JP2004116806A - Hybrid air-conditioning machine - Google Patents

Hybrid air-conditioning machine Download PDF

Info

Publication number
JP2004116806A
JP2004116806A JP2002277178A JP2002277178A JP2004116806A JP 2004116806 A JP2004116806 A JP 2004116806A JP 2002277178 A JP2002277178 A JP 2002277178A JP 2002277178 A JP2002277178 A JP 2002277178A JP 2004116806 A JP2004116806 A JP 2004116806A
Authority
JP
Japan
Prior art keywords
refrigerant
solvent
air
heat exchanger
conditioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002277178A
Other languages
Japanese (ja)
Other versions
JP3859568B2 (en
Inventor
Katsuya Oshima
大島 克也
Shigeto Katagiri
片桐 成人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2002277178A priority Critical patent/JP3859568B2/en
Publication of JP2004116806A publication Critical patent/JP2004116806A/en
Application granted granted Critical
Publication of JP3859568B2 publication Critical patent/JP3859568B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hybrid air-conditioning machine capable of increasing air-conditioning ability without raising solution concentration, and easy to maintain and control, in an air-conditioning machine using an absorption type refrigerating machine using a lithium bromide aqueous solution as a working fluid. <P>SOLUTION: In order to facilitate heat removal in an absorptive heat exchanger 71 of the absorption type refrigerating machine 2, a refrigerant is circulated to the absorptive heat exchanger 71 by a compression type refrigerating machine 3 to release the absorbed heat to the atmosphere. Thereby, a problem of maintenance and control caused by a conventional water-cooled or air-cooled type heat removal method can be avoided, and cooling ability can be increased. The refrigerating machine 3 is compact and manufacturable at a low cost because of being mass-produced, so that its installation space can effectively be utilized and its cost can be reduced. By using the same kind of substance for the refrigerant of the refrigerating machine 3 and an air-conditioning fluid, and by disposing four-way valves 91, 92 and 94 and a three-way valve 93 at necessary positions, a cooling operation can be switched over to a heating operation, and vice versa. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、吸収式冷凍機と圧縮ヒートポンプとを組み合わせたハイブリッド空調機に関する。
【0002】
【従来の技術】
臭化リチウムなどのリチウム塩溶液(吸収溶液)を使用する吸収式冷凍機は、再生器で吸収液を加熱して溶媒蒸気と濃縮吸収溶液とに分離し、冷凍ユニットに供給する。冷凍ユニットは、溶媒蒸気を液化させる溶媒凝縮器、液化溶媒を蒸発させながら作動流体を冷却する溶媒蒸発器、および蒸発した溶媒を濃縮吸収溶液に吸収させながら発生する吸収熱を冷却水に吸熱させて吸収液を冷却し、溶媒蒸発器における液化溶媒の蒸発を持続させる吸収器を備えている。
【0003】
吸収式冷凍機を用いて冷房運転を行う場合には、溶媒蒸気の凝縮熱および吸収熱を大気中に排出するため、溶媒凝縮器および吸収器に冷却機構が付設され、また、溶媒蒸発器と空調熱交換器との間で空調流体を循環させる。冷却機構は、通常、冷却水の循環によって除熱を行う水冷式冷却塔(クーリングタワー)が採られる。
【0004】
冷房運転の際の吸収式冷凍機の冷凍能力は、溶媒蒸発器での液化溶媒の蒸発量と比例しており、蒸発量は吸収器での吸収量に依存している。冷凍能力の向上または冷凍ユニットの小型化には、吸収器での溶媒蒸気の吸収効率を向上させることが重要である。吸収効率の向上は、吸収器での吸収液と溶媒蒸気との接触面積を増大させること、および発生した吸収熱を冷却水に迅速に伝達(熱引き)させることにより達成できる(例えば、特許文献1参照。)。
【0005】
【特許文献1】
特開2002−61986公報
【0006】
【発明が解決しようとする課題】
水冷式冷却塔は、水および水に溶けた溶質の除去のために維持、管理(メンテナンス)に手間がかかり、家庭用など小型の空調機では負担が大きく、実用性が低下する原因となっている。空冷式冷却塔を使用すれば維持、管理が容易であるが、水冷式冷却塔が冷却水により40℃付近まで吸収溶液を冷却できる(空調流体を5〜6℃まで下げられる)のに対し、空冷式冷却塔は空気により吸収溶液を50℃程度までしか冷却できない(空調流体は約10℃までしか下げられない)ため、空冷式にて空調流体を5〜6℃まで下げるには溶液濃度を5%程度上げる必要が生じる。溶液濃度を5%程度上げると、溶液の晶析、再生器の温度上昇、それにともなう材料の腐食、水素の発生などの問題が発生する。
【0007】
この発明の目的は、溶液濃度を上げることなく空調能力の増大が可能であるとともに、維持、管理を容易に行うことのできるハイブリッド空調機の提供にある。
【0008】
【課題を解決するための手段】
この発明のハイブリッド空調機は、収溶液を加熱して溶媒と濃縮吸収溶液とに分離する再生器、分離された溶媒蒸気を凝縮する溶媒凝縮器、溶媒を蒸発させる溶媒蒸発器、蒸発した溶媒を濃縮吸収溶液に吸収させる吸収器、溶媒を吸収して希釈された吸収溶液を再生器に還流させるポンプを有する吸収式冷凍機と、空調流体が循環する空調熱交換器を備えた空調機と、冷媒圧縮機、冷媒熱交換器、冷媒膨張弁を有する圧縮式冷凍機とからなるハイブリッド空調機であって、冷房運転時には、圧縮式冷凍機と吸収器との間で冷媒を循環させる回路と、溶媒蒸発器と空調熱交換器との間で空調流体を循環させる回路に切り替えることにより、蒸発した溶媒が濃縮吸収溶液に吸収される際に発生する吸収熱を、圧縮式冷凍機の冷媒熱交換器で大気に放出し、暖房運転時には、圧縮式冷凍機と溶媒蒸発器との間で冷媒を循環させる回路と、吸収器と空調熱交換器との間で空調流体を循環させる回路に切り替えることにより、大気熱を圧縮式冷凍機の冷媒熱交換器で吸収し溶媒蒸発器で放出することを特徴とする。
【0009】
【発明の効果】
この発明では、冷房運転時に圧縮式冷凍機により吸収器に冷媒を循環させて吸収熱を大気に放出させる。このため、メンテナンスが容易であるとともに、冷房能力が増大でき、かつ吸収式冷凍機の問題を回避できる。また、圧縮式冷凍機はコンパクトであるとともに多量に生産されているため低コストであり、設置スペースの有効利用および低コスト化が可能になり、さらに冷房運転と暖房運転が1つの設備で可能になる。
【0010】
【発明の実施の形態】
この発明を図に示す実施例とともに説明する。図1は本実施例にかかるハイブリッド空調機1および冷房運転時の作動流体の流れを、図2は本実施例にかかるハイブリッド空調機1および暖房運転時の作動流体の流れを示す。ハイブリッド空調機1は、臭化リチウム水溶液などのリチウム塩溶液(以下、吸収溶液と称する)を作動流体とした吸収式冷凍機2と、フレオン、炭酸ガスなど圧縮性流体(以下、冷媒と称する)を作動流体とする圧縮式冷凍機3と、該冷媒と同種の流体を空調流体とする空調機4とを組み合わせた構成を有する。
【0011】
吸収式冷凍機2は、高温再生器21と、その上方に配された分離器22と、負圧タンク5とを有し、それぞれが吸収溶液または溶媒の流路で連結されている。高温再生器21は、溶液ポンプ23が設けられた低濃度の吸収溶液(淡液と称する)の淡液流路24を経由して、負圧タンク5の底部から淡液が還流する溶液タンク25と、該溶液タンク25を加熱するための加熱源(バーナ)Bとを備えている。高温再生器21で加熱され沸騰した淡液は、分離器22で水(溶媒)蒸気と、濃縮した中濃度の吸収溶液(中液と称する)とに分離される。
【0012】
水蒸気と高温度の中液とは、それぞれ溶媒流路26および中液流路27を経て、負圧タンク5内の上部に設置された低温再生器51に、区分して供給される。この際に中液流路27を流れる高温度の中液と、淡液流路24を経て溶液タンク25に還流する淡液とは、熱効率の向上のために高温熱交換器11で熱交換される。低温再生器51内には、再生熱交換器52が備えられ、溶媒流路26内の水蒸気と中液との熱交換が行われ、水蒸気は凝縮して水となり、この際に生じる凝縮熱で中液は再沸騰し、水蒸気と、高濃度の吸収溶液(濃液と称する)とが生成される。
【0013】
低温再生器51で生成した水蒸気は、負圧タンク5内の上部に設置された溶媒凝縮器6に導かれる。
冷房運転時には、図1に示すごとく溶媒凝縮器6内の水蒸気は、バルブ66を備えた水蒸気流路60により、後記する圧縮式冷凍機3の送風機33で強制冷却される外部熱交換器63に導かれ、凝縮して溶媒容器62に還流する。凝縮熱は、外部熱交換器63から大気に放出される。
暖房運転時には、図2に示すごとく溶媒凝縮器6内の水蒸気は、溶媒凝縮器6内に備えられた内部熱交換器61に空調流体が流れ、内部熱交換機61の表面で凝縮し、溶媒容器62に溜まる。凝縮熱は内部熱交換器61内を流れる空調流体に吸収される。
【0014】
負圧タンク5の下部には、吸収熱交換器71を備えた吸収器7と、蒸発熱交換器81を備えた溶媒蒸発器8とが設けられている。吸収熱交換器71には、濃液流路64を経て供給される濃液が上から散布される。この際に、濃液は、淡液流路24を経て溶液タンク25に還流する淡液と低温熱交換器12内で熱交換される。蒸発熱交換器81には、溶媒容器62に溜まった水が溶媒流路65を通して上から散布される。
【0015】
蒸発熱交換器81に散布された水は、蒸発熱交換器81の表面で蒸発し、蒸発熱で蒸発熱交換器81内を流れる空調流体を冷却する。蒸発した水は、吸収熱交換器71の表面で濃液に吸収され、この際に発生する吸収熱は、吸収熱交換器71内を流れる作動流体に吸収される。
【0016】
圧縮式冷凍機3は、冷媒圧縮機31と、該冷媒圧縮機31に冷媒流路30で連結された冷媒熱交換器32および膨張弁34を備えている。冷媒熱交換器32には送風機33が付設されている。
【0017】
冷房運転時には、冷媒は冷媒圧縮機31により圧縮され高温となり、冷媒熱交換器32において送風機33によって冷却され凝縮熱を大気に放出する。凝縮された冷媒は膨張弁34で膨張して低温になり、吸収熱交換器71に供給される。低温になった冷媒は吸収熱交換器71の表面で発生した吸収熱を吸収して吸収液を冷却する。すなわち、圧縮式冷凍機3は、吸収熱交換器71で発生する吸収熱を、迅速に大気に放出する作用を有し、ハイブリッド空調機1の冷房能力を増大させている。
【0018】
暖房運転時には、冷媒は膨張弁34により膨張され、冷媒熱交換器32において送風機33によって給熱され蒸発し、蒸発熱として大気熱を吸収する。蒸発した冷媒は冷媒圧縮機31により圧縮されて高温となり、蒸発熱交換器81に供給される。冷媒は蒸発熱交換器81内で凝縮し、凝縮熱を蒸発熱交換器81の表面で発生した溶媒蒸気に蒸発熱として供給する。すなわち、圧縮式冷凍機3は、冷媒熱交換器32で得た大気熱を、迅速に蒸発熱交換器81で発生する溶媒蒸気に供給する作用を有し、ハイブリッド空調機1の暖房能力を増大させている。
【0019】
空調機4は、空調流体が冷媒と同種物質であり、ポンプ41と、該ポンプ41に空調流路40で連結された室内熱交換器などの負荷42とを備える。
【0020】
冷媒流路30、空調流路40、内部熱交換器61、吸収熱交換器71および蒸発熱交換器81は、冷房運転と暖房運転との切り替えを可能とするために、2つの四方弁91、92および1つの三方弁93で連結されている。また、冷房運転と暖房運転で冷媒の流れを逆転させる必要があるため、冷媒流路30において、冷媒圧縮機31と冷媒熱交換器32との間にも四方弁94を備えている。
【0021】
四方弁91は、第1ポートが吸収熱交換器71、第2ポートが空調流路40における負荷42、第3ポートが冷媒流路30における膨張弁34、第4ポートが蒸発熱交換器81と連結している。四方弁92は、第1ポートが蒸発熱交換器81、第2ポートが空調流路40におけるポンプ41、第3ポートが冷媒流路30における四方弁94、第4ポートが内部熱交換器61および三方弁93と連結している。四方弁94は、第1ポートが冷媒圧縮機31の入側、第2ポートが四方弁92、第3ポートが冷媒熱交換器32、第4ポートが冷媒圧縮機31の出側と連結している。
【0022】
冷房運転時には、冷媒は、吸収熱交換器71で生じる吸収熱を吸収して、圧縮式冷凍機3で大気に放出する。そこで、四方弁91では第3ポートから第1ポートへ、四方弁92では第4ポートから第3ポートへ、三方弁93では吸収熱交換器71から四方弁92へ冷媒が流れるように流路を切り替える。四方弁94では、冷媒凝縮熱を大気中に放出するため、第2ポートから第1ポートを経て冷媒圧縮機31へ入り、第4ポートから第3ポートを経て冷媒熱交換器32に送られるように流路を切り替える。
【0023】
空調流体は、負荷42で室内熱を吸収し、蒸発熱交換器81で蒸発熱として放出する。そこで、四方弁91では第2ポートから第4ポートへ、四方弁92では第1ポートから第2ポートへ空調流体が流れるように流路を切り替える。
【0024】
暖房運転時には、冷媒は、圧縮式冷凍機3で大気熱を吸収して、蒸発熱交換器81で蒸発熱として放出する。そこで、四方弁91では第4ポートから第3ポートへ、四方弁92では第3ポートから第1ポートへ冷媒が流れるように流路を切り替える。四方弁94では、大気熱を冷媒蒸発熱として吸収するため、第3ポートから第1ポートを経て冷媒圧縮機31へ入り、第4ポートから第2ポートを経て蒸発熱交換器81、膨張弁34、冷媒熱交換器32の順に送られるように流路を切り替える。
【0025】
空調流体は、吸収熱交換器71で吸収熱を、内部熱交換器61で凝縮熱を吸収し、負荷42で室内へ放出する。そこで、四方弁91では第2ポートから第1ポートへ、四方弁92では第4ポートから第2ポートへ、三方弁93では吸収熱交換器71から内部熱交換器61へ空調流体が流れるように流路を切り替える。
【0026】
ハイブリット空調機1では、メンテナンスが容易で、量産されている圧縮式冷凍機3により冷房または暖房運転をアシストする。このため実用性が高く、また、外気温度が高くても冷媒から大気への放熱が不十分になることはなく、逆に低くても冷媒への大気熱の吸収が不十分になることはない。
また、3つの四方弁91、92、94と1つの三方弁93の流路を切り替えるだけで冷房運転と暖房運転の切り替えが可能となる。
【0027】
〔変形例〕
本実施例では冷房運転時に水蒸気流路60を用いて、溶媒凝縮器6内の水蒸気を凝縮させるようにしたが、吸収熱交換器71を通った後の冷媒が、溶媒凝縮器6の内部熱交換器61に流れる回路にして、水蒸気の凝縮熱が内部熱交換器61内を流れる冷媒に吸収されるようにしてもよい。
【図面の簡単な説明】
【図1】本実施例のハイブリッド空調機の概略図と冷房運転時の作動流体の流れを示すものである。
【図2】本実施例のハイブリッド空調機の概略図と暖房運転時の作動流体の流れを示すものである。
【符号の説明】
21 高温再生器
31 冷媒圧縮機
34 膨張弁
42 負荷
5  負圧タンク
51 低温再生器
6  溶媒凝縮器
7  吸収器
8  溶媒蒸発器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hybrid air conditioner combining an absorption refrigerator and a compression heat pump.
[0002]
[Prior art]
In an absorption refrigerator using a lithium salt solution (absorption solution) such as lithium bromide, the absorption liquid is heated by a regenerator to be separated into a solvent vapor and a concentrated absorption solution, and supplied to a refrigeration unit. The refrigeration unit is a solvent condenser for liquefying the solvent vapor, a solvent evaporator for cooling the working fluid while evaporating the liquefied solvent, and absorbing heat generated by absorbing the evaporated solvent into the concentrated absorbing solution in the cooling water. To cool the absorbing liquid to keep the evaporation of the liquefied solvent in the solvent evaporator.
[0003]
When performing cooling operation using an absorption refrigerator, a cooling mechanism is attached to the solvent condenser and the absorber in order to discharge the heat of condensation and absorption of the solvent vapor into the atmosphere. The air-conditioning fluid is circulated between the air-conditioning heat exchanger. The cooling mechanism usually employs a water-cooled cooling tower (cooling tower) that removes heat by circulating cooling water.
[0004]
The refrigerating capacity of the absorption refrigerator during the cooling operation is proportional to the amount of evaporation of the liquefied solvent in the solvent evaporator, and the amount of evaporation depends on the amount of absorption in the absorber. To improve the refrigeration capacity or downsize the refrigeration unit, it is important to improve the absorption efficiency of the solvent vapor in the absorber. The improvement of the absorption efficiency can be achieved by increasing the contact area between the absorbing liquid and the solvent vapor in the absorber, and quickly transmitting (heating) the generated heat of absorption to the cooling water (for example, see Patent Document 1). 1).
[0005]
[Patent Document 1]
JP-A-2002-61986
[Problems to be solved by the invention]
Water-cooled cooling towers require time and effort to maintain and manage (removal) water and solutes dissolved in the water. I have. The use of an air-cooled cooling tower is easy to maintain and manage, but the water-cooled cooling tower can cool the absorbing solution to around 40 ° C with cooling water (the air-conditioning fluid can be lowered to 5-6 ° C), The air-cooled cooling tower can only cool the absorption solution to about 50 ° C by air (the air-conditioning fluid can only be lowered to about 10 ° C). It is necessary to increase about 5%. If the solution concentration is increased by about 5%, problems such as crystallization of the solution, increase in the temperature of the regenerator, corrosion of the material, and generation of hydrogen occur.
[0007]
An object of the present invention is to provide a hybrid air conditioner that can increase the air conditioning capacity without increasing the solution concentration and can easily perform maintenance and management.
[0008]
[Means for Solving the Problems]
The hybrid air conditioner according to the present invention includes a regenerator that heats the collected solution to separate the solvent and the concentrated absorption solution, a solvent condenser that condenses the separated solvent vapor, a solvent evaporator that evaporates the solvent, and a solvent evaporator that evaporates the solvent. An absorber for absorbing the concentrated absorption solution, an absorption refrigerator having a pump for absorbing the solvent and returning the diluted absorption solution to the regenerator, and an air conditioner having an air conditioning heat exchanger through which the air conditioning fluid circulates, A refrigerant air conditioner comprising a refrigerant compressor, a refrigerant heat exchanger, and a compression refrigerator having a refrigerant expansion valve, wherein during cooling operation, a circuit for circulating refrigerant between the compression refrigerator and the absorber, By switching to a circuit that circulates the air-conditioning fluid between the solvent evaporator and the air-conditioning heat exchanger, the heat of absorption generated when the evaporated solvent is absorbed by the concentrated absorption solution is used for the heat exchange of the refrigerant in the compression refrigerator. To atmosphere During the heating and heating operation, the atmospheric heat is switched by switching to a circuit for circulating the refrigerant between the compression refrigerator and the solvent evaporator and a circuit for circulating the air-conditioning fluid between the absorber and the air-conditioning heat exchanger. It is characterized by being absorbed by a refrigerant heat exchanger of a compression refrigerator and released by a solvent evaporator.
[0009]
【The invention's effect】
According to the present invention, the refrigerant is circulated through the absorber by the compression refrigerator during the cooling operation to release the absorbed heat to the atmosphere. For this reason, maintenance is easy, the cooling capacity can be increased, and the problem of the absorption refrigerator can be avoided. In addition, compression chillers are compact and low-cost because they are produced in large quantities, making it possible to effectively use installation space and reduce costs, and also enable cooling and heating operations with one facility. Become.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention will be described with reference to the embodiment shown in the drawings. FIG. 1 shows the hybrid air conditioner 1 according to the present embodiment and the flow of working fluid during cooling operation, and FIG. 2 shows the hybrid air conditioner 1 according to the present embodiment and the flow of working fluid during heating operation. The hybrid air conditioner 1 includes an absorption refrigerator 2 using a lithium salt solution (hereinafter, referred to as an absorption solution) such as an aqueous solution of lithium bromide as a working fluid, and a compressible fluid (hereinafter, referred to as a refrigerant) such as freon or carbon dioxide. And an air conditioner 4 using a fluid of the same type as the refrigerant as an air conditioning fluid.
[0011]
The absorption refrigerator 2 has a high-temperature regenerator 21, a separator 22 disposed above the high-temperature regenerator 21, and a negative pressure tank 5, each of which is connected by an absorption solution or solvent flow path. The high-temperature regenerator 21 is provided with a solution tank 25 in which the fresh liquid refluxes from the bottom of the negative pressure tank 5 via a fresh liquid flow path 24 of a low-concentration absorbing solution (referred to as a fresh liquid) provided with a solution pump 23. And a heating source (burner) B for heating the solution tank 25. The fresh liquid heated and boiled in the high-temperature regenerator 21 is separated in a separator 22 into water (solvent) vapor and a concentrated medium-concentration absorbing solution (referred to as a medium solution).
[0012]
The water vapor and the high-temperature medium liquid are separately supplied to the low-temperature regenerator 51 installed at the upper part in the negative pressure tank 5 via the solvent flow path 26 and the medium liquid flow path 27, respectively. At this time, the high-temperature middle liquid flowing through the middle liquid flow path 27 and the fresh liquid flowing back to the solution tank 25 via the fresh liquid flow path 24 undergo heat exchange in the high-temperature heat exchanger 11 in order to improve thermal efficiency. You. In the low-temperature regenerator 51, a regenerative heat exchanger 52 is provided, in which heat exchange between the water vapor in the solvent flow path 26 and the middle liquid is performed, and the water vapor condenses into water. The middle solution re-boils, producing water vapor and a highly concentrated absorbing solution (referred to as a concentrated solution).
[0013]
The steam generated by the low-temperature regenerator 51 is guided to a solvent condenser 6 installed at an upper part in the negative pressure tank 5.
During the cooling operation, as shown in FIG. 1, the steam in the solvent condenser 6 is sent to an external heat exchanger 63 which is forcibly cooled by a blower 33 of the compression refrigerator 3 through a steam passage 60 having a valve 66. It is led, condensed and refluxed to the solvent container 62. The heat of condensation is released from the external heat exchanger 63 to the atmosphere.
During the heating operation, as shown in FIG. 2, the water vapor in the solvent condenser 6 flows into the internal heat exchanger 61 provided in the solvent condenser 6 so that the air-conditioning fluid flows, condenses on the surface of the internal heat exchanger 61, and Collect at 62. The heat of condensation is absorbed by the air-conditioning fluid flowing inside the internal heat exchanger 61.
[0014]
In the lower part of the negative pressure tank 5, an absorber 7 having an absorption heat exchanger 71 and a solvent evaporator 8 having an evaporation heat exchanger 81 are provided. The concentrated liquid supplied through the concentrated liquid passage 64 is sprayed from above onto the absorption heat exchanger 71. At this time, the concentrated liquid exchanges heat in the low-temperature heat exchanger 12 with the diluted liquid flowing back to the solution tank 25 through the diluted liquid flow path 24. Water accumulated in the solvent container 62 is sprayed from above through the solvent flow path 65 to the evaporative heat exchanger 81.
[0015]
The water sprayed on the evaporating heat exchanger 81 evaporates on the surface of the evaporating heat exchanger 81, and cools the air-conditioning fluid flowing through the evaporating heat exchanger 81 by the evaporative heat. The evaporated water is absorbed by the concentrated liquid on the surface of the absorption heat exchanger 71, and the absorption heat generated at this time is absorbed by the working fluid flowing in the absorption heat exchanger 71.
[0016]
The compression refrigerator 3 includes a refrigerant compressor 31, a refrigerant heat exchanger 32 connected to the refrigerant compressor 31 by a refrigerant flow path 30, and an expansion valve 34. A blower 33 is attached to the refrigerant heat exchanger 32.
[0017]
During the cooling operation, the refrigerant is compressed by the refrigerant compressor 31 to have a high temperature, and is cooled by the blower 33 in the refrigerant heat exchanger 32 to release heat of condensation to the atmosphere. The condensed refrigerant expands at the expansion valve 34 to have a low temperature, and is supplied to the absorption heat exchanger 71. The low-temperature refrigerant absorbs the heat of absorption generated on the surface of the absorption heat exchanger 71 and cools the absorption liquid. That is, the compression refrigerator 3 has a function of rapidly releasing the absorption heat generated in the absorption heat exchanger 71 to the atmosphere, thereby increasing the cooling capacity of the hybrid air conditioner 1.
[0018]
During the heating operation, the refrigerant is expanded by the expansion valve 34, supplied with heat by the blower 33 in the refrigerant heat exchanger 32 and evaporated, and absorbs atmospheric heat as heat of evaporation. The evaporated refrigerant is compressed by the refrigerant compressor 31 to have a high temperature, and is supplied to the evaporating heat exchanger 81. The refrigerant is condensed in the evaporation heat exchanger 81 and supplies the heat of condensation to the solvent vapor generated on the surface of the evaporation heat exchanger 81 as evaporation heat. That is, the compression refrigerator 3 has an action of quickly supplying the atmospheric heat obtained in the refrigerant heat exchanger 32 to the solvent vapor generated in the evaporation heat exchanger 81, and increases the heating capacity of the hybrid air conditioner 1. Let me.
[0019]
The air conditioner 4 includes a pump 41 and a load 42 such as an indoor heat exchanger connected to the pump 41 by an air conditioning flow passage 40, in which the air conditioning fluid is the same substance as the refrigerant.
[0020]
The refrigerant flow path 30, the air conditioning flow path 40, the internal heat exchanger 61, the absorption heat exchanger 71, and the evaporative heat exchanger 81 are provided with two four-way valves 91 to enable switching between the cooling operation and the heating operation. 92 and one three-way valve 93. Further, since it is necessary to reverse the flow of the refrigerant in the cooling operation and the heating operation, a four-way valve 94 is provided between the refrigerant compressor 31 and the refrigerant heat exchanger 32 in the refrigerant flow path 30.
[0021]
The four-way valve 91 includes an absorption heat exchanger 71 as a first port, a load 42 in the air conditioning flow path 40 as a second port, an expansion valve 34 in the refrigerant flow path 30 as a third port, and an evaporative heat exchanger 81 as a fourth port. Connected. As for the four-way valve 92, the first port is the evaporative heat exchanger 81, the second port is the pump 41 in the air conditioning flow path 40, the third port is the four-way valve 94 in the refrigerant flow path 30, the fourth port is the internal heat exchanger 61, The three-way valve 93 is connected. The four-way valve 94 has a first port connected to the inlet side of the refrigerant compressor 31, a second port connected to the four-way valve 92, a third port connected to the refrigerant heat exchanger 32, and a fourth port connected to the outlet side of the refrigerant compressor 31. I have.
[0022]
During the cooling operation, the refrigerant absorbs the heat of absorption generated in the absorption heat exchanger 71 and discharges it to the atmosphere by the compression refrigerator 3. Therefore, in the four-way valve 91, the flow path is set so that the refrigerant flows from the third port to the first port, in the four-way valve 92, from the fourth port to the third port, and in the three-way valve 93, the refrigerant flows from the absorption heat exchanger 71 to the four-way valve 92. Switch. In the four-way valve 94, the refrigerant condensed heat is discharged into the atmosphere so that the refrigerant enters the refrigerant compressor 31 from the second port through the first port, and is sent to the refrigerant heat exchanger 32 from the fourth port through the third port. Switch the flow path.
[0023]
The air-conditioning fluid absorbs indoor heat at the load 42 and emits it as evaporative heat at the evaporative heat exchanger 81. Therefore, the four-way valve 91 switches the flow path so that the air-conditioning fluid flows from the second port to the fourth port, and the four-way valve 92 flows the air-conditioning fluid from the first port to the second port.
[0024]
During the heating operation, the refrigerant absorbs atmospheric heat in the compression refrigerator 3 and discharges it as evaporation heat in the evaporation heat exchanger 81. Therefore, the flow path is switched so that the refrigerant flows from the fourth port to the third port in the four-way valve 91 and the refrigerant flows from the third port to the first port in the four-way valve 92. In the four-way valve 94, in order to absorb atmospheric heat as refrigerant evaporation heat, the refrigerant enters the refrigerant compressor 31 from the third port via the first port, and enters the refrigerant heat exchanger 81 via the fourth port via the second port, and the expansion valve 34. Then, the flow path is switched so as to be sent to the refrigerant heat exchanger 32 in this order.
[0025]
The air-conditioning fluid absorbs the heat of absorption in the absorption heat exchanger 71 and the heat of condensation in the internal heat exchanger 61 and discharges the air to the room by the load 42. Therefore, in the four-way valve 91, the air-conditioning fluid flows from the second port to the first port, in the four-way valve 92, from the fourth port to the second port, and in the three-way valve 93, the air-conditioning fluid flows from the absorption heat exchanger 71 to the internal heat exchanger 61. Switch the flow path.
[0026]
In the hybrid air conditioner 1, maintenance is easy, and the cooling or heating operation is assisted by the compression refrigerator 3 that is mass-produced. For this reason, the practicability is high, and even if the outside air temperature is high, the heat release from the refrigerant to the atmosphere does not become insufficient, and even if the temperature is low, the absorption of atmospheric heat to the refrigerant does not become insufficient. .
In addition, it is possible to switch between the cooling operation and the heating operation only by switching the flow paths of the three four-way valves 91, 92, 94 and one three-way valve 93.
[0027]
(Modification)
In the present embodiment, the steam in the solvent condenser 6 is condensed by using the steam flow path 60 during the cooling operation. However, the refrigerant after passing through the absorption heat exchanger 71 generates the internal heat of the solvent condenser 6. The circuit that flows through the exchanger 61 may be configured so that the heat of condensation of the steam is absorbed by the refrigerant that flows through the internal heat exchanger 61.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a hybrid air conditioner of the present embodiment and shows a flow of a working fluid during a cooling operation.
FIG. 2 is a schematic diagram of a hybrid air conditioner of the present embodiment and shows a flow of a working fluid during a heating operation.
[Explanation of symbols]
21 High temperature regenerator 31 Refrigerant compressor 34 Expansion valve 42 Load 5 Negative pressure tank 51 Low temperature regenerator 6 Solvent condenser 7 Absorber 8 Solvent evaporator

Claims (2)

吸収溶液を加熱して溶媒と濃縮吸収溶液とに分離する再生器、分離された溶媒蒸気を凝縮する溶媒凝縮器、前記溶媒を蒸発させる溶媒蒸発器、蒸発した溶媒を前記濃縮吸収溶液に吸収させる吸収器、前記溶媒を吸収して希釈された吸収溶液を前記再生器に還流させるポンプを有する吸収式冷凍機と、
空調流体が循環する空調熱交換器を備えた空調機と、
冷媒圧縮機、冷媒熱交換器、冷媒膨張弁を有する圧縮式冷凍機とからなるハイブリッド空調機であって、
冷房運転時には、前記圧縮式冷凍機と前記吸収器との間で冷媒を循環させる回路と、前記溶媒蒸発器と前記空調熱交換器との間で前記空調流体を循環させる回路に切り替えることにより、蒸発した溶媒が前記濃縮吸収溶液に吸収される際に発生する吸収熱を、前記圧縮式冷凍機の前記冷媒熱交換器で大気に放出し、暖房運転時には、前記圧縮式冷凍機と前記溶媒蒸発器との間で前記冷媒を循環させる回路と、前記吸収器と前記空調熱交換器との間で前記空調流体を循環させる回路に切り替えることにより、大気熱を前記圧縮式冷凍機の前記冷媒熱交換器で吸収し前記溶媒蒸発器で放出することを特徴とするハイブリッド空調機。
A regenerator for heating the absorption solution to separate the solvent and the concentrated absorption solution, a solvent condenser for condensing the separated solvent vapor, a solvent evaporator for evaporating the solvent, and absorbing the evaporated solvent to the concentrated absorption solution. An absorber, an absorption refrigerator having a pump for absorbing the solvent and refluxing the diluted absorption solution to the regenerator,
An air conditioner with an air conditioning heat exchanger through which the air conditioning fluid circulates,
A refrigerant air conditioner comprising a refrigerant compressor, a refrigerant heat exchanger, and a compression refrigerator having a refrigerant expansion valve,
During cooling operation, by switching to a circuit that circulates refrigerant between the compression refrigerator and the absorber, and a circuit that circulates the air-conditioning fluid between the solvent evaporator and the air-conditioning heat exchanger, Absorption heat generated when the evaporated solvent is absorbed in the concentrated absorption solution is released to the atmosphere by the refrigerant heat exchanger of the compression refrigerator, and during the heating operation, the compression refrigerator and the solvent evaporation are released. By switching to a circuit for circulating the refrigerant between the compressor and a circuit for circulating the air-conditioning fluid between the absorber and the air-conditioning heat exchanger, atmospheric heat is transferred to the refrigerant heat of the compression refrigerator. A hybrid air conditioner characterized by absorbing by an exchanger and discharging by an evaporator.
請求項1に記載のハイブリッド空調機において、前記再生器は、加熱源で低濃度リチウム塩溶液を加熱して溶媒を蒸発させるとともに中濃度リチウム塩溶液を生成する高温再生器と、前記溶媒蒸気の凝縮熱で前記中濃度リチウム塩溶液を再加熱し、前記溶媒を蒸発させるとともに高濃度リチウム塩溶液を生成する低温再生器からなることを特徴とするハイブリッド空調機。The hybrid air conditioner according to claim 1, wherein the regenerator heats a low-concentration lithium salt solution with a heating source to evaporate the solvent and generate a medium-concentration lithium salt solution, A hybrid air conditioner comprising a low-temperature regenerator that reheats the medium-concentration lithium salt solution with heat of condensation to evaporate the solvent and generate a high-concentration lithium salt solution.
JP2002277178A 2002-09-24 2002-09-24 Hybrid air conditioner Expired - Fee Related JP3859568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002277178A JP3859568B2 (en) 2002-09-24 2002-09-24 Hybrid air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002277178A JP3859568B2 (en) 2002-09-24 2002-09-24 Hybrid air conditioner

Publications (2)

Publication Number Publication Date
JP2004116806A true JP2004116806A (en) 2004-04-15
JP3859568B2 JP3859568B2 (en) 2006-12-20

Family

ID=32272852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002277178A Expired - Fee Related JP3859568B2 (en) 2002-09-24 2002-09-24 Hybrid air conditioner

Country Status (1)

Country Link
JP (1) JP3859568B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192432A (en) * 2006-01-17 2007-08-02 Rinnai Corp Hot water storage system
CN103017400A (en) * 2013-01-14 2013-04-03 西安交通大学 Compression/absorption type combined heat pump suitable for intelligent comprehensive urban energy resource regulation
CN110080842A (en) * 2019-05-08 2019-08-02 上海发电设备成套设计研究院有限责任公司 A kind of closed cycle electricity generation system of integrated absorption heat pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192432A (en) * 2006-01-17 2007-08-02 Rinnai Corp Hot water storage system
JP4545691B2 (en) * 2006-01-17 2010-09-15 リンナイ株式会社 Hot water storage system
CN103017400A (en) * 2013-01-14 2013-04-03 西安交通大学 Compression/absorption type combined heat pump suitable for intelligent comprehensive urban energy resource regulation
CN110080842A (en) * 2019-05-08 2019-08-02 上海发电设备成套设计研究院有限责任公司 A kind of closed cycle electricity generation system of integrated absorption heat pump

Also Published As

Publication number Publication date
JP3859568B2 (en) 2006-12-20

Similar Documents

Publication Publication Date Title
JP4953433B2 (en) Absorption heat pump system
JP4717589B2 (en) Hybrid heat pump system
JP4184197B2 (en) Hybrid absorption heat pump system
JP5240040B2 (en) Refrigeration equipment
KR100981672B1 (en) Two-stage driven hot water absorption chiller
JP3859568B2 (en) Hybrid air conditioner
JP3859567B2 (en) Hybrid air conditioner
JP3859566B2 (en) Hybrid air conditioner
JPH0250058A (en) Air cooled absorbing type cooling and heating device
JP5338270B2 (en) Absorption refrigeration system
WO2016199671A1 (en) Refrigeration system
JP5375284B2 (en) Refrigeration equipment
JP4184196B2 (en) Hybrid absorption heat pump system
KR20090125312A (en) Heating and cooling system
JP2008020094A (en) Absorption type heat pump device
JP2007333342A (en) Multi-effect absorption refrigerating machine
JP2014129944A (en) Refrigeration device
JP2002061983A (en) Absorption refrigerating machine
JP5260895B2 (en) Absorption refrigerator
JP5310224B2 (en) Refrigeration equipment
JP2004069276A (en) Waste heat recovering cooling system
JP4282818B2 (en) Combined cooling system and combined cooling method
JP4282225B2 (en) Absorption refrigerator
JP3744106B2 (en) Refrigeration equipment
JP3909458B2 (en) Cooling cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees