JP2004108807A - Environmental test device - Google Patents

Environmental test device Download PDF

Info

Publication number
JP2004108807A
JP2004108807A JP2002268442A JP2002268442A JP2004108807A JP 2004108807 A JP2004108807 A JP 2004108807A JP 2002268442 A JP2002268442 A JP 2002268442A JP 2002268442 A JP2002268442 A JP 2002268442A JP 2004108807 A JP2004108807 A JP 2004108807A
Authority
JP
Japan
Prior art keywords
radio wave
test
environmental
closing member
test apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002268442A
Other languages
Japanese (ja)
Other versions
JP3786683B2 (en
Inventor
Takehiko Tsuji
辻 武彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAC SYSTEMS CORP
Original Assignee
MAC SYSTEMS CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAC SYSTEMS CORP filed Critical MAC SYSTEMS CORP
Priority to JP2002268442A priority Critical patent/JP3786683B2/en
Publication of JP2004108807A publication Critical patent/JP2004108807A/en
Application granted granted Critical
Publication of JP3786683B2 publication Critical patent/JP3786683B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Devices For Use In Laboratory Experiments (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an environmental test device for performing appropriate environmental test regarding electric waves of various equipment even in a small test chamber. <P>SOLUTION: The environmental test device 100 comprises the test chamber 101 consisting of an enclosure 103 and a door 102, wherein a test space 120 in the test chamber 101 is set into a predetermined environmental condition. The enclosure 103 is provided with a wave through-hole 110 passing through an enclosure wall 131 enclosing the test space 120. The wave through-hole 110 is closed by a wave transmissive heat insulating material 113, and its outside is closed by an outside closing member 140 having a wave transmissive outside window member 141 and its inside (on the side of the test space 120) is closed by an inside closing member 150 having a wave transmissive inside window member 151. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は環境試験装置、特に、電波を用いた機器の環境試験を行うための環境試験装置に関する。
【0002】
【従来の技術】
従来より、各種機器について、様々な環境下での動作特性を測定する環境試験を行うために、内部を所定の環境状態に設定することができる環境試験装置が提案されてきた。例えば、試験槽として、内部を所定の温度に設定することができる恒温槽を備えた環境試験装置が挙げられる(例えば、特許文献1参照)。また、従来より、電波を用いた各種機器の利用が研究されている。このような機器の利用を確立するために、これらの機器についても、様々な環境下での動作特性を測定する環境試験を行う必要がある。
ところで、従来の環境試験装置としては、試験槽の外側面及び内側面の大部分を金属壁板で構成するようにしたものがある。この環境試験装置については、試験槽の外側面及び内側面の全体を金属壁で構成するようにすれば、試験槽の内部と外部とで電波を遮蔽する構造となる。
【0003】
【特許文献1】
特開2001−255349号公報
【0004】
【発明が解決しようとする課題】
しかし、このような環境試験装置では、電波機器の環境試験を適切に行うことが困難であった。例えば、電波受信機の環境試験を行う場合、上述したような従来の環境試験装置を用いると、この環境試験装置の試験槽が電波遮蔽構造であるため、電波受信機について環境試験を行うのに、電波受信機だけでなく、電波送信機をも試験槽内に配置しなければならない。従って、試験が面倒であり、大型の環境試験装置を用いる必要がある。また、試験結果には、電波送信機の特性変化も含まれ、電波受信機のみの環境特性を正確に測定することが困難であった。
【0005】
また、上述した従来の環境試験装置には、供試体を出し入れするための扉が設けられており、この扉を閉めたときに、扉と試験槽との間に介在して試験槽内を密閉するためのシール部材が取付られていた。このシール部材は、シリコンゴム等の非導電性ゴム製であるため、電波がこのシール部材を透過してしまい、電波の外部への漏れだし、あるいは試験空間内への電波の侵入などにより、環境試験を適切に行うことができない虞があった。
【0006】
また、試験槽内には、試験空間の温度(環境状態)を検知する温度センサ(環境センサ)が設けられている。しかるに、試験空間内の電波が、この温度センサの出力に対してノイズとして重畳されることによって、温度の誤検知が生じる虞があった。あるいは、外部からの電波が温度センサを通じて試験空間内に侵入する虞もあった。このため、環境試験を適切に行うことができない虞があった。
【0007】
本発明は、かかる現状に鑑みてなされたものであって、各種機器の電波に関する環境試験を容易に且つ適切に行うことができる環境試験装置を提供することを目的とする。具体的には、試験槽が小型であっても適切に環境試験を行いうる環境試験装置を提供することを目的とする。また、扉と試験槽との間を電波遮蔽して適切に環境試験を行いうる環境試験装置を提供することを目的とする。また、試験空間の環境状態を環境センサにより正確に検知でき、外部から電波の侵入を防ぎ、適切に環境試験を行いうる環境試験装置を提供することを目的とする。
【0008】
【課題を解決するための手段、作用及び効果】
その解決手段は、試験槽を有し、この試験槽内の試験空間を所定の環境状態に設定する環境試験装置であって、上記試験槽は、上記試験空間を包囲する試験槽壁と、この試験槽壁を貫通して形成された電波通過孔であって、この電波通過孔を通じて上記試験空間と上記環境試験装置外部との間で電波の送受信が可能な電波通過孔と、上記電波通過孔を経由した外部の環境状態の上記試験空間の環境状態に対する影響を遮断する遮断手段と、を備える環境試験装置である。
である。
【0009】
本発明の環境試験装置では、試験槽壁を貫通する電波通過孔が形成され、試験空間と外部との間で電波の送受信を可能としている。このため、例えば、電波受信機(供試体)について環境試験を実施したい場合、電波送信機を外部に配置し、電波受信機だけを環境試験装置の試験槽内に配置するようにして環境試験を行うことができる。このため、本発明の環境試験装置では、試験槽が小型であっても適切に環境試験を行うことができる。また、電波送信機の環境特性に影響されることなく、供試体について正確に、温度特性などの環境特性を測定することができる。さらに、本発明の環境試験装置では、外部の環境状態が電波通過孔を通じて試験空間の環境状態に影響を与えないように、外部の環境状態を遮断する遮断手段を設けている。このため、試験空間を所定の環境状態に精度良く設定することができるので、供試体について、温度特性等の環境特性を正確に測定することができる。
【0010】
なお、外部の環境状態を遮断する遮断手段としては、例えば、電波透過性の断熱材(例えば、ウレタンフォーム)で電波通過孔を閉塞する手段が挙げられる。また、電波透過性の素材(例えば、ポリテトラフルオロエチレン(商標名テフロン))で電波通過孔を閉塞するようにしても良い。さらに、これらを組合わせたものとしても良い。また、電波通過孔の内側または外側にエアカーテンを設けるようにしても良い。このようにすることで、電波通過孔を介して外部と試験空間との間で電波を送受信可能とすると共に、試験空間を所定の環境状態(特に、温度や湿度)に精度良く設定することができる。なお、環境試験装置としては、恒温槽、恒温恒湿槽、ヒートサイクル試験装置、熱衝撃試験装置、プレッシャクッカ試験装置等が挙げられる。
【0011】
さらに、上記環境試験装置であって、前記試験槽壁の内側面の少なくとも一部は、電波吸収体層で被覆されてなる環境試験装置とすると良い。
【0012】
本発明の環境試験装置は、試験槽壁の内側面の少なくとも一部が電波吸収体層で構成されている。このため、例えば、電波受信機を試験槽内に配置して環境試験を実施する場合、外部から送信された電波のうち、電波受信機に受信されないで電波受信機を通過したり、電波受信機で反射した電波は、試験槽の内側面で反射することなく電波吸収体層に吸収される。従って、本発明の環境試験装置では、試験槽内の供試体が試験槽の内側面で反射した電波を受信するなど、反射電波に影響されないので、正確な環境試験が実施可能となる。なお、電波吸収体層は、使用する周波数等を考慮して、その配置を決定すると良い。具体的には、周波数が比較的低い(例えば、1GHz)場合には、試験槽壁の内側面全体に電波吸収体層を形成すると良い。一方、周波数が比較的高い(例えば、70GHz)場合には、電波の直進性が顕著となるため、反射防止に必要な部分にのみ電波吸収体層を形成しても良い。
【0013】
さらに、上記いずれかの環境試験装置であって、前記遮断手段は、前記電波通過孔を閉塞する電波透過性の断熱材を含む環境試験装置とすると良い。
【0014】
本発明の環境試験装置では、電波透過性の断熱材によって電波通過孔を閉塞する。このため、電波通過孔を通じて外部と試験空間との間の熱の移動を防ぐことができ、試験槽内を所定の温度に精度良く設定することできる。なお、断熱材としては、例えば、ウレタンフォーム、発泡スチロール等が挙げられる。
【0015】
さらに、上記環境試験装置であって、前記遮断手段は、前記断熱材より外側に位置し、前記電波通過孔を閉塞する外側閉塞部材であって、この外側閉塞部材のうち、上記電波通過孔をその軸線方向に投射した仮想投射領域に含まれる外側窓部の少なくとも一部は、電波透過性の材質からなる外側閉塞部材と、前記断熱材より内側に位置し、前記電波通過孔を閉塞する内側閉塞部材であって、この内側閉塞部材のうち、上記仮想投射領域に含まれる内側窓部の少なくとも一部は、電波透過性の材質からなる内側閉塞部材と、を有し、上記外側閉塞部材と上記内側閉塞部材とで挟まれた空間は密閉されてなる環境試験装置とすると良い。
【0016】
本発明の環境試験装置は、断熱材を挟むようにして、外側閉塞部材と内側閉塞部材とで電波通過孔を閉塞し、これらで囲まれる空間を密閉している。このため、外部の環境状態を遮断する遮断機能が高まり、より精度良く、試験空間の環境状態を所定の環境状態に設定することができる。
外側閉塞部材の閉塞形態としては、例えば、全体が電波通過孔の中に位置して電波通過孔を閉塞するものが挙げられる。この場合、外側窓部は外側閉塞部材と一致する。また、外側閉塞部材の一部または全部が、電波通過孔の外側に位置して電波通過孔を閉塞するようにしても良い。内側閉塞部材についても同様に、全体が電波通過孔内に位置するもの、一部が電波通過孔より内側(試験空間側)に位置するもの、または全体が電波通過孔より内側(試験空間側)に位置するものが挙げられる。
【0017】
また、外側閉塞部材及び内側閉塞部材の構成としては、例えば、全体が電波透過性の材質で構成されたものが挙げられる。また、外側窓部及び内側窓部が電波透過性の材質で、それ以外の部分を他の材質で構成するようにしても良い。また、外側窓部及び内側窓部の一部だけを電波透過性の材質で構成するようにしても良い。なお、外側閉塞部材及び内側閉塞部材に用いる電波透過性の材質としては、例えば、ポリテトラフルオロエチレン(商標名テフロン)が挙げられる。
ところで、本発明の環境試験装置は、断熱材として吸湿性を有する素材(例えば、ウレタンフォーム)を用いた場合、特に有効となる。すなわち、多湿な環境下で環境試験を行った場合でも、この断熱材は密閉空間内の配置されるために吸湿することがなく、断熱性の低下・劣化等を防止することができる。また、外側閉塞部材及び内側閉塞部材は、断熱材と隙間なく配置したり、断熱材との間にそれぞれ隙間を設けるようにしても良い。
【0018】
あるいは、上記いずれかの環境試験装置であって、前記遮断手段は、前記電波通過孔を閉塞する外側閉塞部材と内側閉塞部材とを有し、上記外側閉塞部材は、上記内側閉塞部材より外側に位置し、この外側閉塞部材のうち、上記電波通過孔をその軸線方向に投射した仮想投射領域に含まれる外側窓部の少なくとも一部は、電波透過性の材質からなり、上記内側閉塞部材は、上記外側閉塞部材より内側に離れて位置し、この内側閉塞部材のうち、上記仮想投射領域に含まれる内側窓部の少なくとも一部は、電波透過性の材質からなり、上記外側閉塞部材と上記内側閉塞部材とで挟まれた空間は密閉されてなる環境試験装置としても良い。
【0019】
本発明の環境試験装置では、外側閉塞部材と内側閉塞部材とによって電波通過孔を閉塞し、両部材で挟まれた空間が密閉されている。このため、外部の環境状態を遮断することができるので、試験空間の環境状態を所定の環境状態に精度良く設定することができる。
外側閉塞部材の閉塞形態としては、前述したものと同様に、例えば、全体が電波通過孔の中に位置して電波通過孔を閉塞するものが挙げられる。この場合、外側窓部は外側閉塞部材と一致する。また、外側閉塞部材の一部または全部が、電波通過孔の外側に位置して電波通過孔を閉塞するようにしても良い。内側閉塞部材についても同様に、全体が電波通過孔内に位置するもの、一部が電波通過孔より内側(試験空間側)に位置するもの、または全体が電波通過孔より内側(試験空間側)に位置するものが挙げられる。
【0020】
また、外側閉塞部材及び内側閉塞部材の構成としては、前述したものと同様に、例えば、全体が電波透過性の材質で構成されたものが挙げられる。また、外側窓部及び内側窓部が電波透過性の材質で、それ以外の部分を他の材質で構成するようにしても良い。また、外側窓部及び内側窓部の一部だけを電波透過性の材質で構成するようにしても良い。なお、外側閉塞部材及び内側閉塞部材に用いる電波透過性の材質としては、例えば、ポリテトラフルオロエチレン(商標名テフロン)が挙げられる。
【0021】
さらに、上記いずれかの環境試験装置であって、前記外側閉塞部材の前記外側窓部は、前記電波通過孔の軸線に対して斜めに配置され、前記内側閉塞部材の前記内側窓部は、上記電波通過孔の軸線に対して斜めに配置されてなる環境試験装置とすると良い。
【0022】
本発明の環境試験装置では、外側閉塞部材の外側窓部が電波通過孔の軸線に対して斜めに配置され、内側閉塞部材の内側窓部が電波通過孔の軸線に対して斜めに配置されている。例えば、外部の電波送信機から電波通過孔の軸線方向に試験槽内の電波受信機に向かって電波を発射したとき、この送信電波のうち一部は、外側閉塞部材または内側閉塞部材で反射する。しかし、本発明の環境試験装置では、外側閉塞部材または内側閉塞部材が電波通過孔の軸線に対して斜めに配置されているので、この反射電波が電波送信機に戻ることを防止できる。また、試験槽内の電波送信機から電波通過孔の軸線方向に外部の電波受信機に向かって電波を送信したときについても同様である。なお、外側閉塞部材の外側窓部と内側閉塞部材の内側窓部とを、平行に配置したものに限定されるものではない。
【0023】
さらに、上記いずれかの環境試験装置であって、前記電波通過孔の内周面は、斜め内側及び斜め外側の少なくともいずれかを向いてなる環境試験装置とすると良い。
【0024】
本発明の環境試験装置は、電波通過孔の内周面が、斜め内側または斜め外側を向いている。換言すれば、電波通過孔の内周面の法線ベクトルが試験槽内部の方向(斜め内側)、または環境試験装置の外部の方向(斜め外側)を向いている。例えば、電波通過孔の内周面が斜め内側を向いている場合、外部に配置する電波送信機を、この傾斜を有する内周面を外部に延長した仮想内周面より電波通過孔から離れる側に配置すれば、電波送信機から送信された電波がこの内周面で反射して試験空間内に入ることがない。また、電波通過孔の内周面が斜め外側を向いている場合、試験槽内に配置する電波受信機を、この傾斜を有する内周面を試験槽内に延長した仮想内周面より電波通過孔から離れる側に配置すれば、外部から発射された電波のうちこの内周面で反射した電波が、電波受信機に入射することを防止できる。なお、試験槽内に電波送信機を配置し、外部に電波受信機を配置した場合も同様である。
【0025】
さらに、上記いずれかの環境試験装置であって、前記電波通過孔の内周面は、内周面電波吸収体層で被覆されてなる環境試験装置とすると良い。
【0026】
本発明の環境試験装置は、電波通過孔の内周面が内周面電波吸収体層で構成されている。このため、電波通過孔の内周面での電波の反射を防止できる。従って、本発明の環境試験装置では、電波通過孔の内周面で反射した電波が試験槽内に入ったり、外部に出ることがないので、反射電波に影響され難い環境試験が実施可能となる。
【0027】
他の解決手段は、試験槽を有し、この試験槽内の試験空間を所定の環境状態に設定する環境試験装置であって、上記試験槽は、上記試験空間を包囲し、上記試験空間と上記環境試験装置外部とをつなぐ開口を有する包囲槽と、上記開口を閉塞する扉と、を有し、上記包囲槽は、上記試験空間を包囲する包囲槽壁であって、上記試験空間を包囲する包囲槽金属壁板を含む包囲槽壁を備え、上記包囲槽金属壁板は、上記開口の外側周縁まで延在し上記開口を囲んで露出する延在露出部含み、上記扉は、上記開口を塞ぐ扉金属壁板を備え、上記扉金属壁板は、上記扉で上記開口を閉塞したときに上記延在露出部に対向して露出する対向露出部を含み、上記延在露出部及び上記対向露出部の少なくともいずれかは、上記扉で上記開口を閉塞したとき、上記開口を環状に囲みつつ、上記延在露出部と上記対向露出部との間に介在し、両者を導通させる導通部材を備える環境試験装置である。
【0028】
本発明の環境試験装置では、扉で開口を閉塞したとき、開口を環状に包囲しつつ、延長露出部と対向露出部との間に介在し、両者を導通させる導通部材を備えている。このため、扉と包囲槽との間を通じて、電波が試験空間内に侵入したり、試験空間から漏れ出たりしないようにできる。
導通部材としては、延長露出部と対向露出部との間を導通できるものであれば良いが、例えば、線状またはチューブ状の導電性ゴムからなるシール部材が挙げられる。この場合、繰り返し使用することができる上、扉と包囲槽とを導通させるだけでなく、扉で開口を閉塞したときに扉と包囲槽との間を密閉することもできるので、別途シール部材を設ける必要はない。また、導通部材として、シリコンゴムチューブの外表面を金属メッシュで被覆した電波シールド部材を用いても良い。この場合には、この電波シールド部材よりも開口の径方向外側または径方向内側に、扉で開口を閉塞したときに扉と包囲槽との間を密閉するためのシール部材(例えば、シリコンゴムチューブ)を環状に設けると良い。
【0029】
さらに、上記環境試験装置であって、前記導通部材は、前記扉で前記開口を閉塞したときに前記包囲槽と前記扉との間を密閉するシール部材を兼ねる環境試験装置とするのが好ましい。
【0030】
本発明の環境試験装置では、導通部材がシール部材を兼ねている。換言すれば、延長露出部と対向露出部との間を導通させることと、扉と包囲槽との間を密閉することを1つの部材で行っている。このため、本発明の環境試験装置は、部品点数を低減でき、製造容易となる。なお、シール部材を兼ねる導通部材としては、例えば、導電性ゴムからなるシール部材が挙げられる。
【0031】
あるいは、上記環境試験装置であって、前記扉で前記開口を閉塞したときに、前記導通部材よりも前記開口の径方向内側または径方向外側に環状に位置するように配置され、前記包囲槽と前記扉との間を密閉するシール部材を有する環境試験装置とするのが好ましい。
【0032】
本発明の環境試験装置では、導通部材よりも開口の径方向内側または径方向外側に環状に配置された、包囲槽と扉との間を密閉するシール部材を有している。換言すれば、導通部材とシール部材とを別途設けている。前述した、導電性ゴムは高価であるため、環境試験装置がコスト高になる。これに対し、導通部材及びシール部材は、導電性ゴムに比して安価であるため、本発明の環境試験装置は安価となる。なお、導通部材としては、シリコンゴムの外表面を金属メッシュで被覆した電波シールド部材、シール部材としては、シリコンゴムが挙げられる。
【0033】
他の解決手段は、試験槽を有し、この試験槽内の試験空間を所定の環境状態に設定する環境試験装置であって、上記試験槽内において上記試験空間の環境状態を検知する環境センサと、上記環境センサを包囲して電波を遮蔽する遮蔽部材であって、この遮蔽部材内部と上記試験空間との間を貫通する通気孔を有する遮蔽部材と、を備える環境試験装置である。
【0034】
本発明の環境試験装置では、環境センサが電波を遮蔽する遮蔽部材によって包囲されている。このため、例えば、試験空間内の電波が環境センサの出力に対してノイズとして重畳されることによって誤検知が生じる不具合や、外部からの電波が環境センサを通じて試験空間内に侵入する不具合を防止できる。さらに、この遮断部材は通気孔を有しているので、遮蔽部材内部の環境状態は試験空間の環境状態と同様になる。従って、本発明の環境試験装置では、環境センサによって、試験空間の環境状態を正確に検知することができる。なお、環境センサとしては、例えば、温度センサ、湿度センサが挙げられる。また、遮蔽部材としては、例えば、金属メッシュ、パンチングメタル等を有底筒状に成形したものが挙げられる。
【0035】
【発明の実施の形態】
(実施形態)
本発明の実施の形態である環境試験装置100について、図面を参照しつつ説明する。まず、本実施形態の環境試験装置100の側面図を図1(a)に、正面視部分断面図を図1(b)に示す。図1に示すように、環境試験装置100は、試験槽101と、この上方に配置された恒温装置106とを有している。このうち、試験槽101は、W660(mm)×H600(mm)×D940(mm)の外寸法で、包囲槽103と扉102とからなり、試験空間120を包囲している。このうち、包囲槽103は、開口121を有し、試験空間120を包囲する包囲槽壁131を備える。一方、扉102は開口121を閉塞する。なお、本実施形態では、包囲槽壁131及び扉102が試験槽壁に相当する。また、恒温装置106は、W660(mm)×H625(mm)×D940(mm)の外寸法で、制御装置105、図示しない冷凍機等を有している。このような環境試験装置100は、−40℃〜100℃の範囲で試験空間120を恒温状態に設定することができる。
【0036】
さらに、図1(b)に示すように、包囲槽壁131(試験槽壁)のうち、正面から見て左側の側面をなす第1包囲槽壁部132には、これを貫通する電波通過孔110が形成されている。このため、試験空間120と環境試験装置100の外部との間で電波の送受信が可能となっている。例えば、電波受信機(供試体)について環境試験を実施したい場合、電波送信機を外部に配置し、電波受信機だけを環境試験装置100の試験空間120内に配置するようにして環境試験を行うことができる。このため、比較的小型の試験槽101を有する環境試験装置100で、環境試験を行うことができる。
【0037】
次に、包囲槽103及びその内部(試験空間120)について、図2を参照しつつ説明する。図2は、開口121(図1参照)側から包囲槽103を透視した透視断面図を示している。図2に示すように、包囲槽壁131(試験槽壁)は、外側から、外側包囲槽金属壁板134、断熱材135、内側包囲槽金属壁板136、電波吸収体層137の順に配置された4つの層で構成され、試験空間120を包囲している。この試験空間120の大きさは、W500(mm)×H350(mm)×D350(mm)である。なお、本実施形態では、電波吸収体層137として、土とカーボンとを混練して焼成した電波吸収タイルを用いている。また、外側包囲槽金属壁板134及び内側包囲槽金属壁板136は、ステンレスによって形成されている。断熱材135は、ウレタンフォームで形成されている。
【0038】
さらに、試験空間120内には、この試験空間120に温風や冷風を送り込む送風口161と、外部に空気を排出する排出口162が開口している。これらの開口には、外部からの電波の侵入及び外部への電波の漏洩を防止し、且つ通気可能とすべくハニカム状の金属構造材が嵌め込まれている。また、試験空間120内を所定の温度にするための温度センサ171が、包囲槽壁131(試験槽壁)の内側面131cから(本実施形態では、図2中奥から手前に向かって)突出して配置されている。すなわち、本実施形態では、環境センサとして、温度センサ171を設けている。また、図2中左側の壁には、上述の電波通過孔110が形成されており、この電波通過孔110を内側から閉塞する内側閉塞部材150が、包囲槽壁131(試験槽壁)の内側面131cから突出して配置されている。さらに、本実施形態では、電波吸収体層137がこれらの部分を除く内側包囲槽金属壁板136の内側面上に形成され、包囲槽壁131を被覆している。
【0039】
このように、環境試験装置100では、包囲槽壁131(試験槽壁)の内側面131cの大部分が電波吸収体層137で被覆されている。このため、例えば、電波受信機を試験空間120内に配置して環境試験を実施する場合、外部から送信された電波のうち、電波受信機に受信されないで電波受信機を通過したり、電波受信機で反射した電波は、包囲槽壁131(試験槽壁)の内側面131cで反射することなく電波吸収体層137に吸収される。従って、環境試験装置100では、試験空間120内の供試体が包囲槽壁131(試験槽壁)の内側面131cで反射した電波をも受信するなど、反射電波に影響されないので、正確な環境試験が実施可能となる。
【0040】
次に、扉102を開いた状態の試験槽101の斜視図を図3に示す。図3に示すように、包囲槽103の内側包囲槽金属壁板136(図2参照)は、開口121の外側周縁まで延在し、開口121を囲んで露出する環状の延在露出部136bを含んでいる。また、扉102は、開口121を塞ぐ内側扉金属壁板126を備え、この内側扉金属壁板126の内側面126cのうち、扉102を閉じたときに開口121に対向する部分には、電波吸収体層129を設けている。このため、扉102を閉じた状態で環境試験を行うとき、試験空間120内の電波が開口121の部分(扉102)で反射することを防止できる。なお、内側扉金属壁板126は、扉102で開口121を閉塞したときに延在露出部136bに対向して露出する環状の対向露出部126b含んでいる。
【0041】
さらに、この対向露出部126bには、導通部材127が環状に設けられている。この導通部材127は、扉102で開口121を閉塞したとき、開口121を環状に包囲しつつ、延長露出部136bと対向露出部126bとの間に介在し、両者を導通させる。このため、扉102と包囲槽103との間を通じて、電波が試験空間120内に侵入したり、試験空間120から漏れ出たりしないようにできる。なお、本実施形態では、導通部材127として、シリコンゴムチューブの外表面を金属メッシュで被覆した電波シールド部材を用いている。
【0042】
さらに、延長露出部136bのうち開口121の外側周縁には、シール部材128が環状に設けられている。このシール部材128は、扉102で開口121を閉塞したとき、導通部材127よりも開口121の径方向内側に位置し、包囲槽103と扉102との間を密閉する。なお、本実施形態では、シール部材128として、シリコンゴムチューブを用いている。さらに、シール部材128自身に導電性ゴムを用いることもできる。この場合には、包囲槽103と扉102の密閉と、電波の侵入・漏洩防止とを兼ねるため、導通部材127が不要となる。
【0043】
次に、図1(b)のB部拡大図を図4に示す。図4に示すように、包囲槽壁131の第1包囲槽壁部132に形成した電波通過孔110内には、電波透過性の断熱材113(ウレタンフォーム)が配置されている。さらに、電波通過孔110の外側(図4中左側)には、電波透過性の外側窓部材141(ポリテトラフルオロエチレン(商標名テフロン)製の板材)(以下、テフロン板ともいう)有する外側閉塞部材140が配置されている。同様に、電波通過孔110の内側(試験空間120側(図4中右側))には、電波透過性の内側窓部材151(ポリテトラフルオロエチレン(商標名テフロン)製の板材)を有する内側閉塞部材150が配置されている。このため、環境試験装置100では、電波通過孔110を通じて、環境試験装置100の外部と試験空間120内との間で電波の送受信を可能としている。
【0044】
ところで、電波通過孔110は、厚さ50mmのウレタンフォーム製の断熱材113によって閉塞されている。このため、電波通過孔110を通じて環境試験装置100の外部(図2中左側)と試験空間120(図2中右側)との間の熱の移動を防ぐことができ、試験空間120内を所定の温度に精度良く設定することできる。さらに、電波通過孔110は、この外側(図4中左側)に配置された外側閉塞部材140によって外側から閉塞され、同様に、内側(図4中右側)に配置された内側閉塞部材150によって内側から閉塞されている。このように、環境試験装置100では、断熱材113を挟むようにして、外側閉塞部材140と内側閉塞部材150とで電波通過孔110を閉塞し、これらで囲まれる空間を密閉している。このため、環境試験装置100の外部と試験空間120との間の熱の移動防止等、環境試験装置100の外部の環境状態を遮断する遮断機能が高まるので、より精度良く、試験空間120内の環境状態を所定の環境状態に設定することができる。本実施形態では、遮断手段として、断熱材113、外側閉塞部材140、内側閉塞部材150を設けている。
【0045】
また、断熱材113を構成するウレタンフォームは、電波透過性に優れているが、吸湿性が高い材質である。このため、多湿な環境下で環境試験を行った場合には、断熱材113が吸湿してしまい、断熱性の低下・劣化等の原因となる。これに対し、環境試験装置100では、外側閉塞部材140及び内側閉塞部材150によって、ウレタンフォーム製の断熱材113を密閉空間に配置している。このようにすることで、多湿な環境下で環境試験を行った場合でも、ウレタンフォーム製の断熱材113は吸湿することがなく、断熱性の低下・劣化等を防止することができる。
【0046】
外側閉塞部材140は、矩形板状の外側窓部材141、この外側窓部材141を外側(図4中左側)から第1包囲槽壁部132に固定するための第1外側窓枠部材142及び第2外側窓枠部材143によって構成されている。外側窓部材141は、板厚2mmのテフロン板で、図4に示すように、電波通過孔110を軸線Sの方向に投射した仮想投射領域Mに含まれる外側窓部141bを有している。第1外側窓枠部材142は、ベークライトからなり、矩形筒状で、開口端面142bが電波通過孔110の軸線Sに対し斜めに形成されている。第2外側窓枠部材143は、4本の矩形棒状体143b,143c,143d,143eからなり、これらを矩形環状に配置したものである。外側閉塞部材140は、外側窓部材141の周縁部が第1外側窓枠部材142と第2外側窓枠部材143との間に挟まれて固定されることで一体に形成されている。そして、第1外側窓枠部材142に形成された図示しない貫通孔を利用して、タッピングスクリュ11によって第1包囲槽壁部132の第1外側面132bにねじ止めされている。
【0047】
内側閉塞部材150も同様に、矩形板状の内側窓部材151、この内側窓部材151を内側(試験空間120側(図4中右側))から第1包囲槽壁部132に固定するための第1内側窓枠部材152及び第2外側窓枠部材153によって構成されている。内側窓部材151は、板厚2mmのテフロン板で、図4に示すように、電波通過孔110を軸線Sの方向に投射した仮想投射領域Mに含まれる内側窓部151bを有している。第1内側窓枠部材152は、ベークライトからなり、矩形筒状で、開口端面152bが電波通過孔110の軸線Sに対し斜めに形成されている。第2内側窓枠部材153は、4本の矩形棒状体153b,153c,153d,153eからなり、これらを矩形環状に配置したものである。内側閉塞部材150は、内側窓部材151の周縁部が第1内側窓枠部材152と第2内側窓枠部材153との間に挟まれて固定されることで一体に形成されている。そして、第1内側窓枠部材152に形成された図示しない貫通孔を利用して、タッピングスクリュ11によって第1包囲槽壁部132の第1内側面132cにねじ止めされている。
【0048】
また、図4に示すように、電波通過孔110の内周面110bは、内周面電波吸収体層111で構成されている。このため、電波通過孔110の内周面110bでの電波の反射を防止できる。従って、環境試験装置100では、電波通過孔110の内周面110bで反射した電波が試験槽101内に入ったり、外部に出ることを防止できるので、反射電波に影響され難い環境試験が実施可能となる。なお、本実施形態では、内周面電波吸収体層111として、土とカーボンとを混練して焼成した電波吸収タイルを用いている。
【0049】
さらに、電波通過孔110の内周面110bは、斜め外側を向いている。換言すれば、内周面110bの法線ベクトルNが環境試験装置100の外部を向いている。このため、例えば、供試体として試験空間120内に電波受信機を配置する場合、この内周面110bを試験槽101内に延長した仮想内周面Lより電波通過孔110から離れる側に配置すれば、たとえ外部から発射された電波が内周面110bで反射したとしても、電波受信機に入射することを防止できる。なお、本実施形態では、内周面110bの法線ベクトルNと電波通過孔110の軸線Sとがなす角は60度となっている。
【0050】
さらに、環境試験装置100では、外側窓部材141が電波通過孔110の軸線Sに対して斜めに配置され、内側窓部材151も電波通過孔110の軸線Sに対して斜めに配置されている。例えば、外部の電波送信機から電波通過孔110の軸線Sの方向に沿って試験槽101内の電波受信機に向かって電波を発射したとき、この送信電波のうち一部は、外側閉塞部材140または内側閉塞部材150で反射する。しかし、環境試験装置100では、外側窓部141及び内側窓部151が電波通過孔110の軸線Sに対して斜めに配置されているので、この反射電波が電波送信機に戻ることを防止できる。また、試験槽101内の電波送信機から電波通過孔110の軸線Sの方向に沿って外部の電波受信機に向かって電波を送信したときについても同様である。なお、本実施形態では、外側窓部材141と内側窓部材151とは平行に配置され、図4に示すように、電波通過孔110を側面視したとき、外側窓部141及び内側窓部151と電波通過孔110の軸線Sとのなす角は80度となっている。
【0051】
次いで、図2のC部の側方視断面図を図5に示す。図5に示すように、試験空間120に突出する温度センサ171は、筒状の金属メッシュからなる電波遮蔽部材170によって包囲されている。このため、例えば、試験空間120内の電波が温度センサ171の出力に対してノイズとして重畳されることによって温度の誤検知が生じる不具合や、外部からの電波が温度センサ171を通じて試験空間内に侵入する不具合を防止できる。さらに、電波遮蔽部材170は、多数の通気孔170bを有する金属メッシュで形成されているため、通気性に優れている。このため、電波遮蔽部材170内部の温度は、試験空間120内の温度と等しくなる。従って、環境試験装置100では、温度センサ171によって、試験空間120内の温度を正確に検知することができる。なお、温度センサ171は、包囲槽壁131に形成された貫通孔131dを挿通しているが、外側包囲槽金属壁板134及び内側包囲槽金属壁板136と導通しないように、この部分を筒状のシリコンゴムで被覆している。また、電波遮蔽部材170は、内側包囲槽金属壁板136と導通するように配置されている。
なお、温度センサ171のほか湿度センサ等を有する場合にも、電波遮蔽部材170で覆うようにすれば良い。
【0052】
このような、本実施形態の環境試験装置100は、例えば、図6に示すようにして、電波を利用した機器の環境試験に用いられる。具体的には、電波受信機20を環境試験装置100の試験空間120内に配置し、環境試験装置100の外部であって電波通過孔110を挟んで電波受信機20と対向する位置に、電波送信機30を配置する。そして、電波送信機30から所定の周波数の電波を送信し、この電波を電波受信機20によって受信する。このとき、恒温装置106の制御装置105によって、試験空間120内について、−20℃の状態と60℃の状態とを30分ずつ繰り返すように変化させて、電波受信機20の温度特性を測定する。
【0053】
以上において、本発明を実施形態に即して説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。
例えば、実施形態の環境試験装置100では、図4に示すように、断熱材113によって電波通過孔110を閉塞した。しかし、例えば、図7に示すように、断熱材113を設けないで、外側閉塞部材140と内側閉塞部材150とによって電波通過孔110を閉塞し、両部材で挟まれた空間を密閉するようにしても良い。
【0054】
また、実施形態の環境試験装置100では、図4に示すように、外側閉塞部材140の外側窓部材141と内側閉塞部材150の内側窓部材151とを平行に配置した。しかし、例えば、図8に示すように、内側閉塞部材150を上下反対に装着して、この内側閉塞部材250の内側窓部材151が、外側窓部材141と平行でなく、且つ電波通過孔110の軸線Sに対して斜めに配置するようにしても良い。
【0055】
また、実施形態の環境試験装置100では、図4に示すように、外側閉塞部材140が、第1外側窓枠部材142及び第2外側窓枠部材143と電波透過性の外側窓部材141とによって構成され、同様に、内側閉塞部材150も、第1内側窓枠部材152及び第2内側窓枠部材153と電波透過性の内側窓部材151とによって構成されていた。しかし、例えば、図9に示すように、外側閉塞部材340及び内側閉塞部材350の全体を電波透過性の材質で形成するようにしても良い。また、外側閉塞部材及び内側閉塞部材のいずれか一方について、その全体を電波透過性の材質で形成するようにしても良い。
【0056】
また、実施形態の環境試験装置100では、図4に示すように、外側閉塞部材140を電波通過孔110の外側(図4中左側)に配置し、内側閉塞部材150を電波通過孔110の内側(試験空間120側(図4中右側))に配置した。しかし、例えば、図10に示すように、外側閉塞部材440及び内側閉塞部材450を電波通過孔110内に配置するようにしても良い。このとき、この外側閉塞部材440及び内側閉塞部材450の全体を、電波透過性の材質、例えば、ポリテトラフルオロエチレン(商標名テフロン)の板材で形成すると良い。
【0057】
なお、図10に示す形態では、断熱材413を電波通過孔110の中央に配置して、外側閉塞部材440及び内側閉塞部材450との間にそれぞれ空間を設けている。これに対し、図11に示すように、外側閉塞部材440と断熱材513及び内側閉塞部材450と断熱材513が隙間なく接するように、それぞれを配置するようにしても良い。
また、実施形態の環境試験装置100において、外側閉塞部材140と内側閉塞部材150とで囲まれた空間全体に断熱材を充填するようにしても良い。
【図面の簡単な説明】
【図1】実施形態にかかる環境試験装置100を示す図であり、(a)はその側面図、(b)はその正面視部分断面図である。
【図2】実施形態にかかる環境試験装置100の包囲槽103の透視断面図である。
【図3】実施形態にかかる環境試験装置100のうち、扉102を開いた状態の試験槽101の斜視図である。
【図4】図1のB部を示す図であり、実施形態にかかる環境試験装置100の電波通過孔110付近の断面図である。
【図5】図2のC部の側方視断面図であり 実施形態にかかる環境試験装置100の温度センサ171付近を示す。
【図6】実施形態にかかる環境試験装置100を用いた環境試験を説明する説明図である。
【図7】他の形態にかかる環境試験装置の電波通過孔110付近の断面図である。
【図8】他の形態にかかる環境試験装置の電波通過孔110付近の断面図である。
【図9】他の形態にかかる環境試験装置の電波通過孔110付近の断面図である。
【図10】他の形態にかかる環境試験装置の電波通過孔110付近の断面図である。
【図11】他の形態にかかる環境試験装置の電波通過孔110付近の断面図である。
【符号の説明】
100 環境試験装置
101 試験槽
102 扉(試験槽壁)
103 包囲槽
110 電波通過孔
110b 電波通過孔の内周面
111 内周面電波吸収体層
113,413,513 断熱材(遮断手段)
120 試験空間
121 開口
126 内側扉金属壁板(扉金属壁板)
126b 対向露出部
127 導通部材
128 シール部材
131 包囲槽壁(試験槽壁)
134 外側包囲槽金属壁板(包囲槽金属壁板)
136 内側包囲槽金属壁板(包囲槽金属壁板)
136b 延在露出部
137 電波吸収体層
140,340,440 外側閉塞部材(遮断手段)
141b 外側窓部
150,250,350,450 内側閉塞部材(遮断手段)
151b 内側窓部
170 電波遮蔽部材(遮蔽部材)
170b 通気孔
171 温度センサ(環境センサ)
M 仮想投射領域
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an environmental test apparatus, and more particularly to an environmental test apparatus for performing an environmental test of a device using radio waves.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in order to perform an environmental test for measuring operating characteristics of various devices under various environments, an environmental test apparatus capable of setting the inside to a predetermined environmental state has been proposed. For example, as a test tank, there is an environmental test apparatus provided with a constant temperature bath capable of setting the inside to a predetermined temperature (for example, see Patent Document 1). Conventionally, the use of various devices using radio waves has been studied. In order to establish the use of such devices, it is necessary to perform an environmental test for measuring the operating characteristics of these devices under various environments.
Meanwhile, as a conventional environmental test apparatus, there is an apparatus in which most of an outer surface and an inner surface of a test tank are formed of a metal wall plate. In this environmental test apparatus, if the entire outer surface and inner surface of the test tank are made of a metal wall, a radio wave is shielded between the inside and the outside of the test tank.
[0003]
[Patent Document 1]
JP 2001-255349 A
[0004]
[Problems to be solved by the invention]
However, with such an environmental test apparatus, it has been difficult to appropriately perform an environmental test on the radio equipment. For example, when performing an environmental test of a radio receiver, if the above-described conventional environmental test device is used, since the test tank of the environmental test device has a radio wave shielding structure, it is difficult to perform an environmental test on the radio receiver. In addition, not only a radio receiver but also a radio transmitter must be placed in the test tank. Therefore, the test is troublesome, and it is necessary to use a large environmental test device. In addition, the test results include changes in the characteristics of the radio wave transmitter, and it has been difficult to accurately measure the environmental characteristics of only the radio wave receiver.
[0005]
Further, the above-mentioned conventional environmental test apparatus is provided with a door for taking in and out the test specimen, and when the door is closed, the test chamber is interposed between the door and the test chamber to seal the inside of the test chamber. A sealing member for mounting. Since this seal member is made of non-conductive rubber such as silicon rubber, radio waves penetrate the seal member and leak out of the radio waves, or the radio waves may enter the test space, causing environmental problems. The test may not be able to be performed properly.
[0006]
Further, a temperature sensor (environment sensor) for detecting the temperature (environmental state) of the test space is provided in the test tank. However, radio waves in the test space are superimposed as noise on the output of the temperature sensor, which may cause erroneous temperature detection. Alternatively, an external radio wave may enter the test space through the temperature sensor. For this reason, there was a possibility that the environmental test could not be properly performed.
[0007]
The present invention has been made in view of such circumstances, and has as its object to provide an environmental test apparatus that can easily and appropriately perform an environmental test on radio waves of various devices. Specifically, an object of the present invention is to provide an environmental test apparatus capable of appropriately performing an environmental test even when a test tank is small. It is another object of the present invention to provide an environmental test apparatus capable of appropriately performing an environmental test by shielding a radio wave between a door and a test tank. It is another object of the present invention to provide an environmental test apparatus capable of accurately detecting an environmental state of a test space by an environmental sensor, preventing invasion of radio waves from the outside, and performing an appropriate environmental test.
[0008]
Means for Solving the Problems, Functions and Effects
The solution is an environmental test apparatus having a test chamber and setting a test space in the test chamber to a predetermined environmental state, wherein the test chamber includes a test chamber wall surrounding the test space, A radio wave passage hole formed through the wall of the test tank, a radio wave passage hole through which the radio wave can be transmitted and received between the test space and the outside of the environmental test apparatus, and a radio wave passage hole. And an interception means for intercepting an influence of an external environmental state on the environmental state of the test space via the control unit.
It is.
[0009]
In the environmental test apparatus of the present invention, a radio wave passage hole penetrating the test tank wall is formed, so that radio waves can be transmitted and received between the test space and the outside. For this reason, for example, when an environmental test is to be performed on a radio wave receiver (specimen), the radio wave transmitter is arranged outside, and only the radio wave receiver is arranged in a test tank of the environmental test apparatus. It can be carried out. Therefore, the environmental test apparatus of the present invention can appropriately perform an environmental test even if the test tank is small. In addition, environmental characteristics such as temperature characteristics of the specimen can be accurately measured without being affected by the environmental characteristics of the radio wave transmitter. Further, the environmental test apparatus of the present invention is provided with a shut-off means for shutting off the external environmental condition so that the external environmental condition does not affect the environmental condition of the test space through the radio wave passage hole. For this reason, the test space can be set to a predetermined environmental state with high accuracy, so that environmental characteristics such as temperature characteristics of the specimen can be accurately measured.
[0010]
In addition, as the blocking means for blocking the external environmental state, for example, a means for closing the radio wave passage hole with a radio wave permeable heat insulating material (for example, urethane foam) may be mentioned. Further, the radio wave passage hole may be closed with a radio wave transmitting material (for example, polytetrafluoroethylene (trade name: Teflon)). Further, these may be combined. Further, an air curtain may be provided inside or outside the radio wave passage hole. By doing so, radio waves can be transmitted and received between the outside and the test space via the radio wave passage hole, and the test space can be accurately set to a predetermined environmental state (particularly, temperature and humidity). it can. In addition, examples of the environmental test device include a thermostat, a thermostat and humidity chamber, a heat cycle test device, a thermal shock test device, and a pressure cooker test device.
[0011]
Further, in the above-mentioned environmental test apparatus, it is preferable that at least a part of the inner surface of the test tank wall is covered with a radio wave absorber layer.
[0012]
In the environmental test apparatus of the present invention, at least a part of the inner surface of the test tank wall is formed of a radio wave absorber layer. For this reason, for example, when conducting an environmental test with a radio receiver placed in a test tank, radio waves transmitted from outside may pass through the radio receiver without being received by the radio receiver, The radio wave reflected by is absorbed by the radio wave absorber layer without being reflected on the inner surface of the test tank. Therefore, the environmental test apparatus of the present invention is not affected by the reflected radio waves, such as the test specimen in the test chamber receiving the radio waves reflected on the inner surface of the test chamber, so that an accurate environmental test can be performed. Note that the arrangement of the radio wave absorber layer may be determined in consideration of the frequency to be used and the like. Specifically, when the frequency is relatively low (for example, 1 GHz), the radio wave absorber layer may be formed on the entire inner surface of the test tank wall. On the other hand, when the frequency is relatively high (for example, 70 GHz), since the straightness of the radio wave becomes remarkable, the radio wave absorber layer may be formed only in a portion necessary for preventing reflection.
[0013]
Further, in any one of the above-described environmental test apparatuses, the blocking means may be an environmental test apparatus including a radio wave permeable heat insulating material that closes the radio wave passage hole.
[0014]
In the environmental test apparatus of the present invention, the radio wave passage hole is closed by the radio wave permeable heat insulating material. Therefore, it is possible to prevent the transfer of heat between the outside and the test space through the radio wave passage hole, and it is possible to accurately set the inside of the test chamber to a predetermined temperature. In addition, as a heat insulating material, urethane foam, styrene foam, etc. are mentioned, for example.
[0015]
Further, in the above-mentioned environmental test apparatus, the blocking means is an outer closing member which is located outside the heat insulating material and closes the radio wave passage hole. At least a part of the outer window portion included in the virtual projection area projected in the axial direction is an outer closing member made of a radio wave permeable material, and an inner side located inside the heat insulating material and closing the radio wave passage hole. A closing member, of the inner closing member, at least a part of the inner window portion included in the virtual projection region has an inner closing member made of a radio wave permeable material, and the outer closing member It is preferable that the space sandwiched between the inner closing members is an environmental test device that is sealed.
[0016]
In the environmental test apparatus of the present invention, the radio wave passage hole is closed by the outer closing member and the inner closing member so as to sandwich the heat insulating material, and the space surrounded by these is closed. For this reason, the shutoff function of shutting off the external environmental state is enhanced, and the environmental state of the test space can be set to a predetermined environmental state with higher accuracy.
As the closing form of the outer closing member, for example, a form in which the entirety is located in the radio wave passage hole and closes the radio wave passage hole may be mentioned. In this case, the outer window coincides with the outer closing member. Further, a part or all of the outer closing member may be positioned outside the radio wave passage hole to close the radio wave passage hole. Similarly, as for the inner closing member, a member entirely located in the radio wave passage hole, a member partially located inside the radio wave passage hole (on the test space side), or an entire member inside the radio wave passage hole (on the test space side) Are located.
[0017]
Further, as the configuration of the outer blocking member and the inner blocking member, for example, a configuration in which the whole is formed of a radio wave permeable material may be mentioned. Further, the outer window portion and the inner window portion may be made of a radio wave transmitting material, and the other portions may be made of another material. Further, only a part of the outer window portion and the inner window portion may be made of a radio wave transmitting material. The radio wave transmitting material used for the outer closing member and the inner closing member includes, for example, polytetrafluoroethylene (trade name: Teflon).
Incidentally, the environmental test apparatus of the present invention is particularly effective when a material having hygroscopicity (for example, urethane foam) is used as the heat insulating material. In other words, even when an environmental test is performed in a humid environment, the heat insulating material does not absorb moisture because it is arranged in a closed space, so that deterioration and deterioration of the heat insulating property can be prevented. Further, the outer closing member and the inner closing member may be arranged without a gap with the heat insulating material, or may be provided with a gap between the heat insulating material.
[0018]
Alternatively, in any one of the above environmental test devices, the blocking means has an outer closing member and an inner closing member for closing the radio wave passage hole, and the outer closing member is located outside the inner closing member. Positioning, at least a portion of the outer window portion included in the virtual projection area where the radio wave passage hole is projected in the axial direction of the outer closing member is made of a radio wave permeable material, and the inner closing member is The inner closing member is located inside the outer closing member, and at least a part of the inner window portion included in the virtual projection region is made of a radio wave permeable material. The space sandwiched between the closing members may be an environmental test device that is sealed.
[0019]
In the environmental test apparatus of the present invention, the radio wave passage hole is closed by the outer closing member and the inner closing member, and the space sandwiched by both members is sealed. For this reason, since the external environmental state can be shut off, the environmental state of the test space can be accurately set to the predetermined environmental state.
The closing form of the outer closing member may be, for example, a form in which the entirety is positioned in the radio wave passage hole and closes the radio wave passage hole in the same manner as described above. In this case, the outer window coincides with the outer closing member. Further, a part or all of the outer closing member may be positioned outside the radio wave passage hole to close the radio wave passage hole. Similarly, as for the inner closing member, a member entirely located in the radio wave passage hole, a member partially located inside the radio wave passage hole (on the test space side), or an entire member inside the radio wave passage hole (on the test space side) Are located.
[0020]
Further, as the configuration of the outer blocking member and the inner blocking member, for example, a configuration in which the entirety is formed of a radio wave permeable material, similarly to the above-described configuration, may be used. Further, the outer window portion and the inner window portion may be made of a radio wave transmitting material, and the other portions may be made of another material. Further, only a part of the outer window portion and the inner window portion may be made of a radio wave transmitting material. The radio wave transmitting material used for the outer closing member and the inner closing member includes, for example, polytetrafluoroethylene (trade name: Teflon).
[0021]
Further, in any one of the above environmental test devices, the outer window portion of the outer closing member is disposed obliquely to an axis of the radio wave passage hole, and the inner window portion of the inner closing member is It is preferable to use an environmental test device that is arranged obliquely with respect to the axis of the radio wave passage hole.
[0022]
In the environmental test apparatus of the present invention, the outer window of the outer closing member is arranged obliquely with respect to the axis of the radio wave passage hole, and the inner window of the inner closing member is arranged obliquely with respect to the axis of the radio wave passage hole. I have. For example, when a radio wave is emitted from an external radio wave transmitter toward the radio wave receiver in the test tank in the axial direction of the radio wave passage hole, a part of the transmitted radio wave is reflected by the outer blocking member or the inner blocking member. . However, in the environmental test apparatus of the present invention, since the outer closing member or the inner closing member is arranged obliquely with respect to the axis of the radio wave passage hole, this reflected radio wave can be prevented from returning to the radio transmitter. The same applies to the case where a radio wave is transmitted from a radio wave transmitter in the test tank to an external radio wave receiver in the axial direction of the radio wave passage hole. The outer window of the outer closing member and the inner window of the inner closing member are not limited to those arranged in parallel.
[0023]
Further, in any one of the above-mentioned environmental test apparatuses, it is preferable that the inner peripheral surface of the radio wave passage hole is directed to at least one of an oblique inside and an oblique outside.
[0024]
In the environmental test apparatus of the present invention, the inner peripheral surface of the radio wave passage hole faces obliquely inward or outward. In other words, the normal vector of the inner peripheral surface of the radio wave passage hole points in the direction inside the test tank (oblique inside) or the direction outside the environmental test apparatus (oblique outside). For example, when the inner peripheral surface of the radio wave passage hole faces obliquely inward, the radio wave transmitter disposed outside is positioned on the side farther from the radio wave passage hole than the virtual inner peripheral surface in which the inner peripheral surface having this inclination is extended to the outside. , The radio wave transmitted from the radio wave transmitter is not reflected on this inner peripheral surface and enters the test space. In addition, when the inner peripheral surface of the radio wave passage hole faces obliquely outward, the radio wave receiver placed in the test tank is used to pass radio waves from the virtual inner peripheral surface that extends this inclined inner peripheral surface into the test tank. By arranging it on the side away from the hole, it is possible to prevent radio waves reflected from the inner peripheral surface of radio waves emitted from the outside from entering the radio wave receiver. The same applies to a case where a radio wave transmitter is arranged in a test tank and a radio wave receiver is arranged outside.
[0025]
Further, in any one of the above-mentioned environmental test apparatuses, it is preferable that an inner peripheral surface of the radio wave passage hole is covered with an inner peripheral wave absorber layer.
[0026]
In the environmental test apparatus of the present invention, the inner peripheral surface of the radio wave passage hole is formed by the inner peripheral surface radio wave absorber layer. Therefore, it is possible to prevent the reflection of the radio wave on the inner peripheral surface of the radio wave passage hole. Therefore, in the environmental test apparatus of the present invention, since the radio wave reflected on the inner peripheral surface of the radio wave passage hole does not enter the test tank or go outside, it is possible to perform an environmental test that is hardly affected by the reflected radio wave. .
[0027]
Another solution is an environmental test apparatus having a test chamber and setting a test space in the test chamber to a predetermined environmental state, wherein the test chamber surrounds the test space, An enclosing tank having an opening connecting the outside of the environmental test apparatus, and a door closing the opening, wherein the enclosing tank is an enclosing tank wall enclosing the test space and enclosing the test space. A surrounding bath wall including a surrounding bath metal wall plate, wherein the surrounding bath metal wall plate includes an extended exposing portion extending to an outer peripheral edge of the opening and surrounding and exposing the opening; A door metal wall plate that closes the door, the door metal wall plate includes a facing exposed portion that is exposed to face the extended exposed portion when the opening is closed by the door; At least one of the opposing exposed portions, when closing the opening with the door, While surrounding the serial opening annularly interposed between the extending exposed portion and the opposite exposed portion, an environmental test apparatus including a conductive member for conducting both.
[0028]
In the environmental test apparatus of the present invention, when the opening is closed by the door, a conductive member is provided between the extended exposed portion and the facing exposed portion so as to electrically connect the two while surrounding the opening annularly. Therefore, it is possible to prevent radio waves from entering the test space or leaking out of the test space through the space between the door and the surrounding tank.
Any conductive member may be used as long as it can conduct between the extended exposed portion and the opposed exposed portion. For example, a linear or tube-shaped seal member made of conductive rubber can be used. In this case, it can be used repeatedly, and it is possible to not only make the door and the surrounding tank conductive, but also to seal the gap between the door and the surrounding tank when the opening is closed by the door. No need to provide. Further, a radio wave shielding member in which the outer surface of a silicone rubber tube is covered with a metal mesh may be used as the conductive member. In this case, a sealing member (for example, a silicone rubber tube) for sealing the space between the door and the surrounding tank when the opening is closed by the door, on the radially outer side or the radially inner side of the opening from the radio wave shielding member. ) Is preferably provided in an annular shape.
[0029]
Further, in the above-described environmental test apparatus, it is preferable that the conductive member be an environmental test apparatus that also functions as a seal member that seals between the surrounding tank and the door when the opening is closed by the door.
[0030]
In the environmental test device of the present invention, the conductive member also serves as the seal member. In other words, conduction between the extended exposed portion and the facing exposed portion and sealing between the door and the surrounding tank are performed by one member. For this reason, the environmental test apparatus of the present invention can reduce the number of parts and can be easily manufactured. In addition, as a conductive member also serving as a seal member, for example, a seal member made of conductive rubber can be cited.
[0031]
Alternatively, in the environmental test apparatus, when the opening is closed by the door, the opening is disposed so as to be positioned radially inward or radially outward of the opening relative to the conductive member, and the surrounding tank is disposed. It is preferable to use an environmental test apparatus having a seal member for sealing the space between the door and the door.
[0032]
The environmental test device of the present invention has a seal member that is annularly disposed radially inside or radially outside of the opening with respect to the conductive member and seals the space between the surrounding tank and the door. In other words, the conductive member and the seal member are separately provided. Since the above-described conductive rubber is expensive, the cost of the environmental test apparatus increases. On the other hand, since the conducting member and the sealing member are inexpensive compared to the conductive rubber, the environmental test apparatus of the present invention is inexpensive. Note that the conductive member includes a radio wave shielding member in which the outer surface of silicon rubber is covered with a metal mesh, and the seal member includes silicon rubber.
[0033]
Another solution is an environmental test apparatus having a test chamber and setting a test space in the test chamber to a predetermined environmental state, wherein the environmental sensor detects an environmental state of the test space in the test chamber. And a shielding member that surrounds the environment sensor and shields radio waves, the shielding member having a ventilation hole penetrating between the inside of the shielding member and the test space.
[0034]
In the environmental test apparatus of the present invention, the environment sensor is surrounded by a shielding member that shields radio waves. For this reason, for example, it is possible to prevent a problem that erroneous detection is caused by a radio wave in the test space being superimposed on the output of the environment sensor as noise, and a problem that an external radio wave enters the test space through the environment sensor. . Furthermore, since this blocking member has a vent, the environmental condition inside the shielding member is similar to the environmental condition in the test space. Therefore, in the environmental test apparatus of the present invention, the environmental condition of the test space can be accurately detected by the environmental sensor. Note that examples of the environment sensor include a temperature sensor and a humidity sensor. As the shielding member, for example, a metal mesh, a punched metal, or the like formed into a bottomed cylindrical shape may be used.
[0035]
BEST MODE FOR CARRYING OUT THE INVENTION
(Embodiment)
An environmental test apparatus 100 according to an embodiment of the present invention will be described with reference to the drawings. First, FIG. 1A shows a side view of the environmental test apparatus 100 according to the present embodiment, and FIG. As shown in FIG. 1, the environmental test apparatus 100 has a test tank 101 and a thermostat 106 arranged above the test tank 101. The test tank 101 has an outer dimension of W660 (mm) × H600 (mm) × D940 (mm), includes the surrounding tank 103 and the door 102, and surrounds the test space 120. The surrounding tank 103 has an opening 121 and includes a surrounding tank wall 131 surrounding the test space 120. On the other hand, the door 102 closes the opening 121. In the present embodiment, the surrounding tank wall 131 and the door 102 correspond to a test tank wall. Further, the thermostat 106 has an outer dimension of W660 (mm) × H625 (mm) × D940 (mm), and has a control device 105, a refrigerator (not shown), and the like. Such an environmental test apparatus 100 can set the test space 120 to a constant temperature state in the range of −40 ° C. to 100 ° C.
[0036]
Further, as shown in FIG. 1B, of the surrounding vessel wall 131 (test vessel wall), a first surrounding vessel wall 132 on the left side as viewed from the front has a radio wave passage hole therethrough. 110 are formed. Therefore, radio waves can be transmitted and received between the test space 120 and the outside of the environmental test apparatus 100. For example, when an environmental test is to be performed on a radio receiver (test piece), the environmental test is performed by disposing the radio transmitter outside and disposing only the radio receiver in the test space 120 of the environmental test apparatus 100. be able to. Therefore, an environmental test can be performed by the environmental test apparatus 100 having the relatively small test tank 101.
[0037]
Next, the surrounding tank 103 and the inside thereof (the test space 120) will be described with reference to FIG. FIG. 2 shows a see-through sectional view of the surrounding tank 103 seen from the opening 121 (see FIG. 1) side. As shown in FIG. 2, the surrounding vessel wall 131 (test vessel wall) is arranged from the outside in the order of the outer surrounding vessel metal wall plate 134, the heat insulating material 135, the inner surrounding vessel metal wall plate 136, and the radio wave absorber layer 137. And surrounds the test space 120. The size of the test space 120 is W500 (mm) × H350 (mm) × D350 (mm). In this embodiment, as the radio wave absorber layer 137, a radio wave absorption tile obtained by kneading and firing earth and carbon is used. Further, the outer surrounding tank metal wall plate 134 and the inner surrounding tank metal wall plate 136 are formed of stainless steel. The heat insulating material 135 is formed of urethane foam.
[0038]
Further, in the test space 120, an air outlet 161 for sending hot or cold air into the test space 120 and an outlet 162 for discharging air to the outside are open. Honeycomb-shaped metal structural members are fitted into these openings to prevent invasion of radio waves from the outside and leakage of radio waves to the outside, and to allow ventilation. Further, a temperature sensor 171 for keeping the inside of the test space 120 at a predetermined temperature protrudes from the inner side surface 131c of the surrounding tank wall 131 (test tank wall) (in the present embodiment, from the back to the front in FIG. 2). Is arranged. That is, in the present embodiment, the temperature sensor 171 is provided as the environment sensor. Further, the above-mentioned radio wave passage hole 110 is formed in the left wall in FIG. 2, and an inner closing member 150 that closes the radio wave passage hole 110 from the inside is formed in the surrounding tank wall 131 (test tank wall). It is arranged to protrude from the side surface 131c. Further, in the present embodiment, the radio wave absorber layer 137 is formed on the inner surface of the inner surrounding tank metal wall plate 136 excluding these portions, and covers the surrounding tank wall 131.
[0039]
As described above, in the environmental test apparatus 100, most of the inner side surface 131 c of the surrounding tank wall 131 (test tank wall) is covered with the radio wave absorber layer 137. For this reason, for example, when conducting an environmental test with a radio wave receiver placed in the test space 120, of the radio waves transmitted from the outside, the radio wave receiver passes through the radio wave receiver without being received by the radio wave receiver, or receives radio waves. The radio wave reflected by the machine is absorbed by the radio wave absorber layer 137 without being reflected by the inner surface 131c of the surrounding tank wall 131 (test tank wall). Accordingly, the environmental test apparatus 100 is not affected by the reflected radio waves, for example, the specimen in the test space 120 receives the radio waves reflected by the inner surface 131c of the surrounding vessel wall 131 (test vessel wall). Can be implemented.
[0040]
Next, FIG. 3 shows a perspective view of the test tank 101 with the door 102 opened. As shown in FIG. 3, the inner surrounding tank metal wall plate 136 (see FIG. 2) of the surrounding tank 103 extends to the outer peripheral edge of the opening 121, and includes an annular extending exposed portion 136 b exposed around the opening 121. Contains. Further, the door 102 includes an inner door metal wall plate 126 that closes the opening 121, and a portion of the inner side surface 126 c of the inner door metal wall plate 126 that faces the opening 121 when the door 102 is closed is a radio wave. An absorber layer 129 is provided. Therefore, when an environmental test is performed with the door 102 closed, it is possible to prevent the radio waves in the test space 120 from being reflected at the opening 121 (the door 102). The inner door metal wall plate 126 includes an annular facing exposed portion 126b that is exposed to face the extended exposed portion 136b when the opening 121 is closed by the door 102.
[0041]
Further, a conductive member 127 is provided in an annular shape in the facing exposed portion 126b. When the opening 121 is closed by the door 102, the conductive member 127 is interposed between the extended exposed portion 136b and the facing exposed portion 126b while surrounding the opening 121 in a ring shape, and conducts both. Therefore, it is possible to prevent radio waves from entering the test space 120 or leaking from the test space 120 through the space between the door 102 and the surrounding bath 103. In the present embodiment, a radio wave shield member in which the outer surface of a silicon rubber tube is covered with a metal mesh is used as the conductive member 127.
[0042]
Further, a seal member 128 is provided in an annular shape on the outer peripheral edge of the opening 121 in the extended exposed portion 136b. When the opening 121 is closed by the door 102, the seal member 128 is located radially inside the opening 121 with respect to the conductive member 127, and seals the space between the surrounding tank 103 and the door 102. In this embodiment, a silicone rubber tube is used as the seal member 128. Further, conductive rubber can be used for the seal member 128 itself. In this case, since the enclosure 103 and the door 102 are sealed and the radio waves do not enter or leak, the conductive member 127 is not required.
[0043]
Next, FIG. 4 shows an enlarged view of a portion B in FIG. As shown in FIG. 4, a radio wave permeable heat insulating material 113 (urethane foam) is disposed in the radio wave passage hole 110 formed in the first surrounding tank wall portion 132 of the surrounding tank wall 131. Further, outside the radio wave passage hole 110 (on the left side in FIG. 4), an outside block having a radio wave transmitting outer window member 141 (a plate made of polytetrafluoroethylene (trade name: Teflon)) (hereinafter also referred to as a Teflon plate) is provided. A member 140 is provided. Similarly, inside the radio wave passage hole 110 (on the side of the test space 120 (the right side in FIG. 4)), there is an inside block having an inner window member 151 (a plate made of polytetrafluoroethylene (trade name: Teflon)) that is radio wave permeable. A member 150 is arranged. For this reason, the environmental test apparatus 100 enables transmission and reception of radio waves between the outside of the environmental test apparatus 100 and the inside of the test space 120 through the radio wave passage hole 110.
[0044]
The radio wave passage hole 110 is closed by a heat insulating material 113 made of urethane foam having a thickness of 50 mm. For this reason, it is possible to prevent the transfer of heat between the outside of the environmental test apparatus 100 (left side in FIG. 2) and the test space 120 (right side in FIG. 2) through the radio wave passage hole 110. Temperature can be set accurately. Further, the radio wave passage hole 110 is closed from the outside by an outside closing member 140 arranged on the outside (the left side in FIG. 4), and similarly, inside by the inside closing member 150 arranged on the inside (the right side in FIG. 4). It is blocked from. Thus, in the environmental test apparatus 100, the radio wave passage hole 110 is closed by the outer closing member 140 and the inner closing member 150 so as to sandwich the heat insulating material 113, and the space surrounded by these is sealed. For this reason, the shutoff function of shutting off the environmental state outside the environmental test apparatus 100, such as the prevention of heat transfer between the outside of the environmental test apparatus 100 and the test space 120, is enhanced. The environment state can be set to a predetermined environment state. In the present embodiment, the heat insulating material 113, the outer closing member 140, and the inner closing member 150 are provided as blocking means.
[0045]
Further, the urethane foam forming the heat insulating material 113 is a material having excellent radio wave transmission but high hygroscopicity. For this reason, when an environmental test is performed in a humid environment, the heat insulating material 113 absorbs moisture, which causes a decrease or deterioration of the heat insulating property. On the other hand, in the environmental test apparatus 100, the heat insulating material 113 made of urethane foam is arranged in the closed space by the outer closing member 140 and the inner closing member 150. By doing so, even when an environmental test is performed in a humid environment, the heat insulating material 113 made of urethane foam does not absorb moisture, and it is possible to prevent deterioration and deterioration of the heat insulating property.
[0046]
The outer closing member 140 includes a rectangular plate-shaped outer window member 141, a first outer window frame member 142 for fixing the outer window member 141 to the first surrounding tank wall 132 from the outside (left side in FIG. 4), and a first outer window member 142. It is constituted by two outer window frame members 143. The outer window member 141 is a Teflon plate having a thickness of 2 mm, and has an outer window portion 141b included in a virtual projection area M where the radio wave passage hole 110 is projected in the direction of the axis S as shown in FIG. The first outer window frame member 142 is made of bakelite, has a rectangular cylindrical shape, and has an opening end surface 142b formed obliquely with respect to the axis S of the radio wave passage hole 110. The second outer window frame member 143 includes four rectangular rods 143b, 143c, 143d, and 143e, which are arranged in a rectangular ring shape. The outer closing member 140 is integrally formed by fixing a peripheral portion of the outer window member 141 between the first outer window frame member 142 and the second outer window frame member 143. The first outer window frame member 142 is screwed to the first outer surface 132b of the first surrounding tank wall 132 by a tapping screw 11 using a through hole (not shown) formed in the first outer window frame member 142.
[0047]
Similarly, the inner closing member 150 has a rectangular plate-shaped inner window member 151 and a second plate for fixing the inner window member 151 to the first surrounding tank wall 132 from the inside (the test space 120 side (the right side in FIG. 4)). It is constituted by the first inner window frame member 152 and the second outer window frame member 153. The inner window member 151 is a Teflon plate having a thickness of 2 mm, and has an inner window 151b included in a virtual projection area M where the radio wave passage hole 110 is projected in the direction of the axis S as shown in FIG. The first inner window frame member 152 is made of bakelite, has a rectangular cylindrical shape, and has an opening end surface 152b formed obliquely with respect to the axis S of the radio wave passage hole 110. The second inner window frame member 153 includes four rectangular rods 153b, 153c, 153d, and 153e, which are arranged in a rectangular ring shape. The inner closing member 150 is integrally formed by fixing the peripheral portion of the inner window member 151 between the first inner window frame member 152 and the second inner window frame member 153. The first inner window frame member 152 is screwed to the first inner side surface 132c of the first surrounding tank wall portion 132 by a tapping screw 11 using a through hole (not shown) formed in the first inner window frame member 152.
[0048]
Further, as shown in FIG. 4, the inner peripheral surface 110b of the radio wave passage hole 110 is formed of an inner peripheral surface radio wave absorber layer 111. Therefore, the reflection of the radio wave on the inner peripheral surface 110b of the radio wave passage hole 110 can be prevented. Therefore, the environmental test apparatus 100 can prevent the radio wave reflected by the inner peripheral surface 110b of the radio wave passage hole 110 from entering the test tank 101 or going outside, so that an environmental test that is hardly affected by the reflected radio wave can be performed. It becomes. In this embodiment, a radio wave absorption tile obtained by kneading and firing earth and carbon is used as the inner peripheral surface radio wave absorber layer 111.
[0049]
Further, the inner peripheral surface 110b of the radio wave passage hole 110 faces obliquely outward. In other words, the normal vector N of the inner peripheral surface 110b faces the outside of the environmental test apparatus 100. For this reason, for example, when a radio wave receiver is arranged in the test space 120 as a test piece, the inner peripheral surface 110b may be arranged on a side farther from the radio wave passage hole 110 than a virtual inner peripheral surface L extended into the test tank 101. For example, even if a radio wave emitted from the outside is reflected on the inner peripheral surface 110b, it can be prevented from entering the radio wave receiver. In the present embodiment, the angle between the normal vector N of the inner peripheral surface 110b and the axis S of the radio wave passage hole 110 is 60 degrees.
[0050]
Further, in the environmental test apparatus 100, the outer window member 141 is arranged obliquely with respect to the axis S of the radio wave passage hole 110, and the inner window member 151 is also arranged obliquely with respect to the axis S of the radio wave passage hole 110. For example, when radio waves are emitted from an external radio transmitter toward the radio receiver in the test tank 101 along the direction of the axis S of the radio wave passage hole 110, a part of the transmitted radio waves is Alternatively, the light is reflected by the inner closing member 150. However, in the environmental test apparatus 100, since the outer window 141 and the inner window 151 are arranged obliquely with respect to the axis S of the radio wave passage hole 110, the reflected radio waves can be prevented from returning to the radio transmitter. The same applies to the case where a radio wave is transmitted from the radio wave transmitter in the test tank 101 to the external radio wave receiver along the direction of the axis S of the radio wave passage hole 110. In the present embodiment, the outer window member 141 and the inner window member 151 are arranged in parallel, and as shown in FIG. 4, when the radio wave passage hole 110 is viewed from the side, the outer window member 141 and the inner window member 151 The angle between the radio wave passage hole 110 and the axis S is 80 degrees.
[0051]
Next, FIG. 5 shows a cross-sectional side view of a portion C in FIG. As shown in FIG. 5, the temperature sensor 171 projecting into the test space 120 is surrounded by a radio wave shielding member 170 made of a cylindrical metal mesh. For this reason, for example, a radio wave in the test space 120 is superimposed as noise on the output of the temperature sensor 171 to cause erroneous temperature detection, or an external radio wave enters the test space through the temperature sensor 171. Can be prevented. Further, since the radio wave shielding member 170 is formed of a metal mesh having a large number of ventilation holes 170b, it has excellent air permeability. Therefore, the temperature inside the radio wave shielding member 170 becomes equal to the temperature inside the test space 120. Therefore, in the environmental test apparatus 100, the temperature in the test space 120 can be accurately detected by the temperature sensor 171. Although the temperature sensor 171 is inserted through the through hole 131d formed in the surrounding tank wall 131, the temperature sensor 171 is formed in a cylindrical shape so as not to be electrically connected to the outer surrounding tank metal wall plate 134 and the inner surrounding tank metal wall plate 136. Covered with silicone rubber. Further, the radio wave shielding member 170 is disposed so as to be electrically connected to the inner surrounding tank metal wall plate 136.
Note that even when a humidity sensor or the like is provided in addition to the temperature sensor 171, it may be covered with the radio wave shielding member 170.
[0052]
Such an environmental test apparatus 100 of the present embodiment is used for an environmental test of a device using radio waves, for example, as shown in FIG. Specifically, the radio wave receiver 20 is arranged in the test space 120 of the environmental test apparatus 100, and the radio wave receiver is located outside the environmental test apparatus 100 and at a position facing the radio wave receiver 20 with the radio wave passage hole 110 interposed therebetween. The transmitter 30 is arranged. Then, a radio wave of a predetermined frequency is transmitted from the radio wave transmitter 30, and the radio wave is received by the radio wave receiver 20. At this time, the control device 105 of the thermostat 106 changes the state of −20 ° C. and the state of 60 ° C. in the test space 120 so as to be repeated for 30 minutes, and measures the temperature characteristics of the radio wave receiver 20. .
[0053]
In the above, the present invention has been described in accordance with the embodiments. However, it is needless to say that the present invention is not limited to the above embodiments, and can be appropriately modified and applied without departing from the gist thereof.
For example, in the environmental test apparatus 100 according to the embodiment, as shown in FIG. However, for example, as shown in FIG. 7, without providing the heat insulating material 113, the radio wave passage hole 110 is closed by the outer closing member 140 and the inner closing member 150, and the space sandwiched by both members is sealed. May be.
[0054]
Further, in the environmental test apparatus 100 of the embodiment, as shown in FIG. 4, the outer window member 141 of the outer closing member 140 and the inner window member 151 of the inner closing member 150 are arranged in parallel. However, for example, as shown in FIG. 8, the inner closing member 150 is mounted upside down, and the inner window member 151 of the inner closing member 250 is not parallel to the outer window member 141, and the It may be arranged obliquely with respect to the axis S.
[0055]
Further, in the environmental test apparatus 100 of the embodiment, as shown in FIG. 4, the outer closing member 140 is formed by the first outer window frame member 142 and the second outer window frame member 143 and the radio wave transmitting outer window member 141. Similarly, the inner closing member 150 also includes the first inner window frame member 152, the second inner window frame member 153, and the radio wave permeable inner window member 151. However, for example, as shown in FIG. 9, the entirety of the outer closing member 340 and the inner closing member 350 may be formed of a radio wave permeable material. Further, one of the outer closing member and the inner closing member may be entirely formed of a radio wave transmitting material.
[0056]
Further, in the environmental test apparatus 100 of the embodiment, as shown in FIG. 4, the outer closing member 140 is disposed outside the radio wave passage hole 110 (left side in FIG. 4), and the inner closing member 150 is located inside the radio wave passage hole 110. (The test space 120 side (the right side in FIG. 4)). However, for example, as shown in FIG. 10, the outer closing member 440 and the inner closing member 450 may be arranged in the radio wave passage hole 110. At this time, the whole of the outer closing member 440 and the inner closing member 450 may be formed of a radio wave transmitting material, for example, a plate material of polytetrafluoroethylene (trade name: Teflon).
[0057]
In the embodiment shown in FIG. 10, the heat insulating material 413 is arranged at the center of the radio wave passage hole 110, and spaces are provided between the outer closing member 440 and the inner closing member 450, respectively. On the other hand, as shown in FIG. 11, the outer blocking member 440 and the heat insulating material 513 and the inner closing member 450 and the heat insulating material 513 may be arranged so as to contact each other without any gap.
Further, in the environmental test apparatus 100 of the embodiment, the entire space surrounded by the outer closing member 140 and the inner closing member 150 may be filled with a heat insulating material.
[Brief description of the drawings]
FIG. 1 is a view showing an environmental test apparatus 100 according to an embodiment, (a) is a side view thereof, and (b) is a partial cross-sectional view in a front view.
FIG. 2 is a perspective sectional view of an enclosure 103 of the environmental test apparatus 100 according to the embodiment.
FIG. 3 is a perspective view of a test tank 101 in a state where a door 102 is opened in the environmental test apparatus 100 according to the embodiment.
FIG. 4 is a diagram showing a portion B in FIG. 1, and is a cross-sectional view near a radio wave passage hole 110 of the environmental test apparatus 100 according to the embodiment.
FIG. 5 is a side sectional view of a portion C in FIG. 2 and shows the vicinity of a temperature sensor 171 of the environmental test apparatus 100 according to the embodiment.
FIG. 6 is an explanatory diagram illustrating an environmental test using the environmental test apparatus 100 according to the embodiment.
FIG. 7 is a cross-sectional view of the vicinity of a radio wave passage hole 110 of an environmental test apparatus according to another embodiment.
FIG. 8 is a cross-sectional view of the vicinity of a radio wave passage hole 110 of an environmental test apparatus according to another embodiment.
FIG. 9 is a cross-sectional view of the vicinity of a radio wave passage hole 110 of an environmental test apparatus according to another embodiment.
FIG. 10 is a cross-sectional view of the vicinity of a radio wave passage hole 110 of an environmental test apparatus according to another embodiment.
FIG. 11 is a cross-sectional view showing the vicinity of a radio wave passage hole 110 of an environmental test apparatus according to another embodiment.
[Explanation of symbols]
100 Environmental test equipment
101 Test tank
102 door (test tank wall)
103 siege tank
110 Radio wave passage hole
110b Inner peripheral surface of radio wave passage hole
111 Inner surface radio wave absorber layer
113,413,513 Insulation material (blocking means)
120 test space
121 opening
126 Inner door metal wall plate (door metal wall plate)
126b Opposed exposed part
127 conductive member
128 sealing member
131 Siege tank wall (test tank wall)
134 Metal wall plate of outer surrounding tank (metal wall plate of surrounding tank)
136 Metal wall plate for inner surrounding tank (metal wall plate for surrounding tank)
136b Extension exposed part
137 Radio wave absorber layer
140, 340, 440 Outer closing member (blocking means)
141b Outside window
150, 250, 350, 450 Inner closing member (blocking means)
151b Inside window
170 Radio wave shielding member (shielding member)
170b vent
171 Temperature sensor (environment sensor)
M virtual projection area

Claims (10)

試験槽を有し、この試験槽内の試験空間を所定の環境状態に設定する環境試験装置であって、
上記試験槽は、
上記試験空間を包囲する試験槽壁と、
この試験槽壁を貫通して形成された電波通過孔であって、この電波通過孔を通じて上記試験空間と上記環境試験装置外部との間で電波の送受信が可能な電波通過孔と、
上記電波通過孔を経由した外部の環境状態の上記試験空間の環境状態に対する影響を遮断する遮断手段と、を備える
環境試験装置。
An environmental test apparatus having a test tank and setting a test space in the test tank to a predetermined environmental state,
The test tank is
A test tank wall surrounding the test space,
A radio wave passage hole formed through the wall of the test tank, and a radio wave passage hole through which radio waves can be transmitted and received between the test space and the outside of the environmental test apparatus through the radio wave passage hole;
An environmental test apparatus comprising: a blocking unit configured to block an influence of an external environmental state via the radio wave passage hole on an environmental state of the test space.
請求項1に記載の環境試験装置であって、
前記試験槽壁の内側面の少なくとも一部は、電波吸収体層で被覆されてなる
環境試験装置。
The environmental test apparatus according to claim 1, wherein
An environmental test apparatus in which at least a part of the inner surface of the test tank wall is covered with a radio wave absorber layer.
請求項1または請求項2に記載の環境試験装置であって、
前記遮断手段は、前記電波通過孔を閉塞する電波透過性の断熱材を含む
環境試験装置。
The environmental test apparatus according to claim 1 or 2, wherein:
An environmental test apparatus, wherein the blocking means includes a radio wave permeable heat insulating material that closes the radio wave passage hole.
請求項3に記載の環境試験装置であって、
前記遮断手段は、
前記断熱材より外側に位置し、前記電波通過孔を閉塞する外側閉塞部材であって、この外側閉塞部材のうち、上記電波通過孔をその軸線方向に投射した仮想投射領域に含まれる外側窓部の少なくとも一部は、電波透過性の材質からなる外側閉塞部材と、
前記断熱材より内側に位置し、前記電波通過孔を閉塞する内側閉塞部材であって、この内側閉塞部材のうち、上記仮想投射領域に含まれる内側窓部の少なくとも一部は、電波透過性の材質からなる内側閉塞部材と、を有し、
上記外側閉塞部材と上記内側閉塞部材とで挟まれた空間は密閉されてなる
環境試験装置。
The environmental test apparatus according to claim 3, wherein
The blocking means,
An outer closing member that is located outside the heat insulating material and closes the radio wave passage hole, and an outer window portion included in a virtual projection area that projects the radio wave passage hole in an axial direction of the outer closing member. At least a portion of the outer blocking member made of a radio wave permeable material,
An inner closing member that is located on the inner side of the heat insulating material and closes the radio wave passage hole. At least a part of the inner window included in the virtual projection area of the inner closing member has a radio wave transmitting property. An inner closing member made of a material,
An environmental test apparatus wherein a space sandwiched between the outer closing member and the inner closing member is sealed.
請求項1または請求項2に記載の環境試験装置であって、
前記遮断手段は、前記電波通過孔を閉塞する外側閉塞部材と内側閉塞部材とを有し、
上記外側閉塞部材は、上記内側閉塞部材より外側に位置し、この外側閉塞部材のうち、上記電波通過孔をその軸線方向に投射した仮想投射領域に含まれる外側窓部の少なくとも一部は、電波透過性の材質からなり、
上記内側閉塞部材は、上記外側閉塞部材より内側に離れて位置し、この内側閉塞部材のうち、上記仮想投射領域に含まれる内側窓部の少なくとも一部は、電波透過性の材質からなり、
上記外側閉塞部材と上記内側閉塞部材とで挟まれた空間は密閉されてなる
環境試験装置。
The environmental test apparatus according to claim 1 or 2, wherein:
The blocking means has an outer closing member and an inner closing member for closing the radio wave passage hole,
The outer closing member is positioned outside the inner closing member, and at least a part of the outer window portion included in a virtual projection area that projects the radio wave passage hole in the axial direction of the outer closing member is a radio wave. Made of permeable material,
The inner closing member is located farther inward than the outer closing member, and among the inner closing members, at least a part of the inner window included in the virtual projection region is made of a radio wave permeable material,
An environmental test apparatus wherein a space sandwiched between the outer closing member and the inner closing member is sealed.
請求項4または請求項5に記載の環境試験装置であって、
前記外側閉塞部材の前記外側窓部は、前記電波通過孔の軸線に対して斜めに配置され、
前記内側閉塞部材の前記内側窓部は、上記電波通過孔の軸線に対して斜めに配置されてなる
環境試験装置。
The environmental test apparatus according to claim 4 or claim 5,
The outer window portion of the outer closing member is disposed obliquely with respect to an axis of the radio wave passage hole,
An environmental test apparatus, wherein the inner window portion of the inner closing member is disposed obliquely with respect to an axis of the radio wave passage hole.
請求項1〜請求項6に記載の環境試験装置であって、
前記電波通過孔の内周面は、斜め内側及び斜め外側の少なくともいずれかを向いてなる
環境試験装置。
The environmental test apparatus according to claim 1, wherein:
An environmental test apparatus wherein an inner peripheral surface of the radio wave passage hole faces at least one of an oblique inside and an oblique outside.
請求項1〜請求項7に記載の環境試験装置であって、
前記電波通過孔の内周面は、内周面電波吸収体層で被覆されてなる
環境試験装置。
The environmental test apparatus according to claim 1, wherein:
An environmental test apparatus wherein an inner peripheral surface of the radio wave passage hole is covered with an inner peripheral surface radio wave absorber layer.
試験槽を有し、この試験槽内の試験空間を所定の環境状態に設定する環境試験装置であって、
上記試験槽は、
上記試験空間を包囲し、上記試験空間と上記環境試験装置外部とをつなぐ開口を有する包囲槽と、
上記開口を閉塞する扉と、を有し、
上記包囲槽は、上記試験空間を包囲する包囲槽壁であって、上記試験空間を包囲する包囲槽金属壁板を含む包囲槽壁を備え、
上記包囲槽金属壁板は、上記開口の外側周縁まで延在し上記開口を囲んで露出する延在露出部含み、
上記扉は、上記開口を塞ぐ扉金属壁板を備え、
上記扉金属壁板は、上記扉で上記開口を閉塞したときに上記延在露出部に対向して露出する対向露出部を含み、
上記延在露出部及び上記対向露出部の少なくともいずれかは、上記扉で上記開口を閉塞したとき、上記開口を環状に囲みつつ、上記延在露出部と上記対向露出部との間に介在し、両者を導通させる導通部材を備える
環境試験装置。
An environmental test apparatus having a test tank and setting a test space in the test tank to a predetermined environmental state,
The test tank is
An enclosure surrounding the test space and having an opening connecting the test space and the outside of the environmental test apparatus,
A door closing the opening,
The surrounding bath is a surrounding bath wall surrounding the test space, and includes an surrounding bath wall including a surrounding bath metal wall plate surrounding the test space,
The surrounding bath metal wall plate includes an extended exposed portion that extends to the outer peripheral edge of the opening and surrounds the opening and is exposed.
The door includes a door metal wall plate closing the opening,
The door metal wall plate includes a facing exposed portion that is exposed to face the extended exposed portion when the opening is closed by the door,
When the opening is closed by the door, at least one of the extended exposed portion and the opposed exposed portion is interposed between the extended exposed portion and the opposed exposed portion while surrounding the opening in an annular shape. An environmental test apparatus including a conducting member for conducting the two.
試験槽を有し、この試験槽内の試験空間を所定の環境状態に設定する環境試験装置であって、
上記試験槽内において上記試験空間の環境状態を検知する環境センサと、
上記環境センサを包囲して電波を遮蔽する遮蔽部材であって、この遮蔽部材内部と上記試験空間との間を貫通する通気孔を有する遮蔽部材と、を備える
環境試験装置。
An environmental test apparatus having a test tank and setting a test space in the test tank to a predetermined environmental state,
An environmental sensor for detecting an environmental state of the test space in the test tank;
An environmental test apparatus, comprising: a shielding member that surrounds the environment sensor and shields radio waves, the shielding member having a ventilation hole penetrating between the inside of the shielding member and the test space.
JP2002268442A 2002-09-13 2002-09-13 Environmental test equipment Expired - Lifetime JP3786683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002268442A JP3786683B2 (en) 2002-09-13 2002-09-13 Environmental test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002268442A JP3786683B2 (en) 2002-09-13 2002-09-13 Environmental test equipment

Publications (2)

Publication Number Publication Date
JP2004108807A true JP2004108807A (en) 2004-04-08
JP3786683B2 JP3786683B2 (en) 2006-06-14

Family

ID=32266649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002268442A Expired - Lifetime JP3786683B2 (en) 2002-09-13 2002-09-13 Environmental test equipment

Country Status (1)

Country Link
JP (1) JP3786683B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049017A1 (en) * 2004-11-05 2006-05-11 Nippon Light Metal Company, Ltd. Electronic device test box
CN103048562A (en) * 2012-12-11 2013-04-17 广州供电局有限公司 Environmental test system and voltage boosting method thereof
KR102064966B1 (en) * 2019-02-13 2020-01-14 대한민국 Structures for natural weathering test of dancheong materials for cultural property

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101963626B (en) * 2010-10-15 2012-01-25 上海科泰电源股份有限公司 Extremely low-temperature environmental test shelter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049017A1 (en) * 2004-11-05 2006-05-11 Nippon Light Metal Company, Ltd. Electronic device test box
JP2006153841A (en) * 2004-11-05 2006-06-15 Nippon Light Metal Co Ltd Test box for electronic apparatus
CN103048562A (en) * 2012-12-11 2013-04-17 广州供电局有限公司 Environmental test system and voltage boosting method thereof
KR102064966B1 (en) * 2019-02-13 2020-01-14 대한민국 Structures for natural weathering test of dancheong materials for cultural property

Also Published As

Publication number Publication date
JP3786683B2 (en) 2006-06-14

Similar Documents

Publication Publication Date Title
KR930008006B1 (en) Low noise refrigerator and noise control method
KR102074450B1 (en) Testing for defective manufacturing of microphones and ultralow pressure sensors
JP3892458B2 (en) microwave
US20150048980A1 (en) Millimeter wave test fixture for an integrated circuit device under test
CN104979610B (en) Protective device for a waveguide and method for producing a protective device
JP2004108807A (en) Environmental test device
JP4784249B2 (en) Electronic device inspection method and electronic device inspection device
JP2012145456A (en) Electromagnetic wave shield performance evaluation method
KR20180075335A (en) Apparatus for detecting internal fault of transformer
US10595451B1 (en) Shielding structure of circuit board and electronic device having the same
KR20140101676A (en) Magnetic resonance apparatus
US20240085543A1 (en) Measuring apparatus and method for measuring electromagnetic waves
EP3366028B1 (en) Acoustic means for detecting if the casing of a communication device constitutes a closed space
TW200837361A (en) Improved coupler
KR100595462B1 (en) Internal spiral type sensor for discharge detector
JPH1090335A (en) Shield box
KR100400744B1 (en) anechoic system
JP2004150953A (en) Detector and method detecting abnormal discharge
JPH0722172A (en) Sealing structure of induction heating device
JP3998504B2 (en) Microwave densitometer
CN220568657U (en) Material surface emissivity measuring device
RU2725700C1 (en) Device for electromagnetic probing of sample
JPH08136478A (en) Extremely low temrerature cooling apparatus for x-ray diffraction sample
JP2001074797A (en) Portable radio wave measuring instrument
JP2020134229A (en) Sound wave sensor and abnormality detector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060321

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3786683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140331

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term