JP2004112972A - Oscillatory wave driving device - Google Patents

Oscillatory wave driving device Download PDF

Info

Publication number
JP2004112972A
JP2004112972A JP2002275017A JP2002275017A JP2004112972A JP 2004112972 A JP2004112972 A JP 2004112972A JP 2002275017 A JP2002275017 A JP 2002275017A JP 2002275017 A JP2002275017 A JP 2002275017A JP 2004112972 A JP2004112972 A JP 2004112972A
Authority
JP
Japan
Prior art keywords
driving device
contact portion
wave driving
rotor
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002275017A
Other languages
Japanese (ja)
Inventor
Hiroyuki Seki
関 裕之
Yutaka Maruyama
丸山 裕
Kiyoshi Nitsuto
日塔 潔
Kosuke Fujimoto
藤本 幸輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002275017A priority Critical patent/JP2004112972A/en
Publication of JP2004112972A publication Critical patent/JP2004112972A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that, if moisture sticks to a minute gap between the sliding portions of the oscillator and the rotor of an ultrasonic motor (oscillatory wave driving device), the frictional coefficient of the sliding portions is lowered, and reduced starting torque of the motor is resulted; and if the rotor is pressed against the oscillator by greater force to enhance the starting torque, wear in the sliding portions is aggravated. <P>SOLUTION: The oscillatory wave driving device is constituted as follows: a plurality of grooves are formed in the sliding portion of either of an oscillator and a rotor, and the sliding portion of the other is sunk into the grooves by elasticity. Letting the average length of the sliding portions be L, the width B of the grooves is so set that B/L is not less than 0.007. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は超音波モータ等を含む振動波駆動装置に関するものであり、特に振動子と被駆動体との接触部構造に関するものである。
【0002】
【従来の技術】
振動波駆動装置はカメラレンズの駆動の他にも時計のカレンダー駆動、複写機の感光ドラムの駆動等多くの製品への応用がなされており、その振動体形状(構造)も円環型のもの、棒状のもの、円盤形のもの等多種多様のものが存在する。
【0003】
図12から図14にはこれらのモータのうち、カメラレンズのオートフォーカス駆動に用いられている棒状の振動波駆動装置の説明図を示す。
【0004】
図12(a)に棒状振動子の構造を、図12(b)にその振動モードを示し、図13、図14にこの振動子を使い、現在カメラレンズ駆動用に用いられている振動波駆動装置の構成図を示す。
【0005】
これらの図において、1は第1の弾性体、2は第2の弾性体、3は積層圧電素子(または単板の圧電素子の積層体)、4はシャフト、5はナットであり、部品1〜3は該シャフト4、あるいはシャフト4とナット5によって所定の挟持力が付与されるように締め付けられている。
【0006】
ロータ7の一方の面は接触幅が小さく、かつ適度なバネ性を有する構造をしており、この面が振動体の摩擦面6に接触する。また、ロータ7のもう一方の面には凸部(または凹部)が形成されており、ギア8の凹部(または凸部)と係合し、ロータ7の回転をギア8に伝達する。
【0007】
さらに、ギア8はモータを取り付けるためのフランジ10によりシャフト4のスラスト方向に位置が固定されており、前記ロータ7に加圧力を付与するための加圧バネ15がこのギアとロータとの間に設けられている。
【0008】
積層圧電素子3(または単板の圧電素子の積層体)は電極が2つの電極郡にグループ化されており、不図示の電源からそれぞれの電極郡に位相の異なる交流電界を印加すると、振動子には図12(b)に示す姿態の直交する2つの曲げ振動が励振される(もう一方は紙面に垂直な方向の振動)。この印加電界の位相を調整することにより、2つの振動間に90度の時間的な位相差を与えることができ、その結果、棒状振動子の曲げ振動は振動子の軸周りに回転する。
【0009】
この結果、ロータ7に接触する第1の弾性体の表面には楕円運動が形成され、耐摩耗性を有する部材6に押圧されたロータ7が摩擦駆動されるため、該ロータ7、ギア8、加圧バネ15が一体となって回転するものである。
【0010】
ここに示した棒状の振動波駆動装置においては、摺動部の摩擦材として振動子側には黄銅製の弾性体1に無電解ニッケル(NiP)、SiC粒子コンポジットメッキを用い、もう一方のロータにはアルミニウムにアルマイト処理を施して構成していた。
【0011】
この摩擦材の組み合わせは摩擦係数も高く、比較的良好な摩擦特性を示すものの摩耗量が多いためにモータの寿命が短いという欠点があり、カメラレンズの様な比較的実質使用時間が短い用途でしか使われていなかった。
【0012】
この摩擦材の寿命を伸ばし更に幅広い用途への応用展開を図るために、耐摩耗特性に優れたアルミナ等のセラミック、またはSUS等の摩擦材の検討が進められてきた。この一例として図14には弾性部材1にアルミナ製の摩擦リング6を接合して振動子側の摩擦面を形成し、また、これと接触するロータには黄銅製のロータ本環7にSUS板をプレス成型した接触部材16を接合した例を示している。これらの摩擦材の組み合わせは非常に耐摩耗性に優れているため、前者と比較するとモータの寿命を飛躍的に伸ばすことができた。
【0013】
【発明が解決しようとする課題】
しかしながら、これらの摩擦材には高湿度環境下において摩擦係数が極端に低下してしまうという欠点があることが判明した。この結果、モータを長時間高温高湿下に放置したり、また、高湿度の環境下でこのモータを作動させようとしたとき、ロータの起動が遅れたり、また動いたとしてもすぐには本来のスピードを出せず、性能が復活するまでには時間がかかってしまうという問題が発生した。
【0014】
これらの現象は、高湿度中に振動波駆動装置を放置した時に摺動面の僅かの隙間に微小な水分が付着することにより、振動子とロータとの摩擦係数が低下し、モータの起動時に発生するトルクを低下させてしまうために起こることが判明した。
【0015】
このような接触部界面に水分が介在した場合の対策としては、これらの面に加える加圧力を上げて接触面での面圧を上げ、水分を排除するような対策を講ずるのが一般的である。しかし、振動波駆動装置においては、単純に加圧力のみを上げるのは摩擦面への負担を増加させ、摩耗を助長するばかりでなく、加圧反力を受ける軸受けにも負担がかかり、軸受けの耐久性を悪化させるとともにこの軸受けでの損失も増加させることになる。
【0016】
【課題を解決するための手段】
上記課題を解決するために、本願請求項1記載の発明は、弾性部材と電気−機械エネルギー変換素子により構成された振動子と、該弾性部材に加圧接触する被駆動体とを備え、該電気−機械エネルギー変換素子に交番信号を印加することによって該弾性部材に駆動振動を励起し、摩擦によって該被駆動体を該弾性部材に対して相対移動させる振動波駆動装置において、該弾性部材の接触部と該被駆動体の接触部のうち、一方の接触部は複数の凹部が形成され、他方の接触部は該凹部と接触する面が加圧される方向に弾性変形可能であって、該凹部は、該凹部の摺動方向における幅をBとし、該接触部の平均長をLとすると、B/L>0.007を満足することを特徴とするものである。
【0017】
【発明の実施の形態】
(第1の実施形態)
図1〜図3に本発明による第1の実施形態を示す。図1にはモータの斜視図、図2にはモータの断面図、図3には振動子の斜視図を示す。図中シャフト4は第3の弾性体13に圧入されており、これらの部材と第2の弾性体2(下ナット)とで第1の弾性体12と積層圧電素子3および給電用のフレキシブルプリント基板17とを挟持し、第2の弾性体2とシャフト4に設けられたネジ部により所定の力で締結して振動子を構成している。一方、被駆動体であるロータはロータ本環7にSUSの板材をプレス成型した接触部材16を接合して構成され、該ロータと係合して回転力を伝達するギア8との間に設けられた圧縮コイルバネ15によって該接触部材16の端部が前記振動子の弾性体12に圧接されている。また、該ギア8は、シャフト4の一端から挿入されスラスト方向に位置決めされて固定されたフランジ10と勘合して軸支されており、ギアおよびロータが揺動することなく安定して回転できるように設定されている。
【0018】
不図示の電源よりフレキシブルプリント基板17を通して積層圧電素子3に交流電界を印加すると、振動子には図4(b)に示すような曲げの振動(紙面に平行方向)と、この振動に直交する方向(紙面に垂直方向)の振動が同時に励振され、これら2つの振動が合成されると、弾性体12がシャフト軸を中心として回転移動する運動が振動子に励起される。この結果、この振動の腹近傍に位置している弾性体12は振動の回転軸に対し傾きながら旋回運動するため、ロータとの接触面には楕円運動が発生する。そのためこの弾性体に接触しているロータは、この楕円運動による摩擦力で軸回りに回転し、振動体に対して相対移動する。
【0019】
具体的に説明すると、図4(b)に示す振動を励起したとき、図4(a)の弾性体12は左側にスライドする。シャフト4の長手方向における弾性体12の中心位置は、振動の腹よりもロータ側に位置しているため、平板形状の弾性体12は左側が持ち上がり右側が下がった状態となる。このとき、弾性体12の持ち上がった左側の摺動部(接触部)がロータと最も強く接している。圧電素子3に駆動振動が印加されると、この図4(b)に示す振動がシャフト4の軸周りを回転するように励起される。その結果、ロータと最も強く接する振動子の摺動部の位置が、シャフト4を中心として回転することになる。
【0020】
弾性体12にはロータとの接触面側の摺動部に放射方向に延びた8本の溝(凹部)が設けられており、一方のロータの接触部はSUS420j2の板金プレス部品により周方向および加圧方向に適度な弾性を有する構造になっている。
【0021】
本願発明者は、様々な検討により、弾性体にこれらの溝を設ける事によってこの溝部のエッヂにおいてロータとの面圧が局部的に増大し、高湿下での環境においても摺動面に付着する水分の影響を受けずにトルクの低下を防ぐ事ができることを見出した。以下この原理について説明する。
【0022】
図5には摺動面に溝部を設けた弾性体12の平面図(a)とこれにロータが圧接されたときの接触部の拡大図(説明図)を示す。図に示すようにロータ接触部は弾性を有する構造をしているので、弾性体の溝部ではロータ接触部が落ち込むように加圧される方向に変形し、その結果エッヂ部の面圧は局部的に大きくなる(Pmax)。
【0023】
このPmaxの大きさは溝幅Bに大きく依存し、Bの設定の仕方により効果的に面圧ムラを形成できることが検討の結果判明した。図6は摺動部平均長さ(全長)Lと溝部1つ当たりの周方向幅Bとの比に対し、摺動部に発生する平均面圧Pave と最大面圧Pmaxとの比Pmax/Paveとの関係を計算した結果である。このグラフの縦軸比Pmax/Paveが大きい値を示すことは、すなわち、少ないロータ加圧力でも大きなピーク面圧を形成できることを示しており、効果的な面圧ムラを形成できる事を意味している。
【0024】
グラフから分かるように、Pmax/PaveのカーブはB/Lが0.007付近に編曲点があり、ここから急激に大きくなる。すなわち、B/Lが0.007より大きくなるように溝幅Bを設定すれば、効果的に面圧ムラを設定できることになる。
【0025】
なお、ロータの接触部剛性を2倍程度に変化させてもこの関係はほとんど変化しないことが確認されており、この一例として、接触部剛性を1/2にしたときの値も図6のグラフに示した。
【0026】
本実施形態においては、弾性体12の外径はφ10mm、厚さは1.5mm、であり、横幅Bは0.5mm、摺動部の平均直径はφ9.2mmである。摺動部Lは、L=φ9.2×πであるため、B/L=0.017となる。ロータ接触部は板厚80μmのSUS420j2板を板金プレスで摺動径が小さくなるようにクランク形状に成型している(接触部分φ9.2mm、本環との係合部φ9.4mm)。また、溝の深さは、ロータが変形して溝の底に接触しなけらば良いので、通常は振動振幅以上に設定していれば問題ない。
【0027】
(第2の実施形態)
図7には第2の実施形態における弾性部材12の溝形状を示す。本実施形態においては溝幅を不均一に形成することによりPmaxの値に分布を持たせ、局部的にさらに高い面圧部を形成することにより、モータの性能低下を招くことなく湿度下でのトルク低下防止効果を高めたものである。図において、溝は合計8本設け、摺動面の中心に対して対向する位置であるaとa’の位置では溝幅を広くし(2mm)この部分でのPmaxを大きくする。一方、これと直交する溝b,b’は溝幅を狭く(0.5mm)設定している。なお、これらの溝は全てB/Lが0.007以上の値となっている。
【0028】
(第3の実施形態)
図8には第3の実施形態における弾性部材12の溝形状を示す。本実施形態において各々の溝幅は均等(0.5mm)とし、溝を形成するピッチを図のように不均等に形成することにより、摺動面内にPmaxである部分が密な領域(cおよびc’の領域)を設け、水分除去効果を高めようとするものである。溝を形成するピッチは、弾性部材12の中心を境に、点対称になっている。
【0029】
(第4の実施形態)
図9には第4の実施形態における弾性部材12の溝形状を示す。本実施形態においては一方向に溝幅が均等な平行溝を形成することにより、周方向の場所により接触部の有効溝幅を変え、以って面圧ムラを形成するように設定したものである。すなわち、図中d部では他の摺動部よりも実質的に溝部の長さBが長くなり、この部分でのPmaxが大きくなることで、水分の排除効果を高めようとするものである。
【0030】
(第5の実施形態)
図10には第5の実施形態における弾性部材12の溝形状を示す。本実施形態においては溝の方向を放射方向に対し45°傾けて形成しており、今まで述べてきたようなエッヂ効果の他に、モータ駆動時に該弾性部材とロータとが順次回転方向に接触していく際に水分を外周側(又は内周側)に排除する効果をもたせたものである。
【0031】
(第6の実施形態)
図11には第6の実施形態における弾性部材12の溝形状を示す。第5の実施形態までは弾性部材に溝部を形成したが、本実施形態においては逆に弾性体上に複数の突起部を設け、突起部間に形成された隙間によって同様の効果を持たせるものである。突起部間の形状、形態を調整することで、所望の溝部の形状を得ることができる。
【0032】
尚、本実施形態では、等ピッチに突起を設けた例を示したがこの形状に限定されるものではなく、実施形態1〜5の効果をもたせるもの(不等ピッチ等)であればどのような構造であっても良いことは言うまでもない。
【0033】
また、上記の各実施形態では溝部、もしくは、突起部をSUSの板材をプレス成型した振動子の摺動部に設けたが、同様の摺動部材を被駆動体であるロータの摺動部に設け、上記の実施形態とは反対に、弾性を有する振動子の摺動部がロータの摺動部の溝に沈み込む構成であっても構わない。勿論、溝部もしくは突起が設けられた摺動部のほうが、他方の摺動部よりも硬度が大きいことは言うまでもないであろう。
【0034】
【発明の効果】
以上のように、振動子と被駆動体との摺動部の一方に溝部を形成し、加圧された他方の摺動部がこの溝部に弾性で沈み込むことで、他の摺動部よりも面圧の高い部分を複数箇所形成することによって、高湿度下でのモータトルクの低下現象を効果的に防止できるようになった。
【図面の簡単な説明】
【図1】本発明の第1の実施形態にかかる振動波駆動装置の斜視図。
【図2】本発明の第1の実施形態にかかる振動波駆動装置の断面図。
【図3】本発明の第1の実施形態にかかる振動子の斜視図。
【図4】本発明の第1の実施形態にかかる振動子の断面図と振動モード図。
【図5】本発明の第1の実施形態にかかる弾性体の平面図及び面圧分布説明図。
【図6】本発明の第1の実施形態にかかる溝幅と面圧の関係を示すグラフ。
【図7】本発明の第2の実施形態にかかる弾性体の平面図。
【図8】本発明の第3の実施形態にかかる弾性体の平面図。
【図9】本発明の第4の実施形態にかかる弾性体の平面図。
【図10】本発明の第5の実施形態にかかる弾性体の平面図。
【図11】本発明の第6の実施形態にかかる弾性体の平面図と側面図。
【図12】従来の棒状振動子の断面図と振動モード図。
【図13】従来の棒状振動子を用いた振動波駆動装置の構成図。
【図14】従来の棒状振動子を用いた振動波駆動装置の構成図。
【符号の説明】
1 第1の弾性体
2 第2の弾性体
3 圧電素子
4 シャフト
5 ナット
6 摩擦板
7 ロータ
8 ギア
9 軸受け
10 モータ取り付け用フランジ
11 ナット
12 弾性部材(摩擦板)
13 第3の弾性体
15 加圧バネ
16 接触部材
17 フレキシブル基板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vibration wave driving device including an ultrasonic motor and the like, and particularly to a structure of a contact portion between a vibrator and a driven body.
[0002]
[Prior art]
The vibration wave drive device is applied to many products such as a calendar drive of a clock, a photosensitive drum of a copying machine, etc. in addition to the drive of a camera lens, and the shape (structure) of the vibrator is an annular type. There are various types such as rod-shaped, disk-shaped, and the like.
[0003]
FIGS. 12 to 14 are explanatory views of a rod-shaped vibration wave driving device used for autofocus driving of a camera lens among these motors.
[0004]
FIG. 12 (a) shows the structure of a rod-shaped vibrator, and FIG. 12 (b) shows its vibration mode. FIGS. 13 and 14 show the vibration wave drive currently used for driving a camera lens using this vibrator. 1 shows a configuration diagram of an apparatus.
[0005]
In these figures, 1 is a first elastic body, 2 is a second elastic body, 3 is a laminated piezoelectric element (or a laminated body of single-plate piezoelectric elements), 4 is a shaft, 5 is a nut, and Are tightened by the shaft 4 or the shaft 4 and the nut 5 so that a predetermined clamping force is applied.
[0006]
One surface of the rotor 7 has a structure in which the contact width is small and has an appropriate spring property, and this surface contacts the friction surface 6 of the vibrator. A convex portion (or concave portion) is formed on the other surface of the rotor 7, and engages with a concave portion (or convex portion) of the gear 8 to transmit the rotation of the rotor 7 to the gear 8.
[0007]
Further, the position of the gear 8 is fixed in the thrust direction of the shaft 4 by a flange 10 for mounting a motor, and a pressing spring 15 for applying a pressing force to the rotor 7 is provided between the gear and the rotor. Is provided.
[0008]
The laminated piezoelectric element 3 (or a laminate of single-plate piezoelectric elements) has electrodes grouped into two electrode groups. When an AC electric field having a different phase is applied to each of the electrode groups from a power source (not shown), the vibrator In FIG. 12, two bending vibrations perpendicular to each other in the form shown in FIG. 12B are excited (the other vibration in a direction perpendicular to the paper surface). By adjusting the phase of the applied electric field, a temporal phase difference of 90 degrees can be given between the two vibrations. As a result, the bending vibration of the rod-shaped vibrator rotates around the vibrator axis.
[0009]
As a result, an elliptical motion is formed on the surface of the first elastic body in contact with the rotor 7, and the rotor 7 pressed by the wear-resistant member 6 is driven by friction, so that the rotor 7, the gear 8, The pressure spring 15 rotates integrally.
[0010]
In the rod-shaped vibration wave driving device shown here, electroless nickel (NiP) and SiC particle composite plating are used on a vibrator-side elastic member 1 on the vibrator side as a friction material of a sliding portion, and the other rotor is used. Was made by subjecting aluminum to alumite treatment.
[0011]
This combination of friction materials has a high coefficient of friction, shows relatively good friction characteristics, but has the drawback that the motor life is short due to the large amount of wear. Only used.
[0012]
In order to extend the life of the friction material and to apply it to a wider range of applications, ceramics such as alumina having excellent wear resistance and friction materials such as SUS have been studied. As an example of this, in FIG. 14, a friction ring 6 made of alumina is joined to the elastic member 1 to form a friction surface on the vibrator side. The example which joined the contact member 16 by press-molding of FIG. Since the combination of these friction materials is very excellent in wear resistance, the life of the motor can be significantly extended as compared with the former.
[0013]
[Problems to be solved by the invention]
However, it has been found that these friction materials have a disadvantage that the friction coefficient is extremely reduced in a high humidity environment. As a result, when the motor is left under high temperature and high humidity for a long time, or when the motor is operated in a high humidity environment, the start of the rotor is delayed, Speed, and it took a long time before performance was restored.
[0014]
These phenomena are caused by the fact that when the vibration wave driving device is left in high humidity, a small amount of water adheres to a small gap on the sliding surface, and the friction coefficient between the vibrator and the rotor is reduced. It has been found that this occurs because the generated torque is reduced.
[0015]
As a countermeasure against the presence of moisture at the interface of the contact part, it is common to take measures to increase the surface pressure at the contact surface by increasing the pressure applied to these surfaces to eliminate moisture. is there. However, in the vibration wave driving device, simply increasing only the pressing force increases the load on the friction surface, not only promotes wear, but also exerts a load on the bearing receiving the press reaction force, and the The durability will be worsened and the loss in this bearing will also increase.
[0016]
[Means for Solving the Problems]
In order to solve the above problem, the invention according to claim 1 of the present application includes a vibrator configured by an elastic member and an electro-mechanical energy conversion element, and a driven body that presses and contacts the elastic member. A vibration wave driving device that excites driving vibration to the elastic member by applying an alternating signal to the electro-mechanical energy conversion element and moves the driven body relative to the elastic member by friction. Of the contact portion and the contact portion of the driven body, one contact portion is formed with a plurality of recesses, and the other contact portion is elastically deformable in a direction in which a surface contacting the recess is pressed, The concave portion satisfies B / L> 0.007, where B is the width of the concave portion in the sliding direction, and L is the average length of the contact portion.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
1 to 3 show a first embodiment according to the present invention. 1 is a perspective view of the motor, FIG. 2 is a cross-sectional view of the motor, and FIG. 3 is a perspective view of the vibrator. In the figure, the shaft 4 is press-fitted into a third elastic body 13, and the first elastic body 12, the laminated piezoelectric element 3, and the flexible print for power supply are formed by these members and the second elastic body 2 (lower nut). A vibrator is formed by sandwiching the substrate 17 and fastening the second elastic body 2 and the screw portion provided on the shaft 4 with a predetermined force. On the other hand, the rotor which is the driven body is formed by joining a contact member 16 formed by pressing a SUS plate material to the rotor main ring 7, and is provided between the rotor 8 and the gear 8 which engages with the rotor to transmit the rotational force. The end of the contact member 16 is pressed against the elastic body 12 of the vibrator by the compression coil spring 15 provided. The gear 8 is inserted from one end of the shaft 4 and is axially supported by being engaged with a fixed flange 10 positioned and fixed in the thrust direction, so that the gear and the rotor can rotate stably without swinging. Is set to
[0018]
When an AC electric field is applied to the laminated piezoelectric element 3 from the power supply (not shown) through the flexible printed circuit board 17, the vibrator is subjected to bending vibration (parallel to the paper) as shown in FIG. The vibrations in the directions (perpendicular to the plane of the paper) are simultaneously excited, and when these two vibrations are combined, a motion in which the elastic body 12 rotates around the shaft axis is excited by the vibrator. As a result, the elastic body 12 located near the antinode of the vibration makes a revolving motion while tilting with respect to the rotation axis of the vibration, so that an elliptical motion occurs on the contact surface with the rotor. Therefore, the rotor in contact with the elastic body rotates around the axis by the frictional force due to the elliptical motion and moves relative to the vibrating body.
[0019]
More specifically, when the vibration shown in FIG. 4B is excited, the elastic body 12 in FIG. 4A slides to the left. Since the center of the elastic body 12 in the longitudinal direction of the shaft 4 is located closer to the rotor than the antinode of vibration, the flat elastic body 12 is in a state where the left side is lifted and the right side is lowered. At this time, the lifted left sliding portion (contact portion) of the elastic body 12 is in strongest contact with the rotor. When drive vibration is applied to the piezoelectric element 3, the vibration shown in FIG. 4B is excited to rotate around the axis of the shaft 4. As a result, the position of the sliding portion of the vibrator that comes into strongest contact with the rotor rotates about the shaft 4.
[0020]
The elastic body 12 is provided with eight grooves (recesses) extending in the radial direction in a sliding portion on the contact surface side with the rotor, and the contact portion of one of the rotors is formed in a circumferential direction by a SUS420j2 sheet metal press part. The structure has moderate elasticity in the pressing direction.
[0021]
According to various studies, the inventors of the present invention have found that, by providing these grooves in the elastic body, the surface pressure with the rotor locally increases at the edges of the grooves, and adheres to the sliding surface even in a high-humidity environment. It has been found that the torque can be prevented from being reduced without being affected by the water content. Hereinafter, this principle will be described.
[0022]
FIG. 5 shows a plan view (a) of the elastic body 12 in which a groove is provided on the sliding surface and an enlarged view (explanatory view) of a contact portion when the rotor is pressed against the elastic body 12. As shown in the figure, the rotor contact portion has an elastic structure, so that the rotor contact portion is deformed in the direction in which the rotor contact portion is pressed down so as to fall down, and as a result, the surface pressure of the edge portion is locally reduced. (Pmax).
[0023]
The magnitude of this Pmax greatly depends on the groove width B, and as a result of investigation, it has been found that the surface pressure unevenness can be effectively formed by setting the B. FIG. 6 shows a ratio Pmax / Pave of the average surface pressure Pave generated in the sliding portion and the maximum surface pressure Pmax with respect to the ratio of the average length (full length) L of the sliding portion to the circumferential width B per groove portion. This is the result of calculating the relationship with. A large value of the vertical axis ratio Pmax / Pave in this graph indicates that a large peak surface pressure can be formed even with a small rotor pressure, which means that effective surface pressure unevenness can be formed. I have.
[0024]
As can be seen from the graph, the curve of Pmax / Pave has an inflection point where B / L is around 0.007, and sharply increases from this point. That is, if the groove width B is set so that B / L is larger than 0.007, the surface pressure unevenness can be effectively set.
[0025]
It has been confirmed that this relationship hardly changes even if the contact portion rigidity of the rotor is changed about twice, and as an example of this, the value when the contact portion rigidity is reduced by half is also shown in the graph of FIG. It was shown to.
[0026]
In the present embodiment, the outer diameter of the elastic body 12 is 10 mm, the thickness is 1.5 mm, the width B is 0.5 mm, and the average diameter of the sliding portion is 9.2 mm. Since the sliding portion L is L = φ9.2 × π, B / L = 0.017. The rotor contact portion is formed by forming a SUS420j2 plate having a thickness of 80 μm into a crank shape by a sheet metal press so as to reduce the sliding diameter (contact portion φ9.2 mm, engagement portion with the main ring φ9.4 mm). In addition, since the depth of the groove need only be set so as not to deform the rotor and come into contact with the bottom of the groove, there is usually no problem if the depth is set to be equal to or larger than the vibration amplitude.
[0027]
(Second embodiment)
FIG. 7 shows a groove shape of the elastic member 12 according to the second embodiment. In this embodiment, the value of Pmax has a distribution by forming the groove width unevenly, and a higher surface pressure portion is formed locally, so that the motor performance under humidity can be reduced without causing a decrease in motor performance. This is an improvement in the effect of preventing torque reduction. In the figure, a total of eight grooves are provided, and at positions a and a 'which are opposite to the center of the sliding surface, the groove width is increased (2 mm), and Pmax at this portion is increased. On the other hand, the grooves b and b 'perpendicular to the groove width are set to be narrow (0.5 mm). Note that all of these grooves have a B / L of 0.007 or more.
[0028]
(Third embodiment)
FIG. 8 shows a groove shape of the elastic member 12 according to the third embodiment. In the present embodiment, the width of each groove is made equal (0.5 mm), and the pitch for forming the grooves is formed unequally as shown in the figure, so that the area of Pmax in the sliding surface is a dense area (c). And the region c ′) are provided to enhance the water removal effect. The pitch at which the grooves are formed is point-symmetric with respect to the center of the elastic member 12.
[0029]
(Fourth embodiment)
FIG. 9 shows a groove shape of the elastic member 12 according to the fourth embodiment. In the present embodiment, by forming a parallel groove having a uniform groove width in one direction, the effective groove width of the contact portion is changed depending on the location in the circumferential direction, thereby setting the surface pressure unevenness. is there. That is, the length B of the groove portion is substantially longer in the portion d in the drawing than in the other sliding portions, and the Pmax in this portion is increased, so that the effect of removing moisture is increased.
[0030]
(Fifth embodiment)
FIG. 10 shows a groove shape of the elastic member 12 according to the fifth embodiment. In this embodiment, the direction of the groove is formed at an angle of 45 ° with respect to the radial direction. In addition to the edge effect as described above, when the motor is driven, the elastic member and the rotor sequentially contact in the rotational direction. This has the effect of removing moisture toward the outer circumference (or the inner circumference) during the process.
[0031]
(Sixth embodiment)
FIG. 11 shows a groove shape of the elastic member 12 according to the sixth embodiment. Up to the fifth embodiment, the grooves are formed in the elastic member. However, in the present embodiment, a plurality of protrusions are provided on the elastic body, and the same effect is provided by the gap formed between the protrusions. It is. By adjusting the shape and form between the protrusions, a desired groove shape can be obtained.
[0032]
In the present embodiment, an example in which the protrusions are provided at an equal pitch is shown. However, the present invention is not limited to this shape, and any shape that provides the effects of the first to fifth embodiments (unequal pitch or the like) can be used. Needless to say, a simple structure may be used.
[0033]
Further, in each of the above embodiments, the groove or the protrusion is provided on the sliding portion of the vibrator formed by pressing the SUS plate material, but the same sliding member is provided on the sliding portion of the rotor which is the driven body. The configuration may be such that the sliding portion of the vibrator having elasticity sinks into the groove of the sliding portion of the rotor, contrary to the above embodiment. Of course, it goes without saying that the sliding portion provided with the groove or the projection has a higher hardness than the other sliding portion.
[0034]
【The invention's effect】
As described above, a groove is formed in one of the sliding portions between the vibrator and the driven body, and the other pressed sliding portion is elastically sunk into this groove portion, so that the other sliding portion is smaller than the other sliding portion. Also, by forming a plurality of portions having a high surface pressure, a decrease in motor torque under high humidity can be effectively prevented.
[Brief description of the drawings]
FIG. 1 is a perspective view of a vibration wave driving device according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of the vibration wave driving device according to the first embodiment of the present invention.
FIG. 3 is a perspective view of the vibrator according to the first embodiment of the present invention.
FIG. 4 is a sectional view and a vibration mode diagram of the vibrator according to the first embodiment of the present invention.
5A and 5B are a plan view and a surface pressure distribution explanatory diagram of the elastic body according to the first embodiment of the present invention.
FIG. 6 is a graph showing the relationship between groove width and surface pressure according to the first embodiment of the present invention.
FIG. 7 is a plan view of an elastic body according to a second embodiment of the present invention.
FIG. 8 is a plan view of an elastic body according to a third embodiment of the present invention.
FIG. 9 is a plan view of an elastic body according to a fourth embodiment of the present invention.
FIG. 10 is a plan view of an elastic body according to a fifth embodiment of the present invention.
FIG. 11 is a plan view and a side view of an elastic body according to a sixth embodiment of the present invention.
FIG. 12 is a sectional view and a vibration mode diagram of a conventional rod-shaped vibrator.
FIG. 13 is a configuration diagram of a vibration wave driving device using a conventional rod-shaped vibrator.
FIG. 14 is a configuration diagram of a vibration wave driving device using a conventional rod-shaped vibrator.
[Explanation of symbols]
Reference Signs List 1 first elastic body 2 second elastic body 3 piezoelectric element 4 shaft 5 nut 6 friction plate 7 rotor 8 gear 9 bearing 10 motor mounting flange 11 nut 12 elastic member (friction plate)
13 third elastic body 15 pressing spring 16 contact member 17 flexible substrate

Claims (6)

弾性部材と電気−機械エネルギー変換素子により構成された振動子と、該弾性部材に加圧接触する被駆動体とを備え、該電気−機械エネルギー変換素子に交番信号を印加することによって該弾性部材に駆動振動を励起し、摩擦によって該被駆動体を該弾性部材に対して相対移動させる振動波駆動装置において、
該弾性部材の接触部と該被駆動体の接触部のうち、一方の接触部は複数の凹部が形成され、他方の接触部は該凹部と接触する面が加圧される方向に弾性変形可能であって、該凹部は、該凹部の摺動方向における幅をBとし、該接触部の平均長をLとすると、B/L>0.007を満足することを特徴とする振動波駆動装置。
A vibrator constituted by an elastic member and an electro-mechanical energy conversion element, and a driven body which comes into pressure contact with the elastic member; and applying an alternating signal to the electro-mechanical energy conversion element, In a vibration wave driving device that excites driving vibration to move the driven body relative to the elastic member by friction,
Of the contact portion of the elastic member and the contact portion of the driven body, one of the contact portions has a plurality of concave portions, and the other contact portion is elastically deformable in a direction in which a surface contacting the concave portion is pressed. Wherein the concave portion satisfies B / L> 0.007, where B is the width of the concave portion in the sliding direction and L is the average length of the contact portion. .
該弾性体の接触部と該被駆動体の接触部は円形部材で構成され、該複数の凹部は一方の接触部の表面に設けられた複数の溝であることを特徴とする請求項1記載の振動波駆動装置。The contact portion of the elastic body and the contact portion of the driven body are formed of a circular member, and the plurality of recesses are a plurality of grooves provided on a surface of one of the contact portions. Vibration wave driving device. 該複数の溝は接触部の表面に放射状に等間隔で設けられていることを特徴とする請求項2記載の振動波駆動装置。3. The vibration wave driving device according to claim 2, wherein the plurality of grooves are provided radially at equal intervals on the surface of the contact portion. 該複数の溝は接触部の表面に放射状に不等間隔で設けられていることを特徴とする請求項2記載の振動波駆動装置。3. The vibration wave driving device according to claim 2, wherein the plurality of grooves are provided radially at irregular intervals on the surface of the contact portion. 該複数の溝は、接触部の周方向における幅が異なるものが含まれていることを特徴とする請求項2記載の振動波駆動装置。3. The vibration wave driving device according to claim 2, wherein the plurality of grooves include those having different widths in the circumferential direction of the contact portion. 該複数の溝は、該弾性部材または該被駆動体に形成された突起部の隙間によって設けられることを特徴とする請求項2乃至5記載の振動波駆動装置6. The vibration wave driving device according to claim 2, wherein the plurality of grooves are provided by a gap between the elastic member and a protrusion formed on the driven body.
JP2002275017A 2002-09-20 2002-09-20 Oscillatory wave driving device Withdrawn JP2004112972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002275017A JP2004112972A (en) 2002-09-20 2002-09-20 Oscillatory wave driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002275017A JP2004112972A (en) 2002-09-20 2002-09-20 Oscillatory wave driving device

Publications (1)

Publication Number Publication Date
JP2004112972A true JP2004112972A (en) 2004-04-08

Family

ID=32271336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002275017A Withdrawn JP2004112972A (en) 2002-09-20 2002-09-20 Oscillatory wave driving device

Country Status (1)

Country Link
JP (1) JP2004112972A (en)

Similar Documents

Publication Publication Date Title
US8816568B2 (en) Vibration-type driving apparatus
JP5631018B2 (en) Rotational vibration wave drive
JP3805242B2 (en) Vibration wave drive
US7456547B2 (en) Ultrasonic motor
JP5701032B2 (en) Vibration type driving device
KR20090011504A (en) Ultrasonic motor for vehicles or heavy equipment
JP2004112972A (en) Oscillatory wave driving device
JPH05219762A (en) Oscillation wave motor
JP2012067849A (en) Rotary driving device
US9300228B2 (en) Vibratory drive apparatus using lubricant between elastic member and piezoelectric member
JP4095282B2 (en) Vibration wave drive
JP4350208B2 (en) Vibration wave drive
JPH1075588A (en) Vibration wave motor
JP3902955B2 (en) Vibration body and vibration wave drive device
JP2003134858A (en) Vibration wave drive unit
JP5176530B2 (en) Vibration actuator
JP5883177B2 (en) Vibration type driving device
JPH04168986A (en) Ultrasonic motor
JPH04334984A (en) Oscillatory wave motor
JP2017099209A (en) Vibration actuator, lens barrel, and electronic equipment
KR0120038Y1 (en) Ultrasonic motor
JPH10263477A (en) Vibration-type drive device and device with vibration-type drive device as drive source
JP2021058031A (en) Rotary-type oscillating wave drive device, optical device, and electronic device
JPH02303372A (en) Ultrasonic motor
JPH06165536A (en) Ultrasonic motor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110