPa or less, the pressure in the tank 22 is reduced before the first valve 23 is opened. When P2 is reduced to 3 kPa or less, the process returns to STEP3, and the same operation is repeated.
[0096]
Further, when the process proceeds to STEP 6, the water in the tank 22 is drained. When the tank water level L becomes less than 1 mm, it is determined that the drainage is completed, and the process proceeds to STEP 7.
[0097]
In STEP 7, the second valve 24 and the third valve 26 that may communicate with the outside such that there is no convection between the air and gas in the dryer 1 and the steam discharge passage 9 and the tank 22 and the outside air are closed. Then, the first valve 23 is kept open so that a small amount of residual water in the steam discharge passage 9 is stored in the tank 22 until the next drying starts, and the entire drying process is completed.
[0098]
As described above, an oil diffusion vacuum pump and many other types of vacuum pumps can be used as the decompression means 25, so that the initial cost can be reduced. In addition, since the pressure can be reduced to a predetermined pressure early, the drying time can be reduced, and the operation of the heat pump 25 can be reduced. In this case, the heat pump 19 is operated after reducing the pressure to a predetermined pressure, so that the heat pump 19 can be operated at an efficient point, thereby saving energy and reducing running costs. The tank 22 can be miniaturized, further lowering initial costs and saving space. In addition, since the operation of the decompression means 25 is intermittent operation, energy is saved and the life is prolonged, so that the running cost is further reduced.
[0099]
(Embodiment 4)
Embodiment 4 of the present invention will be described with reference to the drawings. The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted.
[0100]
FIG. 5 is a schematic configuration diagram of a drying system according to Embodiment 4 of the present invention.
[0101]
In FIG. 5, carbon dioxide is sealed as a refrigerant in the heat pump 19. The heat exchange surface between the dryer 1 and the condenser 20 is downsized.
[0102]
The operation of the drying system configured as described above will be described below.
[0103]
During the operation of the heat pump 19, the average temperature of the inlet and outlet of the carbon dioxide refrigerant in the condenser 20 is about 70 ° C., and the pressure in the dryer 1 is 3 kPa. Therefore, the drying is performed in a state where the temperature difference between the condenser 20 and the temperature of the object to be dried is large.
[0104]
Thereby, if the drying time is the same, the heat exchange area between the dryer 1 and the condenser 20 can be reduced, so that the cost can be reduced and the size can be reduced. If the heat exchange area is the same, the drying time can be shortened. .
[0105]
In the present embodiment, the internal pressure of the dryer is 3 kPa and the moisture evaporation temperature of the object to be dried is 24 ° C., for example, when the heat exchange area is the same as the conventional one, When the temperature difference between the inside of the dryer 20 and the inside of the dryer 1 is the same as the conventional one, the condensing temperature when the conventional Freon refrigerant or HC refrigerant is used is about 50 ° C. or less. The temperature difference between the inside of the dryer 1 is about 26 ° C., whereas the average temperature of the condenser 20 is 75 ° C. in the heat pump 19 of the carbon dioxide refrigerant. Will be good.
[0106]
That is, the pressure in the dryer 1 may be about 13 kPa, which simplifies the pressure-resistant vacuum structure and lowers the capacity of the decompression means. Furthermore, when the water vapor evaporating from the material to be dried of the dryer 1 is insulated in the water vapor discharge passage 9 leading to the waste heat recovery unit 11, the temperature when entering the waste heat recovery unit 11 is about 50 ° C. Since the temperature is higher than the conventional temperature of 24 ° C., the temperature difference between the evaporator 21 and the evaporator 21 increases, and the heat exchange area between the evaporator 21 of the waste heat recovery unit 11 and the steam discharge passage 9 corresponding to the temperature difference is reduced. it can.
[0107]
As described above, an oil diffusion vacuum pump or many other types of vacuum pumps can be used as the decompression means 25, resulting in a low initial cost, and since the pressure can be reduced to a predetermined pressure at an early stage, the drying time is reduced, and the heat pump is used. Since the operation of the heat pump 19 is performed after the pressure has been reduced to a predetermined pressure, the heat pump 19 can be operated at an efficient point, thereby saving energy and reducing running costs. In addition, the refrigerant in the heat pump 19 leaks. In this case, the environmental load is extremely small, and the risk of ignition can be reduced.
[0108]
Further, if the pressure in the dryer 1 is the same degree of vacuum as the conventional one, the heat transfer area between the condenser 20 and the dryer 1 can be reduced to save space, and the evaporation temperature of the condenser 20 and the object to be dried is the same. If the temperature difference is designed, the initial cost is reduced by applying the low-pressure decompression means 25.
[0109]
(Embodiment 5)
Embodiment 5 of the present invention will be described with reference to the drawings. The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted.
[0110]
FIG. 6 is a schematic configuration diagram of a drying system according to Embodiment 5 of the present invention, and FIG. 7 is a Ph diagram of a heat pump when an HFC or HC system is used as a refrigerant.
[0111]
As shown in FIG. 6, the fourth valve 32 is provided on the open-air side of the waste heat recovery unit 37 of the steam discharge passage 9, and the fifth valve 33 is located above the fourth valve 32 and the dryer 1. It is provided in the middle of the pipe that connects the 9 side steam discharge passage 9 and the pressure reducing means 25. Further, the waste heat recovery unit passes through the compressor 17, the condenser 34 for adjusting the capacity to be cooled by the fan 35 capable of changing the air volume, the condenser 36 for heating the dryer 1, the expansion mechanism 27, and the steam discharge passage 9. The heat pump 19 is configured by sequentially and annularly connecting the evaporator 21 for cooling the water vapor flowing into the 37.
[0112]
In FIG. 7, the compression work obtained by subtracting the enthalpy of the suction portion of the compressor 17 (enthalpy at the outlet of the evaporator 21) from the enthalpy of the compressor 17 after compression by the compressor 17 is represented by h1, and the amount of heat condensed by the refrigerant in the condenser 34 for capacity adjustment. The first heat of condensation is represented by h2, the second heat of condensation being the heat of condensation of the refrigerant in the heating condenser 36 is represented by h3, and the enthalpy at the inlet of the expansion mechanism 27 is subtracted from the enthalpy after compression by the compressor 17. The heat of condensation (equal to the sum of the first heat of condensation h2 and the second heat of condensation h3) is represented by h4, and the enthalpy at the inlet of the expansion mechanism 27 is represented by h5. The enthalpy h5 at the inlet of the expansion mechanism 27 is the refrigeration obtained by subtracting the enthalpy at the inlet of the compressor 17 which is also the enthalpy at the outlet of the evaporator 21 from the enthalpy at the inlet of the evaporator 21 which is also the enthalpy at the outlet of the expansion mechanism 27. The effect is.
[0113]
The operation of the drying system configured as described above will be described below.
[0114]
When the drying operation is started, the fourth valve 32 and the fifth valve 33 are both opened, and after maintaining for a certain period of time, the fourth valve 32 is closed and the pressure reducing means 25 operates. Then, after reducing the pressure in the dryer 1 and a part of the inside of the steam discharge passage 9 to less than 3 kPa, for example, 2.5 kPa, the pressure reducing means is stopped and the fifth valve 33 is closed.
[0115]
Then, the heat pump 19 starts functioning by the operation of the compressor 17, and in the early stage of the operation of the heat pump 19, the fan 35 is operated to operate the condenser 34 for capacity adjustment so that the second heat of condensation h3 becomes smaller than the refrigeration effect h5. The first heat of condensation h2 is controlled.
[0116]
Then, the air volume of the fan 35 is reduced by the first pressure sensor 28 as the pressure detecting means in the dryer 1 until the pressure in the dryer 1 exceeds 2.5 kPa. The air volume of the fan 35 is maintained at a pressure exceeding 2.5 kPa, for example, 3 kPa. At this time, the second heat of condensation h3 becomes equal to the refrigeration effect h5, and the pressure in the dryer 1 is maintained at 3 kPa. In other words, the water evaporated from the object to be dried by the second heat of condensation h3 of the heating condenser 36 is all condensed by the evaporator 21.
[0117]
If the pressure in the dryer 1 exceeds a predetermined value of 3 kPa for some reason such as a change in the outside air temperature, the air pressure of the fan 35 is detected by the first pressure sensor 28 and the first heat of condensation h2 is detected. Increase. That is, the pressure in the dryer 1 is temporarily reduced to less than 3 kPa by increasing the first heat of condensation h2 such that the second heat of condensation h3 is smaller than the refrigeration effect h5, and then the fan 35 When the air volume of the fan 35 is reduced to a predetermined pressure, the air volume of the fan 35 is stopped from decreasing, and the predetermined pressure is maintained by maintaining the air volume.
[0118]
On the other hand, when the outside air temperature decreases, the pressure in the dryer 1 may be reduced, so that the pressure in the dryer 1 is maintained at a predetermined value of about 3 kPa by reducing the air volume of the fan 35. .
[0119]
As described above, since the decompression means 25 is operated only when the air containing almost no water is discharged at the beginning of the operation, it is not necessary to use a strong water-resistant one. Since it can be used for a period, an inexpensive one can be used, and the operating time is shortened, resulting in a long life.
[0120]
As described above, in the initial stage of use and the initial stage of operation, the air in the dryer 1 is saturated air or unsaturated air at a low temperature corresponding to the outside air temperature, so that the decompression means 25 is an oil diffusion vacuum pump or many other types. A vacuum pump is available, which reduces initial costs and reduces drying time because the pressure can be reduced to a predetermined pressure at an early stage. Furthermore, since the heat pump 19 is operated after the pressure is reduced to a predetermined pressure, the heat pump 19 can be operated at an efficient point, thereby saving energy and reducing running costs.
[0121]
In addition, since the operation time of the decompression means is extremely shortened, the decompression means 25 saves energy, extends its life, and further reduces running costs.
[0122]
In the embodiment of the present invention, the only condensers are the condenser 34 for adjusting the capacity and the condenser 36 for heating. However, the condenser for supercooling and stabilizing which exchanges heat with the outside air temperature between the condenser 36 for heating and the expansion mechanism 27 is provided. When the evaporating temperature of the material to be dried rises due to a rise in the pressure in the dryer 1, a fluctuation in the degree of supercooling at the inlet of the expansion mechanism 27 is suppressed, and the degree of supercooling at a constant temperature equivalent to the outside temperature is always maintained. You may do so.
[0123]
【The invention's effect】
As described above, according to the invention of the drying system according to claim 1 of the present invention, the pressure is reduced to a predetermined pressure in the initial stage of operation, and then the heat pump is operated to change the heat source of the condenser of the heat pump to generate steam during drying. Since a predetermined pressure is maintained by using the heat source as a heat source and using a cold heat source as a heat source for water vapor condensation, an oil diffusion vacuum pump and many other types of vacuum pumps can be used as the pressure reducing means, and the initial cost is reduced. In addition, since the pressure can be reduced to a predetermined pressure at an early stage, the drying time can be shortened. Furthermore, since the heat pump is operated after the pressure has been reduced to a predetermined pressure, the heat pump can be operated at an efficient point, saving energy and reducing running costs.
[0124]
According to the second aspect of the present invention, since the downstream side of the steam discharge passage of the waste heat recovery unit is always located below the upstream side, the pressure reducing means having strong water resistance is used. There is no need to carry out such an operation, and even if the pump does not have strong water resistance, there is an effect that the maintenance period is extended and the running cost is further reduced.
[0125]
Further, according to the invention of the drying system according to the third aspect, the tank can be downsized by periodically discharging the condensed water to the outside, which further reduces the initial cost and saves space. In addition to the effects described above, the decompression means operates intermittently, thereby conserving energy and extending the life, so that the running cost is further reduced.
[0126]
Further, according to the invention of the drying system according to claim 4, the heat pump is a cooling cycle in which a compressor, a condenser, an expansion mechanism, and an evaporator are functionally piped annularly and a carbon dioxide refrigerant is sealed therein. Therefore, in the event that the refrigerant in the heat pump leaks, the environmental load is extremely small and the danger of ignition can be reduced. Also, if the pressure inside the dryer is the same degree of vacuum as before, the heat transfer area between the condenser and the dryer can be reduced, saving space.If the evaporation temperature of the condenser and the object to be dried is designed to have the same temperature difference, For example, there is an effect that the use of a low-capacity pressure reducing means results in a low initial cost.
[0127]
According to the drying system of the fifth aspect, the operating time of the decompression means is extremely shortened, so that the decompression means has the effect of saving energy, prolonging the life and further reducing the running cost.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a drying system according to a first embodiment of the present invention.
FIG. 2 is a schematic configuration diagram of a drying system according to a second embodiment of the present invention.
FIG. 3 is a schematic configuration diagram of a drying system according to a third embodiment of the present invention.
FIG. 4 is a flowchart showing the operation of the drying system according to the embodiment;
FIG. 5 is a schematic configuration diagram of a drying system according to a fourth embodiment of the present invention.
FIG. 6 is a schematic configuration diagram of a drying system according to a fifth embodiment of the present invention.
FIG. 7 is a Ph diagram of the heat pump in the embodiment.
FIG. 8 is a schematic configuration diagram of a conventional drying system.
[Explanation of symbols]
1 dryer
9 Water vapor discharge passage
11 Waste heat recovery unit
17 Compressor
19 heat pump
20 condenser
21 Evaporator
22 tank
23 1st valve
24 Second valve
25 Decompression means
26 Third valve
27 Expansion mechanism
32 4th valve
34 Condenser for capacity adjustment
36 Heating condenser
37 Waste heat recovery section

Claims (5)

耐圧密閉構造状の乾燥器と、前記乾燥器から蒸発した水分が溜まるように配置されたタンクと、前記乾燥器と前記タンクを連通する水蒸気排出通路と、ヒートポンプと、前記水蒸気排出通路の一部または全部と前記ヒートポンプの冷熱発生側とが熱交換する廃熱回収器と、前記廃熱回収器から前記タンクの間に位置する水蒸気排出通路途中に設置された第1の弁と、前記タンク下方に位置しタンク内部と外部とを連通する排液経路途中に設置された第2の弁と、減圧手段と、前記第1の弁もしくは第1の弁と第2の弁の間の配管もしくはタンクより分岐して前記減圧手段とを配管した分岐配管と、前記分岐配管の途中に設置された第3の弁とを備え、前記ヒートポンプの温熱発生側の一部は前記乾燥器に伝熱するように配置された乾燥システム。A drier having a pressure-resistant hermetic structure, a tank arranged to store moisture evaporated from the drier, a steam discharge passage communicating the drier with the tank, a heat pump, and a part of the steam discharge passage. Or a waste heat recovery unit for exchanging heat between the whole and the heat generation side of the heat pump; a first valve installed in the middle of a steam discharge passage located between the waste heat recovery unit and the tank; , A second valve disposed in the middle of a drainage path communicating between the inside and the outside of the tank, a pressure reducing means, and a pipe or tank between the first valve or the first and second valves A branch pipe, which is further branched and provided with the decompression means, and a third valve installed in the middle of the branch pipe, and a part of the heat pump on the heat generation side transfers heat to the dryer. Drying system located in . 廃熱回収器部分の水蒸気排出通路は下流側が常に上流側の下方に位置する構成であり、タンクは廃熱回収器の下方に設置された請求項1記載の乾燥システム。The drying system according to claim 1, wherein the downstream side of the steam discharge passage of the waste heat recovery unit is always located below the upstream side, and the tank is installed below the waste heat recovery unit. 第1の弁と第3の弁が開で第2の弁が閉にて減圧手段を作動させて乾燥器と水蒸気排出通路とタンクとを大気圧以下に減圧する第1のステップと、第1の弁が開で第2の弁と第3の弁が閉にてヒートポンプを作動させる第2のステップと、第1の弁が閉と第2の弁が開で第3の弁は閉または開にてタンク内の液体を排水する第3のステップと、第1の弁と第2の弁は閉で第3の弁は開にて減圧手段を作動させてタンク内を所定圧力まで減圧する第4のステップとからなり、運転初期に第1から第4のステップを順次行った後に、第2のステップから第4のステップを順次行うサイクルを少なくとも1サイクル以上行う請求項1または2記載の乾燥システム。A first step of operating the pressure reducing means when the first and third valves are opened and the second valve is closed to reduce the pressure of the dryer, the steam discharge passage, and the tank to below atmospheric pressure; A second step of activating the heat pump when the second valve and the third valve are closed and the first valve is closed and the third valve is closed or open; A third step of draining the liquid in the tank, and a first valve and a second valve are closed and the third valve is opened to operate the pressure reducing means to reduce the pressure in the tank to a predetermined pressure. The drying according to claim 1 or 2, wherein the first step to the fourth step are sequentially performed in the initial stage of the operation, and then at least one cycle of sequentially performing the second step to the fourth step is performed. system. ヒートポンプはコンプレッサーと凝縮器と膨張機構と蒸発器とを機能的に環状に配管して内部に二酸化炭素冷媒を封入した冷却サイクルである請求項1記載の乾燥システム。The drying system according to claim 1, wherein the heat pump is a cooling cycle in which a compressor, a condenser, an expansion mechanism, and an evaporator are functionally piped in a ring shape and a carbon dioxide refrigerant is sealed therein. 耐圧密閉構造状の乾燥器と、前記乾燥器と外部とを連通する水蒸気排出通路と、前記水蒸気排出通路の途中に設けられた第4の弁と、前記乾燥器を減圧する減圧手段と、ヒートポンプと、前記第4の弁より乾燥器側に位置した前記水蒸気排出通路の一部または全部と前記ヒートポンプの蒸発器とが熱交換する廃熱回収部とを備え、前記ヒートポンプはコンプレッサーと、凝縮能力を可変可能な能力調整用凝縮器と前記乾燥器の加熱用凝縮器との少なくとも2つ以上の凝縮器と、膨張機構と、蒸発器とを機能的に環状に配管したものであり、前記第4の弁より乾燥器側に位置する水蒸気排出通路と減圧手段を配管した乾燥システム。A drier having a pressure tight structure, a steam discharge passage communicating the drier with the outside, a fourth valve provided in the middle of the steam discharge passage, a decompression means for decompressing the drier, and a heat pump And a waste heat recovery unit for exchanging heat between part or all of the steam discharge passage located closer to the dryer than the fourth valve and the evaporator of the heat pump, wherein the heat pump has a compressor and a condensing capacity. Wherein at least two condensers, a condenser for adjusting the capacity and a condenser for heating the dryer, which are variable, an expansion mechanism, and an evaporator are piped functionally in a ring shape, A drying system in which a steam discharge passage located on the dryer side from the valve 4 and a pressure reducing means are provided.
JP2002278762A 2002-09-25 2002-09-25 Drying system Expired - Fee Related JP3970731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002278762A JP3970731B2 (en) 2002-09-25 2002-09-25 Drying system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002278762A JP3970731B2 (en) 2002-09-25 2002-09-25 Drying system

Publications (2)

Publication Number Publication Date
JP2004116846A true JP2004116846A (en) 2004-04-15
JP3970731B2 JP3970731B2 (en) 2007-09-05

Family

ID=32273957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002278762A Expired - Fee Related JP3970731B2 (en) 2002-09-25 2002-09-25 Drying system

Country Status (1)

Country Link
JP (1) JP3970731B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101040820B1 (en) 2009-10-13 2011-06-10 정방균 Paper drying system using heat pipe radiator and heat pump.
JP5223091B2 (en) * 2006-03-20 2013-06-26 高橋金属株式会社 Cleaning device using aqueous cleaning solution
JP2014228163A (en) * 2013-05-20 2014-12-08 鹿島建設株式会社 Vacuum dryer
KR101534197B1 (en) * 2014-10-24 2015-07-06 주식회사 알엠 System for recycling sludge using waste resources and recovered heat of waste gas
CN106766853A (en) * 2016-12-16 2017-05-31 东莞市风火轮热能科技有限公司 A kind of heat pump drying system and its control method for paint line
CN108507284A (en) * 2018-04-28 2018-09-07 李增昌 A kind of vacuum drying of flotation metal mining powder and calorific value reuse means
CN109732836A (en) * 2019-01-16 2019-05-10 翡柯机械(福建)有限公司 A kind of modified pile-up valve reducing waste of steam
CN112762691A (en) * 2020-12-31 2021-05-07 北京中矿博能节能科技有限公司 Multistage coal slime drying method
CN114602878A (en) * 2022-03-31 2022-06-10 中化(浙江)膜产业发展有限公司 Online cleaning system of evaporative crystallization device
CN115682641A (en) * 2022-11-01 2023-02-03 海南优联生态环境有限公司 Drying machine
JP7328682B2 (en) 2019-06-28 2023-08-17 東京理化器械株式会社 How to operate a vacuum dryer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020129945B4 (en) * 2020-11-12 2023-12-07 Natalie Gesch Dryer for drying dry goods, especially textiles

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5223091B2 (en) * 2006-03-20 2013-06-26 高橋金属株式会社 Cleaning device using aqueous cleaning solution
KR101040820B1 (en) 2009-10-13 2011-06-10 정방균 Paper drying system using heat pipe radiator and heat pump.
JP2014228163A (en) * 2013-05-20 2014-12-08 鹿島建設株式会社 Vacuum dryer
KR101534197B1 (en) * 2014-10-24 2015-07-06 주식회사 알엠 System for recycling sludge using waste resources and recovered heat of waste gas
CN106766853B (en) * 2016-12-16 2023-04-28 东莞市风火轮热能科技有限公司 Heat pump drying system for coating production line and control method thereof
CN106766853A (en) * 2016-12-16 2017-05-31 东莞市风火轮热能科技有限公司 A kind of heat pump drying system and its control method for paint line
CN108507284A (en) * 2018-04-28 2018-09-07 李增昌 A kind of vacuum drying of flotation metal mining powder and calorific value reuse means
CN108507284B (en) * 2018-04-28 2024-04-02 李增昌 Device for vacuum drying and heat value recycling of flotation metal mineral powder
CN109732836A (en) * 2019-01-16 2019-05-10 翡柯机械(福建)有限公司 A kind of modified pile-up valve reducing waste of steam
JP7328682B2 (en) 2019-06-28 2023-08-17 東京理化器械株式会社 How to operate a vacuum dryer
CN112762691B (en) * 2020-12-31 2023-06-13 北京中矿博能节能科技有限公司 Multistage coal slime drying method
CN112762691A (en) * 2020-12-31 2021-05-07 北京中矿博能节能科技有限公司 Multistage coal slime drying method
CN114602878B (en) * 2022-03-31 2023-04-25 中化(浙江)膜产业发展有限公司 On-line cleaning system of evaporative crystallization device
CN114602878A (en) * 2022-03-31 2022-06-10 中化(浙江)膜产业发展有限公司 Online cleaning system of evaporative crystallization device
CN115682641A (en) * 2022-11-01 2023-02-03 海南优联生态环境有限公司 Drying machine

Also Published As

Publication number Publication date
JP3970731B2 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
CN101275357B (en) Drying unit and laundry washing/drying machine equipped with the drying unit
US6904703B2 (en) Dry cleaning machine
CN110331566B (en) Drying system and using method thereof
JP2004116846A (en) Drying system
US5605054A (en) Apparatus for reclaiming refrigerant
CN109553270A (en) A kind of pump type heat enclosed sludge drying system and its control method
JP5244692B2 (en) Slurry processing plant
JP2004218861A (en) Drain pan anti-freezing structure in heat pump-type hot water supply unit
CN110028219A (en) A kind of pump type heat enclosed sludge drying system
CN107490255A (en) A kind of heat pipe heat exchanging dryer based on closed cycle principle
JPH04281178A (en) Vacuum drying treatment device
CN207147099U (en) A kind of heat pipe heat exchanging dryer based on closed cycle principle
CN110763005A (en) Heat pump type double-fluid dehumidification and temperature rise dryer and drying chamber
CN206089407U (en) MVR drying system
JP3840914B2 (en) Heat pump bath water supply system
JP3612120B2 (en) Vacuum drying equipment
CN107560159A (en) A kind of automatic waste heat recovery water heater for being embedded in refrigeration system
KR100455626B1 (en) Heat pump type hot water heating apparatus
CN102249470B (en) Water distilling equipment, and drinking water machine comprising water distilling equipment
CN219526467U (en) Integrated sludge drier
KR20010107908A (en) Heat pump system for a bathhouse
JP3612121B2 (en) Drying equipment
CN106365407A (en) MVR (mechanical vapor recompression) drying system
EP4219822A1 (en) Dryer with high air tigthness of a process air circuit and process for operating the dryer
JP3713794B2 (en) Heat pump evaporation concentrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050926

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees