JP2004114172A - Method and apparatus of electric discharge truing - Google Patents

Method and apparatus of electric discharge truing Download PDF

Info

Publication number
JP2004114172A
JP2004114172A JP2002277070A JP2002277070A JP2004114172A JP 2004114172 A JP2004114172 A JP 2004114172A JP 2002277070 A JP2002277070 A JP 2002277070A JP 2002277070 A JP2002277070 A JP 2002277070A JP 2004114172 A JP2004114172 A JP 2004114172A
Authority
JP
Japan
Prior art keywords
electrode
shape
grindstone
truing
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002277070A
Other languages
Japanese (ja)
Other versions
JP4613471B2 (en
Inventor
Masayuki Takahashi
高橋 正行
Shinko Muro
室 真弘
Takeshi Masaki
正木 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002277070A priority Critical patent/JP4613471B2/en
Publication of JP2004114172A publication Critical patent/JP2004114172A/en
Application granted granted Critical
Publication of JP4613471B2 publication Critical patent/JP4613471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of in-situ electric discharge truing for an electrically conductive grinding wheel, by which very high machining accuracy can be obtained by preventing the deterioration of the form accuracy of the wheel. <P>SOLUTION: An electrode 6 is formed into a required shape by a tool 7 fixed to a machine. Next, an electrically conductive grinding wheel 9 having a highly accurate cross-section is manufactured by transferring the required shape on the surface of the wheel by scanningly tracing the surface of the electrode, while turning the electrically conductive wheel 9. Highly accurate machined surfaces can be achieved by machining a workpiece using the wheel 9. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、光学素子等の超精密加工部品を研削加工するための導電性砥石の放電ツルーイングに関する。
【0002】
【従来の技術】
従来、加工機上で行う機上放電ツルーイングは、特開昭63−283861号に記載されたものが良く知られている。図10に従来の機上放電ツルーイング方法を示す。機上に設けた回転軸2に回転電極6を取り付けてある。電極6の円筒外周部は、機上に設けた工具による加工か、又は機外における加工によりあらかじめ創成してある。
【0003】
被加工物となる導電性のメタルボンド砥石9を回軸させて、かつ加工液11を供給しながら電極9に接近させる。図10では省略されているが、砥石9と電極6の間には放電加工する上で必要となる直流電圧が印荷されており、所定の距離まで近づくと、パルス状に制御された放電電流が流れて加工がすすむ。その結果、砥石9の断面形状は、電極6の断面形状の反転した形が転写されるようになる。
【0004】
また電極6の消耗に伴い、正確な形状が転写できなくなることについては、粗放電ツルーイングの後、電極6を再生し、仕上げ条件での放電ツルーイングを行うことを提案している。
【0005】
【発明が解決しようとする課題】
この機上放電ツルーイング法については、一般の機械部品を加工する上では充分な精度を得ることも可能と思われる。しかしながら上記記載の総形回転電極を用いた機上放電ツルーイング法では、放電加工が始まると同時に電極の消耗がすすむので放電ツルーイング完了時には消耗した電極形状が砥石に転写されることになる。また放電ツルーイングを粗加工と仕上げ加工に分けたとしても、電極を再加工した時に、以前と全く同じ形状で創成される保証がない。
【0006】
そもそも、電極については機上で創成するとあるが、高精度に電極をつくる方法の記述がない。
【0007】
一般にレンズやミラー等の光学素子やそれらを成形する金型加工の分野においては、サブミクロンオーダの形状精度が要求されている。
【0008】
本発明は、このような光学素子等の超精密加工部品を研削加工するための導電性砥石の機上放電ツルーイング方法及び装置において、精度を高めることを目的とする。
【0009】
【課題を解決するための手段】
この目的を達成するために本発明の放電ツルーイング方法は、加工機に取り付けた電極をバイトにより所定の形状に創成し、前記導電性砥石を回転させながら、所定の形状に創成され、前記加工機に取り付けられた状態の前記電極面に沿って走査することで前記電極面の所定の形状を砥石面に転写することにより導電性砥石を所定の形状に高精度に加工することができる。
【0010】
【発明の実施の形態】
本発明の請求項1に記載の発明は、導電性砥石を放電ツルーイングする方法において、加工機に取り付けた電極をバイトにより所定の形状に創成し、前記導電性砥石を回転させながら、所定の形状に創成され、前記加工機に取り付けられた状態の前記電極面に沿って走査することで前記電極面の所定の形状を砥石面に転写することを特徴とする導電性砥石の放電ツルーイング方法であり、一つの機上で電極形成から放電ツルーイングまで実施することで、取付に伴う誤差等が生じることなく高精度なツルーイングが可能となる。
【0011】
請求項2に記載の発明は、請求項1記載の発明において、少なくとも3軸以上が数値制御可能な加工機を用いることを特徴とするものであり、数値制御することで位置決めの人為的な誤差がなくなり、数学的に定義される複雑な形状がプログラムにより自動動作できることで高精度なツルーイングが可能となる。
【0012】
請求項3に記載の発明は、請求項1記載の発明において、電極を形成するバイトが、単結晶又は多結晶のダイヤモンドバイトであり、かつ刃先が円弧形状で、高い輪郭精度を有することを特徴とするものであり、バイトの輪郭精度と同等の精度で電極の輪郭形状を成形できる作用を有する。
【0013】
請求項4に記載の発明は、請求項1記載の発明において、バイトによる切削形状が円弧、非円弧、V形、多角形状などとなるように数値制御することを特徴とするものであり、複雑な断面形状を有する電極も成生することが可能となる。
【0014】
請求項5に記載の発明は、請求項1記載の発明において、円筒、非円筒、角形の先端形状を有する前記電極先端部の母線方向と直交する方向に前記電極面に沿って、この電極面をたどるがごとく数値制御しながら導電性砥石を走査させることで、所定の断面形状を有する砥石を成形するものであり、導電性砥石と電極は主に1点でのみ放電加工される故に、電極が1度で全て形くずれすることなく効率良く使用できる。
【0015】
請求項6に記載の発明は、請求項5記載の発明において、放電ツルーイングした後、導電性砥石を前記電極の軸方向に必要量だけ移動させることにより、新しい電極面により導電性砥石の成形を行うものであり、放電ツルーイングしている場所の電極が消耗して形くずれしても、場所を移動することで、同一の断面形状を有する電極により引きつづき放電ツルーイングが可能となり、高精度な形状を有する砥石を成形できるという作用を有する。
【0016】
請求項7記載の発明は、3軸以上の加工軸を数値制御可能な加工機と、前記加工機に取り付けられた電極と、前記加工機に設けられ、前記電極を切削するためのバイトと、前記バイトにより切削され、所定の形状に創成された前記加工機上の前記電極の切削面に沿って砥石を走査することにより前記砥石を放電ツルーイングするための放電回路を含む電源部とを備えた放電ツルーイング装置であり、高精度な電極形成から機上放電ツルーイングまでが行えることにより高精度な加工が実現できる。
【0017】
以下、本発明の一実施の形態について図1から図9を用いて説明する。
【0018】
図1は本発明の工程を示したものである。
【0019】
図1(a)に示す第1の段階では、加工機上に設けたダイヤモンドバイト7で電極6を加工する。図には示してないが、任意のプログラムにより数値制御される。
【0020】
図1(b)に示す第2の段階では、同様に機上に設けた研削スピンドルに取付けられ、回転している導電性砥石9と、図1(a)に示す第1の段階と同じ位置に取付けられた電極6とを接近させて、所定のプログラムにより電極6の表面に沿ってその表面をたどるがごとく砥石9を走査して放電回路20を用い砥石9の断面形状が所定の形状となるように放電回路20により放電加工される。
【0021】
図1(c)に示す第3の段階では、所定の形状に成形された砥石9を用いて被加工物15を研削加工する。研削加工後、砥石断面形状に形くずれが生じたら、再度第2段階に戻れば良い。同様に、電極6に形くずれが生じれば、第1の段階にまで戻る。いずれの工程においても電極6の取り付け位置を変えることなく同一の加工機上でなし得るので、元の座標値に戻すことでどの段階へも自在に移動できることが特徴である。
【0022】
図2は、図1に示した本発明の工程を実現する加工機としての放電ツルーイング装置を示す。Xテーブルに、Xテーブル上に設けたYテーブル13、Zテーブル14の3軸を有し、図示していない数値制御装置によりナノメーターオーダの精度で駆動することが可能となっている。Yテーブル13の上には、電極6を加工するためのダイヤモンドバイト7と、研削スピンドル11及びその先端に導電性砥石9を設けている。Zテーブル14の上には、電極6と被加工物15が設置してある。放電ツルーイングするための図1(a)に示す放電回路20、放電液を供給ノズル等は省略してある。
【0023】
図3と図4は、本発明の第1段階であるダイヤモンドバイト7による電極6の形成加工例である。
【0024】
図3は、図2に示した放電ツルーイング装置を使って電極6を、ダイヤモンドバイト7をX軸方向に送ることにより加工する例を示す。説明するまでもないが、電極6の加工面は完全に加工機のX軸と平行になる。
【0025】
図4は、図2に示した放電ツルーイング装置でのY−Z断面における電極形成の様子を示す図である。本図の例では、ダイヤモンドバイト7をX軸方向に動かして加工する毎にY軸を使ってピッチ送りすることで、電極断面形状が所定の形状となるようにNCプログラムにより制御装置を介して加工すれば良い。本実施形態では電極の先端形状を加工が容易な円筒面状に形成する例を示したが、数学的に定義された非円弧形状、V形形状などであっても良いことは言うまでもない。同様に凸形状、凹形状の電極を製作しても良い。
【0026】
本発明の第1の段階の電極形成の工程で重要な点は、次の面である。すなわち、電極形成時、放電ツルーイング時、いずれの場合にも電極が同じ位置に取り付けられているため、加工に伴う誤差が無いと仮定すれば、ダイヤモンドバイトの持つ形状誤差が、そのまま電極面の形状誤差になることである。例えば高精度な単結晶ダイヤモンドバイトであれば、先端ノーズ半径の輪郭度50nm以下のバイトが市販されている。そのようなダイヤモンドバイトをもって電極加工すれば、成形された電極面の形状精度も50nm以下になっていることにある。
【0027】
図5、図6、図7は、本発明の第2の段階である導電性砥石9の放電ツルーイング工程を示す。
【0028】
図5は、高精度に加工された電極6に対し、導電性砥石9を所定の回転数で回した状態で接近させる状態を示す図である。砥石9と電極6との間は放電回路20により結ばれている。また図示しない放電液も供給する。砥石9が電極6の表面をたどるがごとく走査するようにNCプログラムに基づいてテーブルを駆動する。必要に応じて、同図のZ方向に切込んで放電加工する。
【0029】
図6は、高精度に放電ツルーイングする方法を示している。1ヶ所でX軸方向の位置を固定し、Y軸とZ軸方向に矢印22に沿って駆動して放電ツルーイングすると、図6中6aの様な放電痕が電極6の面に生じる。この放電痕6aが大きくなるとツルーイングした砥石9の断面形状精度が悪化する。その場合、X軸に平行な矢印21方向に一定距離ずらして同じNCプログラムで放電ツルーイングする。矢印21方向にずらした電極面形状は、元の位置での加工初期の電極面形状と全く同一であり、高精度に作業を継続することができる。またこのように位置をX方向に変えることで、第一段階で製作した電極6を有効に利用できることは言うまでもない。
【0030】
図7は、各種の断面形状に導電性砥石9をツルーイングできる例を示している。砥石形状は円弧、数学的に定義された非円弧、V形状、凸形、凹形であっても良いことは言うまでもない。この砥石成形段階で、加工したい形状を反転した総形砥石も容易に製作できる。
【0031】
本発明の第2段階である放電ツルーイング工程で重要な点は、次のことである。すなわち、放電加工時の誤差や加工機を駆動することによる誤差が無いと仮定すれば、電極形状の持つ形状誤差がそのまま砥石断面の形状誤差になることである。例えば、電極面の形状誤差が50nmであれば、砥石断面形状の誤差も同様となることにある。
【0032】
図8と図9は、本発明の第3の段階である研削工程の一例を示す。
【0033】
図8は、被加工物15を所定の研削条件で加工する様子を示す。X軸方向にトラバース研削し、Y方向にピッチ送りして所定の形状となるように加工する。
【0034】
図9は、断面形状が数学的に定義された非円弧面を図8のようにX軸方向にトラバースして研削する一例である。例えば光学部品の一種である非円弧シリンドリカルレンズ金型がその例にあたる。加工始点から砥石9を9a、9b、9cで示すそれぞれの位置に順次ピッチ送りすることで、所定の形状精度を得ることができる。NCプログラムにより数値制御することは言うまでも無い。
【0035】
本発明の第3段階である研削工程で重要な点は、次のことである。すなわち、加工機を駆動することによる誤差が無いとすれば、砥石形状の持つ誤差がそのまま被加工物の断面形状の誤差になることである。例えば、砥石断面形状の誤差が50nmであれば、被加工物の形状誤差も同様となることにある。
【0036】
また図9に示す本実施の形態では、円弧状の断面をした砥石9をY軸方向にピッチ送りすることで、非円弧断面を加工する例を示したが、加工したい形状を反転した総形砥石を本実施形態における放電ツルーイングにより製作して、図8に示すX軸方向に沿った送り方法により所定の形状を得ても良いことは、言うまでも無い。
【0037】
【発明の効果】
以上の様に本発明は、加工機上に取り付けたバイトによりこの加工機上で所定の形状に電極を創成し、導電性砥石を回転させながら、この加工機上に取り付けられた状態を維持した電極面をたどるがごとく走査することで所定の形状を砥石面に転写することにより、非常に高精度な形状精度を得ることができる優れた機上放電ツルーイング方法及び装置を提供できるものである。
【図面の簡単な説明】
【図1】(a)本発明の一実施の形態の放電ツルーイング方法の第1段階の工程を示す図
(b)本実施形態における第2段階の工程を示す図
(c)本実施形態における第3段階の工程を示す図
【図2】本発明の一実施の形態における放電ツルーイング装置を示す斜視図
【図3】放電ツルーイング装置上での電極加工を示す図
【図4】図3に示す電極加工におけるバイトの動作を説明する図
【図5】放電ツルーイングにおける砥石の位置を示す図
【図6】放電ツルーイングにおける電極使用位置の移動を示す図
【図7】(a)電極により凸円弧状に放電ツルーイングされた砥石を示す図
(b)電極により凹円弧状に放電ツルーイングされた砥石を示す図
(c)電極により非円弧状に放電ツルーイングされた砥石を示す図
(d)電極によりV形状に放電ツルーイングされた砥石を示す図
【図8】砥石による被加工物の研削状態を示す図
【図9】砥石による被加工物における非円弧面の加工を示す図
【図10】従来の放電ツルーイング方法を示す図
【符号の説明】
6  電極
7  ダイヤモンドバイト
9  導電性砥石
12 Xテーブル
13 Yテーブル
15 被加工物
20 放電回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a discharge truing of a conductive grindstone for grinding an ultra-precision workpiece such as an optical element.
[0002]
[Prior art]
Conventionally, on-machine electric discharge truing performed on a processing machine is well known in Japanese Patent Application Laid-Open No. 63-283861. FIG. 10 shows a conventional on-machine discharge truing method. A rotating electrode 6 is attached to a rotating shaft 2 provided on the machine. The cylindrical outer peripheral portion of the electrode 6 is created in advance by machining with a tool provided on the machine or machining outside the machine.
[0003]
A conductive metal bond grindstone 9 serving as a workpiece is rotated and brought close to the electrode 9 while supplying a processing liquid 11. Although not shown in FIG. 10, a DC voltage required for electric discharge machining is impressed between the grindstone 9 and the electrode 6, and when approaching a predetermined distance, a discharge current controlled in a pulsed manner. Flows and processing proceeds. As a result, the cross-sectional shape of the grindstone 9 is transferred to the inverted shape of the cross-sectional shape of the electrode 6.
[0004]
In order to prevent the transfer of an accurate shape due to the consumption of the electrode 6, it has been proposed to regenerate the electrode 6 after rough discharge truing and perform discharge truing under finishing conditions.
[0005]
[Problems to be solved by the invention]
It seems that this on-machine discharge truing method can obtain sufficient accuracy for processing general mechanical parts. However, in the above-described on-machine electric discharge truing method using a form-rotating electrode, the consumption of the electrode proceeds at the same time as the start of electric discharge machining. Therefore, when the discharge truing is completed, the consumed electrode shape is transferred to the grindstone. Even if the discharge truing is divided into rough machining and finish machining, there is no guarantee that the electrode will be formed in exactly the same shape as before when the electrode is reworked.
[0006]
In the first place, it is said that the electrodes are created on the machine, but there is no description on how to make the electrodes with high precision.
[0007]
Generally, in the field of optical elements such as lenses and mirrors and mold processing for molding them, shape accuracy on the order of submicrons is required.
[0008]
An object of the present invention is to improve the accuracy in an on-machine electric discharge truing method and apparatus for a conductive grindstone for grinding an ultra-precision workpiece such as an optical element.
[0009]
[Means for Solving the Problems]
In order to achieve this object, the electric discharge truing method of the present invention is to form an electrode attached to a processing machine into a predetermined shape with a cutting tool, and to rotate the conductive grindstone to form a predetermined shape. The conductive grindstone can be processed into a predetermined shape with high precision by transferring a predetermined shape of the electrode surface to a grindstone surface by scanning along the electrode surface in a state of being attached to the surface.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 of the present invention is directed to a method of discharging and truing a conductive grindstone, wherein an electrode attached to a processing machine is formed into a predetermined shape by a cutting tool, and the predetermined shape is formed while rotating the conductive grindstone. It is a discharge truing method of a conductive grindstone, wherein a predetermined shape of the electrode surface is transferred to a grindstone surface by scanning along the electrode surface attached to the processing machine. By performing the processes from electrode formation to discharge truing on one machine, truing can be performed with high accuracy without causing an error or the like due to mounting.
[0011]
According to a second aspect of the present invention, in the first aspect of the present invention, a processing machine capable of numerically controlling at least three axes or more is used. Is eliminated, and a complicated shape defined mathematically can be automatically operated by a program, thereby enabling highly accurate truing.
[0012]
According to a third aspect of the present invention, in the first aspect of the present invention, the cutting tool for forming the electrode is a single crystal or polycrystalline diamond cutting tool, and the cutting edge has an arc shape, and has high contour accuracy. This has the effect of forming the contour of the electrode with the same accuracy as the contour accuracy of the cutting tool.
[0013]
The invention described in claim 4 is characterized in that, in the invention described in claim 1, the numerical control is performed so that the cutting shape by the cutting tool is an arc, a non-arc, a V-shape, a polygonal shape, and the like. It is also possible to form an electrode having a complicated cross-sectional shape.
[0014]
According to a fifth aspect of the present invention, in the first aspect of the present invention, the electrode surface is formed along the electrode surface in a direction perpendicular to a generatrix direction of the electrode tip portion having a cylindrical, non-cylindrical, or square tip shape. In order to form a grindstone having a predetermined cross-sectional shape by scanning the conductive grindstone while numerically controlling the conductive grindstone, the conductive grindstone and the electrode are mainly subjected to electric discharge machining at only one point, so the electrode Can be used efficiently without deforming all at once.
[0015]
According to a sixth aspect of the present invention, in the invention of the fifth aspect, after the discharge truing, the conductive grindstone is moved by a required amount in the axial direction of the electrode to form the conductive grindstone with a new electrode surface. Even if the electrode at the place where discharge truing is worn out and loses its shape, by moving the place, it becomes possible to continue discharge truing with the electrode having the same cross-sectional shape and achieve a highly accurate shape. Has the effect of being able to form a whetstone having
[0016]
The invention according to claim 7, a processing machine capable of numerically controlling three or more processing axes, an electrode attached to the processing machine, a cutting tool provided in the processing machine, and a cutting tool for cutting the electrode, A power supply unit including a discharge circuit for discharging and truing the grindstone by scanning the grindstone along the cut surface of the electrode on the processing machine cut into the predetermined shape by the cutting tool. This is a discharge truing device, and can perform high-precision machining by performing high-precision electrode formation to on-machine discharge truing.
[0017]
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
[0018]
FIG. 1 shows the steps of the present invention.
[0019]
In the first stage shown in FIG. 1A, the electrode 6 is processed by the diamond cutting tool 7 provided on the processing machine. Although not shown, numerical control is performed by an arbitrary program.
[0020]
In the second stage shown in FIG. 1 (b), the conductive grindstone 9 which is also mounted on the grinding spindle provided on the machine and is rotating, and has the same position as the first stage shown in FIG. 1 (a). The electrode 6 attached to the electrode 6 is approached, and the grindstone 9 is scanned along the surface of the electrode 6 according to a predetermined program along the surface of the electrode 6, and the sectional shape of the grindstone 9 is adjusted to a predetermined shape using the discharge circuit 20. Thus, the electric discharge machining is performed by the electric discharge circuit 20.
[0021]
In the third stage shown in FIG. 1C, the workpiece 15 is ground by using a grindstone 9 formed in a predetermined shape. If the cross-sectional shape of the grinding wheel is deformed after the grinding, the process may be returned to the second stage again. Similarly, if the electrode 6 loses its shape, it returns to the first stage. In any of the processes, since it can be performed on the same processing machine without changing the mounting position of the electrode 6, it is characterized in that it can be freely moved to any stage by returning to the original coordinate values.
[0022]
FIG. 2 shows an electric discharge truing apparatus as a processing machine for realizing the process of the present invention shown in FIG. The X table has three axes of a Y table 13 and a Z table 14 provided on the X table, and can be driven with a precision of nanometer order by a numerical controller (not shown). On the Y table 13, a diamond cutting tool 7 for processing the electrode 6, a grinding spindle 11, and a conductive grindstone 9 at its tip are provided. On the Z table 14, the electrode 6 and the workpiece 15 are installed. The discharge circuit 20 shown in FIG. 1A for discharge truing, a discharge liquid supply nozzle, and the like are omitted.
[0023]
3 and 4 show an example of forming and processing the electrode 6 using the diamond cutting tool 7 which is the first stage of the present invention.
[0024]
FIG. 3 shows an example in which the electrode 6 is processed by feeding the diamond cutting tool 7 in the X-axis direction using the discharge truing apparatus shown in FIG. Needless to say, the processing surface of the electrode 6 is completely parallel to the X axis of the processing machine.
[0025]
FIG. 4 is a diagram showing how electrodes are formed in the YZ section in the discharge truing apparatus shown in FIG. In the example of this figure, the diamond tool 7 is pitch-fed using the Y-axis every time the diamond tool 7 is moved and machined in the X-axis direction, so that the electrode cross-sectional shape becomes a predetermined shape via the control device by the NC program. You can process it. In the present embodiment, an example is shown in which the shape of the tip of the electrode is formed in a cylindrical shape that is easy to process, but it goes without saying that a non-arc shape, a V-shape, or the like that is mathematically defined may be used. Similarly, a convex or concave electrode may be manufactured.
[0026]
The important points in the electrode forming process of the first stage of the present invention are as follows. In other words, the electrode is mounted at the same position in both cases during electrode formation and discharge truing, and assuming that there is no processing-related error, the shape error of the diamond bite is the same as the shape of the electrode surface. It is an error. For example, for a high-precision single crystal diamond tool, a tool having a contour of a tip nose radius of 50 nm or less is commercially available. If the electrode is processed with such a diamond bite, the shape accuracy of the formed electrode surface is also reduced to 50 nm or less.
[0027]
FIGS. 5, 6, and 7 show a discharge truing process of the conductive grindstone 9, which is the second stage of the present invention.
[0028]
FIG. 5 is a diagram illustrating a state in which the conductive grindstone 9 is brought close to the electrode 6 that has been processed with high precision at a predetermined number of revolutions. The grinding wheel 9 and the electrode 6 are connected by a discharge circuit 20. A discharge liquid (not shown) is also supplied. The table is driven based on the NC program so that the grindstone 9 scans the surface of the electrode 6 as if it traces. If necessary, it is cut in the Z direction in FIG.
[0029]
FIG. 6 shows a method of performing discharge truing with high accuracy. When the position in the X-axis direction is fixed at one place and the discharge truing is performed by driving along the arrow 22 in the Y-axis and Z-axis directions, discharge marks as shown by 6a in FIG. If the discharge marks 6a become large, the cross-sectional shape accuracy of the truing grindstone 9 deteriorates. In this case, discharge truing is performed by the same NC program while being shifted by a certain distance in the direction of arrow 21 parallel to the X axis. The shape of the electrode surface shifted in the direction of arrow 21 is exactly the same as the shape of the electrode surface at the initial position at the original position, and the work can be continued with high accuracy. Further, needless to say, by changing the position in the X direction, the electrode 6 manufactured in the first stage can be effectively used.
[0030]
FIG. 7 shows an example in which the conductive grindstone 9 can be trued into various cross-sectional shapes. It goes without saying that the grinding wheel shape may be a circular arc, a mathematically defined non-circular arc, a V-shape, a convex shape or a concave shape. In this grinding wheel forming step, it is also possible to easily produce a full-shaped grinding wheel in which the shape to be processed is inverted.
[0031]
The important points in the discharge truing step, which is the second step of the present invention, are as follows. That is, assuming that there is no error at the time of electric discharge machining or an error caused by driving the machining machine, the shape error of the electrode shape becomes the shape error of the cross section of the grindstone as it is. For example, if the shape error of the electrode surface is 50 nm, the same applies to the error of the grinding wheel cross-sectional shape.
[0032]
8 and 9 show an example of a grinding step which is the third stage of the present invention.
[0033]
FIG. 8 shows a state in which the workpiece 15 is machined under predetermined grinding conditions. Traverse grinding is performed in the X-axis direction, and pitch-feeding is performed in the Y direction to perform processing into a predetermined shape.
[0034]
FIG. 9 shows an example in which a non-arc surface whose cross-sectional shape is mathematically defined is ground and traversed in the X-axis direction as shown in FIG. For example, a non-circular cylindrical lens mold which is a kind of optical component is an example. By sequentially feeding the grindstone 9 from the machining start point to the respective positions indicated by 9a, 9b, and 9c, a predetermined shape accuracy can be obtained. It goes without saying that numerical control is performed by the NC program.
[0035]
The important points in the grinding step, which is the third step of the present invention, are as follows. That is, if there is no error caused by driving the processing machine, the error of the shape of the grindstone becomes the error of the sectional shape of the workpiece as it is. For example, if the error in the cross-sectional shape of the grindstone is 50 nm, the same applies to the shape error of the workpiece.
[0036]
Further, in the present embodiment shown in FIG. 9, an example is shown in which a non-circular cross section is machined by feeding the grinding wheel 9 having an arc-shaped cross section at a pitch in the Y-axis direction. It goes without saying that a grinding wheel may be manufactured by discharge truing in the present embodiment, and a predetermined shape may be obtained by a feeding method along the X-axis direction shown in FIG.
[0037]
【The invention's effect】
As described above, according to the present invention, an electrode is formed in a predetermined shape on the processing machine by using a cutting tool mounted on the processing machine, and while the conductive grindstone is rotated, the electrode mounted on the processing machine is maintained. An excellent on-machine discharge truing method and apparatus capable of obtaining a very high-precision shape accuracy by transferring a predetermined shape to a grindstone surface by scanning the electrode surface as if to trace.
[Brief description of the drawings]
FIG. 1A is a diagram showing a first stage process of a discharge truing method according to an embodiment of the present invention; FIG. 1B is a diagram showing a second stage process in the embodiment; FIG. FIG. 2 is a perspective view showing a discharge truing apparatus according to an embodiment of the present invention. FIG. 3 is a view showing electrode processing on the discharge truing apparatus. FIG. 4 is an electrode shown in FIG. FIG. 5 is a view for explaining the operation of a cutting tool in machining. FIG. 5 is a view showing a position of a grindstone in discharge truing. FIG. 6 is a view showing movement of an electrode use position in discharge truing. (B) A diagram showing a grindstone that has been subjected to a discharge arc in a concave arc shape by an electrode. (C) A diagram showing a grindstone that has been discharged in a non-arc shape by an electrode. FIG. 8 is a view showing a grindstone subjected to discharge truing. FIG. 8 is a view showing a grinding state of a workpiece by a grindstone. FIG. 9 is a view showing machining of a non-circular surface of the workpiece by a grindstone. FIG. 10 is a conventional discharge truing method. [Explanation of symbols]
6 Electrode 7 Diamond tool 9 Conductive grindstone 12 X table 13 Y table 15 Workpiece 20 Discharge circuit

Claims (7)

導電性砥石を放電ツルーイングする方法において、加工機に取り付けた電極をバイトにより所定の形状に創成し、前記導電性砥石を回転させながら、所定の形状に創成され、前記加工機に取り付けられた状態の前記電極面に沿って走査することで前記電極面の所定の形状を砥石面に転写することを特徴とする導電性砥石の放電ツルーイング方法。In the method of discharging and truing the conductive grindstone, an electrode attached to the processing machine is formed in a predetermined shape by a cutting tool, and the conductive grindstone is formed in a predetermined shape while rotating the conductive grindstone, and is attached to the processing machine. The method according to claim 1, wherein a predetermined shape of the electrode surface is transferred to a grindstone surface by scanning along the electrode surface. 少なくとも3軸以上が数値制御可能な加工機を用いることを特徴とする請求項1記載の放電ツルーイング方法。2. The electric discharge truing method according to claim 1, wherein a machining machine capable of numerically controlling at least three axes is used. 電極を形成するバイトが、単結晶又は多結晶のダイヤモンドバイトであり、かつ刃先が円弧形状で、高い輪郭精度を有することを特徴とする請求項1記載の放電ツルーイング方法。2. The discharge truing method according to claim 1, wherein the cutting tool for forming the electrode is a single-crystal or poly-crystal diamond cutting tool, the cutting edge has an arc shape, and the contour accuracy is high. バイトによる切削形状が円弧、非円弧、V形、多角形状などとなるように数値制御することを特徴とする請求項1記載の放電ツルーイング方法。2. The discharge truing method according to claim 1, wherein numerical control is performed so that the cutting shape by the cutting tool is an arc, a non-arc, a V shape, a polygonal shape, or the like. 円筒、非円筒、角形の先端形状を有する前記電極先端部の母線方向と直交する方向に前記電極面に沿って、この電極面をたどるがごとく数値制御しながら導電性砥石を走査させることで、所定の断面形状を有する砥石を成形する請求項1記載の放電ツルーイング方法。Cylindrical, non-cylindrical, along the electrode surface in a direction perpendicular to the generatrix direction of the electrode tip having a square tip shape, by scanning the conductive grindstone while numerically controlling the electrode surface as if following this electrode surface, 2. The discharge truing method according to claim 1, wherein a grindstone having a predetermined sectional shape is formed. 請求項5記載の方法により放電ツルーイングした後、導電性砥石を前記電極の軸方向に必要量だけ移動させることにより、新しい電極面により導電性砥石の成形を行う請求項1記載の機上放電ツルーイング方法。6. The on-machine discharge truing according to claim 1, wherein after performing the discharge truing by the method according to claim 5, the conductive grindstone is formed by a new electrode surface by moving the conductive grindstone by a required amount in the axial direction of the electrode. Method. 3軸以上の加工軸を数値制御可能な加工機と、前記加工機に取り付けられた電極と、前記加工機に設けられ、前記電極を切削するためのバイトと、前記バイトにより切削され、所定の形状に創成された前記加工機上の前記電極の切削面に沿って砥石を走査することにより前記砥石を放電ツルーイングするための放電回路を含む電源部とを備えた放電ツルーイング装置。A processing machine capable of numerically controlling three or more processing axes, an electrode attached to the processing machine, a cutting tool provided on the processing machine for cutting the electrode, and a predetermined cutting by the cutting tool; A power truing device comprising: a power supply unit including a discharge circuit for discharging and truing the grindstone by scanning the grindstone along a cutting surface of the electrode on the processing machine formed into a shape.
JP2002277070A 2002-09-24 2002-09-24 Discharge truing method Expired - Fee Related JP4613471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002277070A JP4613471B2 (en) 2002-09-24 2002-09-24 Discharge truing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002277070A JP4613471B2 (en) 2002-09-24 2002-09-24 Discharge truing method

Publications (2)

Publication Number Publication Date
JP2004114172A true JP2004114172A (en) 2004-04-15
JP4613471B2 JP4613471B2 (en) 2011-01-19

Family

ID=32272768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002277070A Expired - Fee Related JP4613471B2 (en) 2002-09-24 2002-09-24 Discharge truing method

Country Status (1)

Country Link
JP (1) JP4613471B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199360A (en) * 1986-02-21 1987-09-03 Okuma Mach Works Ltd Numerically controlled grinding machine having correcting tool for truing tool
JPS63283861A (en) * 1987-05-15 1988-11-21 Tetsutaro Uematsu On-machine electric discharge truing/dressing for metal bond grindstone
JPS6440273A (en) * 1987-08-03 1989-02-10 Takeo Nakagawa Turning center with electric discharge truing/dressing device
JPH01321166A (en) * 1988-06-17 1989-12-27 Mitsubishi Electric Corp Dressing device
JPH0453678A (en) * 1990-06-18 1992-02-21 Toyoda Mach Works Ltd Grinding wheel correcting method
JPH068141A (en) * 1992-06-25 1994-01-18 Fuji Elelctrochem Co Ltd Machining method with discharge truing
JPH08229814A (en) * 1995-02-22 1996-09-10 Fuji Xerox Co Ltd Processing method and device for grinding wheel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199360A (en) * 1986-02-21 1987-09-03 Okuma Mach Works Ltd Numerically controlled grinding machine having correcting tool for truing tool
JPS63283861A (en) * 1987-05-15 1988-11-21 Tetsutaro Uematsu On-machine electric discharge truing/dressing for metal bond grindstone
JPS6440273A (en) * 1987-08-03 1989-02-10 Takeo Nakagawa Turning center with electric discharge truing/dressing device
JPH01321166A (en) * 1988-06-17 1989-12-27 Mitsubishi Electric Corp Dressing device
JPH0453678A (en) * 1990-06-18 1992-02-21 Toyoda Mach Works Ltd Grinding wheel correcting method
JPH068141A (en) * 1992-06-25 1994-01-18 Fuji Elelctrochem Co Ltd Machining method with discharge truing
JPH08229814A (en) * 1995-02-22 1996-09-10 Fuji Xerox Co Ltd Processing method and device for grinding wheel

Also Published As

Publication number Publication date
JP4613471B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
EP1413938B1 (en) Numerical control (NC) machine with onboard grinding unit
CN103770006A (en) Method for finishing diamond grinding wheel by utilizing electric spark, as well as disc-shaped electrode and device adopted
KR100206640B1 (en) Method of sharpening cutting blades
JPH0343145A (en) Grinding device
JP2009184066A (en) Method of machining concave fresnel lens shape member, and concave fresnel lens shape member
JP4576255B2 (en) Tool whetstone shape creation method
KR100527459B1 (en) a micro cutting and grinding machine make use of ultrasonic vibration
JP4613471B2 (en) Discharge truing method
CN115647740A (en) Processing method of photoetching machine motion platform
JP2011177850A (en) Truing method for grind stone for grinding gear and gear grinding machine
JP2002001657A (en) Elid grinding device for fine shape processing
JP4425441B2 (en) Machining center tool correction or remanufacturing method, and machining center
JPH06218629A (en) Working method for gear shape
JP2004344957A (en) Method for manufacturing compound laser beam machine and precision worked product
JP2003025196A (en) Method and device for grinding crank shaft
JP2022080020A (en) Discharge truing method
JPH05162005A (en) Turning machine with cutting tool forming function
KR200331503Y1 (en) Cnc milling machine with extra spindle for glazing surface processing
JP2008030187A (en) Composite machining method
JP2002160103A (en) Curved surface machine method and its device
JPH0224047A (en) Grinding method for internal surface
JPH06218630A (en) Working method for nut screw groove and device therefor
JP2007118143A (en) Truing device and truing method
JP6875675B2 (en) On-board trueing equipment and machine tools
JP2004338030A (en) Curved shape machining device and machining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091222

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101004

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees