JP2004116060A - Erection method for corrugated steel plate web bridge - Google Patents

Erection method for corrugated steel plate web bridge Download PDF

Info

Publication number
JP2004116060A
JP2004116060A JP2002278839A JP2002278839A JP2004116060A JP 2004116060 A JP2004116060 A JP 2004116060A JP 2002278839 A JP2002278839 A JP 2002278839A JP 2002278839 A JP2002278839 A JP 2002278839A JP 2004116060 A JP2004116060 A JP 2004116060A
Authority
JP
Japan
Prior art keywords
corrugated steel
slab
block
precast
constituting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002278839A
Other languages
Japanese (ja)
Other versions
JP4073746B2 (en
Inventor
Yoshifumi Maeda
前田 良文
Akio Kasuga
春日 昭夫
Masato Kameyama
亀山 誠人
Akira Nishimura
西村 公
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Mitsui Construction Co Ltd
Original Assignee
Sumitomo Mitsui Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Mitsui Construction Co Ltd filed Critical Sumitomo Mitsui Construction Co Ltd
Priority to JP2002278839A priority Critical patent/JP4073746B2/en
Publication of JP2004116060A publication Critical patent/JP2004116060A/en
Application granted granted Critical
Publication of JP4073746B2 publication Critical patent/JP4073746B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the junction strength of a corrugated steel plate and a subfloor slab to obtain a sufficient durability in the erection method for a corrugated steel plate web bridge making use of a corrugated steel plate. <P>SOLUTION: A pair of corrugated steel plates constituting a block B(n+1) next to the head block B(n) are previously erected in the condition that a hanging support structure 100 for constructing a subfloor slab is suspended from a pair of corrugated steel plates 16 constituting the head block B(n) of an unexecuted upper floor slab. In this time, a precast corrugated steel plate 18 in which concrete blocks 32 constituting a part of the subfloor slabs 14 is embedded and jointed in the lower end is used as each corrugated steel plate 16 used for the previous erection. In this way, deterioration fear of unification due to bubbles or generation of bleeding resulting from placing concrete jointed under existing concrete members into the under face of the lower end flange of the corrugated steel plate like the conventional cases is eliminated. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本願発明は、波形鋼板ウェブ橋を張出し施工により所定長のブロック毎に架設する方法に関するものである。
【0002】
【従来の技術】
波形鋼板ウェブ橋は、上床版と下床版とこれらを連結する複数の波形鋼板とで箱形断面を形成するようにして橋軸方向に延びる構成となっているが、この波形鋼板ウェブ橋の架設は、一般に、張出し施工により所定長のブロック毎に行われるようになっている。
【0003】
その際、波形鋼板を利用した架設方法も採用されている(例えば「非特許文献1」参照)。この架設方法においては、上床版未施工の先頭ブロックを構成する複数の波形鋼板に、下床版施工用の吊り支保工を吊り下げた状態で、先頭ブロックの次のブロックを構成する複数の波形鋼板を先行架設した後、これら先行架設された波形鋼板に吊り支保工を移動させ、この状態で、次のブロックを構成する下床版の施工と先頭ブロックを構成する上床版の施工とを行うようになっている。
【0004】
【非特許文献1】
「プレストレストコンクリート」、社団法人プレストレストコンクリート技術協会、平成14年1月31日、第44巻、第1号、p.55
−57
【発明が解決しようとする課題】
このように上床版と下床版とを別ブロックで並行して施工することにより施工効率を高めることができるが、これら上床版および下床版の施工自体は、型枠を用いた現場打ち施工で行われている。
【0005】
その際、下床版の施工に関しては、次のような問題がある。
【0006】
すなわち、波形鋼板は、一般に、波形鋼板本体の上下両端部にフランジが接合された構成となっており、下床版との接合はアングルジベル接合により行われている。しかしながら、このような接合構造では、波形鋼板の下端フランジ部下面へのコンクリート打設が逆打ちとなってしまうので、施工性が非常に悪く、気泡やブリージングの発生による一体化の低下が懸念される。このため波形鋼板と下床版との接合強度を高めることが困難となり、十分な耐久性を確保しにくいという問題がある。
【0007】
本願発明は、このような事情に鑑みてなされたものであって、波形鋼板を利用した波形鋼板ウェブ橋の架設方法において、波形鋼板と下床版との接合強度を高めて十分な耐久性を確保することができる波形鋼板ウェブ橋の架設方法を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
本願発明は、波形鋼板を先行架設する際、該波形鋼板の構成に工夫を施しておくことにより、上記目的達成を図るようにしたものである。
【0009】
すなわち、本願発明に係る波形鋼板ウェブ橋の架設方法は、
上床版と下床版とこれらを連結する複数の波形鋼板とで箱形断面を形成するようにして橋軸方向に延びる波形鋼板ウェブ橋を、張出し施工により所定長のブロック毎に架設する方法において、
上床版未施工の先頭ブロックを構成する複数の波形鋼板に、下床版施工用の吊り支保工を吊り下げた状態で、上記先頭ブロックの次のブロックを構成する複数の波形鋼板を先行架設した後、これら先行架設された波形鋼板に上記吊り支保工を移動させ、この状態で、上記次のブロックを構成する下床版の施工と上記先頭ブロックを構成する上床版の施工とを行うように構成されており、
上記先行架設に用いる各波形鋼板として、該波形鋼板の下端部に上記下床版の一部を構成するコンクリートブロックが埋め込み接合されたプレキャスト波形鋼板を用いるように構成されている、ことを特徴とするものである。
【0010】
上記「プレキャスト波形鋼板」は、波形鋼板の下端部に下床版の一部を構成するコンクリートブロックが埋め込み接合されたものであれば、波形鋼板の下端部の形状あるいはコンクリートブロックの大きさや形状等については特に限定されるものではない。
【0011】
【発明の作用効果】
上記構成に示すように、本願発明に係る波形鋼板ウェブ橋の架設方法は、上床版未施工の先頭ブロックを構成する複数の波形鋼板に、下床版施工用の吊り支保工を吊り下げた状態で、先頭ブロックの次のブロックを構成する複数の波形鋼板を先行架設した後、これら先行架設された波形鋼板に吊り支保工を移動させ、この状態で、次のブロックを構成する下床版の施工と先頭ブロックを構成する上床版の施工とを行うようになっているので、上床版と下床版とを別ブロックで並行して施工することができ、これにより施工効率を高めることができる。また、吊り支保工の利用により、下床版の施工をある程度効率良く行うことができる。
【0012】
特に本願発明においては、先行架設に用いる各波形鋼板として、その下端部に下床版の一部を構成するコンクリートブロックが埋め込み接合されたプレキャスト波形鋼板を用いるようになっているので、従来のように波形鋼板の下端フランジ部下面へのコンクリート打設を行う必要がなくなる。このため、従来のように逆打ちに起因する気泡やブリージングの発生による一体化の低下の懸念をなくすことができ、これにより波形鋼板と下床版との接合強度を高めることができる。
【0013】
このように本願発明によれば、波形鋼板を利用した波形鋼板ウェブ橋の架設方法において、波形鋼板と下床版との接合強度を高めて十分な耐久性を確保することができる。
【0014】
しかも本願発明においては、プレキャスト波形鋼板の採用により、波形鋼板の下端フランジ部およびアングルジベルを廃止することが可能となるので、波形鋼板の製作費を安くすることができ、これにより工費低減を図ることができる。
【0015】
また本願発明においては、下床版において波形鋼板との接合部付近の配筋が密になる部分がプレキャスト化されるので、現場作業を減少させることができ、これにより工期短縮を図ることができる。
【0016】
上記構成において、上床版の施工を、複数のプレキャストリブを橋軸方向に所定間隔をおいて複数の波形鋼板の上端部間に架け渡すとともに、これらプレキャストリブの上に複数のプレキャスト板を敷設した後、これらプレキャストリブおよびプレキャスト板を型枠として上床版コンクリートを打設することにより行うようにすれば、従来のように下床版から支保工を立てるとともに施工済みの張出床版部分から架設用の梁を張り出して上床版の施工を行うのに比して、上床版の施工を容易に行うことができる。そしてこれにより、下床版の施工のみならず上床版の施工に関しても施工の簡素化を図ることができる。
【0017】
この場合において、上記「プレキャストリブ」は、複数の波形鋼板の上端部間に架け渡すことができるように構成されたものであれば、その具体的な形状や設置本数等については特に限定されるものではない。
【0018】
また、上記「プレキャスト板」は、該プレキャスト板をプレキャストリブの上に敷設することにより、上床版コンクリートを打設するための型枠を形成することができるものであれば、その具体的な形状や敷設枚数等については特に限定されるものではない。
【0019】
【発明の実施の形態】
以下、図面を用いて、本願発明の実施の形態について説明する。
【0020】
図1は、本願発明の一実施形態に係る架設方法の適用対象となる波形鋼板ウェブ橋10を架設途中の状態で示す斜視図である。
【0021】
図示のように、この波形鋼板ウェブ橋10は、上床版12と下床版14とこれらを連結する左右1対の波形鋼板16とで箱形断面を形成するようにして橋軸方向に延びている。各波形鋼板16は、波形鋼板本体16Aと、その上端部に接合された上端フランジ部16Bとからなっている。そして、この波形鋼板ウェブ橋10は、張出し施工により所定長のブロック毎に架設されるようになっている。
【0022】
同図は、先頭ブロックB(n)の手前側のブロックB(n−1)の架設が完了した時点における波形鋼板ウェブ橋10を示すものであり、この時点では、先頭ブロックB(n)は、下床版14および両波形鋼板16については施工が完了した状態となっているが、上床版12については施工がまだ行われていない状態となっている。
【0023】
図2は、波形鋼板ウェブ橋10の架設工程を示す斜視図である。また、図3および4は、この架設工程を示す側面図および橋軸直交断面図である。なお、図4は、先頭ブロックB(n)における橋軸直交断面図である。また、図3および4における(a)〜(d)の各工程は、図2の(a)〜(d)の各工程に対応したものとなっている。
【0024】
波形鋼板ウェブ橋10の架設は、次のようにして行われるようになっている。
【0025】
まず、図1に示すように、上床版未施工の先頭ブロックB(n)を構成する1対の波形鋼板16に、簡易型枠102が取り付けられた下床版施工用の吊り支保工100を吊り下げた状態で、図2(a)に示すように、先頭ブロック(n)の次のブロックB(n+1)を構成する1対の波形鋼板16を先行架設する。これら各波形鋼板16の先行架設は、クレーン等を用いて行う。
【0026】
この先行架設の際、各波形鋼板16として、該波形鋼板16の下端部に下床版14の一部がプレキャスト化されたプレキャスト波形鋼板18を用いる。このプレキャスト波形鋼板18は、図4のV部詳細図である図5にも示すように、波形鋼板本体16Aの下端部に、断面略矩形状に形成されたコンクリートブロック32が埋め込み接合された構成となっている。この埋め込み接合の際、コンクリートブロック32には、複数の鉄筋34が、その先端部を橋軸直交方向中央部へ向けて突出させた状態で埋設されるようになっている。
【0027】
次に、図2(b)に示すように、先行架設された1対の波形鋼板16に吊り支保工100を移動させ、これを次のブロックB(n+1)の位置に据え付ける。
そして、先頭ブロックB(n)の上床版12を構成する複数のプレキャストリブ22を、橋軸方向に所定間隔をおいて両波形鋼板16の上端部間に架け渡して橋軸直交方向に延びるように配置する。
【0028】
この配置が完了したら、図2(c)に示すように、これらプレキャストリブ22の上に複数のプレキャスト板24を敷設し、これらプレキャスト板24の上に鉄筋および上床版横締め鋼材を配置する。また、これと並行して、次のブロックB(n+1)の簡易型枠102上において、下床版14の鉄筋組立てを行う。
【0029】
そして、図2(d)に示すように、先頭ブロックB(n)において、プレキャストリブ22およびプレキャスト板24を型枠として上床版コンクリート26を打設するとともに、次のブロックB(n+1)において、コンクリートブロック32を覆うようにして下床版コンクリート28を打設し、その養生を図る。その後、先頭ブロックB(n)において、上床版横締め鋼材30にプレストレスを導入して上床版コンクリート26の横締め緊張を行うとともに、外ケーブルの挿入および緊張を行う。
【0030】
以上の工程により先頭ブロックB(n)の架設が完了したら、同様の工程により次のブロックB(n+1)の架設を行い、以後同様にして張出し施工による架設を行う。
【0031】
以上詳述したように、本実施形態に係る波形鋼板ウェブ橋10の架設方法は、上床版未施工の先頭ブロックB(n)を構成する1対の波形鋼板16に、下床版施工用の吊り支保工100を吊り下げた状態で、先頭ブロックB(n)の次のブロックB(n+1)を構成する1対の波形鋼板16を先行架設した後、これら先行架設された波形鋼板16に吊り支保工100を移動させ、この状態で、次のブロックB(n+1)を構成する下床版14の施工と先頭ブロックB(n)を構成する上床版12の施工とを行うようになっているので、上床版12と下床版14とを別ブロックで並行して施工することができ、これにより施工効率を高めることができる。また、吊り支保工100の利用により、下床版12の施工をある程度効率良く行うことができる。
【0032】
特に本実施形態においては、先行架設に用いる各波形鋼板16として、その下端部に下床版14の一部を構成するコンクリートブロック32が埋め込み接合されたプレキャスト波形鋼板18を用いるようになっているので、従来のように波形鋼板の下端フランジ部下面へのコンクリート打設を行う必要がなくなる。このため、従来のように逆打ちに起因する気泡やブリージングの発生による一体化の低下の懸念をなくすことができ、これにより波形鋼板16と下床版14との接合強度を高めて十分な耐久性を確保することができる。
【0033】
しかも本実施形態においては、プレキャスト波形鋼板18の採用により、波形鋼板16の下端フランジ部およびアングルジベルを廃止することが可能となるので、波形鋼板16の製作費を安くすることができ、これにより工費低減を図ることができる。
【0034】
また本実施形態においては、下床版14において波形鋼板16との接合部付近の配筋が密になる部分がプレキャスト化されるので、現場作業を減少させることができ、これにより工期短縮を図ることができる。
【0035】
さらに本実施形態においては、上床版12の施工が、複数のプレキャストリブ22を橋軸方向に所定間隔をおいて1対の波形鋼板16の上端部間に架け渡すとともに、これらプレキャストリブ22の上に複数のプレキャスト板24を敷設した後、これらプレキャストリブ22およびプレキャスト板24を型枠として上床版コンクリート26を打設することにより行われるようになっているので、従来のように下床版から支保工を立てるとともに施工済みの張出床版部分から架設用の梁を張り出して上床版の施工を行うのに比して、上床版12の施工を容易に行うことができる。そしてこれにより、下床版14の施工のみならず上床版12の施工に関しても施工の簡素化を図ることができる。
【0036】
上記実施形態においては、波形鋼板16を下床版14の橋軸直交方向両側部に1対設ける場合について説明したが、波形鋼板16を3箇所以上に設けるようにした場合においても、上記実施形態と同様の架設方法を採用することにより上記実施形態と同様の作用効果を得ることができる。
【図面の簡単な説明】
【図1】本願発明の一実施形態に係る架設方法の適用対象となる波形鋼板ウェブ橋を、架設途中の状態で示す斜視図
【図2】上記波形鋼板ウェブ橋の架設工程を示す斜視図
【図3】上記架設工程を示す側面図
【図4】上記架設工程を示す橋軸直交断面図
【図5】本実施形態において使用されるプレキャスト波形鋼板を、図4のV部詳細図として示す図
【符号の説明】
10 波形鋼板ウェブ橋
12 上床版
14 下床版
16 波形鋼板
16A 波形鋼板本体
16B 上端フランジ部
18 プレキャスト波形鋼板
22 プレキャストリブ
24 プレキャスト板
26 上床版コンクリート
28 下床版コンクリート
30 上床版横締め鋼材
32 コンクリートブロック
34 鉄筋
100 吊り支保工
102 簡易型枠
B(n−1) 手前側のブロック
B(n) 先頭ブロック
B(n+1) 次のブロック
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of erection of a corrugated steel web bridge for each block of a predetermined length by overhanging construction.
[0002]
[Prior art]
The corrugated steel sheet web bridge is configured to extend in the bridge axis direction so as to form a box-shaped cross section with the upper deck, the lower deck, and a plurality of corrugated steel sheets connecting them, The erection is generally performed for each block of a predetermined length by overhanging construction.
[0003]
At that time, an erection method using a corrugated steel plate is also adopted (for example, see “Non-Patent Document 1”). In this erection method, a plurality of corrugated steel sheets constituting a block next to the top block are suspended in a state in which a suspension support for the construction of the bottom slab is suspended on a plurality of corrugated steel sheets constituting the top block without the top slab. After the steel plates are erected in advance, the suspension supports are moved to these erected steel plates, and in this state, the construction of the lower slab constituting the next block and the construction of the upper slab constituting the head block are performed. It has become.
[0004]
[Non-patent document 1]
"Prestressed Concrete", Japan Prestressed Concrete Technology Association, Vol. 44, No. 1, January 31, 2002, p. 55
−57
[Problems to be solved by the invention]
The construction efficiency can be improved by constructing the upper slab and the lower slab in parallel in separate blocks as described above, but the construction of the upper slab and the lower slab itself is performed by cast-in-place using a formwork. It is done in.
[0005]
At that time, there are the following problems regarding the construction of the lower deck.
[0006]
That is, the corrugated steel sheet generally has a configuration in which flanges are joined to both upper and lower ends of a corrugated steel sheet main body, and the joining with the lower floor slab is performed by angled dowel joining. However, in such a joint structure, since concrete is cast on the lower surface of the lower end flange portion of the corrugated steel plate in reverse, the workability is extremely poor, and there is a concern that the integration may be deteriorated due to generation of bubbles and breathing. You. For this reason, it becomes difficult to increase the bonding strength between the corrugated steel sheet and the lower slab, and there is a problem that it is difficult to secure sufficient durability.
[0007]
The present invention has been made in view of such circumstances, and in a method of erection of a corrugated steel sheet web bridge using a corrugated steel sheet, sufficient durability is improved by increasing the joining strength between the corrugated steel sheet and the lower slab. It is an object of the present invention to provide a method of erection of a corrugated steel web bridge that can be secured.
[0008]
[Means for Solving the Problems]
The present invention is intended to achieve the above object by devising the configuration of the corrugated steel sheet when the corrugated steel sheet is erected in advance.
[0009]
That is, the method of erection of the corrugated steel web bridge according to the present invention is as follows.
In a method of erection of a corrugated steel sheet web bridge extending in the bridge axis direction so as to form a box-shaped cross section with an upper slab, a lower slab, and a plurality of corrugated steel sheets connecting them, by overhanging construction for each block of a predetermined length. ,
A plurality of corrugated steel sheets constituting the block next to the above-mentioned top block were erected in advance in a state in which the suspension support for the lower deck slab was suspended on the plurality of corrugated steel sheets constituting the top block without the upper slab. After that, the suspension support is moved to these pre-installed corrugated steel plates, and in this state, the construction of the lower slab constituting the next block and the construction of the upper slab constituting the top block are performed. Is composed of
Each of the corrugated steel sheets used for the preceding erection is configured to use a precast corrugated steel sheet in which a concrete block constituting a part of the lower floor slab is embedded and joined at a lower end portion of the corrugated steel sheet. Is what you do.
[0010]
The above-mentioned "precast corrugated steel sheet" refers to the shape of the lower end of the corrugated steel sheet or the size and shape of the concrete block, as long as the concrete block constituting a part of the lower slab is embedded and joined to the lower end of the corrugated steel sheet. Is not particularly limited.
[0011]
Operation and Effect of the Invention
As shown in the above configuration, the method of erection of the corrugated steel sheet web bridge according to the invention of the present application is a method in which a plurality of corrugated steel sheets constituting the top block without the upper slab are suspended with the suspension support for the lower slab. Then, after a plurality of corrugated steel plates constituting the block next to the first block are erected in advance, the suspension supports are moved to these erected corrugated steel plates, and in this state, the lower floor slab constituting the next block is formed. Since the construction and the construction of the top floor slab constituting the top block are performed, the upper slab and the lower slab can be constructed in parallel in separate blocks, thereby increasing construction efficiency. . In addition, the use of the suspension shoring enables the construction of the lower slab to be performed to some extent efficiently.
[0012]
In particular, in the present invention, as each corrugated steel sheet used for the preliminary erection, a precast corrugated steel sheet in which a concrete block constituting a part of the lower floor slab is embedded and joined at the lower end thereof is used as in the related art. Therefore, it is not necessary to cast concrete on the lower surface of the lower flange portion of the corrugated steel plate. For this reason, unlike the related art, there is no concern about a decrease in integration due to the occurrence of bubbles or breathing due to reverse hitting, thereby increasing the bonding strength between the corrugated steel sheet and the lower slab.
[0013]
As described above, according to the invention of the present application, in the method of erection of the corrugated steel sheet web bridge using the corrugated steel sheet, it is possible to increase the bonding strength between the corrugated steel sheet and the lower slab to ensure sufficient durability.
[0014]
Moreover, in the present invention, the adoption of the precast corrugated steel sheet makes it possible to eliminate the lower end flange portion and the angle dowel of the corrugated steel sheet, so that the manufacturing cost of the corrugated steel sheet can be reduced, thereby reducing the construction cost. be able to.
[0015]
Further, in the present invention, since the portion where the reinforcing bars near the joint with the corrugated steel plate in the lower floor slab are dense is precast, the on-site work can be reduced, thereby shortening the construction period. .
[0016]
In the above configuration, the construction of the upper floor slab, the plurality of precast ribs were bridged between the upper ends of the plurality of corrugated steel plates at predetermined intervals in the bridge axis direction, and a plurality of precast plates were laid on these precast ribs. Later, if these precast ribs and precast plates are used as a formwork to cast concrete on the upper slab, it will be possible to construct a support from the lower slab and to erection from the overhanging slab part as before. The construction of the upper floor slab can be easily performed as compared with the case where the construction of the upper floor slab is performed by extending the beams for use. Thus, the construction can be simplified not only for the construction of the lower slab but also for the construction of the upper slab.
[0017]
In this case, the specific shape and number of the “precast ribs” are particularly limited as long as the “precast ribs” are configured so as to be able to span between the upper end portions of the plurality of corrugated steel plates. Not something.
[0018]
In addition, the above-mentioned “precast plate” has a specific shape as long as the form can be formed by laying the precast plate on the precast ribs to form a formwork for placing concrete on the upper floor slab. There is no particular limitation on the number of laying or the like.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0020]
FIG. 1 is a perspective view showing a state in which a corrugated steel web bridge 10 to which an erection method according to an embodiment of the present invention is applied is being erected.
[0021]
As shown in the figure, the corrugated steel web bridge 10 extends in the bridge axis direction so as to form a box-shaped cross section by an upper slab 12, a lower slab 14, and a pair of right and left corrugated steel plates 16 connecting these. I have. Each corrugated steel plate 16 includes a corrugated steel plate main body 16A and an upper end flange portion 16B joined to an upper end thereof. The corrugated steel sheet web bridge 10 is constructed for each block of a predetermined length by overhanging construction.
[0022]
This figure shows the corrugated steel web bridge 10 at the time when the erection of the block B (n-1) on the front side of the head block B (n) is completed. At this time, the head block B (n) is The construction of the lower slab 14 and the corrugated steel plates 16 has been completed, but the construction of the upper slab 12 has not been performed yet.
[0023]
FIG. 2 is a perspective view showing a process of erection of the corrugated steel sheet web bridge 10. FIGS. 3 and 4 are a side view and a cross-section orthogonal to the bridge shaft, respectively, showing the erection process. FIG. 4 is a cross-sectional view orthogonal to the bridge axis in the first block B (n). The steps (a) to (d) in FIGS. 3 and 4 correspond to the steps (a) to (d) in FIG.
[0024]
The erection of the corrugated steel web bridge 10 is performed as follows.
[0025]
First, as shown in FIG. 1, a suspension supporter 100 for lower floor slab construction in which a simplified formwork 102 is attached to a pair of corrugated steel plates 16 constituting a top block B (n) on which no upper slab slab has been constructed. In the suspended state, as shown in FIG. 2A, a pair of corrugated steel plates 16 constituting a block B (n + 1) next to the head block (n) is erected in advance. The preceding installation of each corrugated steel plate 16 is performed using a crane or the like.
[0026]
At the time of this preliminary erection, a precast corrugated steel plate 18 in which a part of the lower floor slab 14 is precast at the lower end of the corrugated steel plate 16 is used as each corrugated steel plate 16. As shown in FIG. 5 which is a detailed view of a V part in FIG. 4, the precast corrugated steel sheet 18 has a configuration in which a concrete block 32 having a substantially rectangular cross section is embedded and joined to the lower end of the corrugated steel sheet body 16A. It has become. At the time of this embedded joining, a plurality of reinforcing bars 34 are embedded in the concrete block 32 with their tips protruding toward the center in the direction orthogonal to the bridge axis.
[0027]
Next, as shown in FIG. 2B, the suspension supporter 100 is moved to the pair of corrugated steel plates 16 erected in advance, and is installed at the position of the next block B (n + 1).
Then, the plurality of precast ribs 22 constituting the upper floor slab 12 of the head block B (n) are extended between the upper ends of both corrugated steel plates 16 at predetermined intervals in the bridge axis direction and extend in the bridge axis orthogonal direction. To place.
[0028]
When this arrangement is completed, as shown in FIG. 2 (c), a plurality of precast plates 24 are laid on the precast ribs 22, and the reinforcing steel and the upper floor slab side fastening steel are arranged on these precast plates 24. At the same time, rebar assembly of the lower floor slab 14 is performed on the simplified formwork 102 of the next block B (n + 1).
[0029]
Then, as shown in FIG. 2D, in the head block B (n), the upper floor slab concrete 26 is poured using the precast rib 22 and the precast plate 24 as a formwork, and in the next block B (n + 1), A lower floor slab concrete 28 is poured so as to cover the concrete block 32, and its curing is aimed at. Thereafter, in the top block B (n), prestress is introduced into the upper deck slab laterally tightened steel material 30 to perform lateral tightening of the upper slab concrete 26, and insert and tension the outer cable.
[0030]
When the erection of the first block B (n) is completed by the above steps, the erection of the next block B (n + 1) is performed by the same steps, and thereafter the erection by overhanging is performed in the same manner.
[0031]
As described in detail above, the method of erection of the corrugated steel sheet web bridge 10 according to the present embodiment uses the pair of corrugated steel sheets 16 constituting the top block B (n) on which the upper slab is not installed, for mounting the lower slab. In a state where the suspension supporter 100 is suspended, a pair of corrugated steel plates 16 constituting a block B (n + 1) next to the head block B (n) are erected in advance, and then suspended on these erected corrugated steel plates 16. The shoring 100 is moved, and in this state, the construction of the lower slab 14 constituting the next block B (n + 1) and the construction of the upper slab 12 constituting the head block B (n) are performed. Therefore, the upper floor slab 12 and the lower floor slab 14 can be constructed in parallel in separate blocks, thereby increasing construction efficiency. In addition, the use of the suspension supports 100 allows the construction of the lower floor slab 12 to be performed to some extent efficiently.
[0032]
In particular, in the present embodiment, as each corrugated steel plate 16 used for the preceding erection, a precast corrugated steel plate 18 in which a concrete block 32 constituting a part of the lower floor slab 14 is embedded and joined at the lower end thereof is used. Therefore, it is not necessary to cast concrete on the lower surface of the lower end flange portion of the corrugated steel sheet as in the related art. For this reason, it is possible to eliminate the concern of a decrease in integration due to the occurrence of bubbles and breathing due to reverse hit as in the related art, thereby increasing the bonding strength between the corrugated steel plate 16 and the lower floor slab 14 to achieve sufficient durability. Property can be ensured.
[0033]
Moreover, in the present embodiment, the adoption of the precast corrugated steel sheet 18 makes it possible to eliminate the lower end flange portion and the angle dowel of the corrugated steel sheet 16, so that the manufacturing cost of the corrugated steel sheet 16 can be reduced, and as a result, Work costs can be reduced.
[0034]
Further, in the present embodiment, the portion where the reinforcement is dense near the joint with the corrugated steel plate 16 in the lower slab 14 is precast, so that on-site work can be reduced, thereby shortening the construction period. be able to.
[0035]
Further, in the present embodiment, the upper floor slab 12 is constructed such that the plurality of precast ribs 22 are bridged between the upper ends of the pair of corrugated steel plates 16 at predetermined intervals in the bridge axis direction, and the upper After laying a plurality of precast plates 24, the precast ribs 22 and the precast plates 24 are used as a formwork, and the upper floor concrete 26 is cast. The construction of the upper slab 12 can be performed more easily than the construction of the upper slab by erecting a shoring and extending the erection beam from the constructed overhanging slab portion. Thus, not only the construction of the lower slab 14 but also the construction of the upper slab 12 can be simplified.
[0036]
In the above embodiment, the case where a pair of corrugated steel plates 16 are provided on both sides of the lower floor slab 14 in the direction orthogonal to the bridge axis has been described. However, even in the case where the corrugated steel plates 16 are provided at three or more locations, the above embodiment is also applicable. By adopting the same erection method, the same operation and effect as in the above embodiment can be obtained.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a corrugated steel sheet web bridge to which a method of erection according to an embodiment of the present invention is applied, in a state of being erected. FIG. 2 is a perspective view showing a erection step of the corrugated steel sheet web bridge. FIG. 3 is a side view showing the erection process. FIG. 4 is a cross-sectional view orthogonal to the bridge shaft showing the erection process. FIG. 5 is a diagram showing a precast corrugated steel plate used in the present embodiment as a detailed view of a V part in FIG. [Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Corrugated steel plate web bridge 12 Upper floor slab 14 Lower floor slab 16 Corrugated steel plate 16A Corrugated steel plate main body 16B Upper end flange part 18 Precast corrugated steel plate 22 Precast rib 24 Precast plate 26 Upper floor slab concrete 28 Lower floor slab concrete 30 Upper floor slab side tightening steel material 32 Concrete Block 34 Reinforcing bar 100 Suspension support 102 Simple formwork B (n-1) Block B (n) on the near side First block B (n + 1) Next block

Claims (2)

上床版と下床版とこれらを連結する複数の波形鋼板とで箱形断面を形成するようにして橋軸方向に延びる波形鋼板ウェブ橋を、張出し施工により所定長のブロック毎に架設する方法において、
上床版未施工の先頭ブロックを構成する複数の波形鋼板に、下床版施工用の吊り支保工を吊り下げた状態で、上記先頭ブロックの次のブロックを構成する複数の波形鋼板を先行架設した後、これら先行架設された波形鋼板に上記吊り支保工を移動させ、この状態で、上記次のブロックを構成する下床版の施工と上記先頭ブロックを構成する上床版の施工とを行うように構成されており、
上記先行架設に用いる各波形鋼板として、該波形鋼板の下端部に上記下床版の一部を構成するコンクリートブロックが埋め込み接合されたプレキャスト波形鋼板を用いるように構成されている、ことを特徴とする波形鋼板ウェブ橋の架設方法。
In a method of erection of a corrugated steel sheet web bridge extending in the bridge axis direction so as to form a box-shaped cross section with an upper slab, a lower slab, and a plurality of corrugated steel sheets connecting them, by overhanging construction for each block of a predetermined length. ,
A plurality of corrugated steel sheets constituting the block next to the above-mentioned top block were erected in advance in a state in which the suspension support for the lower deck slab was suspended on the plurality of corrugated steel sheets constituting the top block without the upper slab. After that, the suspension support is moved to these pre-installed corrugated steel plates, and in this state, the construction of the lower slab constituting the next block and the construction of the upper slab constituting the top block are performed. Is composed of
Each of the corrugated steel sheets used for the preceding erection is configured to use a precast corrugated steel sheet in which a concrete block constituting a part of the lower floor slab is embedded and joined at a lower end portion of the corrugated steel sheet. Method of erected corrugated steel web bridge.
上記上床版の施工が、複数のプレキャストリブを橋軸方向に所定間隔をおいて上記複数の波形鋼板の上端部間に架け渡すとともに、これらプレキャストリブの上に複数のプレキャスト板を敷設した後、これらプレキャストリブおよびプレキャスト板を型枠として上床版コンクリートを打設することにより行われるように構成されている、ことを特徴とする請求項1記載の波形鋼板ウェブ橋の架設方法。The construction of the upper floor slab, while extending a plurality of precast ribs at predetermined intervals in the bridge axis direction between upper ends of the plurality of corrugated steel plates, and after laying a plurality of precast plates on these precast ribs, The method for erection of a corrugated steel sheet web bridge according to claim 1, wherein the method is performed by placing an upper floor slab concrete using the precast ribs and the precast plates as a formwork.
JP2002278839A 2002-09-25 2002-09-25 Construction method of corrugated steel web bridge Expired - Lifetime JP4073746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002278839A JP4073746B2 (en) 2002-09-25 2002-09-25 Construction method of corrugated steel web bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002278839A JP4073746B2 (en) 2002-09-25 2002-09-25 Construction method of corrugated steel web bridge

Publications (2)

Publication Number Publication Date
JP2004116060A true JP2004116060A (en) 2004-04-15
JP4073746B2 JP4073746B2 (en) 2008-04-09

Family

ID=32274012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002278839A Expired - Lifetime JP4073746B2 (en) 2002-09-25 2002-09-25 Construction method of corrugated steel web bridge

Country Status (1)

Country Link
JP (1) JP4073746B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320210C (en) * 2005-04-06 2007-06-06 湖南大学 Steel-concrete combination backbone beam with big cantilever corrugated steel web overhanging beam
CN103422437A (en) * 2013-07-18 2013-12-04 杭州博数土木工程技术有限公司 Corrugated steel web bridge stepped construction technology
JP2015068055A (en) * 2013-09-30 2015-04-13 三井住友建設株式会社 Girder block installation device and girder block installation method
CN104746434A (en) * 2015-03-31 2015-07-01 中铁第五勘察设计院集团有限公司 Closure segment formwork system without dismantling outer formwork
CN112709157A (en) * 2020-04-29 2021-04-27 中交路桥建设有限公司 Cast-in-place construction method for corrugated steel web cantilever beam cast-in-place concrete bridge
WO2021203150A1 (en) 2020-04-08 2021-10-14 Kollegger Gmbh Method for producing a roadway deck for a bridge
AT524664B1 (en) * 2021-06-09 2022-08-15 Kollegger Gmbh Process for the construction of a bridge from prefabricated girders and roadway slab elements

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1830552A1 (en) 1999-12-28 2007-09-05 Sony Corporation Image commercial transactions system and method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320210C (en) * 2005-04-06 2007-06-06 湖南大学 Steel-concrete combination backbone beam with big cantilever corrugated steel web overhanging beam
CN103422437A (en) * 2013-07-18 2013-12-04 杭州博数土木工程技术有限公司 Corrugated steel web bridge stepped construction technology
CN103422437B (en) * 2013-07-18 2015-11-18 浙江中隧桥波形钢腹板有限公司 Wavelike steel webplate bridge step construction technology
JP2015068055A (en) * 2013-09-30 2015-04-13 三井住友建設株式会社 Girder block installation device and girder block installation method
CN104746434A (en) * 2015-03-31 2015-07-01 中铁第五勘察设计院集团有限公司 Closure segment formwork system without dismantling outer formwork
WO2021203150A1 (en) 2020-04-08 2021-10-14 Kollegger Gmbh Method for producing a roadway deck for a bridge
CN112709157A (en) * 2020-04-29 2021-04-27 中交路桥建设有限公司 Cast-in-place construction method for corrugated steel web cantilever beam cast-in-place concrete bridge
AT524664B1 (en) * 2021-06-09 2022-08-15 Kollegger Gmbh Process for the construction of a bridge from prefabricated girders and roadway slab elements
AT524664A4 (en) * 2021-06-09 2022-08-15 Kollegger Gmbh Process for manufacturing a bridge from prefabricated girders and roadway slab elements
WO2022256851A1 (en) 2021-06-09 2022-12-15 Kollegger Gmbh Method for producing a bridge from finished-part beams and roadway plate elements

Also Published As

Publication number Publication date
JP4073746B2 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
KR101476290B1 (en) Steel composite PSC corrugated steel plate U girder
KR100760393B1 (en) Precast concrete panel and method for constructing a slab using the panel
JP2006316580A (en) Corrugated steel plate web pc composite beam and construction method of bridge using corrugated steel plate web pc composite beam
JP6108595B2 (en) Ribbed precast concrete plate and method of placing concrete floor slab and beam using it
JP2005083072A (en) Joint structure and joint construction method for precast concrete slab
JP2009030277A (en) Construction method of composite steel floor slab girder bridge
JP2004116060A (en) Erection method for corrugated steel plate web bridge
JP2005105766A (en) Removable support beam
JP5203277B2 (en) Precast floor slab panel joint
JP7169152B2 (en) Joint structure of precast concrete members
JP3832651B2 (en) Corrugated steel web bridge construction method
JP2014105547A (en) Structure for fixing precast floor slab
JP2017101445A (en) Joining method of precast floor slab and joining structure of precast floor slab
JP2011089390A (en) Rigid connection structure of corner section
JP2004197388A (en) Flat slab structure
JP2009235835A (en) Bridge construction method
JP2000038797A (en) Semi-precast floor slab
KR200434622Y1 (en) Precast concrete panel
JP2004232229A (en) Precast concrete slab
JPH10110498A (en) Half-precast floor slab and construction method of hollow flat slab making use thereof
KR0145358B1 (en) Method of building slabs
JP2006188881A (en) Joint structure of beam and floor board
JP2004162293A (en) Precast concrete floor slab for viaduct, and laying method therefor
JP2018204386A (en) Reinforcing material and reinforcing structure
JP2010281040A (en) Steel concrete composite floor slab, panel for constructing the steel concrete composite floor slab, and construction method for steel concrete composite floor slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4073746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term