JP2004109556A - Wavelength variable optical filter - Google Patents

Wavelength variable optical filter Download PDF

Info

Publication number
JP2004109556A
JP2004109556A JP2002272610A JP2002272610A JP2004109556A JP 2004109556 A JP2004109556 A JP 2004109556A JP 2002272610 A JP2002272610 A JP 2002272610A JP 2002272610 A JP2002272610 A JP 2002272610A JP 2004109556 A JP2004109556 A JP 2004109556A
Authority
JP
Japan
Prior art keywords
optical filter
optical
cantilever
multilayer
mirrors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002272610A
Other languages
Japanese (ja)
Inventor
Fumio Koyama
小山 二三夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2002272610A priority Critical patent/JP2004109556A/en
Publication of JP2004109556A publication Critical patent/JP2004109556A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wavelength variable optical filter applicable to many wavelengths used in the optical communication of a WDM system with less crosstalk between close channels. <P>SOLUTION: This wavelength variable optical filter has a structure in which multilayer film reflection mirrors made to face each other at prescribed intervals so as to constitute two or more sets of optical resonators are each supported by a cantilever. By deforming the cantilever by an electric means and changing the interval of the multilayer reflection mirrors, the wavelength that the optical resonator passes through is changed. By realizing the structure by using the compound semiconductor of GaAs/AlGaAg system or the like, integration with another optical element is facilitated. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、光通信分野等で使用される波長可変光フィルタに関し、とくに共振器長を制御する手段を有する光共振器型波長可変光フィルタに関する。
【0002】
【従来の技術】
インターネットの急速な普及による情報伝送容量の増大に対応するため、1本の光ファイバに複数の波長の光信号を多重化して伝搬させる波長多重(WDM)方式の開発が進められている。このWDM方式は多数の近接した波長の光を使用するため、それらを合分波する光フィルタは重要な光学素子である。しかし使用する波長数(チャンネル数)が多い場合、それぞれの波長に対応した透過または反射特性をもつ光フィルタを準備する必要があり、システムを構成が複雑となる。このような問題を解決するため、透過または反射特性を制御して変更できる波長可変光フィルタが求められている。
【0003】
波長可変光フィルタとしては、いくつかの原理に基づくものが知られている。多層膜フィルタに対する光の入射角を変化させることにより、実効的に多層膜の光学膜厚を変化させ透過波長を変化させるものがある(例えば特許文献1参照)。
【0004】
また、対をなす反射鏡によって形成されるファブリ−ペロー光共振器の反射鏡の間隔(共振器長)を変化させることにより、透過波長を変化させるものが知られている。近年、このようなフィルタを小型化し、かつ外部から電気信号によって制御することを可能にするため、微小電気機械システム(MEMS)を応用した光マイクロマシン光フィルタの開発が進められている(例えば、非特許文献1参照)。
【0005】
この例では、対をなす多層膜反射鏡の一方を片持ち梁で支持して光共振器を構成している。この構造で共振器長を変化させるには、種々の手段がある。両多層膜間に電圧を印加し、静電力によって片持ち梁を弾性変形させることができる。また、片持ち梁部分を熱膨張係数の異なる層を積層した構造にしておき、この部分に通電して熱を発生させることによって、片持ち梁を変形させることもできる。
【0006】
上記の非特許文献1に記載されている構成では、多層膜反射鏡および片持ち梁は化合物半導体(GaAs/AlGaAs)層で形成されているため、半導体レーザなどの半導体光学素子を製造する工程によって作製することができ、複数のフィルタを集積化したり、他の半導体光学素子と集積化することも可能であるなど優れた特徴をもっている。
【0007】
【特許文献1】
特開2000−292715号公報
【非特許文献1】
F.Koyama 他、「ジャパニーズ・ジャーナル・オブ・アプライド・フィジックス(Japanese Journal of Applied Physics)」、39巻、パート1、3B号、2000年、1542〜1545ページ
【0008】
【発明が解決しようとする課題】
しかし、光共振器を用いた光フィルタは一定の透過帯域幅をもつ。これは上記の光マイクロマシンフィルタにおいても例外でなく、WDM方式の光通信に適用すると、波長が近接したチャンネル間でクロストークが発生する原因となってしまう。
【0009】
本発明は、このような問題点を解決するためになされたもので、その目的は透過波長帯域の広がりが少なく、WDM方式の光通信に応用ができる波長可変光フィルタを提供することにある。
【0010】
【課題を解決するための手段】
本発明の波長可変光フィルタは、光共振器を構成するように所定の間隔を保って対向させた多層膜反射鏡をそれぞれ片持ち梁で支持した構造をもつ。そしてこの片持ち梁を電気的手段によって変形させ多層膜反射鏡の間隔を変化させる。このような波長可変光フィルタにおいて、多層膜反射鏡が3枚以上で構成され、その間隔は片持ち梁が変形してその絶対値が変化しても、互いにひとしく維持されることが望ましい。
【0011】
3枚以上の多層膜反射鏡を等間隔で配置することにより、2組以上の同等の光共振器を縦続した構造を実現でき、片持ち梁で支持された反射鏡によって共振器長を変化させた場合にもこの間隔が等しくなるように維持すれば透過帯域幅の狭い波長可変光フィルタを実現できる。
【0012】
とくに多層膜反射鏡が3枚で同一形状であるのが好ましい。この場合には、電気的手段が電圧印加手段であり、中央の反射鏡に対する両側の反射鏡の電位が互いに等しくなるように電圧を印加するのが望ましい。また、中央の反射鏡の反射率が両側の反射鏡の反射率より大きいことが望ましい。
【0013】
3枚の反射鏡を用いた構成が、本発明の目的を達成でき、かつ構造をもっとも簡単な2つの同等な光共振器を縦続した構成が実現できる。中央の反射鏡に対して両側の反射鏡に等しい電位を与えることにより、互いに等しい間隔を保ったまま、間隔の絶対値を変更できる。すなわち、共振器長が変化しても同一光共振器が縦続された状態が保たれる。また中央の反射鏡の反射率を高くすることにより、両側の反射鏡間での共振を抑えることができる。
【0014】
なお、反射鏡を構成する多層膜がGaAs層とAlGaAs層からなることが望ましい。GaAs/AlGaAs系は半導体レーザ等において製造工程が確立しており、これを利用することにより、本発明の波長可変光フィルタの構造を容易に作製できる。さらに半導体レーザやその他の光学素子との集積化も可能である。
【0015】
【発明の実施の形態】
光共振器を用いたフィルタの透過波長帯域の広がりを低減する手段として複数の共振器を縦続することが知られている。本発明は縦続光共振器を、片持ち梁で支持された半導体多層膜で構成するという着想のもとになされた。以下に具体的な実施形態を図を用いて説明する。
【0016】
本発明の波長可変光フィルタの構造を図1に示す。基板10から間隙をおいて3枚の半導体多層膜反射鏡22、24、26が、片持ち梁30で支持されている。上部の反射鏡22と中央の反射鏡24によって第1の光共振器、また中央の反射鏡24と下部の反射鏡26によって第2の光共振器が形成され、第1の光共振器と第2の光共振器は中央の反射鏡24を共有して縦続された形態をとっている。各反射鏡は、円形状の例が示されているが、矩形など他の形状であってもよい。ただし3枚とも同一形状であることが好ましい。上部から入射した光は反射鏡間の空隙42、44で共振された波長の光だけが選択的に透過され、本構造は光フィルタとして機能する。
【0017】
この中央の反射鏡24に対して図示するように可変直流電圧源50を接続し、等しい電圧を上下の反射鏡22、26に印加することにより、片持ち梁部分が撓み、これによって反射鏡間の空隙長を変化させることができる。すなわち、印加電圧の制御によって縦続した2つの共振器の共振器長が互いに等しく保たれたまま、変化する。これによって種々の波長の入射光1を選択的に透過させることが可能となる。
【0018】
つぎに図1の構造の製法について図2により説明する。GaAs基板110上にGaAs/Al0.8Ga0.2Asを一対とする反射層122、124、126を成長する。上下の反射鏡に対応する層122、126にはSeをドープして導電型をn型とする。これらの層は最上層および最下層をGaAs層とした13.5対の積層とした。一方、中央の反射鏡に対応する層124はZnをドープしてp型とし、31.5対積層した。この反射層の間および下部反射鏡と基板の間には、最終的に空隙となる犠牲層142、144、146を設ける。これら犠牲層の組成はAl0.98Ga0.02Asとする(図2(a))。
【0019】
なお、図1に示すようにGaAs基板10が反射鏡の下部にあり、入射光1を図のように入射させる場合には、光フィルタの透過光はGaAs基板10表面に入射し、反射光が生じる。垂直入射の場合は、反射光が入射光の方向に戻ることになり、半導体レーザを光源とする場合には半導体レーザの動作が不安定になるため好ましくない。そこで、GaAs基板両面には反射防止膜12を予め設けておくことが望ましい。
【0020】
つぎに反射鏡と片持ち梁の部分の形状のマスクをフォトリソグラフィによって形成し、誘導結合プラズマ(ICP)エッチングで反射鏡、片持ち梁部分および片持ち梁の台座60(図1参照)部分以外の半導体層を除去する。つぎに空隙の作製を行う。アニール炉内に純水をバブリングした窒素を導入し、上記半導体層を480℃の温度で加熱処理をする。これによりAl0.98Ga0.02As層は選択的に酸化されてほぼAlに近いAlの酸化物となる。この酸化層は緩衝フッ酸水溶液で選択的にエッチング除去できる。以上により、片持ち梁によって支持された3つの多層膜反射鏡の基本構造が形成できる(図2(b))。
【0021】
上記の片持ち梁形成時に当初の半導体層をそのまま残すことにより、片持ち梁を支持する台座部分160も同時に形成できる。この台座部分の一部は中央の反射鏡に対応する多層膜の表面が露出するように除去する。この露出表面と最上層及びGaAs基板裏面(図1には図示しない)に電極72、74となるAu層172、174、176をそれぞれ蒸着によって形成する(図2(c))。
【0022】
中央の電極74に対して上部及び基板裏面の電極72、76にそれぞれ等しい正の電位を与える。これにより中央の反射鏡24を基準に上下の反射鏡22、26が引き寄せられ、共振器長を変化させることができる。
【0023】
図3は作製した光共振器型フィルタの透過特性を示す。与える電位差を0〜10Vの範囲で変化させると、中心透過波長は1550nm〜1517nmの範囲で変化していることがわかる。比較のために上部または下部の反射鏡を除去した単一共振器の特性を示した。電圧に対する中心透過波長の変化は両者同様であるが、透過スペクトルの半値全幅(3dB透過帯)は二重共振器とすることで大幅に改善されている。0Vの場合、0.8nm、10Vの場合は1nmである。またこの光フィルタの挿入損失は1dB以下である。
【0024】
上記の特性をもつ光フィルタは、1.6nmのチャンネル間隔のWDMシステムで使用する場合、形状因子は約0.27、クロストークは30dBが得られることを意味する。単一共振器の場合、形状因子は0.06,クロストークは10dB程度であるので、特性は大幅に改善される。
【0025】
上記の構造は3枚の反射鏡からなる二重共振器の例を示したが、さらに多重の共振器を用いてもよい。上記の製法では、初めに成長する層数を増加するだけで同様な方法により、さらに多くの多層膜反射鏡を形成することが可能である。
【0026】
また、この光フィルタは基本的に多層膜の成長とそのエッチング加工によって作製されるので、同一基板上に多数の光フィルタを形成し、光フィルタアレイとするのは容易である。電極を各光フィルタごとに独立に形成し、各フィルタに異なる電圧を印加すれば、異なる多数の透過波長をもった光フィルタアレイが実現できる。
【0027】
上記の例では、反射層の材料としてGaAs/AlGaAsを用いたが、これに限られない。同じ化合物半導体であれば、InP/InGaAsP系などが使用できる。また誘電体多層膜を用いてもよい。誘電体の場合は別途透明電極層を設ける必要がある。
【0028】
化合物半導体により多層膜を形成する利点は、他の光半導体素子を作製すると工程とほぼ同様な工程で製作できることにある。このため、例えば、この光フィルタは発光素子や受光素子と同時に形成し、集積化が可能である。図1に示す構造で、反射鏡下側の基板にpn接合を形成して受光素子とすれば、フィルタを透過した波長の光だけを検出する分波光学系が形成できる。
【0029】
【発明の効果】
本発明によれば、2組以上の同等の光共振器を縦続した構造を実現でき、透過帯域幅の狭い波長可変光フィルタを実現できる。このため、WDMシステム等に応用した場合、クロストークの低減が可能となる。また反射鏡をGaAs/AlGaAs系など化合物半導体多層膜で作製することにより、発光素子や受光素子などの光学素子との集積化も容易である。
【図面の簡単な説明】
【図1】本発明の波長可変光フィルタの構造を示す模式図である。
【図2】本発明の波長可変光フィルタの製造工程を示す図である。
【図3】本発明の波長可変光フィルタの特性の一例を示す図である。
【符号の説明】
1 入射光
10、110 基板
22、24、26 多層膜反射鏡
30 片持ち梁
42、44 空隙
50 可変直流電源
60 台座
122、124、126 反射層
142、144、146 犠牲層
172、174、176 Au層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wavelength tunable optical filter used in the field of optical communication and the like, and more particularly to an optical resonator type wavelength tunable optical filter having a means for controlling a resonator length.
[0002]
[Prior art]
In order to cope with an increase in information transmission capacity due to the rapid spread of the Internet, development of a wavelength division multiplexing (WDM) system in which optical signals of a plurality of wavelengths are multiplexed and propagated on one optical fiber has been advanced. Since this WDM system uses a large number of light beams having close wavelengths, an optical filter for multiplexing / demultiplexing them is an important optical element. However, when the number of wavelengths (the number of channels) to be used is large, it is necessary to prepare an optical filter having transmission or reflection characteristics corresponding to each wavelength, which complicates the system configuration. In order to solve such a problem, a tunable optical filter capable of controlling and changing transmission or reflection characteristics has been demanded.
[0003]
A tunable optical filter based on several principles is known. There is one in which the transmission wavelength is changed by changing the optical thickness of the multilayer film by changing the incident angle of light to the multilayer filter (see, for example, Patent Document 1).
[0004]
It is also known that the transmission wavelength is changed by changing the interval (resonator length) between the reflecting mirrors of a Fabry-Perot optical resonator formed by a pair of reflecting mirrors. In recent years, in order to reduce the size of such a filter and enable external control using an electric signal, development of an optical micromachine optical filter using a microelectromechanical system (MEMS) has been promoted (for example, non-electromechanical filters). Patent Document 1).
[0005]
In this example, one of the pair of multilayer mirrors is supported by a cantilever to form an optical resonator. There are various means for changing the resonator length with this structure. By applying a voltage between the two multilayer films, the cantilever can be elastically deformed by electrostatic force. In addition, the cantilever can be deformed by forming a structure in which layers having different coefficients of thermal expansion are laminated on the cantilever and generating heat by applying a current to this portion.
[0006]
In the configuration described in Non-Patent Document 1 described above, since the multilayer mirror and the cantilever are formed of a compound semiconductor (GaAs / AlGaAs) layer, a process for manufacturing a semiconductor optical element such as a semiconductor laser is performed. It has excellent features such as being able to be manufactured, being able to integrate a plurality of filters, and being able to be integrated with other semiconductor optical elements.
[0007]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-292715 [Non-Patent Document 1]
F. Koyama et al., "Japanese Journal of Applied Physics," Vol. 39, Part 1, No. 3B, 2000, pp. 1542-1545.
[Problems to be solved by the invention]
However, an optical filter using an optical resonator has a certain transmission bandwidth. This is no exception in the above-mentioned optical micro-machine filter, and when applied to WDM optical communication, it causes crosstalk between channels having wavelengths close to each other.
[0009]
The present invention has been made to solve such a problem, and an object of the present invention is to provide a tunable optical filter which has a small transmission wavelength band and is applicable to WDM optical communication.
[0010]
[Means for Solving the Problems]
The wavelength tunable optical filter according to the present invention has a structure in which multilayer film mirrors facing each other at a predetermined interval so as to form an optical resonator are supported by cantilever beams. The cantilever is deformed by electrical means to change the distance between the multilayer mirrors. In such a wavelength tunable optical filter, it is desirable that three or more multilayer film reflecting mirrors are formed, and that the distance between the reflecting mirrors is maintained even when the cantilever is deformed and its absolute value changes.
[0011]
By arranging three or more multilayer film reflectors at equal intervals, a structure in which two or more sets of equivalent optical resonators are cascaded can be realized, and the length of the resonator is changed by a reflector supported by a cantilever. In this case, if the intervals are maintained to be equal, a tunable optical filter with a narrow transmission bandwidth can be realized.
[0012]
In particular, it is preferable that three multilayer mirrors have the same shape. In this case, the electric means is a voltage applying means, and it is desirable to apply a voltage so that the potentials of the two reflecting mirrors with respect to the central reflecting mirror are equal to each other. Further, it is desirable that the reflectance of the central reflecting mirror is higher than the reflectance of the reflecting mirrors on both sides.
[0013]
A configuration using three reflecting mirrors can achieve the object of the present invention, and can realize a configuration in which two equivalent optical resonators having the simplest structure are cascaded. By giving equal potentials to the central mirror and the mirrors on both sides, the absolute value of the interval can be changed while maintaining the same interval. That is, even if the length of the resonator changes, the state where the same optical resonator is cascaded is maintained. Also, by increasing the reflectance of the central reflecting mirror, resonance between the reflecting mirrors on both sides can be suppressed.
[0014]
It is desirable that the multilayer film constituting the reflecting mirror be composed of a GaAs layer and an AlGaAs layer. The manufacturing process of the GaAs / AlGaAs system is established for semiconductor lasers and the like, and by using this, the structure of the wavelength tunable optical filter of the present invention can be easily manufactured. Further, integration with a semiconductor laser and other optical elements is also possible.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
It is known to cascade a plurality of resonators as a means for reducing the spread of the transmission wavelength band of a filter using an optical resonator. The present invention has been made based on the idea that the cascaded optical resonator is constituted by a semiconductor multilayer film supported by a cantilever. Hereinafter, a specific embodiment will be described with reference to the drawings.
[0016]
FIG. 1 shows the structure of the wavelength tunable optical filter of the present invention. Three semiconductor multilayer mirrors 22, 24 and 26 are supported by a cantilever 30 with a gap from the substrate 10. A first optical resonator is formed by the upper reflecting mirror 22 and the central reflecting mirror 24, and a second optical resonator is formed by the central reflecting mirror 24 and the lower reflecting mirror 26, and the first optical resonator and the second optical resonator are formed. The two optical resonators are cascaded, sharing the central reflector 24. Although each reflecting mirror is shown as having a circular shape, it may have another shape such as a rectangular shape. However, it is preferable that all three sheets have the same shape. As for light incident from above, only light having a wavelength resonated in the gaps 42 and 44 between the reflecting mirrors is selectively transmitted, and this structure functions as an optical filter.
[0017]
A variable DC voltage source 50 is connected to the central reflecting mirror 24 as shown in the figure, and an equal voltage is applied to the upper and lower reflecting mirrors 22 and 26, so that the cantilever portion is bent. Can be changed. That is, the two cascaded resonators change in length under the control of the applied voltage while the resonator lengths are kept equal to each other. This makes it possible to selectively transmit the incident light 1 of various wavelengths.
[0018]
Next, a method of manufacturing the structure of FIG. 1 will be described with reference to FIG. On the GaAs substrate 110, the reflection layers 122, 124, and 126 having a pair of GaAs / Al 0.8 Ga 0.2 As are grown. The layers 122 and 126 corresponding to the upper and lower reflecting mirrors are doped with Se to make the conductivity type n-type. These layers were 13.5 pairs of stacked layers in which the uppermost layer and the lowermost layer were GaAs layers. On the other hand, the layer 124 corresponding to the central reflector was doped with Zn to be p-type, and 31.5 pairs were stacked. Sacrifice layers 142, 144, and 146, which are finally voids, are provided between the reflection layers and between the lower reflection mirror and the substrate. The composition of these sacrificial layers is Al 0.98 Ga 0.02 As (FIG. 2A).
[0019]
When the GaAs substrate 10 is below the reflecting mirror as shown in FIG. 1 and the incident light 1 is incident as shown in FIG. 1, the transmitted light of the optical filter is incident on the surface of the GaAs substrate 10 and the reflected light is Occurs. In the case of normal incidence, the reflected light returns to the direction of the incident light, and when a semiconductor laser is used as a light source, the operation of the semiconductor laser becomes unstable, which is not preferable. Therefore, it is desirable to provide the antireflection film 12 on both surfaces of the GaAs substrate in advance.
[0020]
Next, a mask having the shape of the reflector and the cantilever portion is formed by photolithography, and the reflector, the cantilever portion, and the cantilever base 60 (see FIG. 1) are removed by inductively coupled plasma (ICP) etching. Is removed. Next, a void is formed. Nitrogen in which pure water is bubbled is introduced into an annealing furnace, and the semiconductor layer is heated at 480 ° C. As a result, the Al 0.98 Ga 0.02 As layer is selectively oxidized to become an Al oxide substantially similar to Al 2 O 3 . This oxide layer can be selectively removed by etching with a buffered hydrofluoric acid aqueous solution. As described above, a basic structure of three multilayer mirrors supported by the cantilever can be formed (FIG. 2B).
[0021]
By leaving the original semiconductor layer as it is when forming the cantilever, the pedestal portion 160 supporting the cantilever can be formed at the same time. Part of the pedestal is removed so that the surface of the multilayer film corresponding to the central reflecting mirror is exposed. Au layers 172, 174, and 176 to be the electrodes 72 and 74 are formed on the exposed surface, the uppermost layer, and the back surface of the GaAs substrate (not shown in FIG. 1) by vapor deposition, respectively (FIG. 2C).
[0022]
The same positive potential is applied to the center electrode 74 to the upper and lower electrodes 72 and 76 on the substrate. As a result, the upper and lower reflecting mirrors 22 and 26 are drawn with reference to the central reflecting mirror 24, and the resonator length can be changed.
[0023]
FIG. 3 shows transmission characteristics of the manufactured optical resonator type filter. It can be seen that when the applied potential difference is changed in the range of 0 to 10 V, the center transmission wavelength changes in the range of 1550 nm to 1517 nm. For comparison, the characteristics of a single resonator without the upper or lower reflector are shown. The change of the center transmission wavelength with respect to the voltage is the same in both cases, but the full width at half maximum (3 dB transmission band) of the transmission spectrum is greatly improved by using a double resonator. In the case of 0V, it is 0.8 nm, and in the case of 10V, it is 1 nm. The insertion loss of this optical filter is 1 dB or less.
[0024]
When an optical filter having the above characteristics is used in a WDM system having a channel spacing of 1.6 nm, it means that a form factor of about 0.27 and a crosstalk of 30 dB can be obtained. In the case of a single resonator, the form factor is 0.06 and the crosstalk is about 10 dB, so that the characteristics are greatly improved.
[0025]
Although the above structure shows an example of a double resonator including three reflecting mirrors, multiple resonators may be used. In the above-described manufacturing method, it is possible to form more multilayer mirrors by the same method only by increasing the number of layers to be grown first.
[0026]
In addition, since this optical filter is basically manufactured by growing a multilayer film and etching the multilayer film, it is easy to form a large number of optical filters on the same substrate to form an optical filter array. If electrodes are formed independently for each optical filter and different voltages are applied to each filter, an optical filter array having many different transmission wavelengths can be realized.
[0027]
In the above example, GaAs / AlGaAs is used as the material of the reflection layer, but the material is not limited to this. If the same compound semiconductor is used, an InP / InGaAsP system or the like can be used. Further, a dielectric multilayer film may be used. In the case of a dielectric, a separate transparent electrode layer must be provided.
[0028]
The advantage of forming a multilayer film from a compound semiconductor is that when another optical semiconductor element is manufactured, it can be manufactured in substantially the same steps as the steps. For this reason, for example, this optical filter can be formed simultaneously with the light emitting element and the light receiving element, and can be integrated. In the structure shown in FIG. 1, if a pn junction is formed on the substrate below the reflecting mirror to form a light receiving element, a demultiplexing optical system that detects only light having a wavelength transmitted through the filter can be formed.
[0029]
【The invention's effect】
According to the present invention, a structure in which two or more sets of equivalent optical resonators are cascaded can be realized, and a wavelength tunable optical filter having a narrow transmission bandwidth can be realized. Therefore, when applied to a WDM system or the like, crosstalk can be reduced. Further, by forming the reflecting mirror with a compound semiconductor multilayer film such as a GaAs / AlGaAs system, integration with an optical element such as a light emitting element or a light receiving element is easy.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a structure of a wavelength tunable optical filter of the present invention.
FIG. 2 is a diagram showing a manufacturing process of the wavelength tunable optical filter of the present invention.
FIG. 3 is a diagram illustrating an example of characteristics of the wavelength tunable optical filter of the present invention.
[Explanation of symbols]
1 Incident light 10, 110 Substrate 22, 24, 26 Multilayer reflector 30 Cantilever 42, 44 Void 50 Variable DC power supply 60 Base 122, 124, 126 Reflective layers 142, 144, 146 Sacrificial layers 172, 174, 176 Au layer

Claims (5)

光共振器を構成するように所定の間隔を保って対向させた多層膜反射鏡をそれぞれ片持ち梁で支持し、該片持ち梁を電気的手段によって変形させ前記多層膜反射鏡の間隔を変化させる波長可変光フィルタにおいて、3枚以上の多層膜反射鏡で構成され、その間隔が互いに等しく維持されることを特徴とする波長可変光フィルタ。The multilayer reflectors, which are opposed to each other at a predetermined interval so as to form an optical resonator, are supported by cantilever beams, and the cantilever beams are deformed by electric means to change the intervals between the multilayer reflectors. A wavelength tunable optical filter comprising three or more multilayer film reflecting mirrors, wherein the intervals are maintained equal to each other. 前記多層膜反射鏡が3枚で実質的に同一形状あることを特徴とする請求項1に記載の波長可変光フィルタ。2. The tunable optical filter according to claim 1, wherein the three multilayer mirrors have substantially the same shape. 前記電気的手段が電圧印加手段であり、中央の反射鏡に対する両側の反射鏡の電位が互いに等しくなるように電圧を印加することを特徴とする請求項2に記載の波長可変光フィルタ。3. The tunable optical filter according to claim 2, wherein the electric means is a voltage applying means, and applies a voltage such that the potentials of the two reflecting mirrors with respect to the central reflecting mirror are equal to each other. 中央の反射鏡の反射率が両側の反射鏡の反射率より大きいことを特徴とする請求項3に記載の波長可変光フィルタ。4. The tunable optical filter according to claim 3, wherein the reflectance of the central mirror is greater than the reflectance of the mirrors on both sides. 前記反射鏡を構成する多層膜がGaAs層とAlGaAs層からなることを特徴とする請求項1〜4のいずれか一項に記載の波長可変光フィルタ。The tunable optical filter according to any one of claims 1 to 4, wherein the multilayer film forming the reflecting mirror includes a GaAs layer and an AlGaAs layer.
JP2002272610A 2002-09-19 2002-09-19 Wavelength variable optical filter Pending JP2004109556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002272610A JP2004109556A (en) 2002-09-19 2002-09-19 Wavelength variable optical filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002272610A JP2004109556A (en) 2002-09-19 2002-09-19 Wavelength variable optical filter

Publications (1)

Publication Number Publication Date
JP2004109556A true JP2004109556A (en) 2004-04-08

Family

ID=32269585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002272610A Pending JP2004109556A (en) 2002-09-19 2002-09-19 Wavelength variable optical filter

Country Status (1)

Country Link
JP (1) JP2004109556A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100342262C (en) * 2004-07-02 2007-10-10 中国科学院半导体研究所 Micro machinery tunable light filter
JP2008145506A (en) * 2006-12-06 2008-06-26 Institute Of National Colleges Of Technology Japan Optical element using piezoelectric element, and method of forming the same
CN100435018C (en) * 2006-04-03 2008-11-19 中国科学院半导体研究所 Structure of long wave long micro mechanical adjustable filter and producing method
JP2012155220A (en) * 2011-01-27 2012-08-16 Seiko Epson Corp Optical module and optical analysis device
JP2015103741A (en) * 2013-11-27 2015-06-04 キヤノン株式会社 Surface emitting laser and optical coherence tomography using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100342262C (en) * 2004-07-02 2007-10-10 中国科学院半导体研究所 Micro machinery tunable light filter
CN100435018C (en) * 2006-04-03 2008-11-19 中国科学院半导体研究所 Structure of long wave long micro mechanical adjustable filter and producing method
JP2008145506A (en) * 2006-12-06 2008-06-26 Institute Of National Colleges Of Technology Japan Optical element using piezoelectric element, and method of forming the same
JP2012155220A (en) * 2011-01-27 2012-08-16 Seiko Epson Corp Optical module and optical analysis device
JP2015103741A (en) * 2013-11-27 2015-06-04 キヤノン株式会社 Surface emitting laser and optical coherence tomography using the same
US9945658B2 (en) 2013-11-27 2018-04-17 Canon Kabushiki Kaisha Wavelength tunable surface emitting laser and optical coherence tomography apparatus including the same

Similar Documents

Publication Publication Date Title
US10288870B2 (en) Wavelength tunable MEMS-Fabry Perot filter
EP1364190B1 (en) Optoelectronic device with wavelength filtering by cavity coupling
JP2831583B2 (en) Reflective tunable laser
US20130235890A1 (en) Tunable hybrid laser with carrier-induced phase control
JP4301948B2 (en) Adjustable optical filtering components
US20090245316A1 (en) Multi-wavelength hybrid silicon laser array
CN108471046B (en) Semiconductor laser and control method
WO2014048003A1 (en) External-cavity tunable laser with flexible wavelength grid tuning function
US20060268398A1 (en) MEMS tunable vertical-cavity semiconductor optical amplifier
US7116863B2 (en) Thermally actuated wavelength tunable optical filter
Wu et al. Widely tunable 1.5 µm micromechanical optical filter using AlOx/AlGaAs DBR
CN113937617B (en) Multi-wavelength laser
JP2697353B2 (en) Fabry-Perot type variable wavelength filter and method of manufacturing the same
JP2004109556A (en) Wavelength variable optical filter
US6958818B1 (en) Fabry-Perot interferometer including membrane supported reflector
US7289262B2 (en) Optical attenuator element, and variable optical equalizer and optical amplifier that use this optical attenuator element
Segawa et al. A novel tunable laser with flat-output wideband tuning based on parallel ring resonators
US6974966B1 (en) Multiple epitaxial region wafers with optical connectivity
Strassner et al. Fabrication of ultrathin and highly flexible InP-based membranes for microoptoelectromechanical systems at 1.55 μm
US7180652B2 (en) Mars optical modulators
JP2005167180A (en) Method for fabricating semiconductor optical device
JP2004063972A (en) Semiconductor laser, and manufacturing method thereof
KR101240342B1 (en) Tunable vertical-cavity surface-emitting laser and fabricating method the same
JP4690573B2 (en) Surface-type wavelength selective filter and manufacturing method thereof
WO2020213412A1 (en) Optical waveguide

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403