JP2004114078A - Method for manufacturing hydroformed parts having projected shape - Google Patents

Method for manufacturing hydroformed parts having projected shape Download PDF

Info

Publication number
JP2004114078A
JP2004114078A JP2002279241A JP2002279241A JP2004114078A JP 2004114078 A JP2004114078 A JP 2004114078A JP 2002279241 A JP2002279241 A JP 2002279241A JP 2002279241 A JP2002279241 A JP 2002279241A JP 2004114078 A JP2004114078 A JP 2004114078A
Authority
JP
Japan
Prior art keywords
mold
flow
material pipe
ring member
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002279241A
Other languages
Japanese (ja)
Inventor
Harunobu Suzuki
鈴木 晴信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2002279241A priority Critical patent/JP2004114078A/en
Publication of JP2004114078A publication Critical patent/JP2004114078A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for preventing defective forming by positively changing the direction of flow of a material in the vicinity of a projected part when performing hydroforming of a branch projecting system. <P>SOLUTION: This method is a manufacturing method of the hydroformed parts having a projected shape and a material 1 is made to flow in the direction of the projected part 13 by making parts 51 of inside surface parts 11, 21 of dies 10, 20 movable along the surface of the material 1 and by the movement of the inside surface part 51 of this movable inside surface part 51 of the die. Preferably, the base stock of the material 1 in the vicinity of the projected parts 13 is made to flow toward the projected part 13 by moving the inside surface 51 along the material 1 by high pressure which is generated at the working by composing ring members 50 having approximately cylindrical main body independently of the dies 10, 20 freely rotatably. However, the material 1 may be forcedly made to flow by separately providing the moving means of the ring members 50. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、枝張り出し系のハイドロフォーム加工法に関するものである。
【0002】
【従来の技術】
ハイドロフォーム加工法は、液圧によって部品を成形する工法であり、金型に例えば中空形状の材料パイプを装着し、材料パイプの内部に液体を充填した後、軸方向に材料パイプを押し込みながら液圧を上げることで材料パイプを加圧圧縮して、金型に倣わせて成形する工法である。ハイドロフォーム加工法は部品点数の削減や連続的な断面形状変化の自由度に優れ、このため自動車部品においても、例えば継ぎ手構造や曲げ構造等の複雑形状の中空部品を一体成形する際に利用されている。一般的にハイドロフォーム加工法は拡管が主な成形目的である拡管系と、枝張り出しが主な成形目的である枝張り出し系とに分類できるが、拡管系と比較して、枝張り出し系の場合には加工制御は困難であることが知られている。
【0003】
例えば、図6の(A)に示す材料パイプ1にハイドロフォーム加工を行って、図6の(B)または(C)に示す形状まで変形する場合、符号2及び3に示す破線で囲む付近では軸押しの効果を得ることが難しいことが知られている。特に、図6の(C)に示すように略T字形状に張り出し部3を成形する場合、軸押しによる効果が足りないと、張り出し部3側の大きさを大きく取ることができず、設計面に限界を与えることになる。さらに、張り出し部3側に十分な材料が流れない場合には、張り出し部3側に減肉による成形限界を生じさせ、そしてこの反対側4に極端な増肉や座屈等の現象を生じさせて成形不良を生じさせる場合がある。
ここで図7を参照して、図6の(A)に示す材料パイプ1に対して、図6の(C)に示すように略T字形状に張り出し部3を備える場合のハイドロフォーム加工についてより具体的に説明する。
【0004】
図7の(A)は従来のハイドロフォーム加工に用いる成形装置を示す略図であって、金型に断面が円形状で軸方向X−Xに延びる筒状部12と、材料パイプ1に張り出し形状3を備えるために筒状部12の内部と連通するように分岐する中空状の張り出し部13を備え、そして、筒状部12と張り出し部13との交差部に符号14に示すようにフィレットを形成して、このフィレット14に沿って、材料パイプ1が滑らかに変形できるようにする。そして、図6の(A)に示した材料パイプ1を金型内に取り付けて、図7の(B)に示すように、材料パイプ1の内部に液体Wを充填した後、軸方向X−Xに材料パイプ1を押し込みながら液圧を上げることで材料パイプ1を中空状の張り出し部13内に逃すように、金型の内表面(成形面)11、21に倣わせて、図6の(C)に示すように成形する。
しかしながら、従来のハイドロフォーム加工法では、金型内の材料パイプ1の素材の流れを制御する手段は軸押しパンチ30A、30Bに限られており、筒状部12の軸方向X−Xに対して垂直方向Y−Yに向う張り出し部13付近では材料パイプ1の素材の流れの制御が困難であった。この流れの制御が十分に行われない場合には、軸押しによって押される材料パイプ1の素材の流れが軸方向X−Xに張り出し部3側とこの反対側4(図6の(C)参照)にほぼ同量供給されるため、張り出し部3側では張り出し量が増加するに従い、図7の(B)の符号5に示すように肉厚減少が起こり、最終的には破裂に至る場合があった。そしてこの反対側4(図6の(C)参照)では、図7の(B)の符号6に示すように過度の増肉が起こり、さらに、符号7に示すように軸押し量の増加に従って材料パイプ1の中央の手前側で座屈が生じる場合があった。
【0005】
このように、枝張り出し系の場合には、張り出し部13において成形方向を変化させる必要があるが、しかし、金型内に装着した材料パイプ1を加圧圧縮してハイドロフォーム加工を行う際に、非常に高い圧力が材料パイプ1の外表面と金型の内表面11、21との間に生じるため、材料パイプ1の素材の流動方向に変化を加えることが困難であった。さらに、通常、ハイドロフォーム加工法では外部より金型内の材料パイプ1の素材の流れを制御する手段は軸押し手段30A、30Bに限られるが、しかし、枝張り出し系の場合では軸押しによって材料パイプ1の素材の流れに影響を与えることができるのは軸押しに近い金型外側近辺と軸押しに平行な領域に限られ、軸押しから離れる枝張り出し部13の近傍では十分な軸押しの効果を得ることが難しい。従って、枝張り出し系の場合には、拡管系と比較して成形不良が生じる惧れが高く、従来、ハイドロフォーム加工をより効果的に行うために様々な工夫がなされている。
【0006】
例えば、従来のハイドロフォーム加工装置では、型内の管素材(材料パイプ)に内圧と軸圧縮荷重を付加し、材料パイプの一部に膨出部を形成する際、材料パイプの素材の流動方向が軸方向から膨出方向に変わる部分の型面に、略平面部を形成することにより、相対する素材の流れを円滑に膨出部成形型穴へ変向させて送り込めるようにしている(例えば、特許文献1参照)。
また、従来のハイドロフォーム加工法では、金型の内部にセットした素材管(材料パイプ)の内面に液体圧を加えながら軸押しする際、金型の内表面に出入り可能な補助冶具を設けておき、加圧の初期に補助冶具を突出させることにより材料パイプと金型との摩擦力を低減させ、加圧の中期に補助冶具を金型内部に完全に後退させ、最終形状にまで仕上げることにより、特に加圧の初期における摩擦力を軽減し、素材の供給をスムーズに行えるようにしている(例えば、特許文献2参照)。
【0007】
【特許文献1】
特開2000−84623号公報
【特許文献2】
特開2002−45927号公報
【0008】
【発明が解決しようとする課題】
しかしながら、上記特許文献1に記載の装置では、略平面部を形成することで材料パイプの素材の流動方向を変化させているに過ぎず、金型内での材料パイプの素材の流れを積極的に制御するものではない。さらに、この装置では、部品に略平面部を形成することを必要とするため、部品のデザインに限定を加えており、部品に略平面部を形成することが好ましくない場合には使用することができなかった。
また、上記特許文献2に記載の方法では、金型内に出没入可能な補助冶具を設けて、加圧の初期にこの補助冶具を突出させることにより材料パイプと金型との摩擦力を低減させ、素材の流動方向を促しているが、この場合、軸押し方向の材料パイプの素材の流れを改善できても、この素材の流動方向を変化することはできなかった。さらに、この方法では、補助冶具によって流動パイプを押圧接するため、この押圧力が強い場合には材料パイプとの圧接部位に痕を残し、部品の商品性を低下させる惧れを残していた。
【0009】
このように、従来、枝張り出し系のハイドロフォーム加工をより効果的に行うために様々な工夫がなされてきたが、しかし、枝張り出し系のハイドロフォーム加工を行う際、張り出し部付近の材料パイプの素材の流動方向を積極的に変化させて、成形不良を防止させる製造方法は公知ではなかった。
【0010】
本発明は、以上の点に鑑みてなされたものであり、枝張り出し系のハイドロフォーム加工を行う際、張り出し部付近の材料パイプの素材の流動方向を積極的に変化させて、成形不良を防止させる製造方法を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
本発明は上記課題を解決するための手段として、請求項1に記載した発明においては、張り出し形状を備えたハイドロフォーム成形部品の製造方法において、金型内表面部の一部を材料表面に沿って移動可能とし、前記移動可能な金型内表面部の移動により、前記材料を張り出し部方向へ流動させることを特徴とする。この構成では、従来のハイドロフォーム加工法では金型内の材料の流れを制御する手段は軸押しに限られていたため、特に金型の張り出し部付近では材料の流れの制御が困難であったのに対して、金型内表面部の一部を材料表面に沿って移動可能とすることにより金型内での材料の流れに変化を生じさせる手段を新規に提供して、金型の張り出し部付近の材料を張り出し部に向ってより滑らかに流動させることを可能にして、材料に過度の減肉や座屈が生じるのをより効果的に防ぐとともに、張り出し部の大きさをより大きくすることができる。
【0012】
次に、請求項2に記載した発明においては、請求項1に記載されたものにおいて、前記移動可能な金型内表面部に前記金型に対する係合手段を設けたことを特徴とする。
この構成では、部品の取り出しを容易にするために金型を分離自在に構成する際、この金型を上下に分離させても移動可能な金型内表面部を金型と係合させることで金型から移動可能な金型内表面部が脱落するのを防止できる。
【0013】
さらに、請求項3に記載した発明においては、請求項1に記載されたものにおいて、前記移動可能な金型内表面部の摩擦係数を部分的に変更し、前記移動可能な金型内表面部と前記材料の外表面との間に生じる摩擦により、前記移動可能な金型内表面部の移動に伴い前記材料を張り出し部方向へ流動させることを特徴とする。
この構成では、金型内表面部の摩擦係数に変化を設けることにより、この内表面部に均等な力が働いても、摩擦係数の部分的な変化によって金型内表面部を一方向に移動可能とすることができ、簡単な手段から、金型内表面部の移動に材料を追従しやすくして、材料の流れの制御を行うことができる。
【0014】
さらに、請求項4に記載した発明においては、請求項3に記載されたものにおいて、前記部分的な摩擦係数の変更を金型内表面部の表面粗さの変更で行い、該表面粗さは小さい部分でRa<3、大きい部分で3<Ra<15としたことを特徴とする。
この構成では、材料の流動させたい部分と押さえたい部分とを効果的に制御できる。
【0015】
さらに、請求項5に記載した発明においては、請求項1に記載されたものにおいて、前記移動可能な金型内表面部の移動手段を別途設けたことを特徴とする。この構成では、材料の流動状態に依存せずに、主体的に移動可能な金型内表面部を移動させることで、強制的に材料の流動を制御することができ、故に、加工中に材料の板圧等の寸法精度を調整することができる。
【0016】
さらに、請求項6に記載した発明においては、請求項1に記載されたものにおいて、前記移動可能な金型内表面部の移動は、前記材料の流れに引っ張られることにより得ることを特徴とする。
この構成では、従来、成形不良の原因の一つでもあった、ハイドロフォーム成形時に生じる高圧な摩擦力を利用することで、さらなる動力を必要とすることなく、経済的に優れた手段から、材料の素材の流動に従って移動可能な金型内表面部を移動させ、従来、材料が流れ難いとされてきた部分をより滑らかに流れるように促すことができる。
【0017】
さらに、請求項7に記載した発明においては、請求項1〜6のいずれかに記載されたものにおいて、前記移動可能な金型内表面部は前記金型内表面と面一な内面を備えたリング形状であり、該リング形状の回転により材料を張り出し部方向へ流動させることを特徴とする。
この構成では、移動可能な金型内表面部をリング部材から形成することにより、この金型内表面部の移動方向をリング部材の回転方向とすることによって、金型内表面部の移動を容易にできる。
【0018】
さらに、請求項8に記載した発明においては、請求項7に記載されたものにおいて、前記リング形状は分割することを特徴とする。
この構成では、部品の取り出しを容易にするために金型を分離自在に構成する際、同時にリング形状を分離することで、成形後の部品の取り出しを容易にできる。
【0019】
さらに、請求項9に記載した発明においては、請求項7に記載されたものにおいて、前記リング形状の内面のうち、10〜30%の範囲の摩擦係数を前記内面の他の摩擦係数より大きくしたことを特徴とする。
この構成では、リング部材を一方向に効果的に回転させることができ、故に材料の素材の流れの補助を効果的に行うことができる。
【0020】
さらに、請求項10に記載した発明においては、請求項7に記載されたものにおいて、前記リング形状を隣接して複数設け、隣り合うリング形状を互いに反対方向へ回転させることを特徴とする。
この構成では、左右対称に材料の素材の流れの制御を行うことで、材料をバランスよく管の両側から移動できる。
【0021】
そして、請求項11に記載した発明においては、請求項1〜10のいずれかに記載されたものにおいて、前記金型と前記移動可能な金型内表面部との間に潤滑材を注入することを特徴とする。
この構成では、金型と移動可能な金型内表面部との接触面における摩擦を減らし、滑らかなハイドロフォーム成形を行うことができる。
【0022】
本発明に係る張り出し形状を備えたハイドロフォーム成形部品の製造方法は基本的には以上のように構成されるが、張り出し形状は具体的な形状に限定されず、例えば、略T字形状や、略L字形状に張り出す形状でもよい。また、使用する材料、金型、及びリング部材(可動部材)の大きさと材質と、さらには加工後の部品の使用形態について特定しない。また、本発明は枝張り出し系のハイドロフォーム加工法に関するが、しかし金型の内表面と材料の外表面に隙間があってもよく、例えば、材料を拡管させながら、張り出し形状を備えるように成形することは可能である。さらに、金型内表面部の一部を材料表面に沿って移動可能に構成する際、この大きさと移動方向は適宜実施の形態に従って定められ、材料パイプの軸方向に対して常に垂直方向に回転させる必要はない。
【0023】
【発明の実施の形態】
以下、添付した図を用いて、本発明の実施の形態に係る張り出し形状を備えたハイドロフォーム成形部品の製造方法について説明する。
図1の(A)は、本発明の実施の形態に係る製造方法を行う成形装置100を示す略図であって、図6の(A)に示したように、略円筒形状の本体を有する材料パイプ1に対して、図6の(C)に示したように、略T字形状に延びる張り出し部3を備えるようにハイドロフォーム成形を行う。このため、成形装置100の金型は、内部に材料パイプ1を挿入するために断面が円形状で軸方向X−Xに延びる筒状部12と、材料パイプ1に張り出し形状3を備えるために筒状部12の内部と連通するように分岐する中空状の張り出し部(膨出部または曲げ部)13を備える。そして、筒状部12と張り出し部13との交差部に符号14に示すようにフィレットを形成して、このフィレット14に沿って、材料パイプ1が滑らかに変形できるようにする。
ただし、成形装置100は金型を軸方向に上型10と下型20とに分割自在に構成し、好適には、図示しない駆動手段を用いて、上型10と下型20のうちの少なくともいずれか一方を移動自在に構成する。これは、金型の離型と型締めを手動ないしは自動により行えるようにすることで、成形装置100に対する材料パイプ1の装着と、成形後の部品の取り出しと、成形装置100のメンテナンスを容易にするためである。このため、筒状部12は軸方向X−Xを中心に二つに分離するが(図示せず)、張り出し部13は上型10または下型20のうちの少なくともいずれか一方又は分離して備えられてもよく、また、図中の上型10又は下型20は便宜的な表現に過ぎない。
【0024】
そして、図1の(A)に示すように、筒状部12内に材料パイプ1を装着した後、軸押しパンチ30A、30Bを材料パイプ1の両側に摺動(スライド移動)可能に配設する。ただし、軸押しパンチ30A、30Bは金型の筒状部12の内面と密着するとともに、材料パイプ1の端部と密着する。図示した実施の形態では、軸押しパンチ30A、30Bは材料パイプ1の端部と当接する側の端部に段差31を形成して、材料パイプ1に対してこの端部と内面の双方から密着する。故に、図示しない加圧液供給源から、2つの軸押しパンチ30A、30Bのうちのいずれか一方に形成したノズル39内に所定圧の液体(充填液)Wを注入して、材料パイプ1内に充填する際、この充填液Wの漏れを防ぐことができる。尚、好適には、充填液Wは水に防錆剤を加えたものであるが、他、適当な液体を用いてもよい。
【0025】
そして、図1の(B)の矢印Sに示すように、軸押しパンチ30A、30Bを軸方向に対向して押し込みながら、内部に充填した液体Wの圧力を上げて、充填液Wと軸押しパンチ30A、30Bの双方の圧力により材料パイプ1を加圧圧縮して、材料パイプ1を上型10及び下型20の内表面11、21に倣って枝張り出し成形する。ただし、図示した実施の形態では、製造装置100は張り出し部13の内部に別体のカウンター40を張り出し方向Y−Yに配設して、カウンター40の端部41にて張り出し方向Y−Yに流動する材料パイプ1の奥行きを定めて、図6の(C)に示した、張り出し部3の頭を押さえながら成形を行うことで、成形中に張り出し部3で過度の減肉が生じるのを防止する。しかしながら、カウンター40を用いずに、上型10を有底穴状に形成して、張り出し方向Y−Yに流動する材料パイプ1の奥行きを定めてもよい(図示せず)。
【0026】
故に、図1の(A)に示すように、材料パイプ1を上型10及び下型20内に装着し、上型10及び下型20を閉めて、軸押しパンチ30A、30Bを前進させ、材料パイプ1の両端をシールし、図1の(B)に示すように、内圧を上げながら軸押しを行うことによって、材料パイプ1を上型10及び下型20の筒状部12と張り出し部13の内面に倣って変形させて、部品を成形する。そして、成形後、内圧を下げ、軸押しパンチを後退させ、上型10及び下型20を開き、装置100から部品を取り出す。
この際、従来の技術では、ハイドロフォーム成形時に、上型10及び下型20の内表面11、21と材料パイプ1の外表面との間に高圧な摩擦力が発生するとともに、枝張り出し部13付近における軸押しによる効果が十分でないため、この加工制御が困難となり、図7の(B)の符号5、6及び7に示すような成形不良を生じさせる場合があった。
これに対して、本発明の実施の形態では、上型10及び下型20の内表面部11、21の一部51を材料パイプ1の外表面の流れに従って移動可能とすることにより、金型内での材料パイプ1の流れに変化を生じさせて、上記成形不良の発生を抑制することを可能にする。即ち、本発明の実施の形態では、材料パイプ1を加圧圧縮する際、材料パイプ1の外表面と上型10及び下型20の内表面11、21との間に生じる高圧な摩擦力を利用して、上型10及び下型20の内表面部11、21の一部51を材料パイプ1の外表面と圧接しながら(材料パイプ1の外表面につかまれて)移動可能とすることで、材料パイプ1が金型内で上記高圧な摩擦力によって流動が妨げられることなく、自然に張り出し部13に向って流動できるようにする。
このように、本発明の実施の形態では、軸押し手段30A、30Bの他、金型内での材料1の流動方向を変化させる手段を新規に備えることにより、従来の技術と比較して、金型内の張り出し部13付近の材料1を張り出し部13に向ってより滑らかに流動させることを可能にして、材料パイプ1に過度の減肉や座屈が生じるのを防ぐことを可能にする。
ただし、金型内表面部51は材料パイプ1の変形に従って移動されてもよく、または、別途設けた移動(駆動)手段により強制的に移動されてもよい。以下、前者の場合を本発明の第一の実施の形態として、そして、後者の場合を本発明の第二の実施の形態としてより詳細に説明する。
【0027】
上述したように、本発明に係る第一の実施の形態では、充填液Wと軸押しパンチ30A、30Bの双方の圧力により材料パイプ1を加圧圧縮する際、外力を必要とすることなく、上型10及び下型20の内表面部11、21の一部51を、材料パイプ1につかまれて移動可能とすることで、この金型内表面部51の移動により、材料パイプ1の素材が張り出し部3(図6の(C)参照)に向ってより滑らかに流動できるようにする。
尚、移動可能な金型内表面部51は、上型10及び下型20とは別体に設けられて、上型10及び下型20から独立して移動できる可動部材50の内表面(内周部)として提供される。ただし、可動部材50は内表面51を上型10及び下型20の内表面11、21と揃えるように、面一に形成する。この際、可動部材50の内表面51と上型10及び下型20の内表面11、21との間に生じる切れ目は、材料パイプ1の成形上、問題を生じさせない大きさとする。この可動部材50の外部形状は特定の形状に限定されないが、好適には、略円筒形状のリング部材(リング形状)50として可動部材50を構成する。このように可動部材50の外部形状を定めることによって、筒状部12の軸方向X−Xを回転中心として、金型内で可動部材50を回転自在に構成することができる。ただし、可動部材50を張り出し部13付近で回転自在とすることで、図1の(B)に示すように、筒状部12の軸方向X−Xに沿った材料パイプ1の流動方向Sを符号Tに示すように斜めに変化させて、材料1を張り出し部13の軸方向Y−Yに向って滑らかに流動させることを可能にする。
このため、本発明の第一の実施の形態では、ハイドロフォーム成形時に生じる高圧を利用して、リング部材50を内表面51で圧接した材料パイプ1によってつかまれて、材料パイプ1の流れの大きい部分の流れに追従して回転させて、材料パイプ1の素材を張り出し部13側に向って導くようにする。従って、本発明の第一の実施の形態では、図7に示した従来の技術と比較して、上型10及び下型20の内表面部11、21の一部51を材料パイプ1の表面に沿って移動可能とすることにより、張り出し部3(図6の(C)参照)側に材料パイプ1の素材をより多く流動させて肉厚減少を防止するとともに、この反対側4に過度の増肉が生じるのを抑制して、材料パイプ1の成形限界を向上させるようにする。
【0028】
尚、本発明に係る第一の実施の形態では、特別な動力を用いることなく、リング部材50を回転させるが、好適には、材料パイプ1の外表面と接するリング部材50の内表面51の摩擦係数を部分的に変えるようにする。このように構成することによって、リング部材50の内表面51にほぼ均等に力が作用した場合においても、リング部材50の内表面51にこの摩擦係数の変化に従った力を作用させることで、リング部材50を一方向に回転できるようにする。
ただし、好適には、リング部材50の内表面51は、10〜30%の部分の摩擦係数を残りの部分(90〜70%)の摩擦係数よりも高くなるようにする。この摩擦係数の部分的な変更は、例えば、内表面51の表面粗さや表面処理を部分的に変えたり、さらには、内表面51に異なる摩擦係数を有する別の素材を部分的に埋め込むことで行ってもよい。
さらに、内表面51の表面粗さを部分的に変更する場合には、摩擦係数を小さい部分でRa<3、大きい部分で3<Ra<15として、材料パイプ1の流動させたい部分と押さえたい部分とを効果的に制御するのが好ましい。ただし、これら部分的な摩擦係数の変更の範囲や、摩擦係数の大きさの範囲は、材料パイプ1の素材の流動方向を好適に制御するための条件に過ぎず、常にこれら範囲内に限定されるものではない。
【0029】
さらに、本発明の第一の実施の形態では、図1に示すようにリング部材50を隣接して複数設け、かつ、図2の(A)及び(B)と、図4の(A)に示すように、隣り合うリング部材50、50を互いに反対方向へ回転させることで、左右対称に材料パイプ1の素材の流れの制御を行って、材料パイプ1の素材をバランスよく管の両側から張り出し部13まで流動させるのが好ましい。ただし、図2の(A)及び(B)は、図1の(B)に示したIIA−IIA線と、IIB−IIB線に沿った断面図であり、また隣接して設けられるリング部材50、50は互いに接触しないで自由回転を行う。さらに、図2の符号55に示す部位は摩擦係数の小さい範囲を、符号56に示す部位は摩擦係数の大きい範囲を夫々示している。
さらに、図1に示したように材料パイプ1を略T字形状にハイドロフォーム成形する場合には、張り出し部13を中心として、隣接して設けるリング部材50、50の対を左右対称に向けて、材料パイプ1の素材を左右対称に張り出し部13に向って流して、T字管の成形を行うのが好ましい。ただし、材料パイプ1を略T字形状にハイドロフォーム成形する際に、張り出し部13を中心として左右の筒状部11の形状が非対称な場合には、張り出し部13を中心に左右に設けるリング部材50は、大きさと位置を相違させてもよい。
【0030】
以上記載のように、本発明の第一の実施の形態は、新規にリング部材50を備えることで、従来困難であった、金型内における材料の流動方向に変化を加えることを可能にする。
ただし、上述したように、通常、金型は上型10と下型20とに分割自在に構成するが、この際、好適には、リング部材50に金型に対する係合手段(係合機構)を設けて、金型を上型10と下型20とに分割する際、金型とは別体であるリング部材50が金型から脱落しないようにする。例えば、図3の(A)に示すように、リング部材50の側部に係合雌部(凹部)58を形成するとともに、上型10及び下型20にこの係合雌部58と噛合する係合雄部(凸部)18、28を形成して、これら係合雌部(凹部)58と係合雄部(凸部)18、28を対に係合させることで、上型10及び下型20からのリング部材50の脱落を防止してもよい。また、図3の(B)に示すように、リング部材50に係合雄部(凸部)59を形成するとともに、上型10及び下型20にこの係合雌部59と噛合する係合雌部(凹部)19、29を形成して、上型10及び下型20からのリング部材50の脱落を防止してもよい。他、様々な形状の係合手段(係合機構)が思料できるが、しかし、着脱自在に金型からリング部材50の脱落を防止する手段を有するものであれば足りる。
【0031】
さらに、本発明に係る好適な実施の形態では、金型を上型10と下型20とに分割自在に構成する際、図4の(A)及び(B)に示すように、リング部材50を二つ52A、52Bに分離自在に構成にする。この際、二つに分離する夫々の部材52A、52Bの係合面54に、夫々係合凸(雄)部と係合凹(雌)部のうちのいずれか一つずつを設けて対に係合させてもよい(図示せず)。あるいは、二つに分かれる夫々の部材52A、52Bの係合面54を、夫々異なる磁極の磁力を用いて係合させてもよい(図示せず)。他、様々な手段からリング部材50を二つの部材52A、52Bに分離・係合できるが、しかし、この具体的な詳細によって本発明の実施の形態が拘束されることはないことを理解されたい。ただし、図示するように、リング部材50、50を隣接して設けるとともに、符号53に示すように隙間を置いて配置して、隣接するリング部材50、50が夫々自由回転できるようにする。
以上記載のように、リング部材50に対して金型との係合手段58、59を備えるとともに、二つ52A、52Bに分離・係合自在に構成することで、ハイドロフォーム加工を安定させるとともに、部品の取り出しを容易にする。
【0032】
さらに、本発明に係る好適な実施の形態では、金型内で金属製のリング部材50が接触しながら回転する場合には、図1に示すように、上型10及び下型20とリング部材50との接触面の間に潤滑材を注入して、上型10及び下型20とリング部材50の金属面同士の間に油膜を張ることで摩擦を減らして、リング部材50の回転を滑らかにしてもよい。尚、図1に示した実施の形態では、強制給油法によって油の潤滑量を適宜制御しながら、上型10及び下型20とリング部材50との間に潤滑油を供給している。具体的には、図示しないポンプによって油を図1の符号60に示す給油口(潤滑材供給部)から符号61に示す給油路を通って強制的に上型10及び下型20とリング部材50との間に潤滑油を供給する。ただし、給油方法は図示した実施の形態に限定されず、他、実施の形態に従って、手差し給油法、適下給油法、浸し給油法等を選択することは可能である。さらに、リング部材50を合成樹脂から形成して、この内表面部51のみを金属製にすることで、金型内でリング部材50を回転させる際、樹脂と金属とを接触させることで潤滑の効果が得られる場合には、必ずしも給油手段を備えなくてもよい。
さらに、リング部材50と金型との間にボールベアリング等の軸受(図示せず)を設けて、リング部材50の回転を補助するのは可能である。
【0033】
さらに、本発明に係る他の実施の形態では、成形後にリング部材50が成形前の位置に戻るように弾性部材(ばね)等を利用した戻り機構(図示せず)を組み込んでもよい。例えば、ばねの端部を夫々、リング部材50と上型10及び/または下型20に取り付けて、リング部材50を上型10及び下型20内で回転させる際、ばねを圧縮させて内部に弾性エネルギーを貯えさせ、そして成形後に貯えた弾性エネルギーを解放させることで、リング部材50が成形前の位置に戻るようにしてもよい。
【0034】
本発明の第一の実施の形態は以上のように構成されるが、本発明の出願人は、外径48.6mm、厚さ1.2mm、長さ100mmの形状を有し、材料がSTKM11Aの材料パイプ1に対して、この材料パイプ1の中央部に外径45mmの張り出し部3(図6の(C)参照)を備えるようにハイドロフォーム加工によりT字管を形成する際、本発明の第一の実施の形態に関する製造方法を適用した場合と、適用しなかった従来の場合との成形結果を比較した。この結果、本発明の出願人は、本発明の第一の実施の形態に関する製造方法を適用した場合には、従来の場合と比較して、図6の(C)に示した、張り出し部3の高さを3〜15%向上するとともに、この張り出し部3の反対側4の増肉を5〜20%抑えることができ、故にリング部材50の回転によって、材料パイプ1の素材の流動が補助されたことを確認した。
故に、本発明の第一の実施の形態では、上型10及び下型20の内表面部11、21の一部51を材料パイプ1の表面につかまれて移動可能とすることにより金型内での材料パイプ1の素材の流れに変化を生じさせる手段を提供して、金型の張り出し部13付近の材料パイプ1の素材を張り出し部13に向ってより滑らかに流動させることを可能にして、材料パイプ1に過度の減肉や座屈が生じるのをより効果的に防ぐことを可能にする。従って、本発明の第一の実施の形態では、従来の技術と比較して、成形限界を向上させることで、張り出し部13の大きさをより大きくすることを可能にする。
【0035】
さらに、本発明に係る第二の実施の形態では、リング部材50を強制的に回転させる手段を備えて、材料パイプ1の素材の流れの制御をより積極的に行うことを可能にする。
例えば、図5に示すように、リング部材50の外周部に歯車形状部(第一歯車)71を設け、かつ、この第一歯車71と噛合するように第二歯車72を設けるように移動(駆動)手段70を構成してもよい。ただし、第一歯車71は回転中心点をリング部材50の回転中心点と一致させ、そして、本体をリング部材50と一体に形成されてもよく、あるいは別体に形成されてもよい。また、第二歯車72は図示しないモータによって駆動されて、対に噛合する第一歯車71を回転させることにより、リング部材50を強制的に回転する。尚、図示した実施の形態では、第一歯車71と第二歯車72との歯数を大凡同程度に示しているが、モータ駆動される第二歯車72に対して、第一歯車71を減速させて回転させてもよい。ただし、この減速比は任意である。さらに、複数の歯車からギアトレインを形成して、第二歯車72により第一歯車71を回転させてもよい。さらに、図示した歯車はスパーギアであるが、騒音低減を図るとともに、潤滑をより滑らかに行うために、ヘリカルギアを採用することは可能である。さらに、ウォームギアや、ラックとピニオン機構等、他、任意の歯車機構を採用してもよい。さらに、本発明の第二の実施の形態では、歯車機構に限定されず、他、ベルトやチェーン機構を用いてリング部材50を強制的に回転させる移動手段70を構成してもよい。
【0036】
このように、本発明の第二の実施の形態ではモータ等の外力によってリング部材50を強制的に回転させるため、第一の実施の形態と比較して、材料パイプ1の素材の流動方向をより確実に変化させることができる。即ち、第一の実施の形態では、材料パイプ1を加圧圧縮する際に、この材料パイプ1の素材の流れに従って(ハイドロフォーム成形時に生じる高圧な摩擦力を利用して)、リング部材50を回転させていた。これに対して、第二の実施の形態では、材料パイプ1の素材の流れの如何に係らずリング部材50を移動させることができる。ただし、ハイドロフォーム成形時に生じる高圧な摩擦力を利用して、リング部材50の移動に追従して、材料パイプ1の素材を流動させる。このため、本発明の第二の実施の形態では、リング部材50を主体的に回転させて、例えば、必要に応じてリング部材50を回転させることで、加工中に材料パイプ1の肉圧(板圧)等の寸法精度を調整することを可能にする。
【0037】
以上のように、本発明に係る第二の実施の形態では、リング部材50を移動手段70によって移動させるため、第一の実施の形態と異なり、内表面51の摩擦係数を部分的に変える必要はない。しかしながら、本発明の第二の実施の形態においても、リング部材50の内表面51の摩擦係数を部分的に変えることによって、リング部材50が一方向に回転することを容易にして、この回転に要する駆動力を小さくするように構成してもよい。
また、本発明に係る第二の実施の形態では、移動手段70を別途設ける際、特に第一歯車71をリング部材50とともに分割自在に構成して、部品の取り出しを容易にしてもよい。
さらに、本発明の第二の実施の形態では、歯車機構を利用してリング部材50を強制的に回転させる際、第二歯車72の回転角度を制御することで第一歯車71の回転角度を制御でき、従って、特別な戻り機構を用いることなく、成形後にリング部材50を元の位置に戻す(回転させる)ことができる。
【0038】
【発明の効果】
本発明は以上説明したように構成された張り出し形状を備えたハイドロフォーム成形部品の製造方法であるから、請求項1に記載した発明によれば、従来のハイドロフォーム加工法では金型内の材料の流れを制御する手段は軸押しに限られていたため、特に金型の張り出し部付近では材料の流れの制御が困難であったのに対して、金型内表面部の一部を材料表面に沿って移動可能とすることにより金型内での材料の流れに変化を生じさせる手段を新規に提供して、金型の張り出し部付近の材料を張り出し部に向ってより滑らかに流動させることを可能にして、材料に過度の減肉や座屈が生じるのをより効果的に防ぐとともに、張り出し部の大きさをより大きくすることが可能となる。
【0039】
請求項2に記載した発明によれば、請求項1に記載した発明の奏する効果に加え、部品の取り出しを容易にするために金型を分離自在に構成する際、この金型を上下に分離させても移動可能な金型内表面部を金型と係合させることで金型から移動可能な金型内表面部が脱落するのを防止することが可能となる。
【0040】
請求項3に記載した発明によれば、請求項1に記載した発明の奏する効果に加え、金型内表面部の摩擦係数に変化を設けることにより、この内表面部に均等な力が働いても、摩擦係数の部分的な変化によって金型内表面部を一方向に移動可能とすることができ、簡単な手段から、金型内表面部の移動に材料を追従しやすくして、材料の流れの制御を行うことが可能となる。
【0041】
請求項4に記載した発明によれば、請求項3に記載した発明の奏する効果に加え、材料の流動させたい部分と押さえたい部分とを効果的に制御することが可能となる。
【0042】
請求項5に記載した発明によれば、請求項1に記載した発明の奏する効果に加え、材料の流動状態に依存せずに、主体的に移動可能な金型内表面部を移動させることで、強制的に材料の流動を制御することができ、故に、加工中に材料の板圧等の寸法精度を調整することが可能となる。
【0043】
請求項6に記載した発明によれば、請求項1に記載した発明の奏する効果に加え、従来、成形不良の原因の一つでもあった、ハイドロフォーム成形時に生じる高圧な摩擦力を利用することで、さらなる動力を必要とすることなく、経済的に優れた手段から、材料の素材の流動に従って移動可能な金型内表面部を移動させ、従来、材料が流れ難いとされてきた部分をより滑らかに流れるように促すことが可能となる。
【0044】
請求項7に記載した発明によれば、請求項1〜6のいずれかに記載した発明の奏する効果に加え、移動可能な金型内表面部をリング部材から形成することにより、この金型内表面部の移動方向をリング部材の回転方向とすることによって、金型内表面部の移動を容易にすることが可能となる。
【0045】
請求項8に記載した発明によれば、請求項7に記載した発明の奏する効果に加え、部品の取り出しを容易にするために金型を分離自在に構成する際、同時にリング形状を分離することで、成形後の部品の取り出しを容易にすることが可能となる。
【0046】
請求項9に記載した発明によれば、請求項7に記載した発明の奏する効果に加え、リング部材を一方向に効果的に回転させることができ、故に材料の素材の流れの補助を効果的に行うことが可能となる。
【0047】
請求項10に記載した発明によれば、請求項7に記載した発明の奏する効果に加え、左右対称に材料の素材の流れの制御を行うことで、材料をバランスよく管の両側から移動することが可能となる。
【0048】
請求項11に記載した発明によれば、請求項1〜10のいずれかに記載した発明の奏する効果に加え、金型と移動可能な金型内表面部との接触面における摩擦を減らし、滑らかなハイドロフォーム成形を行うことが可能となる。
【図面の簡単な説明】
【図1】本発明の第一の実施の形態に係る製造方法を(A)と(B)に分けて示す図である。
【図2】図1のIIA−IIA線と、IIB−IIB線に沿った断面図を夫々(A)と(B)に分けて示す略図である。
【図3】図1に示したリング部材に備える係合機構の様々な実施の形態を(A)と(B)に分けて示す略図である。
【図4】図1に示したリング部材の成形時の使用形態と、非成形時の使用形態を夫々(A)と(B)に分けて示す略図である。
【図5】本発明の第二の実施の形態に係る製造方法を(A)と(B)に分けて示す図である。
【図6】従来の技術に係る枝張り出し系のハイドロフォーム加工法を(A)〜(C)に分けて示す略図である。
【図7】従来の技術に係る製造方法を(A)と(B)に分けて示す図である。
【符号の説明】
W       液体(充填液)
1       材料パイプ(材料)
10      上型
20      下型
11、12   金型内表面部(内表面、成形面)
12      筒状部
13      張り出し部
30A、30B 軸押しパンチ(軸押し手段)
40      カウンター
50      リング部材(可動部材)
51      移動可能な金型内表面部(内表面)
70      移動手段(駆動手段)
100     成形装置
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for hydroforming a branching system.
[0002]
[Prior art]
The hydroform processing method is a method of forming parts by hydraulic pressure, for example, mounting a hollow material pipe in a mold, filling the inside of the material pipe with a liquid, and pushing the material pipe in an axial direction while pushing the liquid. This is a construction method in which the material pipe is pressurized and compressed by increasing the pressure, and molded according to a mold. The hydroforming method is excellent in the reduction of the number of parts and the degree of freedom of continuous change in cross-sectional shape. For this reason, it is also used in automotive parts when integrally molding hollow parts with complicated shapes such as joint structures and bending structures. ing. In general, the hydroforming method can be classified into a pipe expansion system whose main purpose is expansion and a branch expansion system whose main purpose is branching. It is known that machining control is difficult.
[0003]
For example, when the material pipe 1 shown in FIG. 6A is subjected to hydroforming and deformed to the shape shown in FIG. 6B or FIG. It is known that it is difficult to obtain the effect of axial pushing. In particular, when the overhanging portion 3 is formed in a substantially T-shape as shown in FIG. 6 (C), the size of the overhanging portion 3 cannot be made large unless the effect of axial pressing is sufficient. This will limit the surface. Further, when a sufficient amount of material does not flow to the overhanging portion 3 side, a forming limit due to wall thinning is generated at the overhanging portion 3 side, and phenomena such as extreme thickening and buckling occur at the opposite side 4. May cause molding failure.
Here, referring to FIG. 7, a hydroforming process in a case where the material pipe 1 shown in FIG. 6A is provided with an overhang portion 3 in a substantially T-shape as shown in FIG. This will be described more specifically.
[0004]
FIG. 7A is a schematic view showing a conventional molding apparatus used for hydroforming, in which a cylindrical section 12 having a circular cross section and extending in the axial direction XX is formed in a mold, and a projecting shape is formed in the material pipe 1. 3 is provided with a hollow projecting portion 13 that branches so as to communicate with the inside of the tubular portion 12, and a fillet is provided at the intersection of the tubular portion 12 and the projecting portion 13 as indicated by reference numeral 14. The material pipe 1 is formed along the fillet 14 so that the material pipe 1 can be smoothly deformed. Then, the material pipe 1 shown in FIG. 6A is mounted in a mold, and the material pipe 1 is filled with the liquid W as shown in FIG. The inner surface (molding surface) 11, 21 of the mold is moved along with the inner surfaces (molding surfaces) 11 and 21 of the mold so that the material pipe 1 is released into the hollow protrusion 13 by increasing the liquid pressure while pushing the material pipe 1 into X, as shown in FIG. Forming as shown in (C).
However, in the conventional hydroforming method, the means for controlling the material flow of the material pipe 1 in the mold is limited to the axial pushing punches 30A and 30B. Therefore, it was difficult to control the flow of the material in the material pipe 1 in the vicinity of the overhang 13 in the vertical direction YY. When the flow is not sufficiently controlled, the flow of the material of the material pipe 1 pushed by the axial pressing is changed in the axial direction XX between the overhang portion 3 side and the opposite side 4 (see FIG. 6C). 7), the wall thickness is reduced as shown by the reference numeral 5 in FIG. 7 (B) as the overhanging amount increases on the overhanging portion 3 side, and ultimately, rupture may occur. there were. On the opposite side 4 (see FIG. 6 (C)), excessive wall thickness occurs as shown by reference numeral 6 in FIG. 7 (B), and further, as shown by reference numeral 7, the axial pushing amount increases. In some cases, buckling occurred on the near side of the center of the material pipe 1.
[0005]
As described above, in the case of the branch overhang system, it is necessary to change the molding direction at the overhang portion 13. However, when the material pipe 1 mounted in the mold is subjected to hydrocompression by compressing under pressure. Since a very high pressure is generated between the outer surface of the material pipe 1 and the inner surfaces 11, 21 of the mold, it is difficult to change the flow direction of the material of the material pipe 1. Furthermore, in the hydroforming method, the means for controlling the flow of the material in the material pipe 1 in the mold from the outside is usually limited to the axial pushing means 30A and 30B. The flow of the material of the pipe 1 can be affected only in the vicinity of the outside of the mold close to the axial pressing and in a region parallel to the axial pressing. In the vicinity of the branch protrusion 13 away from the axial pressing, sufficient axial pressing can be performed. Difficult to get the effect. Therefore, in the case of the branch overhang system, there is a high possibility that defective molding occurs as compared with the tube expansion system, and various devices have been conventionally devised to more effectively perform hydroforming.
[0006]
For example, in a conventional hydroforming apparatus, when an internal pressure and an axial compressive load are applied to a pipe material (material pipe) in a mold to form a bulge in a part of the material pipe, the flow direction of the material of the material pipe is reduced. By forming a substantially flat portion on the mold surface at the portion where the direction changes from the axial direction to the bulging direction, the flow of the opposing material can be smoothly diverted to the bulging portion forming die hole and fed. For example, see Patent Document 1).
In addition, in the conventional hydroforming method, an auxiliary jig which can enter and exit from the inner surface of the mold is provided when the shaft is pressed while applying liquid pressure to the inner surface of the material pipe (material pipe) set inside the mold. In order to reduce the frictional force between the material pipe and the mold by projecting the auxiliary jig in the initial stage of pressing, the auxiliary jig is completely retracted inside the mold in the middle stage of pressing, and finished to the final shape Thus, the frictional force in the initial stage of pressurization is reduced, and the material can be supplied smoothly (for example, see Patent Document 2).
[0007]
[Patent Document 1]
JP 2000-84623 A
[Patent Document 2]
JP-A-2002-45927
[0008]
[Problems to be solved by the invention]
However, the apparatus described in Patent Document 1 merely changes the flow direction of the material of the material pipe by forming a substantially flat portion, and positively controls the flow of the material of the material pipe in the mold. It does not control. Furthermore, since this device needs to form a substantially flat part on a part, the design of the part is limited, and it can be used when it is not preferable to form a substantially flat part on the part. could not.
Further, in the method described in Patent Document 2, an auxiliary jig that can enter and exit the mold is provided, and the auxiliary jig is protruded in the initial stage of pressurization, thereby reducing the frictional force between the material pipe and the mold. In this case, the flow direction of the material is promoted. In this case, even if the flow of the material in the material pipe in the axial pushing direction can be improved, the flow direction of the material cannot be changed. Further, in this method, since the flowing pipe is pressed and contacted by the auxiliary jig, if the pressing force is strong, a mark is left at a portion where the flowing pipe is pressed against the material pipe, and there is a fear that the commerciality of the part is reduced.
[0009]
As described above, conventionally, various devices have been devised in order to more effectively perform the hydroforming process of the overhanging system. There has been no known manufacturing method for positively changing the flow direction of a material to prevent molding defects.
[0010]
The present invention has been made in view of the above points, and when performing a hydroforming process of a branch overhanging system, actively changes the flow direction of the material of the material pipe near the overhanging portion to prevent molding defects. It is an object of the present invention to provide a manufacturing method for causing the above.
[0011]
[Means for Solving the Problems]
According to the present invention, as a means for solving the above-mentioned problem, in the method for manufacturing a hydroformed molded part having an overhanging shape, a part of the inner surface of the mold is formed along the material surface. And moving the inner surface portion of the movable mold so that the material flows toward the overhang portion. In this configuration, in the conventional hydroforming method, the means for controlling the flow of the material in the mold was limited to axial pressing, and therefore, it was difficult to control the flow of the material particularly near the overhanging portion of the mold. In contrast, a new means for causing a change in the flow of material in the mold by making a part of the inner surface of the mold movable along the surface of the material is newly provided, and the overhang portion of the mold is provided. Increase the size of the overhang by allowing nearby material to flow more smoothly to the overhang, effectively preventing excessive wall thinning and buckling of the material Can be.
[0012]
Next, in the invention described in claim 2, according to the invention described in claim 1, the movable mold inner surface portion is provided with engagement means for the mold.
With this configuration, when the mold is configured to be separable in order to facilitate the removal of parts, the mold inner surface that is movable even when the mold is separated up and down is engaged with the mold. The movable inner surface of the mold can be prevented from falling off the mold.
[0013]
Further, in the invention described in claim 3, in the invention described in claim 1, the coefficient of friction of the movable mold inner surface portion is partially changed, and the movable mold inner surface portion is changed. The friction generated between the mold and the outer surface of the material causes the material to flow in the direction of the projecting portion as the movable mold inner surface moves.
In this configuration, by providing a change in the friction coefficient of the inner surface of the mold, even if an even force acts on the inner surface, the inner surface of the mold is moved in one direction by a partial change in the friction coefficient. It is possible to control the flow of the material by making the material easily follow the movement of the inner surface of the mold by simple means.
[0014]
Further, in the invention described in claim 4, in the invention described in claim 3, the partial change in the coefficient of friction is performed by changing the surface roughness of the inner surface of the mold. It is characterized in that Ra <3 for small portions and 3 <Ra <15 for large portions.
With this configuration, it is possible to effectively control the portion where the material is desired to flow and the portion where the material is desired to be pressed.
[0015]
Further, the invention described in claim 5 is characterized in that, in the invention described in claim 1, a moving means for moving the inner surface of the mold is separately provided. In this configuration, the flow of the material can be forcibly controlled by moving the inner surface of the mold that can move independently of the flow of the material independently of the flow state of the material. Dimensional accuracy such as plate pressure can be adjusted.
[0016]
Furthermore, in the invention described in claim 6, in the invention described in claim 1, the movement of the movable mold inner surface portion is obtained by being pulled by the flow of the material. .
In this configuration, by using the high-pressure frictional force that occurs during hydroform molding, which was one of the causes of molding failure, the material can be economically improved without requiring additional power. The movable inner surface of the mold is moved in accordance with the flow of the material, and it is possible to encourage the material to flow more smoothly in a portion where the material has been difficult to flow.
[0017]
Furthermore, in the invention described in claim 7, in any one of claims 1 to 6, the movable mold inner surface portion has an inner surface flush with the mold inner surface. It has a ring shape, and is characterized in that the material flows in the direction of the overhang portion by rotation of the ring shape.
In this configuration, the movable inner surface of the mold is formed from the ring member, and the moving direction of the inner surface of the mold is set to the rotation direction of the ring member, thereby facilitating the movement of the inner surface of the mold. Can be.
[0018]
Further, in the invention described in claim 8, in the invention described in claim 7, the ring shape is divided.
With this configuration, when the mold is configured to be separable to facilitate the removal of the component, the removal of the molded component can be facilitated by simultaneously separating the ring shape.
[0019]
Further, in the invention described in claim 9, in the invention described in claim 7, in the ring-shaped inner surface, a friction coefficient in a range of 10 to 30% is made larger than other friction coefficients of the inner surface. It is characterized by the following.
With this configuration, the ring member can be effectively rotated in one direction, and therefore, the flow of the material can be effectively assisted.
[0020]
Further, in the invention described in claim 10, in the invention described in claim 7, a plurality of the ring shapes are provided adjacent to each other, and adjacent ring shapes are rotated in directions opposite to each other.
In this configuration, the material can be moved from both sides of the pipe in a well-balanced manner by controlling the flow of the material in a symmetrical manner.
[0021]
According to the eleventh aspect of the present invention, in any one of the first to tenth aspects, a lubricant is injected between the mold and the movable mold inner surface. It is characterized.
With this configuration, friction at the contact surface between the mold and the movable mold inner surface can be reduced, and smooth hydroform molding can be performed.
[0022]
The method for producing a hydroformed molded part having an overhang shape according to the present invention is basically configured as described above, but the overhang shape is not limited to a specific shape, for example, a substantially T-shape, It may have a shape projecting in a substantially L-shape. Further, the size and the material of the material to be used, the mold, and the ring member (movable member), and further, the usage form of the processed component are not specified. In addition, the present invention relates to a hydroform processing method of a branch overhang system, however, there may be a gap between the inner surface of the mold and the outer surface of the material, for example, forming the material so as to have an overhang shape while expanding the tube. It is possible to do. Further, when a part of the inner surface of the mold is configured to be movable along the surface of the material, the size and the direction of the movement are appropriately determined according to the embodiment, and are always rotated in a direction perpendicular to the axial direction of the material pipe. You don't have to.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a method for manufacturing a hydroformed molded part having an overhang shape according to an embodiment of the present invention will be described with reference to the accompanying drawings.
FIG. 1A is a schematic view showing a molding apparatus 100 for performing a manufacturing method according to an embodiment of the present invention, and as shown in FIG. 6A, a material having a substantially cylindrical main body. As shown in FIG. 6C, the pipe 1 is subjected to hydroforming so as to have a projecting portion 3 extending in a substantially T-shape. Therefore, the mold of the molding apparatus 100 has a cylindrical section 12 having a circular cross section for inserting the material pipe 1 therein and extending in the axial direction XX, and an overhanging shape 3 on the material pipe 1. A hollow projection (bulging portion or bent portion) 13 is provided which branches so as to communicate with the inside of the tubular portion 12. Then, a fillet is formed at the intersection of the cylindrical portion 12 and the overhang portion 13 as shown by reference numeral 14 so that the material pipe 1 can be smoothly deformed along the fillet 14.
However, the molding device 100 is configured so that the mold can be divided into the upper mold 10 and the lower mold 20 in the axial direction, and preferably, at least one of the upper mold 10 and the lower Either one is configured to be movable. This allows the mold release and the mold clamping to be performed manually or automatically, thereby facilitating the mounting of the material pipe 1 on the molding apparatus 100, the removal of parts after molding, and the maintenance of the molding apparatus 100. To do that. For this reason, the cylindrical portion 12 is separated into two around the axial direction XX (not shown), but the overhang portion 13 is separated from at least one of the upper die 10 and the lower die 20 or separated. The upper mold 10 or the lower mold 20 in the drawings may be provided for convenience only.
[0024]
Then, as shown in FIG. 1A, after the material pipe 1 is mounted in the cylindrical portion 12, the axial pushing punches 30A and 30B are slidably disposed on both sides of the material pipe 1. I do. However, the axial pushing punches 30 </ b> A and 30 </ b> B are in close contact with the inner surface of the cylindrical portion 12 of the mold and in close contact with the end of the material pipe 1. In the illustrated embodiment, the shaft-punching punches 30A and 30B form a step 31 at the end on the side that comes into contact with the end of the material pipe 1 so as to adhere to the material pipe 1 from both the end and the inner surface. I do. Therefore, a liquid (filling liquid) W of a predetermined pressure is injected from a pressurized liquid supply source (not shown) into the nozzle 39 formed in one of the two axial pushing punches 30A and 30B, and the material pipe 1 Can be prevented from leaking. Preferably, the filling liquid W is obtained by adding a rust inhibitor to water, but other suitable liquids may be used.
[0025]
Then, as shown by an arrow S in FIG. 1 (B), the pressure of the liquid W filled therein is increased while the axial pushing punches 30A and 30B are pushed in opposition in the axial direction to push the axially pushing punches 30A and 30B together with the filling liquid W. The material pipe 1 is pressurized and compressed by the pressure of both the punches 30 </ b> A and 30 </ b> B, and the material pipe 1 is stretched out along the inner surfaces 11 and 21 of the upper mold 10 and the lower mold 20. However, in the illustrated embodiment, the manufacturing apparatus 100 arranges the separate counter 40 inside the overhang portion 13 in the overhang direction YY, and at the end 41 of the counter 40 in the overhang direction YY. By determining the depth of the flowing material pipe 1 and performing molding while holding down the head of the overhang portion 3 shown in FIG. 6C, excessive thinning of the overhang portion 3 occurs during molding. To prevent. However, without using the counter 40, the upper die 10 may be formed in a bottomed hole shape to determine the depth of the material pipe 1 flowing in the overhang direction YY (not shown).
[0026]
Therefore, as shown in FIG. 1A, the material pipe 1 is mounted in the upper mold 10 and the lower mold 20, the upper mold 10 and the lower mold 20 are closed, and the axial pushing punches 30A and 30B are advanced. The both ends of the material pipe 1 are sealed, and as shown in FIG. 1B, the material pipe 1 is axially pushed while increasing the internal pressure, so that the material pipe 1 is connected to the cylindrical portions 12 of the upper mold 10 and the lower mold 20 and the overhang portion. The component is formed by deforming according to the inner surface of 13. Then, after the molding, the internal pressure is reduced, the axial pressing punch is retracted, the upper die 10 and the lower die 20 are opened, and the parts are taken out of the apparatus 100.
At this time, according to the conventional technique, a high-pressure frictional force is generated between the inner surfaces 11 and 21 of the upper mold 10 and the lower mold 20 and the outer surface of the material pipe 1 at the time of hydroforming, and the branch overhang 13 is formed. Since the effect of the axial pressing in the vicinity is not sufficient, this processing control becomes difficult, and there may be a case where a molding defect as indicated by reference numerals 5, 6, and 7 in FIG.
On the other hand, in the embodiment of the present invention, the mold 51 is formed by allowing the inner surface portions 11 and 21 of the upper mold 10 and the lower mold 20 to move partially along the outer surface of the material pipe 1. This makes it possible to cause a change in the flow of the material pipe 1 in the inside, thereby suppressing the occurrence of the molding failure. That is, in the embodiment of the present invention, when the material pipe 1 is pressurized and compressed, a high-pressure frictional force generated between the outer surface of the material pipe 1 and the inner surfaces 11 and 21 of the upper mold 10 and the lower mold 20 is generated. By utilizing the inner surface portions 11 and 21 of the upper mold 10 and the lower mold 20, a portion 51 of the inner surface 11 and 21 can be moved while being pressed against the outer surface of the material pipe 1 (gripped by the outer surface of the material pipe 1). In addition, the material pipe 1 can flow naturally toward the overhang 13 without being hindered by the high-pressure frictional force in the mold.
As described above, in the embodiment of the present invention, in addition to the shaft pushing means 30A and 30B, a means for changing the flow direction of the material 1 in the mold is newly provided, so that compared with the conventional technique, The material 1 in the vicinity of the overhang 13 in the mold can be made to flow more smoothly toward the overhang 13, so that excessive thinning and buckling of the material pipe 1 can be prevented. .
However, the mold inner surface portion 51 may be moved in accordance with the deformation of the material pipe 1 or may be forcibly moved by a separately provided moving (driving) means. Hereinafter, the former case will be described in more detail as the first embodiment of the present invention, and the latter case will be described in more detail as the second embodiment of the present invention.
[0027]
As described above, in the first embodiment according to the present invention, when the material pipe 1 is pressurized and compressed by the pressure of both the filling liquid W and the axial pushing punches 30A and 30B, no external force is required. By moving a part 51 of the inner surface portions 11 and 21 of the upper mold 10 and the lower mold 20 by being gripped by the material pipe 1, the material of the material pipe 1 is moved by the movement of the mold inner surface portion 51. The fluid can flow more smoothly toward the overhang portion 3 (see FIG. 6C).
The movable mold inner surface 51 is provided separately from the upper mold 10 and the lower mold 20, and can move independently of the upper surface of the movable member 50 from the upper mold 10 and the lower mold 20. Perimeter). However, the movable member 50 is formed flush so that the inner surface 51 is aligned with the inner surfaces 11 and 21 of the upper mold 10 and the lower mold 20. At this time, the cut formed between the inner surface 51 of the movable member 50 and the inner surfaces 11 and 21 of the upper mold 10 and the lower mold 20 has a size that does not cause a problem in forming the material pipe 1. Although the external shape of the movable member 50 is not limited to a specific shape, preferably, the movable member 50 is configured as a substantially cylindrical ring member (ring shape) 50. By determining the outer shape of the movable member 50 in this manner, the movable member 50 can be configured to be rotatable in the mold around the axial direction XX of the tubular portion 12 as the center of rotation. However, by making the movable member 50 rotatable in the vicinity of the overhang portion 13, the flow direction S of the material pipe 1 along the axial direction XX of the tubular portion 12 is changed as shown in FIG. The material 1 is changed obliquely as shown by the reference character T, so that the material 1 can flow smoothly in the axial direction Y-Y of the overhang portion 13.
For this reason, in the first embodiment of the present invention, the ring member 50 is gripped by the material pipe 1 pressed against the inner surface 51 by utilizing the high pressure generated at the time of hydroforming, and the portion of the material pipe 1 where the flow is large is large. The material pipe 1 is rotated in accordance with the flow of the air to guide the material of the material pipe 1 toward the overhang portion 13. Therefore, in the first embodiment of the present invention, compared to the conventional technique shown in FIG. 7, a part 51 of the inner surface portions 11 and 21 of the upper die 10 and the lower die 20 Along the outer side, the material of the material pipe 1 is made to flow more toward the overhang portion 3 (see FIG. 6C) to prevent a decrease in wall thickness, and the opposite side 4 has an excessive amount of material. The thickness increase is suppressed, and the forming limit of the material pipe 1 is improved.
[0028]
In the first embodiment according to the present invention, the ring member 50 is rotated without using any special power, but preferably, the inner surface 51 of the ring member 50 in contact with the outer surface of the material pipe 1 is used. Partially change the coefficient of friction. With this configuration, even when a force acts on the inner surface 51 of the ring member 50 almost evenly, a force is applied to the inner surface 51 of the ring member 50 in accordance with the change in the friction coefficient. The ring member 50 can be rotated in one direction.
Preferably, however, the inner surface 51 of the ring member 50 has a coefficient of friction of 10 to 30% higher than that of the remaining portion (90 to 70%). This partial change in the coefficient of friction can be achieved, for example, by partially changing the surface roughness or surface treatment of the inner surface 51, or by partially embedding another material having a different coefficient of friction into the inner surface 51. May go.
Furthermore, when the surface roughness of the inner surface 51 is partially changed, it is desired that the friction coefficient is set to Ra <3 in a small portion and 3 <Ra <15 in a large portion to suppress the material pipe 1 from flowing. It is preferred to control the parts effectively. However, the range of the partial change in the coefficient of friction and the range of the magnitude of the coefficient of friction are merely conditions for suitably controlling the flow direction of the material of the material pipe 1, and are always limited to these ranges. Not something.
[0029]
Further, in the first embodiment of the present invention, as shown in FIG. 1, a plurality of ring members 50 are provided adjacent to each other, and the ring members 50 shown in FIGS. 2A and 2B and FIG. As shown, by rotating the adjacent ring members 50, 50 in opposite directions, the flow of the material of the material pipe 1 is controlled symmetrically, and the material of the material pipe 1 is projected from both sides of the pipe in a well-balanced manner. It is preferred to flow to the section 13. However, FIGS. 2A and 2B are cross-sectional views taken along lines IIA-IIA and IIB-IIB shown in FIG. 1B, and the ring member 50 provided adjacently. , 50 rotate freely without contacting each other. Further, a portion indicated by reference numeral 55 in FIG. 2 indicates a range where the friction coefficient is small, and a portion indicated by reference numeral 56 indicates a range where the friction coefficient is large.
Further, as shown in FIG. 1, when the material pipe 1 is formed into a substantially T-shape by hydroforming, the pair of ring members 50, 50 provided adjacent to each other with the overhang 13 as a center is symmetrically oriented. Preferably, the material of the material pipe 1 is symmetrically flowed toward the overhang portion 13 to form a T-shaped tube. However, when the material pipe 1 is formed into a substantially T-shape by hydroforming, if the left and right cylindrical portions 11 are asymmetric about the overhang portion 13, the ring members provided on the left and right around the overhang portion 13 are provided. 50 may differ in size and position.
[0030]
As described above, the first embodiment of the present invention makes it possible to change the flow direction of the material in the mold, which has been difficult in the past, by newly providing the ring member 50. .
However, as described above, usually, the mold is configured to be separable into the upper mold 10 and the lower mold 20. In this case, preferably, the ring member 50 is engaged with the engaging means (engaging mechanism) for the mold. Is provided so that when the mold is divided into the upper mold 10 and the lower mold 20, the ring member 50, which is separate from the mold, does not fall off the mold. For example, as shown in FIG. 3A, an engaging female portion (concave portion) 58 is formed on a side portion of the ring member 50, and is engaged with the engaging female portion 58 on the upper mold 10 and the lower mold 20. The engaging male portions (convex portions) 18 and 28 are formed, and the engaging female portions (concave portions) 58 and the engaging male portions (convex portions) 18 and 28 are engaged with each other to form the upper mold 10 and the upper mold 10. The falling off of the ring member 50 from the lower mold 20 may be prevented. Further, as shown in FIG. 3B, an engaging male portion (convex portion) 59 is formed on the ring member 50, and the upper mold 10 and the lower mold 20 are engaged with the engaging female portion 59. Female portions (recesses) 19 and 29 may be formed to prevent the ring member 50 from falling off from the upper mold 10 and the lower mold 20. In addition, various shapes of engaging means (engaging mechanism) can be considered, however, any means having a means for detachably preventing the ring member 50 from dropping from the mold is sufficient.
[0031]
Further, in a preferred embodiment according to the present invention, when the mold is configured to be splittable into an upper mold 10 and a lower mold 20, as shown in FIGS. Are separated into two 52A and 52B. At this time, one of the engaging convex (male) portion and the engaging concave (female) portion is provided on the engaging surface 54 of each of the members 52A and 52B which are separated into two parts. It may be engaged (not shown). Alternatively, the engagement surfaces 54 of the two divided members 52A and 52B may be engaged using magnetic forces of different magnetic poles (not shown). The ring member 50 can be separated and engaged with the two members 52A, 52B by various other means, however, it should be understood that the specific details do not limit embodiments of the present invention. . However, as shown, the ring members 50, 50 are provided adjacent to each other, and are arranged with a gap as shown by reference numeral 53, so that the adjacent ring members 50, 50 can freely rotate, respectively.
As described above, the ring member 50 is provided with the engagement means 58 and 59 for engagement with the mold, and the two members 52A and 52B are configured to be separable and engageable, thereby stabilizing the hydroforming process. , Facilitates the removal of parts.
[0032]
Further, in a preferred embodiment according to the present invention, when the metal ring member 50 rotates while contacting in the mold, as shown in FIG. Lubricating material is injected between the contact surfaces of the ring member 50 and the upper die 10 and the lower die 20 and an oil film is formed between the metal surfaces of the ring member 50 to reduce friction and smoothly rotate the ring member 50. It may be. In the embodiment shown in FIG. 1, lubricating oil is supplied between the upper die 10 and the lower die 20 and the ring member 50 while appropriately controlling the amount of oil lubrication by a forced lubrication method. Specifically, the upper die 10 and the lower die 20 and the ring member 50 are forcibly supplied with oil from a lubrication port (lubricant supply unit) indicated by reference numeral 60 in FIG. Supply lubricating oil between. However, the refueling method is not limited to the illustrated embodiment, and it is possible to select a manual lubrication method, a proper refueling method, a dipping refueling method, or the like according to the embodiment. Further, by forming the ring member 50 from a synthetic resin and making only the inner surface portion 51 made of metal, when the ring member 50 is rotated in the mold, the resin and metal are brought into contact with each other to improve lubrication. When the effect is obtained, it is not always necessary to provide the refueling means.
Furthermore, it is possible to provide a bearing (not shown) such as a ball bearing between the ring member 50 and the mold to assist the rotation of the ring member 50.
[0033]
Further, in another embodiment of the present invention, a return mechanism (not shown) using an elastic member (spring) or the like may be incorporated so that the ring member 50 returns to the position before the molding after the molding. For example, when the ends of the spring are attached to the ring member 50 and the upper mold 10 and / or the lower mold 20, respectively, and when the ring member 50 is rotated in the upper mold 10 and the lower mold 20, the spring is compressed so that The ring member 50 may return to the position before molding by storing the elastic energy and releasing the elastic energy stored after molding.
[0034]
Although the first embodiment of the present invention is configured as described above, the applicant of the present invention has a shape having an outer diameter of 48.6 mm, a thickness of 1.2 mm, and a length of 100 mm, and the material is STKM11A. When forming a T-tube by hydroforming so as to provide a projecting portion 3 having an outer diameter of 45 mm (see FIG. 6C) at the center of the material pipe 1 of the present invention, The molding results of a case where the manufacturing method according to the first embodiment of the present invention was applied and a conventional case where the manufacturing method was not applied were compared. As a result, when the manufacturing method according to the first embodiment of the present invention is applied, the applicant of the present invention compares the overhang portion 3 shown in FIG. The height of the material pipe 1 can be increased by 3 to 15%, and the increase in thickness on the opposite side 4 of the overhang portion 3 can be suppressed by 5 to 20%. I confirmed that it was done.
Therefore, in the first embodiment of the present invention, a part 51 of the inner surface portions 11 and 21 of the upper mold 10 and the lower mold 20 is grasped by the surface of the material pipe 1 and is movable, so that the inside of the mold is formed. Providing a means for causing a change in the flow of the material of the material pipe 1 of the mold, and allowing the material of the material pipe 1 near the overhang 13 of the mold to flow more smoothly toward the overhang 13, It is possible to more effectively prevent the material pipe 1 from excessively thinning and buckling. Therefore, in the first embodiment of the present invention, it is possible to increase the size of the overhang portion 13 by improving the molding limit as compared with the conventional technology.
[0035]
Further, in the second embodiment according to the present invention, a means for forcibly rotating the ring member 50 is provided, so that the flow of the material in the material pipe 1 can be more positively controlled.
For example, as shown in FIG. 5, a gear-shaped portion (first gear) 71 is provided on the outer peripheral portion of the ring member 50, and the second gear 72 is moved so as to mesh with the first gear 71 ( (Drive) means 70 may be configured. However, the first gear 71 may have the center of rotation coincide with the center of rotation of the ring member 50, and the main body may be formed integrally with the ring member 50, or may be formed separately. Further, the second gear 72 is driven by a motor (not shown), and forcibly rotates the ring member 50 by rotating the first gear 71 meshing with the pair. In the illustrated embodiment, the numbers of teeth of the first gear 71 and the second gear 72 are approximately the same, but the first gear 71 is reduced in speed with respect to the second gear 72 driven by the motor. You may make it rotate. However, this reduction ratio is arbitrary. Further, a gear train may be formed from a plurality of gears, and the first gear 71 may be rotated by the second gear 72. Further, although the illustrated gear is a spur gear, it is possible to employ a helical gear in order to reduce noise and perform lubrication more smoothly. Further, any other gear mechanism such as a worm gear, a rack and pinion mechanism, and the like may be employed. Furthermore, in the second embodiment of the present invention, the moving means 70 for forcibly rotating the ring member 50 using a belt or a chain mechanism is not limited to the gear mechanism, and may be configured.
[0036]
As described above, in the second embodiment of the present invention, since the ring member 50 is forcibly rotated by the external force of the motor or the like, the flow direction of the material of the material pipe 1 is changed as compared with the first embodiment. It can be changed more reliably. That is, in the first embodiment, when the material pipe 1 is pressurized and compressed, the ring member 50 is moved in accordance with the flow of the material of the material pipe 1 (using high-pressure frictional force generated during hydroform molding). Was rotating. On the other hand, in the second embodiment, the ring member 50 can be moved regardless of the flow of the material in the material pipe 1. However, the material of the material pipe 1 is caused to flow following the movement of the ring member 50 by using the high-pressure frictional force generated during the hydroforming. For this reason, in the second embodiment of the present invention, by rotating the ring member 50 mainly and, for example, rotating the ring member 50 as necessary, the wall pressure of the material pipe 1 during processing ( It is possible to adjust dimensional accuracy such as plate pressure).
[0037]
As described above, in the second embodiment according to the present invention, since the ring member 50 is moved by the moving means 70, it is necessary to partially change the friction coefficient of the inner surface 51, unlike the first embodiment. There is no. However, also in the second embodiment of the present invention, by partially changing the friction coefficient of the inner surface 51 of the ring member 50, it is easy to rotate the ring member 50 in one direction. The driving force required may be reduced.
In addition, in the second embodiment according to the present invention, when the moving means 70 is separately provided, the first gear 71 may be configured to be separable with the ring member 50 in particular so as to facilitate the removal of components.
Furthermore, in the second embodiment of the present invention, when the ring member 50 is forcibly rotated using the gear mechanism, the rotation angle of the first gear 71 is controlled by controlling the rotation angle of the second gear 72. Thus, the ring member 50 can be returned (rotated) to the original position after molding without using a special return mechanism.
[0038]
【The invention's effect】
Since the present invention is a method of manufacturing a hydroformed molded part having an overhanging shape configured as described above, according to the invention described in claim 1, the material in the mold is not used in the conventional hydroforming method. Since the means for controlling the flow of the mold was limited to axial pushing, it was difficult to control the flow of the material, especially near the overhang of the mold. A new means of causing a change in the flow of material in the mold by being movable along the mold is provided to make the material near the overhang of the mold flow more smoothly toward the overhang. As a result, it is possible to more effectively prevent excessive thinning and buckling of the material, and to increase the size of the overhang.
[0039]
According to the invention described in claim 2, in addition to the effect of the invention described in claim 1, when the mold is configured to be separable in order to facilitate removal of parts, the mold is separated vertically. Even if the inner surface of the movable mold is engaged with the mold, it is possible to prevent the movable inner surface of the mold from falling off the mold.
[0040]
According to the third aspect of the present invention, in addition to the effects of the first aspect of the present invention, by providing a change in the friction coefficient of the inner surface of the mold, a uniform force acts on the inner surface. Also, the inner surface of the mold can be moved in one direction by a partial change in the coefficient of friction, and the material can easily follow the movement of the inner surface of the mold by simple means, It is possible to control the flow.
[0041]
According to the invention described in claim 4, in addition to the effect of the invention described in claim 3, it is possible to effectively control the portion where the material is desired to flow and the portion where the material is desired to be pressed.
[0042]
According to the invention set forth in claim 5, in addition to the effects of the invention set forth in claim 1, by moving the mold inner surface portion which is independently movable without depending on the flow state of the material. Therefore, the flow of the material can be forcibly controlled, so that the dimensional accuracy of the material, such as the plate pressure, can be adjusted during the processing.
[0043]
According to the invention described in claim 6, in addition to the effect of the invention described in claim 1, in addition to utilizing the high-pressure frictional force generated during hydroform molding, which has conventionally been one of the causes of molding failure. By moving the inner surface of the movable mold in accordance with the flow of the material of the material from an economically superior means without requiring additional power, the portion where the material has been difficult to flow in the past can be improved. It is possible to encourage smooth flow.
[0044]
According to the invention described in claim 7, in addition to the effect of the invention described in any one of claims 1 to 6, by forming the movable mold inner surface portion from a ring member, the mold inside By setting the direction of movement of the surface portion to the direction of rotation of the ring member, the movement of the inner surface of the mold can be facilitated.
[0045]
According to the invention described in claim 8, in addition to the effect of the invention described in claim 7, when the mold is configured to be separable in order to facilitate the removal of parts, the ring shape is simultaneously separated. Thus, it is possible to easily take out the part after molding.
[0046]
According to the ninth aspect of the invention, in addition to the effects of the seventh aspect, the ring member can be effectively rotated in one direction, and therefore, the flow of the material can be effectively assisted. It is possible to do it.
[0047]
According to the tenth aspect of the present invention, in addition to the effect of the seventh aspect of the present invention, the material is moved from both sides of the pipe in a well-balanced manner by controlling the flow of the material in a symmetrical manner. Becomes possible.
[0048]
According to the invention described in claim 11, in addition to the effects of the invention described in any one of claims 1 to 10, the friction at the contact surface between the mold and the movable mold inner surface portion is reduced, and the smoothness is achieved. Hydroform molding can be performed.
[Brief description of the drawings]
FIG. 1 is a diagram showing a manufacturing method according to a first embodiment of the present invention, divided into (A) and (B).
FIG. 2 is a schematic diagram showing a cross-sectional view taken along a line IIA-IIA and a line IIB-IIB in FIG. 1 separately in (A) and (B).
FIG. 3 is a schematic view showing various embodiments of an engagement mechanism provided on the ring member shown in FIG. 1 in (A) and (B).
FIG. 4 is a schematic view showing a usage pattern when the ring member shown in FIG. 1 is formed and a usage pattern when the ring member is not formed, which are divided into (A) and (B), respectively.
FIG. 5 is a diagram illustrating a manufacturing method according to a second embodiment of the present invention, divided into (A) and (B).
FIG. 6 is a schematic diagram showing a branch overhang type hydroform processing method according to the related art, which is divided into (A) to (C).
FIG. 7 is a diagram illustrating a manufacturing method according to a conventional technique, divided into (A) and (B).
[Explanation of symbols]
W liquid (filling liquid)
1 Material pipe (material)
10 Upper mold
20 lower mold
11, 12 Mold inner surface (inner surface, molding surface)
12 cylindrical part
13 Overhang
30A, 30B Shaft pushing punch (shaft pushing means)
40 counter
50 Ring member (movable member)
51 Movable mold inner surface (inner surface)
70 moving means (driving means)
100 molding equipment

Claims (11)

張り出し形状を備えたハイドロフォーム成形部品の製造方法において、金型内表面部の一部を材料表面に沿って移動可能とし、前記移動可能な金型内表面部の移動により、前記材料を張り出し部方向へ流動させることを特徴とする製造方法。In the method for manufacturing a hydroformed molded part having an overhanging shape, a part of an inner surface of a mold can be moved along a material surface, and the material is overhanged by moving the movable inner surface of the mold. A manufacturing method characterized by flowing in a direction. 前記移動可能な金型内表面部に前記金型に対する係合手段を設けたことを特徴とする請求項1に記載の方法。2. The method according to claim 1, wherein said movable mold inner surface is provided with engagement means for engaging with said mold. 前記移動可能な金型内表面部の摩擦係数を部分的に変更し、前記移動可能な金型内表面部と前記材料の外表面との間に生じる摩擦により、前記移動可能な金型内表面部の移動に伴い前記材料を張り出し部方向へ流動させることを特徴とする請求項1に記載の方法。The frictional coefficient of the movable mold inner surface portion is partially changed, and the movable mold inner surface is moved by friction generated between the movable mold inner surface portion and the outer surface of the material. The method according to claim 1, wherein the material is caused to flow toward the overhang portion as the portion moves. 前記部分的な摩擦係数の変更を金型内表面部の表面粗さの変更で行い、該表面粗さは小さい部分でRa<3、大きい部分で3<Ra<15としたことを特徴とする請求項3に記載の方法。The partial coefficient of friction is changed by changing the surface roughness of the inner surface of the mold, and the surface roughness is set to Ra <3 in a small portion and 3 <Ra <15 in a large portion. The method of claim 3. 前記移動可能な金型内表面部の移動手段を別途設けたことを特徴とする請求項1に記載の方法。2. The method according to claim 1, further comprising a separate means for moving the movable mold inner surface. 前記移動可能な金型内表面部の移動は、前記材料の流れに引っ張られることにより得ることを特徴とする請求項1に記載の方法。The method of claim 1, wherein the movement of the movable mold inner surface is obtained by being pulled by the flow of the material. 前記移動可能な金型内表面部は前記金型内表面と面一な内面を備えたリング形状であり、該リング形状の回転により材料を張り出し部方向へ流動させることを特徴とする請求項1〜6のいずれかに記載の方法。2. The movable mold inner surface portion has a ring shape having an inner surface flush with the mold inner surface, and the rotation of the ring shape causes the material to flow toward the overhang portion. 7. The method according to any one of claims 1 to 6. 前記リング形状は分割することを特徴とする請求項7に記載の方法。The method of claim 7, wherein the ring shape is split. 前記リング形状の内面のうち、10〜30%の範囲の摩擦係数を前記内面の他の摩擦係数より大きくしたことを特徴とする請求項7に記載の方法。The method of claim 7, wherein a coefficient of friction in a range of 10 to 30% of the inner surface of the ring is greater than another coefficient of friction of the inner surface. 前記リング形状を隣接して複数設け、隣り合うリング形状を互いに反対方向へ回転させることを特徴とする請求項7に記載の方法。The method according to claim 7, wherein a plurality of the ring shapes are provided adjacent to each other, and the adjacent ring shapes are rotated in directions opposite to each other. 前記金型と前記移動可能な金型内表面部との間に潤滑材を注入することを特徴とする請求項1〜10のいずれかに記載の方法。The method according to claim 1, wherein a lubricant is injected between the mold and the inner surface of the movable mold.
JP2002279241A 2002-09-25 2002-09-25 Method for manufacturing hydroformed parts having projected shape Pending JP2004114078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002279241A JP2004114078A (en) 2002-09-25 2002-09-25 Method for manufacturing hydroformed parts having projected shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002279241A JP2004114078A (en) 2002-09-25 2002-09-25 Method for manufacturing hydroformed parts having projected shape

Publications (1)

Publication Number Publication Date
JP2004114078A true JP2004114078A (en) 2004-04-15

Family

ID=32274306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002279241A Pending JP2004114078A (en) 2002-09-25 2002-09-25 Method for manufacturing hydroformed parts having projected shape

Country Status (1)

Country Link
JP (1) JP2004114078A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007130664A (en) * 2005-11-10 2007-05-31 Toyota Motor Corp Forming die for hydroforming work and working method
JP2009502511A (en) * 2005-07-26 2009-01-29 アクアフォーム・インコーポレーテッド Molded part forming apparatus and method
CN102641955A (en) * 2012-04-25 2012-08-22 西北工业大学 Mould capable of forming three-way pipe on one-way pressure machine and forming method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009502511A (en) * 2005-07-26 2009-01-29 アクアフォーム・インコーポレーテッド Molded part forming apparatus and method
JP2007130664A (en) * 2005-11-10 2007-05-31 Toyota Motor Corp Forming die for hydroforming work and working method
CN102641955A (en) * 2012-04-25 2012-08-22 西北工业大学 Mould capable of forming three-way pipe on one-way pressure machine and forming method thereof

Similar Documents

Publication Publication Date Title
JP2009050888A (en) Method of expanding pipe
DE102009048040A1 (en) Method and device for chipless production of an external thread on hollow metal workpieces
US6497030B1 (en) Method of manufacturing a lead screw and sleeve mechanism using a hydroforming process
JP4407825B2 (en) Extrusion molding method and extrusion molding apparatus
JP2004114078A (en) Method for manufacturing hydroformed parts having projected shape
WO2004105976A1 (en) Method for the production of individualized vehicle parts, especially individualized shell parts made from serially produced standard parts, and shell parts produced according to said method
CN111372701B (en) Method and apparatus for manufacturing hollow rack bar
US20070017267A1 (en) Apparatus and method for performing a hydroforming process
JP4382627B2 (en) Forging method, forged product and forging device
JP2011136364A (en) Method for manufacturing corrugated tube
JP4159063B2 (en) Forging equipment
JP3838321B2 (en) Method and apparatus for manufacturing hollow rack bar
JP4356644B2 (en) Method for manufacturing hollow camshaft
JP5440680B2 (en) Hydroform equipment
JP4628349B2 (en) Casting method and casting apparatus
JPH0739948A (en) Burring device
JP2002113524A (en) Core for working metal tube and method for working metal tube
JP2003094140A (en) Method for manufacturing hollow rack bar
EP1593882A2 (en) Method of machining a shifting shaft for a gearbox
JP2005288532A (en) Hydroforming method
KR100542944B1 (en) Hydroforming apparatus with lubricant structure
US11583913B2 (en) Tool for internal high-pressure shaping and method for shaping a workpiece by internal high-pressure shaping
JP5239505B2 (en) Hydroform processing method
US20010049955A1 (en) Pressure controlled fluid pressure extrusion method
JP3738806B2 (en) Manufacturing apparatus for hollow shaft with different diameter and manufacturing method thereof