JP2004111587A - System and process for producing flexible printed wiring board - Google Patents

System and process for producing flexible printed wiring board Download PDF

Info

Publication number
JP2004111587A
JP2004111587A JP2002270966A JP2002270966A JP2004111587A JP 2004111587 A JP2004111587 A JP 2004111587A JP 2002270966 A JP2002270966 A JP 2002270966A JP 2002270966 A JP2002270966 A JP 2002270966A JP 2004111587 A JP2004111587 A JP 2004111587A
Authority
JP
Japan
Prior art keywords
flexible printed
vapor deposition
ion irradiation
printed wiring
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002270966A
Other languages
Japanese (ja)
Other versions
JP3443420B1 (en
Inventor
Ari Ide
井手 亜里
Hiroto Yasui
安井 啓人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNOLOGY SEED INCUBATION CO
TECHNOLOGY SEED INCUBATION CO Ltd
Original Assignee
TECHNOLOGY SEED INCUBATION CO
TECHNOLOGY SEED INCUBATION CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNOLOGY SEED INCUBATION CO, TECHNOLOGY SEED INCUBATION CO Ltd filed Critical TECHNOLOGY SEED INCUBATION CO
Priority to JP2002270966A priority Critical patent/JP3443420B1/en
Application granted granted Critical
Publication of JP3443420B1 publication Critical patent/JP3443420B1/en
Publication of JP2004111587A publication Critical patent/JP2004111587A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system and a process for producing a flexible printed wiring board in which a thin film of a metal or an alloy exhibiting excellent adhesion strength to a substrate can be formed utilizing an ion beam. <P>SOLUTION: Substrate temperature can be controlled in a surface treatment process and an evaporation process having an adverse effect on the adhesion strength between a resin board and a metal or an alloy utilizing a tubular rotary sample holder capable of mounting a substrate on the side face and feeding cooling water into the tube. Significantly uniform ion irradiation of a large area with ions can be effected using an ion source having a slit-like ion irradiation opening. Furthermore, a flexible printed wiring board can be produced using a small scale system shown on the drawing. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】本発明はイオンビーム照射を伴う大面積フレキシブルプリント配線板製造装置及び製造方法に関する。
【0002】
【従来の技術】フレキシブルプリント基板は、ポリエステル、ポリイミドなどの高分子フィルムをベースにしてその表面に導体パターンを形成したもので、可撓性に富み、軽量、安価であることから、電気・電子機器、電子部品等の接続に広く用いられている。このようなフレキシブルプリント基板の製造方法としては、高分子フィルム上に金属薄膜を蒸着した後、それを適当な大きさに切断し、レジストを塗布し、パターニングを施したマスクを用いて露光した後、電解液の中に浸して化学的なエッチングによりレジストパターンを除去することにより製造されている。(例えば、特開平6−21620号公報を参照されたい。)
【0003】
【発明が解決しようとする課題】近年、パソコン、PCカード等に搭載するマルチチップモジュール、携帯電話等の移動体通信機器用の電子部品等に対して、小型化、軽量化や、高密度化、高精細化、高信頼性等の要求が高まってきている。これに伴い、フレキシブルプリント基板における回路の微細化、高密度化さらにコストダウンがこれまで以上に求められてきている。
【0004】
従来の技術では、金属薄膜形成後のエッチングの際に、電解液などの影響により金属薄膜と高分子フィルムとの界面が浸食され、フレキシブルプリント基板に欠くことの出来ない性能の一つであるそれらの密着性が低下し、上記の微細化、高密度化に対応できないと指摘される。また従来の方法では、工程が数多く、今後大幅なコストダウンは難しい。ガラスや樹脂で構成される肉厚の基板の回路製造方法として、基板の表面に直接回路パターンを形成する方法も既に知られているが、高分子フィルムのような薄膜に直接回路パターンを形成することは、これまでなされてこなかった。その理由は、高分子フィルムに対する高密度の配線パターン形成の際に、パターンの微細化によりパターンと高分子フィルム間の密着強度を維持することができず、高精度の回路形成は困難と考えられていたためである。
【0005】
上記の問題点に関しては、成膜前の基板に対してイオン照射を行うことまた、蒸着と同時に回路を作りこむことによって樹脂基板と金属又は合金間の密着強度が劇的に向上することは以前報告した通りである。(特願2001−255669)該出願特許における方法、装置により密着性に優れたフレキシブルプリント配線板の大量生産が可能となった。
【0006】
これに対し今日フレキシブルプリント配線板製造装置は、急激に変化するニーズに対応するために、大量生産性と同時に少量多品種のフレキシブルプリント配線板の製造を要求されてきている。従来の装置は大量生産を念頭に置いており、装置は大規模であり多大な導入費用を要した。
また配線パターンの更なる微細化に対応するために、樹脂基板と金属又は合金間のより高い密着強度が望まれている。
【0007】
また円形のイオン照射口を有するイオン源を用いた場合、長幅の樹脂基板に均一なイオン照射を行うためには磁場等によるイオンビームの走査を行わなければならない。このことは装置の高コスト化、複雑化につながる。
【0008】
【課題を解決するための手段】
本発明は、斯かる従来の問題点に鑑みてなされたもので、イオンビームを利用して基板との密着強度に優れた金属又は合金薄膜の成膜を可能とするフレキシブルプリント配線板の製造装置及び製造方法を提供しようとするものである。
【0009】
本発明は、円筒型で側面に基板を載置できるようになってあって、円筒内部に冷却水を流し込むことができるようになってある回転式サンプルホルダーを利用することにより、樹脂基板と金属又は合金間の密着強度に悪影響を及ぼす表面処理過程及び蒸着過程における基板温度の制御を可能にした。またサンプルホルダーを回転させることで長幅の高分子基板に連続的に金属回路を作りこむことを可能にした。またスリット状のイオン照射口を有するイオン源を用いることで第1図に示したように大面積への非常に均一なイオン照射を可能にした。このことにより非常に均一な特性を有する大面積の金属薄膜の成膜を可能にした。さらに本発明の装置ではサンプルホルダー上の高分子基板は回転を繰り返すことにより、酸素、窒素、アルゴン及びその他のイオンビームを高分子フィルム表面に照射する過程と、回路パターンを成形したマスクまたはそれに類似する方法で高分子フィルムの表面を覆い、そのマスクされた高分子フィルムの表面に蒸着を施す過程を含み、それらを複数回交互に繰り返すことで膜形成と同時に密着性の良い回路を作り込むことを可能にした。また本発明による図2に示したような小規模な装置を用いることで、フレキシブルプリント配線板の製造が可能になった。
【作用】
本発明では、イオンが高分子表面に衝突することにより、高分子表面に吸着した不純物をはじき飛ばしてクリーニングすると同時に、スパッタリングにより,表面の粗度あげることができる。また、これとあわせて、高分子を構成する分子の再構成やイオンの高分子内への取り込みなどによる新たな化学種を形成することができるため、大幅に密着性を高めることができ、回路の微細化に対応したフレキシブルプリント基板を作成することが可能となる。また金属原子の蒸着中、又は金属原子の蒸着後に前記イオンビームを照射することで、金属薄膜と高分子基板の界面においてミキシングを引き起こし、大幅に密着性を高めることができる。
【0010】
【実施例】第2図は本発明の一実施例である。22は真空チャンバであり、排気装置31によって真空排気が行われる。図中には上下にそれぞれ一つの排気装置が備え付けられているが、この限りではない。真空容器22は遮蔽板23によりイオン照射室41と蒸着室42に分離される。この遮蔽板23は蒸着室42の真空度をイオン照射室41の真空度より高真空に維持しようとする意図で設置されているが、本発明の装置にとって遮蔽板23は必要不可欠なものではない。21は高分子基板43を載置する円筒型のサンプルホルダーである。円筒の直径は300mmで円筒側面の幅は400mmであるが、真空容器の大きさに応じてサイズを変更しても構わない。本実施例においてはサンプルホルダー21は鉄製であり、高分子基板43が磁石により固定できるようになっているが、サンプルホルダー21の材質、サンプルの固定方法はこの限りではない。イオン照射装置11は本実施例においてはイオン照射室41のサンプルホルダー21の右方に設置した。イオン照射装置の設置位置はこの限りではない。イオン照射装置を真空蒸着装置01の付近に設置することで、従来のイオンビームアシスト蒸着法を行うことも可能である。またイオン照射装置の個数もこの限りではなく、複数用いることも可能である。イオン照射装置11のイオン照射口はスリット形状をしており長さ350mmで幅5mmである。イオン照射装置11は高分子基板43に対して第1図になるように設置してある。サンプルホルダー21の下方で蒸着室42の内部には真空蒸着装置01が設置されている。真空蒸着装置の設置位置及び設置個数はこの限りではない。真空蒸着装置01とサンプルホルダー21の間には、スリット02及び回路パターンが印刷されたマスク05が設置されている。このスリット02によりサンプルホルダー21に達する蒸着原子は均一になっている。このスリットは本発明に必要不可欠なものではない。
【0011】
幅300mm、長さ500mm、厚さ50μmの高分子基板43をサンプルホルダー21の上方に設置した後、排気装置31により真空排気を行う。イオン照射室室41及び蒸着室42の真空度は1E−05Paから1E−03Pa程度まで減圧される。減圧後イオン照射室41にはボンベ13から酸素が供給され、真空度は1E−02Pa程度になる。この酸素の供給量は照射したいイオンビームの電流量に応じて変化する。イオン照射装置11内で酸素はプラズマ化し、数十eVから数千eV程度に加速される。また下室42内では蒸着材料のベイキングが行われ、その後、所望の成膜速度での蒸着を開始する。イオン照射装置11及び蒸着装置01において安定的な動作が達成された後、サンプルホルダー21は回転を開始する。回転を継続しながらサンプルホルダー21上の高分子基板43上では所望の膜厚に達するまでイオン照射と蒸着を交互に繰り返される。上記のイオン照射、蒸着過程の途中で蒸着材料を変更し、複数層のフレキシブルプリント配線板の作製を行うことも可能である。
【0012】
【発明の効果】
以上説明したように、本発明は大面積基板上での薄膜形成時に、回転式サンプルホルダーを用いること、またレーストラック形状、スリット形状又はそれに類する形状のイオン照射口を有したイオン源を用いてイオン照射を行うこと、また交互にイオン照射及び蒸着を繰り返すことで大面積の密着強度に優れたフレキシブルプリント配線板を作製することが可能である。
【図面の簡単な説明】
【図1】本願発明に係るスリット形状イオン照射口を有するイオン源を用いたときの大面積イオン照射を示す模式図である。
【図2】本願第2発明に係る薄膜製造方法が適用された薄膜製造装置の概略を示す図である。
【符号の説明】
01 蒸着源
02 スリット
03 マスク搬送装置
04 蒸着原子
05 マスク
11 イオン照射装置
12 イオンビーム
13 ボンベ
14 ストップバルブ
21 サンプルホルダー
22 真空容器
23 遮蔽版
31 排気装置
41 上室
42 下室
43 高分子基板
[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for manufacturing a large-area flexible printed wiring board accompanied by ion beam irradiation.
[0002]
2. Description of the Related Art A flexible printed circuit board is formed by forming a conductive pattern on the surface thereof based on a polymer film such as polyester or polyimide. The flexible printed circuit board is rich in flexibility, lightweight and inexpensive. It is widely used for connecting devices, electronic components, and the like. As a method for manufacturing such a flexible printed circuit board, after depositing a metal thin film on a polymer film, cutting it into an appropriate size, applying a resist, and exposing using a patterned mask, It is manufactured by immersing in an electrolytic solution and removing the resist pattern by chemical etching. (See, for example, JP-A-6-21620.)
[0003]
In recent years, multi-chip modules mounted on personal computers, PC cards, and the like, and electronic parts for mobile communication devices such as mobile phones have been reduced in size, weight, and density. Demands for high definition, high reliability, etc. are increasing. Along with this, finer circuits, higher densities, and lower costs in flexible printed circuit boards have been required more than ever.
[0004]
In the conventional technology, when etching after forming a metal thin film, the interface between the metal thin film and the polymer film is eroded by the influence of the electrolytic solution etc., which is one of the indispensable performances of flexible printed circuit boards It is pointed out that the adhesiveness of the film decreases, and it is impossible to cope with the miniaturization and high density described above. Further, in the conventional method, there are many steps, and it is difficult to significantly reduce costs in the future. As a method of manufacturing a circuit board of a thick board made of glass or resin, a method of forming a circuit pattern directly on the surface of the board is already known, but a circuit pattern is formed directly on a thin film such as a polymer film. That has never been done before. The reason is that, when forming a high-density wiring pattern on a polymer film, it is considered difficult to maintain the adhesion strength between the pattern and the polymer film due to the miniaturization of the pattern, making it difficult to form a high-precision circuit. Because it was.
[0005]
Regarding the above-mentioned problems, it was previously that the adhesion strength between the resin substrate and the metal or alloy was dramatically improved by irradiating the substrate before film formation with ions and by forming a circuit at the same time as evaporation. As reported. (Japanese Patent Application No. 2001-255669) The mass production of a flexible printed wiring board having excellent adhesion has been made possible by the method and apparatus in the patent application.
[0006]
On the other hand, in order to respond to rapidly changing needs, a flexible printed wiring board manufacturing apparatus has been required to produce a large number of flexible printed wiring boards at the same time as mass production in order to meet rapidly changing needs. Conventional equipment was intended for mass production, and the equipment was large and expensive.
Further, in order to cope with further miniaturization of wiring patterns, higher adhesion strength between the resin substrate and the metal or alloy is desired.
[0007]
When an ion source having a circular ion irradiation port is used, it is necessary to scan an ion beam with a magnetic field or the like in order to perform uniform ion irradiation on a long-width resin substrate. This leads to an increase in cost and complexity of the device.
[0008]
[Means for Solving the Problems]
The present invention has been made in view of such conventional problems, and has an apparatus for manufacturing a flexible printed wiring board capable of forming a metal or alloy thin film having excellent adhesion strength to a substrate by using an ion beam. And a manufacturing method.
[0009]
The present invention utilizes a rotary sample holder, which is cylindrical and on which a substrate can be placed on the side, and in which cooling water can be poured into the cylinder, thereby enabling the resin substrate and metal to be mounted. Alternatively, it is possible to control the substrate temperature in the surface treatment process and the vapor deposition process that adversely affect the adhesion strength between the alloys. By rotating the sample holder, a metal circuit can be continuously formed on a long polymer substrate. In addition, by using an ion source having a slit-shaped ion irradiation port, a very uniform ion irradiation on a large area was enabled as shown in FIG. This enabled the formation of a large-area metal thin film having very uniform characteristics. Further, in the apparatus of the present invention, the polymer substrate on the sample holder is repeatedly rotated to irradiate the surface of the polymer film with oxygen, nitrogen, argon, and other ion beams, and a mask formed with a circuit pattern or similar. Covering the surface of the polymer film by a method that involves vapor deposition on the surface of the masked polymer film, and repeating these multiple times to create a circuit with good adhesion at the same time as film formation Enabled. Further, by using a small-scale apparatus as shown in FIG. 2 according to the present invention, it has become possible to manufacture a flexible printed wiring board.
[Action]
In the present invention, the ions can collide with the polymer surface to repel impurities adsorbed on the polymer surface and clean them, and at the same time, the surface roughness can be increased by sputtering. At the same time, new chemical species can be formed by reconstitution of the molecules that make up the polymer and incorporation of ions into the polymer, thereby significantly improving the adhesion. It is possible to create a flexible printed circuit board corresponding to the miniaturization of the device. By irradiating the ion beam during the deposition of metal atoms or after the deposition of metal atoms, mixing is caused at the interface between the metal thin film and the polymer substrate, and the adhesion can be greatly improved.
[0010]
FIG. 2 shows an embodiment of the present invention. Reference numeral 22 denotes a vacuum chamber, which is evacuated by an exhaust device 31. Although one exhaust device is provided on each of the upper and lower sides in the figure, the present invention is not limited to this. The vacuum vessel 22 is separated into an ion irradiation chamber 41 and a vapor deposition chamber 42 by a shielding plate 23. The shield plate 23 is provided with the intention of maintaining the degree of vacuum in the vapor deposition chamber 42 higher than the degree of vacuum in the ion irradiation chamber 41, but the shield plate 23 is not indispensable for the apparatus of the present invention. . Reference numeral 21 denotes a cylindrical sample holder on which the polymer substrate 43 is placed. Although the diameter of the cylinder is 300 mm and the width of the side surface of the cylinder is 400 mm, the size may be changed according to the size of the vacuum vessel. In the present embodiment, the sample holder 21 is made of iron and the polymer substrate 43 can be fixed by a magnet, but the material of the sample holder 21 and the method of fixing the sample are not limited thereto. In the present embodiment, the ion irradiation device 11 is installed on the right side of the sample holder 21 in the ion irradiation room 41. The installation position of the ion irradiation device is not limited to this. By installing the ion irradiation apparatus near the vacuum evaporation apparatus 01, it is possible to perform the conventional ion beam assisted evaporation method. The number of ion irradiation devices is not limited to this, and a plurality of ion irradiation devices can be used. The ion irradiation port of the ion irradiation device 11 has a slit shape and is 350 mm long and 5 mm wide. The ion irradiation device 11 is installed on the polymer substrate 43 as shown in FIG. A vacuum evaporation apparatus 01 is installed inside the evaporation chamber 42 below the sample holder 21. The installation position and the number of the vacuum evaporation devices are not limited to the above. A slit 02 and a mask 05 on which a circuit pattern is printed are provided between the vacuum evaporation apparatus 01 and the sample holder 21. The vapor deposition atoms reaching the sample holder 21 are made uniform by the slits 02. This slit is not essential for the present invention.
[0011]
After a polymer substrate 43 having a width of 300 mm, a length of 500 mm, and a thickness of 50 μm is set above the sample holder 21, evacuation is performed by the evacuation device 31. The degree of vacuum in the ion irradiation chamber 41 and the vapor deposition chamber 42 is reduced from 1E-05 Pa to about 1E-03 Pa. After the pressure is reduced, oxygen is supplied from the cylinder 13 to the ion irradiation chamber 41, and the degree of vacuum is about 1E-02 Pa. The supply amount of oxygen changes according to the amount of current of the ion beam to be irradiated. Oxygen is turned into plasma in the ion irradiation device 11 and accelerated from several tens eV to several thousands eV. In addition, baking of a deposition material is performed in the lower chamber 42, and thereafter, deposition at a desired film forming rate is started. After a stable operation is achieved in the ion irradiation device 11 and the vapor deposition device 01, the sample holder 21 starts rotating. While rotating, ion irradiation and vapor deposition are alternately repeated on the polymer substrate 43 on the sample holder 21 until a desired film thickness is reached. It is also possible to change the vapor deposition material in the course of the ion irradiation and vapor deposition steps to produce a flexible printed wiring board having a plurality of layers.
[0012]
【The invention's effect】
As described above, the present invention uses a rotary sample holder when forming a thin film on a large-area substrate, and also uses an ion source having an ion irradiation port having a race track shape, a slit shape, or a similar shape. By performing ion irradiation and alternately repeating ion irradiation and vapor deposition, it is possible to manufacture a flexible printed wiring board having a large area and excellent adhesion strength.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing large-area ion irradiation when an ion source having a slit-shaped ion irradiation port according to the present invention is used.
FIG. 2 is a view schematically showing a thin film manufacturing apparatus to which a thin film manufacturing method according to a second invention of the present application is applied.
[Explanation of symbols]
Reference Signs List 01 Deposition source 02 Slit 03 Mask transport device 04 Deposited atoms 05 Mask 11 Ion irradiation device 12 Ion beam 13 Cylinder 14 Stop valve 21 Sample holder 22 Vacuum container 23 Shielding plate 31 Exhaust device 41 Upper chamber 42 Lower chamber 43 Polymer substrate

Claims (4)

酸素、窒素、アルゴン及びその他のイオンビームを高分子フィルム表面に照射する工程と、回路パターンを成形したマスクまたはそれに類似する方法で高分子フィルムの表面を覆う工程と、そのマスクされた高分子フィルムの表面に蒸着を施すことにより膜形成と同時に回路を作り込む工程とを含むことを特徴とするフレキシブルプリント基板の製造装置であって、高分子フィルム載置用サンプルホルダーと、マスク装置と、イオンビーム照射装置と、蒸着装置を含むフレキシブルプリント基板製造装置において、円筒型で側面に基板を載置できるようになってあって、円筒内部に冷却水を流し込むことができるようになってある回転式サンプルホルダーとともに、前記サンプルホルダーの周囲に一ヶ所以上の真空蒸着のための蒸着装置と、一ヶ所以上のイオン照射装置とを併設してあって、前記サンプルホルダーと前記蒸着装置の間に回路パターンを成形したマスクと、前記マスクの搬送装置を設置してあることを特徴とするフレキシブルプリント配線板の製造装置。A step of irradiating the polymer film surface with oxygen, nitrogen, argon and other ion beams, a step of covering the surface of the polymer film with a mask formed with a circuit pattern or a method similar thereto, and the masked polymer film A process for forming a circuit at the same time as film formation by performing vapor deposition on the surface of a flexible printed circuit board, comprising a sample holder for mounting a polymer film, a mask device, In a beam irradiation device and a flexible printed circuit board manufacturing device including a vapor deposition device, a rotary type in which a substrate can be placed on a side surface in a cylindrical shape and cooling water can be poured into the cylinder. Along with the sample holder, a vapor deposition device for one or more vacuum vapor deposition around the sample holder, A flexible printed wiring, wherein a mask having a circuit pattern formed between the sample holder and the vapor deposition device, and a transfer device for the mask are provided, wherein at least two ion irradiation devices are provided in parallel. Plate manufacturing equipment. 前記イオン照射装置がスリット状またはそれに類する形状のイオン照射口を有しており大面積のイオン照射が可能であることを特徴とする特許請求の範囲第一項に記載のフレキシブルプリント配線板の製造装置。2. The flexible printed wiring board according to claim 1, wherein the ion irradiation device has an ion irradiation port having a slit shape or a similar shape, and is capable of irradiating ions in a large area. apparatus. 蒸着工程とイオン照射による表面処理工程を交互に複数回繰り返すことにより、高分子と金属又は合金との間の密着強度を改善することを特徴とするフレキシブルプリント配線板の製造方法。A method for manufacturing a flexible printed wiring board, wherein the adhesion strength between a polymer and a metal or an alloy is improved by alternately repeating a vapor deposition step and a surface treatment step by ion irradiation a plurality of times. 蒸着工程とイオン照射による表面処理工程を交互に複数回繰り返すことにより、高分子と金属又は合金との間の密着強度を改善することを特徴とするフレキシブルプリント配線板の製造方法であって、上記の蒸着工程とイオン照射による表面処理工程を交互に繰り返す過程で、蒸着材料を複数回変えることを特徴とする多層フレキシブルプリント配線板の製造方法。A method for manufacturing a flexible printed wiring board, characterized by improving the adhesion strength between a polymer and a metal or an alloy by alternately repeating a vapor deposition step and a surface treatment step by ion irradiation a plurality of times, A method for manufacturing a multilayer flexible printed wiring board, characterized by changing a vapor deposition material a plurality of times in a process of alternately repeating a vapor deposition step and a surface treatment step by ion irradiation.
JP2002270966A 2002-09-18 2002-09-18 Apparatus and method for manufacturing flexible printed wiring board Expired - Fee Related JP3443420B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002270966A JP3443420B1 (en) 2002-09-18 2002-09-18 Apparatus and method for manufacturing flexible printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002270966A JP3443420B1 (en) 2002-09-18 2002-09-18 Apparatus and method for manufacturing flexible printed wiring board

Publications (2)

Publication Number Publication Date
JP3443420B1 JP3443420B1 (en) 2003-09-02
JP2004111587A true JP2004111587A (en) 2004-04-08

Family

ID=28672742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002270966A Expired - Fee Related JP3443420B1 (en) 2002-09-18 2002-09-18 Apparatus and method for manufacturing flexible printed wiring board

Country Status (1)

Country Link
JP (1) JP3443420B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1513382A3 (en) * 2003-09-08 2007-05-23 FCM Co., Ltd. Conductive sheet having conductive layer with improved adhesion and product including the same
WO2010073517A1 (en) * 2008-12-26 2010-07-01 Kusano Eiji Sputtering apparatus
WO2010073518A1 (en) * 2008-12-26 2010-07-01 Kusano Eiji Sputtering apparatus
JP2013540197A (en) * 2010-09-30 2013-10-31 珠海市創元電子有限公司 Continuous production method for flexible copper clad laminates

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1513382A3 (en) * 2003-09-08 2007-05-23 FCM Co., Ltd. Conductive sheet having conductive layer with improved adhesion and product including the same
WO2010073517A1 (en) * 2008-12-26 2010-07-01 Kusano Eiji Sputtering apparatus
WO2010073518A1 (en) * 2008-12-26 2010-07-01 Kusano Eiji Sputtering apparatus
JP2013540197A (en) * 2010-09-30 2013-10-31 珠海市創元電子有限公司 Continuous production method for flexible copper clad laminates
KR101465674B1 (en) 2010-09-30 2014-11-27 주하이 리치뷰 일렉트로닉스 컴퍼니 리미티드 Method for continuously producing flexible copper clad laminates

Also Published As

Publication number Publication date
JP3443420B1 (en) 2003-09-02

Similar Documents

Publication Publication Date Title
JP6734385B2 (en) Single-layer circuit board, multi-layer circuit board, and methods for manufacturing the same
US20060068173A1 (en) Methods for forming and patterning of metallic films
US5891527A (en) Printed circuit board process using plasma spraying of conductive metal
CN106604560A (en) Circuit board processing method
JPH0226397B2 (en)
US7507434B2 (en) Method and apparatus for laminating a flexible printed circuit board
US20130146349A1 (en) Printed circuit board and method for manufacturing the same
WO2011013525A1 (en) Plasma processing device and printed wiring board manufacturing method
JPH07258828A (en) Film formation
US20080314623A1 (en) Printed Circuit Board and Method for Manufacturing the Same
US3840986A (en) Method of producing micro-electronic circuits
JP2006128599A5 (en)
US7268431B2 (en) System for and method of forming via holes by use of selective plasma etching in a continuous inline shadow mask deposition process
JP2006306009A (en) Two-layer film, method for producing two-layer film and method for manufacturing printed wiring board
JP3443420B1 (en) Apparatus and method for manufacturing flexible printed wiring board
JP2003069193A (en) Flexible printed board, and method and apparatus for manufacturing the same
CN109862689B (en) Flexible copper-clad plate and preparation method thereof
KR20090121662A (en) Forming method of thin film metal conductive lines and
JPH04263490A (en) Manufacture of thin film circuit
JP2005005453A (en) Printed wiring board and its manufacturing method
Imani et al. A Fully Additive Approach for High-Density Interconnect Printed Circuit Boards
JP7200436B1 (en) LAMINATED PRODUCT AND METHOD FOR MANUFACTURING LAMINATED BODY
JP2000068653A (en) Smear removing method of multilayer board
TWI726375B (en) Method for forming through-holes in substrate
JPS63160394A (en) Manufacture of printed circuit board

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030527

LAPS Cancellation because of no payment of annual fees