JP2004107971A - Method for predicting displacement behavior of structure in underpinning - Google Patents

Method for predicting displacement behavior of structure in underpinning Download PDF

Info

Publication number
JP2004107971A
JP2004107971A JP2002271046A JP2002271046A JP2004107971A JP 2004107971 A JP2004107971 A JP 2004107971A JP 2002271046 A JP2002271046 A JP 2002271046A JP 2002271046 A JP2002271046 A JP 2002271046A JP 2004107971 A JP2004107971 A JP 2004107971A
Authority
JP
Japan
Prior art keywords
pile
spring
ground
underpinning
replacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002271046A
Other languages
Japanese (ja)
Other versions
JP4104944B2 (en
Inventor
Michiaki Ichino
市野 道明
Yukinori Shimizu
清水 幸範
Atsushi Koizumi
小泉 淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sato Kogyo Co Ltd
Pacific Consultants Co Ltd
Teito Rapid Transit Authority
Original Assignee
Sato Kogyo Co Ltd
Pacific Consultants Co Ltd
Teito Rapid Transit Authority
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sato Kogyo Co Ltd, Pacific Consultants Co Ltd, Teito Rapid Transit Authority filed Critical Sato Kogyo Co Ltd
Priority to JP2002271046A priority Critical patent/JP4104944B2/en
Publication of JP2004107971A publication Critical patent/JP2004107971A/en
Application granted granted Critical
Publication of JP4104944B2 publication Critical patent/JP4104944B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately predict the displacement behavior of an existing structure in the case of stress introduction (the case of receiving/shifting) or a structure such as a receiving/shifting structure so that a predicted value and a measured value coincide in an underpinning construction. <P>SOLUTION: In the predicting method for predicting the displacement behavior of the existing structure or the receiving/shifting structure in an underpinning in which a part or the whole of the existing structure with a pile foundation is received and shifted by the receiving/shifting structure having the anew installed pile foundation under a ground, a model with a composite spring in which a spring evaluating the interaction of the existing pile through a peripheral ground and the anew installed pile is considered, is set when the existing structure and the receiving-shifting structure are modelled in a framed construction, and the displacement behavior in the case of the receiving shifting is analyzed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、アンダーピニング工事において、予測値と実測値とが精度良く一致するように、既設構造物又は受替構造物等の構造物の変位挙動を予測するための予測方法に関する。
【0002】
【従来の技術】
東京、大阪などの都市部は、急激な経済成長に伴う過密化や集積化が激しい。地下も例外ではなく、道路下においては鉄道、下水道、電力、通信などの施設が輻輳しており、中浅程度までの地下の領域はすでに満杯の状態になっている。このような状況から、新たな鉄道などの地下施設の建設は、残された空間である大深度の領域や民有地下の領域で行われるケースが増えてきている。
【0003】
トンネルの建設には、地上周辺部および地下の既存施設に与える影響が小さいことから、シールド工法を採用する例が多い。しかしながら、民有地には高層ビル群が、また道路上には高架鉄道、高架道路などの橋脚が位置しており、これらの下をシールドが掘進する場合にその基礎杭が支障となる。このため既設構造物の一部あるいは全部を新たな基礎に受替えるアンダーピニングが必要となる場合が多い。
【0004】
近年、このような特殊な施工条件の増加に伴い、アンダーピニングはその実績件数が飛躍的に増加するとともに、大規模化してきている。アンダーピニングにおいては、既設建物の健全性の確保、応力導入(プレロード)時の受替荷重の評価などの観点から、既設建物や受替構造物の変位挙動を予測することは非常に重要な課題となる。
【0005】
現状の変位挙動の予測方法は、下記非特許文献1〜3(先行技術1)に示されるように、杭基礎の設計手法を用いて、既設建物や受替構造物の鉛直変位量を算出するのが一般的であった。また、下記非特許文献4(先行技術2)では、既設杭と新設杭との相互作用を考慮した変位伝達関数を用いて、杭頭の鉛直変位を算出する方法を提案している。この方法は、群杭の挙動を考察した下記非特許文献5の研究に基づいたものであり、有限要素法の結果から地盤中の任意点に作用する単位荷重と任意点の変位との関係を表す変位伝達関数を用いて評価するものである。
【0006】
【非特許文献1】
山田昇、清治均、斎木公嗣良「アンダーピニング支持構造物の挙動について−予測とその結果−」、第55回土木学会年次学術講演会講演概要集、2000年9月、VI−259
【非特許文献2】
西林聖武、矢萩秀一「高層ビル群のアンダーピニング、トンネルと地下」、1990年3月、第21、巻3号、p.7−16
【非特許文献3】
林二郎、西村尚武、松尾節夫、小山浩史「片福連絡線南森町工事における地下鉄のアンダーピニング工事での設計と実際」、基礎工、1996年3月、p.86−94
【非特許文献4】
猪瀬二郎、小西譲司、中村兵次「杭基礎で支持された建物のアンダーピニング時の挙動について」、土木学会論文集、1991年9月、No.435/VI−15、p.43−50
【非特許文献5】
村田 基代彦、中村 兵次、水谷 進「軸対称有限要素法を使用した群杭の鉛直荷重に対する計算方法と適用例」、土木学会第40回年次学術講演会講演概要集、1985年9月、III−60
【0007】
【発明が解決しようとする課題】
しかしながら、上記先行技術1の場合は、計算によって求められた予測値が実測値の数倍程度大きいことが多くの事例で報告されており、十分にその挙動を評価しているとは到底言い難い。このため、現場では地盤変形係数などを補正して応力導入時の実測変位に適合させる方法が採られ、この補正値を用いて最終的な建物の変位量、受替構造物の沈下量を推定しているのが実状である。したがって、受替荷重の評価が十分でないことから、初期の応力導入時の施工管理では、建物の健全性は計測工による事後判定とならざるを得ないなど合理性に欠けるものとなっていた。
【0008】
また、上記先行技術2の場合は、既設構造物と新設構造物はそれぞれほぼ対称な構造であること、受替荷重は杭のみを介して地盤に伝達されることなど、この計算方法を適用できる条件が非常に限定されるとともに、その計算には多くの労力を伴うことから実用された例はない。また、後述の本実施の形態例で示された施工手順、すなわち施工手順として受替版下の地盤を残した状態で応力導入をする場合には、この方法を適用するのは困難である。
【0009】
そこで本発明の主たる課題は、アンダーピニング工事において、応力導入時(受替時)における既設構造物又は受替構造物等の構造物の変位挙動を予測するに当たり、予測値と実測値とが精度良く一致する予測手法を提案することにより、受替初期の建物の健全性、受替荷重、最終的な建物と受替構造物の健全性を適性に評価可能とすることにある。
【0010】
【課題を解決するための手段】
前記課題を解決するために請求項1に係る本発明として、杭基礎を備える既設構造物の一部又は全部を、地下に新たに設けた杭基礎を備える受替構造体によって受替えるアンダーピニングにおいて前記既設構造物又は受替構造体の変位挙動を予測するための予測方法であって、
前記既設構造物および受替構造体を骨組構造でモデル化する際に、周辺地盤を介する前記既設杭と新設杭との相互作用を評価するばねを考慮した複合ばねを有するモデルを設定し、受替え時の変位挙動を解析することを特徴とするアンダーピニングにおける構造物の変位挙動の予測方法が提供される。
【0011】
応力導入時に受替荷重を作用させて構造物をジャッキアップすると、既設杭には鉛直上向きの力が、新設杭には鉛直下向きの力が作用する。既設杭の上向きへの力は、周辺地盤を介して新設杭に影響を与えるためその沈下の一部を相殺する現象が生じると考えられる。従来の変位予測手法は、この杭と杭との相互作用を考慮していないため、予測値と実測値とがあまりよい一致を示さないなどの不具合を生じるものとなっていた。従って、上記請求項1記載の本発明においては、骨組構造でモデル化する際に、周辺地盤を介する前記既設杭と新設杭との相互作用を評価するばねを考慮した複合ばねを有するモデルを設定するようにした。後述に実施例において検証されるように、前記既設杭と新設杭との相互作用を評価するばねを考慮することにより、予測値と実測値が精度良く一致するようになる。
【0012】
請求項2に係る本発明として、前記複合ばねモデルは、杭の弾性変形を評価するばねと、杭先端の地盤反力を評価するばねと、杭周面の地盤反力を評価するばねと、既設杭と新設杭との相互作用を評価するばねとから構成され、これらの内、杭の軸芯に作用するばねを直列に、杭の周面に作用するばねを並列に連結させ、杭本体および杭と地盤との間の挙動を複合的に評価するものである請求項1記載のアンダーピニングにおける構造物の変位挙動の予測方法が提供される。
【0013】
請求項3に係る本発明として、基礎の構造に応じて、杭の回転方向の複合ばねを設定するようにする請求項2記載のアンダーピニングにおける構造物の変位挙動の予測方法が提供される。
【0014】
請求項4に係る本発明として、前記既設杭と新設杭との相互作用を評価するばねのばね定数の算定に当たり、半無限弾性地盤において集中荷重が作用する場合に任意点の応力と変位を与えるMindlinの解を用いる請求項1〜3いずれかに記載のアンダーピニングにおける構造物の変位挙動の予測方法が提供される。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら詳述する。
【0016】
(アンダーピニングの施工手順)
本形態例で取り扱うアンダーピニングは、工期短縮の目的から施工手順が従来の一般的な施工手順とは異なっている。従来の一般的な下受け梁方式によるアンダーピニングでは、図2に示されるように、応力導入に先行して受替版下の地盤を掘削するケースが多い。これは受替版の自重による変形、受替版下の地盤反力、および掘削に伴う地盤のリバウンドなどの変位挙動の予測や受替えの制御を複雑にする要因を回避するためである(以降、これを先行掘削と呼ぶ)。
【0017】
しかしながら、前記先行掘削によるアンダーピニングを採用する場合、新設杭の施工に必要な深さまで掘削した後に、増し打ち分を考慮した新設杭の造成と埋め戻しおよび受替版の構築を行う必要があるとともに、その後に敷き砂の再掘削を経て応力導入を実施する必要がある。このため、杭の増し打ち、敷き砂の埋め戻しと掘削の3つの工程が手戻りとなり不経済な工程になっていた。また、アンダーピニングする建物の下は、既設と新設の杭が林立しているため、受替版下の再掘削は狭隘な空間での施工となり、大型の重機などが搬入できず施工能率が低下せざるを得ないなどの問題があった。
【0018】
そこで、本形態例におけるアンダーピニング工事では、前記手戻り工程を省略し工期短縮を図ったものとした。すなわち、図1に示されるように、受替版の下端を一次床付け盤とし、ここから新設杭の造成および受替版の構築を行い、受替版下の地盤を残した状態で応力導入を行うことにした。杭の増し打ち、敷き砂の埋め戻しと掘削の3つの工程が省略できることで工期短縮が図れるようになるとともに、受替版下の掘削に先行して応力導入を行うため、既設杭の撤去と受替版下の掘削が併行して作業できるようになる。また、早期に大型重機の搬入スペースが確保できるため、進捗率の良い工程となる。
【0019】
(構造解析モデル)
応力導入時に受替荷重を作用させて構造物をジャッキアップすると、既設杭には鉛直上向きの力が、新設杭には鉛直下向きの力が作用する。既設杭の上向きへの力は、周辺地盤を介して新設杭に影響を与えるためその沈下の一部を相殺する現象が生じると考えられる。
【0020】
そこで本発明では、前記既設構造物および受替構造体を骨組構造でモデル化する際に、図3に示されるように、周辺地盤を介する前記既設杭と新設杭との相互作用を評価するばねを考慮した複合ばねを有するモデルとする。すなわち、受替版を骨組構造などでモデル化し、これが複合ばねに支持されている構造とする。この複合ばねのばね定数Kv、Krは次式(1a)(1b)で表される。
【0021】
【数1】

Figure 2004107971
ここに、Kv:杭の鉛直方向複合ばねのばね定数(kN/m)
Kr:杭の回転方向複合ばねのばね定数(kN・m/rad)
kp:杭の弾性変形を評価するばねのばね定数(kN/m)
kv:杭先端の地盤反力を評価するばねのばね定数(kN/m)
ksv:杭周面の鉛直方向せん断地盤反力を評価するばねのばね定数(kN/m)
kint:杭周面における既設杭と新設杭との相互作用を評価するばねのばね定数(kN/m)
Iy:y軸回りの杭群の2次モーメント(m
【0022】
式(1a)が本発明で提案する複合ばねのばね定数であり、杭の鉛直方向のばねのばね定数を総合的に評価するものである。すなわち、前記複合ばねは、杭の軸心に作用する杭の弾性変形を評価するばねkpと、杭先端の地盤反力を評価するばねkvと、杭周面の地盤反力を評価するばねksvと、既設杭と新設杭との相互作用を評価するばねkintとから構成され、杭の軸心に作用する杭の弾性変形を評価するばねkpと杭先端の地盤反力を評価するばねkvとを直列に連結させた鉛直方向のばねに、杭の周面に作用する杭周面の鉛直方向せん断地盤反力を評価するばねksvと、既設杭と新設杭との相互作用を評価するばねkintとを並列に連結したものである。
【0023】
また式(1b)は構造物の基礎の構造に応じて考慮すべき回転方向の複合ばねであり、鉄道系構造物の規準類(▲1▼土木学会:国鉄建造物設計標準解説、基礎構造物抗土圧構造物、技報堂、1986.3.▲2▼運輸省監修、鉄道総合技術研究所編:鉄道構造物等設計標準・同解説(基礎構造物・抗土圧構造物)、丸善、1997.3.)などに示されるものである。構造物のフーチングが杭群により支持されている場合、図4に示すようにx軸とy軸を決定すれば、そのy軸回りの2次モーメントIyはy軸から各杭までの距離xiの二乗和により求められ、これから杭群の杭頭部における回転方向の回転ばねのばね定数Krを決定する。
【0024】
以下、前記複合ばねを構成する各ばねのばね定数を算定する方法を具体的に述べる。
【0025】
(1)杭の弾性変形を評価するばねのばね定数の算定
杭の弾性変形を評価するばねのばね定数kpは次式(2)により与えられる。
【0026】
【数2】
Figure 2004107971
ここに、Ep:新設杭の弾性係数(kN/m
Ap:新設杭の軸部の断面積(m
Lp:新設杭の長さ(m)
【0027】
(2)杭先端の地盤反力を評価するばねのばね定数の算定
杭先端の地盤反力を評価するばねのばね定数kvは次式(3a)(3b)により与える。
【0028】
【数3】
Figure 2004107971
ここに、 kv:新設杭の先端部の鉛直方向地盤反力係数(kN/m
Apv:新設杭の先端部の断面積(m
α:Esの算定方法および荷重条件に対する補正係数
Es:地盤の変形係数(kN/m
D:新設杭の先端部の直径(m)
【0029】
なお、式(3b)および以下に示す式(4b)の地盤反力係数kv、ksviの算定には、鉄道系構造物の規準類(▲1▼土木学会:国鉄建造物設計標準解説、基礎構造物抗土圧構造物、技報堂、1986.3.▲2▼運輸省監修、鉄道総合技術研究所編:鉄道構造物等設計標準・同解説(基礎構造物・抗土圧構造物)、丸善、1997.3.)に示される方法を用いた。また式(3b)および式(4b)中の地盤の変形係数Esは、孔内水平載荷試験と室内土質試験の結果から決定している。
【0030】
(3)杭周面の地盤反力を評価するばねksvのばね定数の算定
杭周面の鉛直方向せん断地盤反力を評価するばねのばね定数ksvは次式(4a)(4b)により算定する。
【0031】
【数4】
Figure 2004107971
ここに、ksvi:地層ごとの杭周面の鉛直方向せん断地盤反力係数(kN/m)Ui:各地層に位置する杭の周面積(m
n:地層の数
【0032】
(4)杭と杭との相互作用を考慮するばねのばね定数の算定
応力導入時に既設杭は建物の挙動に伴い鉛直上向きに変位し、新設杭の沈下量を相殺する。すなわち、既設杭の周面から周辺地盤に伝わる荷重は地盤をせん断変形させることにより、新設杭を仮の単純沈下位置から相対的に隆起させるものと考えられる。従来のアンダーピニングにおける構造物の変位予測は、この杭と杭との相互作用を考慮していないためあまり良い一致を示さない。本研究では、この杭と杭との相互作用を、半無限弾性地盤において集中荷重が作用する場合に任意点の応力と変位を与えるMindlinの解(R. D. Mindlin:Force at a point i−n the interior of a semi−infinite solid、Physics、vol 7、pp.195−202、1936.)を用いて評価することにした。
【0033】
(a)Mindlin解の特性
地盤内応力の計算に用いる基本的な弾性理論解は、集中荷重が地表面に鉛直に作用する場合のBoussinesq解、同じく水平に作用する場合のCerruti解などがありそれらがよく用いられているが、アンダーピニングにおける杭と杭との相互作用の問題では、その荷重の作用位置を考えれば地盤内部に集中荷重が作用する場合のMindlin解を用いるのが適当である。
【0034】
図5に示す円柱座標系(r、θ、z)において、半無限弾性地盤内に鉛直集中荷重Pが作用する場合の地中の応力解と変位解、すなわちMindlinの応力解と変位解は次式(5a)(5b)で与えられる。
【0035】
【数5】
Figure 2004107971
ここに、σ:鉛直方向応力
P:集中荷重
ν:ポアソン比
z、D、R1、R2:図5を参照
u:鉛直方向変位
G:せん断弾性係数
【0036】
(b) Mindlin解の相互作用問題への適用性の検討
杭と杭との相互作用に関する研究は、群杭基礎の分野で多く見受けられる。弾性理論による方法では、山肩・八尾(マサツ群杭基礎の沈下に関する理論解について、第9回土質工学研究発表会、pp.481−484、1974.6.)が、粘性土地盤中に打設された群杭基礎が鉛直荷重を受ける場合の抵抗とその沈下機構について考察している。Mindlin解を用いた変位影響係数により、群杭基礎はその中心部において杭の荷重分担率や杭周辺の摩擦抵抗が小さくなり(地盤が杭とともに沈下するため)、その結果として群杭効率が低下することを説明している。山本・冨永・山肩(杭の相互作用問題における地中変位の評価方法、構造工学論文集、vol 32B、pp.29−38、1986.3.)は、変位影響係数にMindlin解を適用するにあたり、地盤と杭本体との剛性の違いによる影響は加力点の近傍のみで生じることを示している。これらに共通している事象は、任意点の変位を求める変位影響係数にMindlin解を用いこれにより相互作用を評価することであり、ばねを用いた相互作用の評価は見受けられない。
【0037】
一方、Mindlin解は半無限弾性地盤中の集中荷重によるものであるため、その適用においては注意が必要である。
【0038】
まず地盤の変形特性に関する問題は、Mindlin解がポアソン比を含んでいるため、この影響を検討する必要がある。平山(杭基礎の圧密沈下解析、土と基礎、pp.15−17、1997.2.)は応力解に関してポアソン比の影響はさほど大きくないことを明らかにしている。ここでは、変位解における地盤特性の影響について考察する。
【0039】
図6はポアソン比をパラメーターとして地中の変位分布を示したものである。図中、δvはMindlin解により求まる地中の鉛直方向の変位、Piは杭の中心位置に鉛直上向きに作用する荷重、Esは地盤の変形係数、zは地中の深さ、Lは杭の長さ、rは杭の中心からの水平距離、Dは杭の直径である。この図から、変位解におけるポアソン比の影響は、r/D>10程度の領域においてもさほど小さくならないことがわかる。このことから、アンダーピニング周辺部の地盤が複雑な互層地盤の場合には、図7に示すような方法を用いて相互作用ばねのばね定数k−intn−1を算出できるものと考えた。すなわち、n−1層の下層にあたるn層の既設杭の周面摩擦応力fnによる層境の地中応力σzn−1を求め、これとn−1層の周面摩擦応力fn−1による弾性解の和からn−1層の相互作用ばねのばね定数kintn−1が評価できるという考えである。
【0040】
【数6】
Figure 2004107971
ここに、kintn−1:n−1層の相互作用ばねのばね定数
kintn−1(σzn−1):n−1層の地盤内応力の影響による相互作用ばねのばね定数
kintn−1(fn−1):n−1層の杭の周辺摩擦応力の影響による相互作用ばねのばね定数
【0041】
次に集中荷重に関する問題であるが、これは集中荷重をそれと等価な分散荷重に置換することで対応できる。しかしながら、その計算は繁雑になるので、載荷点とある程度の距離を有する場合は、集中荷重から直接相互作用の影響を評価しても良いと思われる。
【0042】
(c)相互作用を評価するばねのばね定数の算定
以上のことを踏まえ、既設杭と新設杭との相互作用を評価するばねのばね定数kintは、次に述べるような方法で求められる。
【0043】
新設杭の周面には、既設杭の周面から地盤に伝達される力により鉛直上向きの力が作用する。いま、図8に示すように杭周面の微小面積dAを想定すれば、それにはτrz r=aなる力が作用すると考えられる。杭の軸方向の微小長さdzの区間では、下式(7)の力が作用している。
【0044】
【数7】
Figure 2004107971
【0045】
一方、杭周面の地盤は、既設杭の周面から地盤に伝達される力により鉛直上向きの力により、鉛直上向きにδziだけ変位する。杭周面部において杭と地盤との間に相対変位が生じないと仮定すれば、鉛直上向きの変位δziは相殺される新設杭の沈下量である。このような現象を新設杭の沈下の抵抗とすれば、これをばねで評価するのが都合よく、このばねのばね定数は新設杭の周面に作用する鉛直上向きの力と新設杭の鉛直上向きの変位量との比で表すことができる。
【0046】
既設杭と新設杭との相互作用を評価するばねのばね定数kintは、図8を参考にして次式(8a)(8b)から算定することにした。
【0047】
【数8】
Figure 2004107971
ここに、τrzi:Mindlinの第1解による応力解(kN/m
δzi:Mindlinの第1解による変位解(m)
:杭の形状による影響を表す係数(ここでは1.0とした)
n:対象とした新設杭に影響を与える既設杭の本数
l:地盤中にある新設杭の長さ(m)
a:新設杭の半径(m)
【0048】
(5)受替版下の地盤反力を評価するばねのばね定数の算定
受替版下の地盤ばねのばね定数ksは次式(9a)(9b)により算定する。なお、地盤反力係数の推定には鉄道系構造物の規準類に示される方法を用いた。
【0049】
【数9】
Figure 2004107971
ここに、Av0:受替版底部の単位面積(m
ks:受替版底部の鉛直方向の地盤反力係数(kN/m
ks0:土質試験より求めた変形係数より推定する地盤反力係数(kN/m)(下式(10)により求める。)
【0050】
【数10】
Figure 2004107971
α:Esの算定方法および荷重条件に対する補正係数
Es:地盤の変形係数(kN/m
Bs:基礎の換算載荷幅(m)
【0051】
(6)既設構造物の挙動を評価するばねのばね定数の算定
一般に、アンダーピニングの対象が比較的規模の大きい建物などの場合、その一部分を多点支持により受替える事例が多い。このため、建物を3次元のラーメン構造などで評価した構造モデルに荷重または変位を作用させ、任意点の変位量を算出するのが望ましいと考える。しかしながら、建物の剛性は地中梁や基礎スラブの剛性だけではなく上部の梁、壁、柱などの剛性の影響を受けているため、構造の適正なモデル化は困難である。さらに、老朽化した建物の剛性を適正に評価することも難しい。
【0052】
これらのことから、建物の変位は次式(11a)(11b)により算定することとした。
【0053】
【数11】
Figure 2004107971
ここに、δi:既設杭の杭頭の鉛直変位(m)
Pi:応力導入荷重(kN)
:既設杭の挙動を評価する鉛直方向の複合ばねのばね定数(kN/m)
【0054】
図9に示すように、式(11a)により各既設杭の杭頭の鉛直変位δiを算出し、これを建物の当該点の変位とした。この方法による建物変位の予測値は、建物の剛性を考慮していない。したがって、建物の各点に不等変位を生じる場合には、予測値が実測値よりも若干大きく算出されると推察できる。
【0055】
また式(11b)に示した既設杭の変位を算出するときの鉛直方向のばね定数K が式(1a)に示す複合ばねのばね定数と異なるのは、右辺第1項中のkvtと右辺第3項のkintの2か所である。次に、これに関して考察を加える。
【0056】
(a)杭先端部付近の地盤の主働的な挙動を評価するばねのばね定数の算定
シールドトンネル覆工の設計を例とした木村・小泉(地盤と覆工の相互作用を考慮したシールドトンネルの設計法について、土木学会論文集、No.624/III−47、pp.123−134、1999.6.)の研究によれば、覆工がトンネル外側に変形し地盤が受働的挙動を示す場合と、覆工がトンネル内空側に変形し地盤が主働的挙動を示す場合とでは、それぞれの変形特性が異なるとしている。これらの挙動を弾性ばねでモデル化する場合、主働的挙動を評価するばねのばね定数は、受働的挙動を評価するそれの半分程度であることを模型実験から求めている。図10はその概念を模式的に表した図であり、状態a)は土柱に土の重量のみが作用している状態である。状態b)は、建物荷重などを受けて土柱が状態a)よりも縮んでいる状態であり、受替える前の状態がこれにあたる。状態c)は、状態b)に新たな荷重が作用して土柱がさらに圧縮される状態であり、応力導入時の新設杭の先端部における地盤の受働的な挙動を表している。状態d)は、状態b)からある程度の荷重が減少して土柱が伸張する状態であり、応力導入時の既設杭の先端部における地盤の主働的な挙動を表している。
【0057】
このことから、既設杭の先端部の地盤の主働的な挙動を評価するばねのばね定数kvtは次式により算定することとした。
【0058】
【数12】
Figure 2004107971
ここに、kvt:圧縮領域において地盤が主働的な挙動を示すときの地盤反力を評価するばねのばね定数
kv:地盤が受働的な挙動を示すときの地盤反力を評価するばねのばね定数である。
【0059】
(7)受替版と既設杭との相互作用を評価するばねのばね定数の算定
受替版下の地山を残した状態で応力を導入する本施工手順のアンダーピニングの場合、既設杭における相互作用は、既設杭と新設杭との間、および既設杭と受替版底面との間に生じる。荷重の作用位置との距離を考えれば後者の方が支配的であると思われる。したがって、ここでは既設杭と受替版との間の相互作用を評価することにした。
【0060】
この相互作用を評価するばねのばね定数kintは次式(13a)(13b)により算定する。なお、ばね定数の算定の概念は数式(8)と同様である。ただし、荷重が作用する状態を勘案して、地中の応力伝播はBoussinesq解により評価している。また、この時の作用荷重は、ジャッキ軸芯上に作用する受替荷重とした。
【0061】
【数13】
Figure 2004107971
ここに、τrzi:Boussinesqによる応力解(kN/m
δzi:Boussinesqによる変位解(m)
Ip:杭の形状による影響を表す係数(ここでは1.0とした)
n:対象とした既設杭に影響を与えるジャッキ受け台座の数
【0062】
なお、図11に示す円柱座標系(r,θ,z)において,地表面に鉛直集中荷重が作用する場合の地中の応力解と変位解、すなわちBoussinesqの応力解と変位解は次式(14a)(14b)で与えられる。
【0063】
【数14】
Figure 2004107971
ここに、σz:鉛直方向応力
P:集中荷重
z、R、r:図11を参照
ν:ポアソン比
G:せん断弾性係数
【0064】
【実施例】
次いで、本実施例では、前記複合ばねモデルによる変位予測手法の妥当性を実際のアンダーピニング工事で得られた建物各点の変位の計測結果から検証した。
【0065】
(1)アンダーピニング工事の概要
対象とした工事は、臨海副都心線2期工事の第1広町トンネル工区における建物3棟のアンダーピニングである。大井町駅と大崎駅との間に位置する第1広町トンネルは、シールド工法により建設される外径7100mmの鉄道単線断面トンネルである。この路線上には、RC造12階建のJR広町社宅2棟(6号棟及び3号棟)と、RC造8階建の品川区防災センターの計3棟の建物が位置し、それらの建物の基礎杭の一部がトンネル掘削の支障となるため、アンダーピニングを実施した。
【0066】
受替えは下受け梁方式とし、表1に示されるように、建物の総重量618MNの内152.8MNを受替えるものである。また、3棟すべてにおいて、前述したように、工期短縮を目的とした先行応力導入(受替版下の地盤を残した状態でプレロードを行う)を実施している。
【0067】
【表1】
Figure 2004107971
【0068】
土質は地表から1.8m程度まで埋土層が分布しており、その下にN値30程度の武蔵野礫層が3.4m程度の厚さで分布している。さらにN値10程度の東京粘土層(一部東京砂層が介在)が16m程度分布し、その下に周辺構造物の支持層であるN値50以上の東京礫層が分布している。この東京礫層には水が豊富に存在する。透水係数はk=10−1〜10−2cm/secの範囲にあり、かつ20m程度の被圧水頭を持っている。このため、受替杭の造成および既設杭撤去の支障とならないように、事前に受替範囲の全体にわたって二重管複相式注入工法による地盤改良を行っている。
【0069】
また、表2に示すように、撤去杭は直径φ800〜φ2000の計53本で、このうち防災センターのみが拡底杭となっている。受替杭は直径φ2000〜φ2200の計37本で、すべて拡底杭を採用している。図12〜図15はその受替えの状況を示したものである。
【0070】
【表2】
Figure 2004107971
【0071】
(2)実測値と予測値との比較およびその考察
(a)建物と受替版の挙動
図16と図17は、JR社宅2棟(6号棟、3号棟)における応力導入時の建物と受替版の変位挙動を示したものである。図中、黒丸は実測値を、白三角は従来の手法による予測値を、白菱形は本発明に係る複合ばねモデルによる予測値を表している。ここで用いた従来の手法は、杭の挙動を評価するばねのばね定数を「土木学会:国鉄建造物設計指針、基礎構造物杭土圧構造物、pp.182−183、1986.3.」に基づき算定したものである。また、上半のプラス側が建物各点の隆起量を、下半のマイナス側が受替版各点の沈下量を示している。
【0072】
これらの図から複合ばねモデルによる予測値は、従来の手法による予測値と比較して、実測値とより良い一致を示していることがわかる。図16(d)に示すE−6点や図17(b)に示すB−3点における建物の変位の予測値は、実測値と若干の相違があるが、これは非受替部の影響によるものと考えられる。すなわち、予測計算の対象範囲外にある建物の地中梁、基礎スラブおよび柱、壁、上部梁などの剛性の影響、あるいはその部分の基礎杭の周面摩擦などの影響が他の点と比べ大きいため、当該点の変位が抑制されたものと思われる。これは建物のレベリングなどに関連して、このような非受替部に隣接する箇所をジャッキアップする必要が生じた場合には、設計荷重に対して十分な余力を持つジャッキを配置しておくことが必要であることを示している。
【0073】
図18は、品川区防災センターの建物と受替版の挙動を示したものである。この図から複合ばねモデルによる予測値は、従来の手法による予測値と比較して、実測値をより良く説明していることがわかる。しかしながら、建物の変位(図中、上半側に示す変位)についてはあまり良い一致を示しておらず、これは防災センターの既設杭が拡底杭であることによると思われる。拡底杭は杭の先端部が下方に向かって広がるテーパー形状になっているため、杭に鉛直上向きの荷重が作用した場合に、このテーパー部が地盤に押し付けられる方向に挙動することが考えられ、実際の変位量が小さくなったものと考えられる。
【0074】
上式(13b)中の杭の形状を評価する係数Ipを、予測値と実測値が一致するように逆算すれば、本拡底杭の場合にはIp=6〜7程度になる。形状係数Ipは杭の種別、拡底部の形状、周辺地盤の変形特性などの要因を考慮して決定されるべきであり、この結果を他の工事にそのまま適用することはできない。しかしながら、複合ばねモデルによる予測値は、実測値と同様の変位の分布形状になること、その値は従来の手法と比較してより良い一致を示すことなどから、杭間の相対変位が特に重要である非受替部の近傍においても、建物の健全性の照査に十分適用可能であると思われる。
【0075】
(b)複合ばねモデルの適合性の定量評価
複合ばねモデルによる予測値は、従来法と比べて格段に実測値との適合性が良いことがわかった。また、建物の変位は、非受替部の近傍において、建物本体の剛性の影響を受ける可能性が示された。ここでは非受替部からの位置を指標にして、複合ばねモデルの適合性を定量的に評価することを試みる。以下に適合性を評価するための手法を述べる。
【0076】
建物各点の変位の実測値と予測値をそれぞれm、aとし、また、非受替部からの距離が同一な計測点の総数をNとすると、受替部全体にわたる実測値と予測値との平均的な差は式(15)で表される。式(15)中のSを便宜上分散と呼び、この分散Sの値が小さいものほど適合性が高いと判断することにした。
【0077】
【数15】
Figure 2004107971
なお、品川区防災センターの計測点は、すべて非受替部からの距離が同一なため、ここでは除外している。また、非受替部の位置は式(16)により無次元化したものを指標にしている(図19参照)。
【0078】
【数16】
Figure 2004107971
ここに、Lx、Ly:建物全体の幅と奥行きの長さ(m)
Lx、Ly、:受替部の幅と奥行きの長さ(m)
Lx:非受替部から計測点までの距離(m)
【0079】
図20に従来の手法による予測値と複合ばねモデルによる予測値とを比較した結果を示す。この図から複合ばねモデルによる予測値は、従来の予測手法による予測値と比較して、定量的にみて実測値との適合性が高いことがわかる。また、非受替部からの無次元化した位置が0.2以内の範囲では、分散が大きくなっている。すなわち、予測精度が低下していることがわかる。
【0080】
アンダーピニング工事の挙動予測において、必要となる精度は受替えの対象である既設構造物の種類やその重要度などにより異なる。JR社宅6号棟を例にすれば、杭間の相対変位で4.20mm、杭の絶対変位で10.00mmの1次管理値に対して、従来の手法による予測値は平均4.18mmの誤差を、複合ばねモデルによる予測値は平均0.48mmの誤差を生じていることが図16よりわかる。隣接する杭部の予測値が互いに危険側の値となるケースを想定すれば、本工事の場合、最低でも2.00mm程度以内の予測精度が必要と思われる。
【0081】
(3)周辺部が複雑な互層地盤となっているアンダーピニング工事例への複合ばねモデルの適用性の検討
以上の結果より複合ばねモデルは、2層もしくは3層程度の層状地盤において適用性を有することがわかった。次に、より複雑な地盤条件下におけるアンダーピニングを対象に変位挙動の予測を行い、互層地盤においても複合ばねモデルが適用できるか否かに検討を加えることとした。複合ばねモデル中の相互作用ばねはMindlin解に基づいて算定される。すでに述べたようにMindlin解は半無限弾性地盤を対象にしているため、これを互層地盤にそのまま適用することはできない。そこでこの検討事例では式(6)に示したような分散荷重による弾性解の和から評価することにした。
【0082】
(a)アンダーピニング工事の概要
対象とした検証事例は、昭和60年に施工された営団地下鉄11号線人形町工区におけるナンヤビルのアンダーピニング工事である。ナンヤビルはSRC造8階建の構造物であり、計10本の場所打ち杭(φ1500=8本、φ1000=2本)により支持されている。建物の総重量は31MNでこのうち26.3MNを受替えるものである(図21参照)。
【0083】
土質は杭頭部から4.5m程度が軟弱な地層であり、N値が0〜1程度の細砂と砂混じりシルトの互層が分布している。その下にはN値8の粘土層が8.0m程度、さらにN値30の細砂層が3.0m程度、そしてN値10の粘土層が5.0m程度分布している。
【0084】
(b)実測値と予測値との比較およびその考察
図22にナンヤビルにおける応力導入時の建物と受替版の変位挙動の実測値と予測値とを示す。この図をみると、複合ばねモデルによる予測値は、従来の手法による予測値と比較して実測値と良い一致を示していることがわかる。
【0085】
図23はナンヤビルとJR社宅6号棟の場合の分散Sを比較したものである。図中の横軸は受替版端部からの距離を表しているが、ナンヤビルのアンダーピニングは非受替部が存在しないため、それには工学的な意味はない。また、JR社宅6号棟については、非受替部の影響を受けている範囲は除外して示した。
【0086】
この図から、ナンヤビルの変位挙動の予測値は、JR社宅6号棟のそれと比較して分散の幅が大きく、推定精度が落ちることがわかる。しかしながら、分散の平方根Sは、平均で0.60mmであり受替えの規模や杭のスパンなどを併せて考えれば、実用上の予測精度は十分高いと考えられ、本研究で提示した複合ばねモデルが互層地盤におけるアンダーピニング工事にも適用できることがわかる。
【0087】
【発明の効果】
以上詳説のとおり本発明によれば、アンダーピニング工事において、応力導入時(受替時)における既設構造物又は受替構造物等の構造物の変位挙動を予測するに当たり、予測値と実測値とが精度良く一致する予測手法を提案することが可能となり、もって受替初期の建物の健全性、受替荷重、最終的な建物と受替構造物の健全性を適性に評価することが可能となる。
【図面の簡単な説明】
【図1】本形態例におけるアンダーピニングの施工手順図である。
【図2】従来のアンダーピニング施工手順図である。
【図3】本発明に係る複合ばねモデルの概念図である。
【図4】杭群の回転ばねのばね定数の算定方法説明図である。
【図5】Mindlin解の座標系を示す図である。
【図6】Mindlinによる変位解と地盤特性の関係図である。
【図7】互層地盤における相互作用ばねの算出方法の説明図である。
【図8】Mindlin解による相互作用ばねのばね定数の算定方法の説明図である。
【図9】建物変位の算出方法の説明図である。
【図10】圧縮領域において地盤が主働土圧的挙動を示す時の地盤反力を評価するばねの説明図である。
【図11】Boussinesq解の座標系を示す図である。
【図12】実施例におけるJR社宅6号棟のアンダーピニング例(その1)である。
【図13】実施例におけるJR社宅3号棟のアンダーピニング例(その2)である。
【図14】実施例における品川区防災センターのアンダーピニング例(その3)である。
【図15】その受替状況断面図である。
【図16】アンダーピニング例(その1)の実測値と予測値との比較図である。
【図17】アンダーピニング例(その2)の実測値と予測値との比較図である。
【図18】アンダーピニング例(その3)の実測値と予測値との比較図である。
【図19】解析モデルの定量評価に用いた非受替部からの位置を無次元化した指標図である。
【図20】解析モデルの定量評価図である。
【図21】ナンヤビルの受替状況図である。
【図22】ナンヤビルにおける実測値と予測値との比較図である。
【図23】ナンヤビルとJR6号棟の建物変位の予測値の分散Sの比較図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a prediction method for predicting a displacement behavior of a structure such as an existing structure or a replacement structure such that a predicted value and an actually measured value accurately match in underpinning work.
[0002]
[Prior art]
Urban areas such as Tokyo and Osaka are rapidly becoming overcrowded and clustered due to rapid economic growth. The underground is not an exception, and facilities such as railways, sewers, electric power, and communications are congested under roads, and the underground area up to the middle and shallow areas is already full. Under these circumstances, the construction of new underground facilities, such as railways, has been increasingly performed in the deep space areas and private underground areas that are the remaining spaces.
[0003]
In many cases, shield construction is used for tunnel construction because it has little effect on existing facilities above ground and underground. However, high-rise buildings are located on private land, and piers such as elevated railways and elevated roads are located on roads. When a shield digs beneath these, foundation piles hinder them. For this reason, underpinning for replacing part or all of the existing structure with a new foundation is often required.
[0004]
In recent years, with the increase in such special construction conditions, the number of actual underpinnings has increased dramatically, and the scale of underpinning has been increasing. In underpinning, it is very important to predict the displacement behavior of existing buildings and replacement structures from the viewpoints of ensuring the soundness of existing buildings and evaluating the replacement load during stress introduction (preloading). It becomes.
[0005]
As shown in the following Non-Patent Documents 1 to 3 (Prior Art 1), the current displacement behavior prediction method calculates a vertical displacement amount of an existing building or a replacement structure using a pile foundation design method. Was common. Non-Patent Document 4 (Prior Art 2) proposes a method of calculating a vertical displacement of a pile head using a displacement transfer function in consideration of an interaction between an existing pile and a new pile. This method is based on the study of Non-Patent Document 5 below that considers the behavior of a group pile, and based on the result of the finite element method, the relationship between the unit load acting on an arbitrary point in the ground and the displacement of the arbitrary point is This is evaluated using the displacement transfer function represented.
[0006]
[Non-patent document 1]
Noboru Yamada, Hitoshi Kiyoharu, Kimitsuyoshi Saiki "On the Behavior of Underpinning Support Structures-Prediction and Results-", Proc. Of the 55th Annual Conference of the Japan Society of Civil Engineers, September 2000, VI-259
[Non-patent document 2]
Seitake Nishibayashi, Shuichi Yahagi, "Underpinning of Tall Buildings, Tunnels and Underground", March 1990, Vol. 3, No. 3, p. 7-16
[Non-Patent Document 3]
Jiro Hayashi, Naotake Nishimura, Setsuo Matsuo, Hiroshi Koyama, "Design and Practice of Underpinning Construction of Subway in Minamimorimachi Construction of Katafuku Connecting Line," Fundamental Works, March 1996, p. 86-94
[Non-patent document 4]
Jiro Inose, Joji Konishi, Keiji Nakamura "On the Behavior of Buildings Supported by Pile Foundations During Underpinning", Transactions of the Japan Society of Civil Engineers, September 1991, No. 435 / VI-15, p. 43-50
[Non-Patent Document 5]
Motohiro Murata, Hyoji Nakamura, Hyuji Susumu, "Calculation method for vertical load of pile group using axisymmetric finite element method and application example", Proceedings of the 40th Annual Conference of Japan Society of Civil Engineers, September 1985 Moon, III-60
[0007]
[Problems to be solved by the invention]
However, in the case of the prior art 1, it has been reported in many cases that the predicted value obtained by the calculation is several times larger than the actually measured value, and it is hard to say that the behavior is sufficiently evaluated. . For this reason, a method has been adopted in the field to correct the ground deformation coefficient, etc., to adapt to the actual displacement at the time of stress introduction, and to use this correction value to estimate the final displacement of the building and the settlement of the replacement structure The fact is that they are doing. Therefore, since the evaluation of the replacement load is not sufficient, in the construction management at the time of the initial stress introduction, the soundness of the building has been rationally lacking, for example, the ex-post judgment by the mechanic has to be made.
[0008]
In addition, in the case of the above prior art 2, this calculation method can be applied such that the existing structure and the new structure have substantially symmetric structures, and the replacement load is transmitted to the ground only via the pile. There are no practical examples because the conditions are very limited and the calculation involves a lot of effort. In addition, it is difficult to apply this method when a stress is to be introduced in a construction procedure described in the present embodiment described later, that is, in a state where the ground under the replacement plate is left as the construction procedure.
[0009]
Therefore, a main problem of the present invention is that, in underpinning work, when predicting the displacement behavior of a structure such as an existing structure or a replacement structure at the time of stress introduction (at the time of replacement), the predicted value and the measured value are accurate. An object of the present invention is to make it possible to appropriately evaluate the soundness of a building in the early stage of replacement, a replacement load, and the soundness of a final building and a replacement structure by proposing a prediction method that matches well.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, in the present invention according to claim 1, in underpinning in which part or all of an existing structure including a pile foundation is replaced by a replacement structure including a pile foundation newly provided underground. A prediction method for predicting the displacement behavior of the existing structure or the replacement structure,
When modeling the existing structure and the replacement structure with a frame structure, a model having a compound spring in consideration of a spring for evaluating the interaction between the existing pile and the new pile via the surrounding ground is set, and A method for predicting a displacement behavior of a structure in underpinning, characterized by analyzing a displacement behavior at the time of replacement.
[0011]
When the structure is jacked up by applying a replacement load when stress is introduced, a vertical upward force acts on the existing pile and a vertical downward force acts on the new pile. It is considered that the upward force of the existing pile affects the new pile through the surrounding ground, causing a phenomenon to offset part of the settlement. Since the conventional displacement prediction method does not consider the interaction between the pile and the pile, a problem such that the predicted value and the measured value do not show a very good match has occurred. Therefore, in the present invention as set forth in claim 1, a model having a compound spring in consideration of a spring for evaluating the interaction between the existing pile and the new pile via the surrounding ground is set when modeling with the frame structure. I did it. As will be verified later in the embodiments, by considering a spring for evaluating the interaction between the existing pile and the new pile, the predicted value and the actually measured value are accurately matched.
[0012]
As the present invention according to claim 2, the composite spring model includes a spring for evaluating the elastic deformation of the pile, a spring for evaluating the ground reaction force at the tip of the pile, and a spring for evaluating the ground reaction force of the pile peripheral surface, It consists of a spring that evaluates the interaction between the existing pile and the new pile, of which the springs acting on the axis of the pile are connected in series and the springs acting on the peripheral surface of the pile are connected in parallel, A method for predicting a displacement behavior of a structure in underpinning according to claim 1, wherein the behavior between the pile and the ground is evaluated in a combined manner.
[0013]
According to a third aspect of the present invention, there is provided a method for predicting a displacement behavior of a structure in underpinning according to the second aspect, wherein a compound spring in a rotation direction of a pile is set according to a structure of a foundation.
[0014]
As the present invention according to claim 4, in calculating a spring constant of a spring for evaluating an interaction between the existing pile and the new pile, a stress and a displacement at an arbitrary point are given when a concentrated load acts on a semi-infinite elastic ground. A method for predicting a displacement behavior of a structure in underpinning according to any one of claims 1 to 3 using Mindlin's solution is provided.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0016]
(Construction procedure of underpinning)
The underpinning handled in this embodiment is different from the conventional general installation procedure in order to shorten the construction period. As shown in FIG. 2, in the conventional underpinning using a general support beam method, in many cases, the ground under the replacement plate is excavated prior to the introduction of stress. This is to avoid factors that complicate the prediction of displacement behavior such as deformation due to the weight of the replacement plate due to its own weight, ground reaction force under the replacement plate, and rebound of the ground due to excavation, and control of replacement. , This is called advance digging).
[0017]
However, when the underpinning by the preceding excavation is adopted, it is necessary to construct a new pile, backfill and build a replacement version in consideration of the additional pile after excavating to a depth necessary for the construction of the new pile. At the same time, it is necessary to introduce the stress after re-digging the litter. For this reason, the three processes of additional pile driving, backfilling of the laying sand, and excavation have been reworked, making the process uneconomical. In addition, existing and new piles stand under the underpinning building, so re-excavation under the replacement version is performed in a narrow space, and large heavy equipment etc. can not be carried in, reducing construction efficiency. There were problems, such as having to do it.
[0018]
Therefore, in the underpinning work according to the present embodiment, the reworking step is omitted to shorten the construction period. That is, as shown in FIG. 1, the lower end of the replacement plate is used as a primary flooring board, from which a new pile is constructed and a replacement plate is constructed, and stress is introduced while the ground under the replacement plate is left. Decided to do. The construction process can be shortened by eliminating the three processes of overstrike of piles, backfilling of laying sand and excavation, and removal of existing piles to introduce stress prior to excavation under the replacement plate. Excavation under the replacement plate can be performed simultaneously. In addition, since a space for loading large heavy equipment can be secured at an early stage, the process has a good progress rate.
[0019]
(Structural analysis model)
When the structure is jacked up by applying a replacement load when stress is introduced, a vertical upward force acts on the existing pile and a vertical downward force acts on the new pile. It is considered that the upward force of the existing pile affects the new pile through the surrounding ground, causing a phenomenon to offset part of the settlement.
[0020]
Therefore, according to the present invention, when the existing structure and the replacement structure are modeled by a frame structure, as shown in FIG. 3, a spring for evaluating the interaction between the existing pile and the new pile via the surrounding ground. Is a model having a composite spring in consideration of the above. That is, the replacement plate is modeled by a frame structure or the like, and this is a structure supported by the composite spring. The spring constants Kv and Kr of this composite spring are expressed by the following equations (1a) and (1b).
[0021]
(Equation 1)
Figure 2004107971
Here, Kv: the spring constant (kN / m) of the vertical composite spring of the pile
Kr: Spring constant of the composite spring in the rotation direction of the pile (kN · m / rad)
kp: spring constant (kN / m) of the spring for evaluating the elastic deformation of the pile
kv: Spring constant (kN / m) of the spring for evaluating the ground reaction force at the tip of the pile
ksv: Spring constant (kN / m) of the spring for evaluating the vertical shear ground reaction force on the pile periphery
kint: spring constant (kN / m) of the spring for evaluating the interaction between the existing pile and the new pile on the pile surface
Iy: second moment of pile group around y axis (m2)
[0022]
Equation (1a) is the spring constant of the composite spring proposed in the present invention, which comprehensively evaluates the spring constant of the vertical spring of the pile. That is, the composite spring includes a spring kp for evaluating the elastic deformation of the pile acting on the axis of the pile, a spring kv for evaluating the ground reaction force at the tip of the pile, and a spring ksv for evaluating the ground reaction force on the periphery of the pile. And a spring kint for evaluating the interaction between the existing pile and the new pile, a spring kp for evaluating the elastic deformation of the pile acting on the axis of the pile, and a spring kv for evaluating the ground reaction force at the tip of the pile. A spring ksv for evaluating the vertical shear ground reaction force of the pile peripheral surface acting on the peripheral surface of the pile, and a spring kint for evaluating the interaction between the existing pile and the new pile, And are connected in parallel.
[0023]
Equation (1b) is a composite spring in the rotation direction that should be considered according to the structure of the foundation of the structure, and the criteria for railway system structures ((1) Japan Society of Civil Engineers: JNR Building Design Standard Commentary, Basic Structure Anti-earth pressure structures, Gihodo, 1986.3.3 (2) Supervised by the Ministry of Transport, Railway Technical Research Institute: Design standards and explanations for railway structures, etc. (basic structures and anti-earth pressure structures), Maruzen, 1997 .3)). When the footing of the structure is supported by the pile group, if the x-axis and the y-axis are determined as shown in FIG. 4, the secondary moment Iy around the y-axis is the distance xi from the y-axis to each pile. The spring constant Kr of the rotation spring in the rotation direction at the pile head of the pile group is determined from the sum of squares.
[0024]
Hereinafter, a method of calculating the spring constant of each spring constituting the composite spring will be specifically described.
[0025]
(1) Calculation of the spring constant of the spring for evaluating the elastic deformation of the pile
The spring constant kp of the spring for evaluating the elastic deformation of the pile is given by the following equation (2).
[0026]
(Equation 2)
Figure 2004107971
Here, Ep: the elastic modulus of the new pile (kN / m2)
Ap: Cross-sectional area (m2)
Lp: Length of new pile (m)
[0027]
(2) Calculation of the spring constant of the spring for evaluating the ground reaction force at the tip of the pile
The spring constant kv of the spring for evaluating the ground reaction force at the tip of the pile is given by the following equations (3a) and (3b).
[0028]
(Equation 3)
Figure 2004107971
Where kv*: Vertical ground reaction force coefficient (kN / m) at tip of new pile3)
Apv: Cross-sectional area (m2)
α: Es calculation method and correction coefficient for load condition
Es: Deformation coefficient of ground (kN / m2)
D: Diameter of the tip of the new pile (m)
[0029]
It should be noted that the ground reaction force coefficient kv in equation (3b) and equation (4b) shown below*, Ksvi*For the calculation of the standard of railway system structures ((1) Japan Society of Civil Engineers: JNR building design standard commentary, foundation structure anti-earth pressure structure, Gihodo, 1986.3.3 (2) Supervised by Ministry of Transport, railway general The method shown in the Technical Research Institute edition: Design standards for railway structures, etc., and their explanations (foundation structures, anti-earth pressure structures), Maruzen, 1997. The deformation coefficient Es of the ground in the equations (3b) and (4b) is determined from the results of the horizontal loading test in the hole and the indoor soil test.
[0030]
(3) Calculation of the spring constant of the spring ksv for evaluating the ground reaction force on the pile surface
The spring constant ksv of the spring for evaluating the vertical shear ground reaction force of the pile peripheral surface is calculated by the following equations (4a) and (4b).
[0031]
(Equation 4)
Figure 2004107971
Here, ksvi*: Vertical shear ground reaction force coefficient (kN / m) on pile surface for each stratum3) Ui: Perimeter area of piles located in each layer (m2)
n: Number of strata
[0032]
(4) Calculation of the spring constant of the spring considering the interaction between the pile and the pile
When the stress is introduced, the existing pile is displaced vertically upward with the behavior of the building, offsetting the settlement of the new pile. That is, it is considered that the load transmitted from the peripheral surface of the existing pile to the surrounding ground causes the new pile to relatively rise from the temporary simple settlement position by shearing the ground. The prediction of the displacement of the structure in the conventional underpinning does not show a very good agreement because the interaction between the pile and the pile is not considered. In this study, the interaction between the piles and the piles is described by Mindlin's solution (R. D. Mindlin: Force at a point i- The evaluation was performed using n the interior of the a semi-infinite solid, Physics, vol 7, pp. 195-202, 1936.).
[0033]
(A) Characteristics of Mindlin solution
Basic elastic theory solutions used for calculation of stress in the ground include Boussinesq solution when concentrated load acts vertically on the ground surface and Cerruti solution when concentrated load acts horizontally, and these are often used. Regarding the problem of the interaction between piles and piles in underpinning, it is appropriate to use the Mindlin solution in the case where a concentrated load acts on the inside of the ground, considering the position of the load.
[0034]
In the cylindrical coordinate system (r, θ, z) shown in FIG. 5, the stress solution and displacement solution under the ground when the vertical concentrated load P acts on the semi-infinite elastic ground, that is, the stress solution and displacement solution of Mindlin are as follows. It is given by equations (5a) and (5b).
[0035]
(Equation 5)
Figure 2004107971
Where σz: Vertical stress
P: Concentrated load
ν: Poisson's ratio
z, D, R1, R2: see FIG.
u: vertical displacement
G: Shear modulus
[0036]
(B) Examination of applicability of Mindlin solution to interaction problem
Research on pile-pile interaction is often found in the field of pile pile foundation. According to the method based on elasticity theory, Yamashita and Yao (9th Geotechnical Engineering Research Presentation, pp. 481-484, 1974.6.) Consideration is given to the resistance and the settlement mechanism when pile pile foundations are subjected to vertical loads. Due to the displacement effect coefficient using the Mindlin solution, the pile load foundation and the frictional resistance around the pile are reduced at the center of the pile foundation (because the ground subsides with the pile), resulting in reduced pile pile efficiency. Explains what to do. Yamamoto, Tominaga, and Yamashada (Evaluation method of underground displacement in pile interaction problem, Journal of Structural Engineering, vol. 32B, pp. 29-38, 1986.3.) Apply Mindlin solution to displacement effect coefficient This indicates that the effect of the difference in rigidity between the ground and the pile body occurs only near the load point. The common event is that the interaction is evaluated by using the Mindlin solution as the displacement influence coefficient for obtaining the displacement at an arbitrary point, and the evaluation of the interaction using a spring is not found.
[0037]
On the other hand, since the Mindlin solution is based on a concentrated load in a semi-infinite elastic ground, care must be taken in its application.
[0038]
First, as for the problem regarding the deformation characteristics of the ground, it is necessary to consider this effect because the Mindlin solution includes the Poisson's ratio. Hirayama (consolidation settlement analysis of pile foundation, soil and foundation, pp. 15-17, 1997. 2) reveals that the influence of Poisson's ratio on stress solutions is not very large. Here, we consider the effect of ground characteristics on the displacement solution.
[0039]
FIG. 6 shows the underground displacement distribution using the Poisson's ratio as a parameter. In the figure, δv is the vertical displacement in the ground obtained by the Mindlin solution, Pi is the load acting vertically upward on the center of the pile, Es is the deformation coefficient of the ground, z is the depth of the ground, and L is the depth of the ground. The length, r, is the horizontal distance from the center of the pile, and D is the diameter of the pile. From this figure, it can be seen that the influence of the Poisson's ratio on the displacement solution is not so small even in the region where r / D> 10. From this fact, when the ground around the underpinning is a complex alternating ground, the spring constant k-int of the interaction spring is determined using the method shown in FIG.n-1Was calculated. That is, the underground stress σz at the layer boundary due to the peripheral frictional stress fn of the existing piles of the n layers below the n-1 layern-1From the sum of the elastic solution by the peripheral friction stress fn-1 of the n-1 layer and the spring constant kint of the interaction spring of the n-1 layern-1Is an idea that can be evaluated.
[0040]
(Equation 6)
Figure 2004107971
Here, kintn-1: Spring constant of the n-1 layer interaction spring
kintn-1zn-1): Spring constant of the interaction spring due to the influence of the stress in the ground of the n-1 layer
kintn-1(Fn-1): Spring constant of the interaction spring due to the influence of peripheral frictional stress on the pile of n-1 layer
[0041]
Next, a problem related to the concentrated load can be dealt with by replacing the concentrated load with an equivalent distributed load. However, since the calculation becomes complicated, it is considered that when there is a certain distance from the loading point, the influence of the interaction can be directly evaluated from the concentrated load.
[0042]
(C) Calculation of the spring constant of the spring for evaluating the interaction
Based on the above, the spring constant kint of the spring for evaluating the interaction between the existing pile and the new pile is obtained by the following method.
[0043]
A vertical upward force acts on the peripheral surface of the new pile by the force transmitted from the peripheral surface of the existing pile to the ground. Now, assuming a small area dA around the pile surface as shown in FIG.rz r = aIt is considered that a certain force acts. In the section with the minute length dz in the axial direction of the pile, the force of the following equation (7) acts.
[0044]
(Equation 7)
Figure 2004107971
[0045]
On the other hand, the ground around the pile surface is vertically upward due to the vertical upward force due to the force transmitted from the peripheral surface of the existing pile to the ground.ziOnly displace. Assuming that there is no relative displacement between the pile and the ground at the pile surface, the vertical upward displacement δziIs the settlement amount of the new pile to be offset. If such a phenomenon is regarded as the resistance to settlement of the new pile, it is convenient to evaluate this with a spring. Can be expressed as a ratio to the displacement amount of
[0046]
The spring constant kint of the spring for evaluating the interaction between the existing pile and the new pile is calculated from the following equations (8a) and (8b) with reference to FIG.
[0047]
(Equation 8)
Figure 2004107971
Where τrzi: Stress solution by the first solution of Mindlin (kN / m2)
δzi: Displacement solution by Mindlin's first solution (m)
Ip: Coefficient indicating the effect of the shape of the pile (1.0 here)
n: Number of existing piles affecting new piles targeted
l: Length of new pile in the ground (m)
a: Radius of new pile (m)
[0048]
(5) Calculation of the spring constant of the spring for evaluating the ground reaction force under the replacement plate
The spring constant ks of the ground spring under the replacement plate is calculated by the following equations (9a) and (9b). In addition, the method shown in the standard of railway structure was used for estimation of the ground reaction force coefficient.
[0049]
(Equation 9)
Figure 2004107971
Where Av0: Unit area at the bottom of the replacement plate (m2)
ks*: Vertical ground reaction force coefficient at the bottom of the replacement plate (kN / m3)
ks0*: Soil reaction coefficient (kN / m) estimated from the deformation coefficient obtained from the soil test3(Determined by the following equation (10))
[0050]
(Equation 10)
Figure 2004107971
α: Es calculation method and correction coefficient for load condition
Es: Deformation coefficient of ground (kN / m2)
Bs: Converted loading width of foundation (m)
[0051]
(6) Calculation of spring constant of spring for evaluating behavior of existing structure
Generally, when a target of underpinning is a relatively large-scale building or the like, in many cases, a part of the underpinning is replaced by multipoint support. For this reason, it is considered desirable to apply a load or displacement to a structural model in which a building is evaluated using a three-dimensional rigid frame structure or the like, and calculate the amount of displacement at an arbitrary point. However, the rigidity of the building is affected not only by the rigidity of the underground beams and foundation slabs but also by the rigidity of the upper beams, walls, columns, etc., and it is difficult to properly model the structure. Furthermore, it is difficult to properly evaluate the rigidity of an aging building.
[0052]
From these facts, the displacement of the building was calculated by the following equations (11a) and (11b).
[0053]
[Equation 11]
Figure 2004107971
Where δi: Vertical displacement of pile head of existing pile (m)
Pi: Stress introduction load (kN)
Kv u: Spring constant (kN / m) of a composite spring in the vertical direction for evaluating the behavior of an existing pile
[0054]
As shown in FIG. 9, the vertical displacement δi of the pile head of each existing pile was calculated by Expression (11a), and this was defined as the displacement of that point of the building. The predicted value of the building displacement by this method does not consider the rigidity of the building. Therefore, when unequal displacement occurs at each point of the building, it can be inferred that the predicted value is calculated to be slightly larger than the actually measured value.
[0055]
Also, the vertical spring constant K when calculating the displacement of the existing pile shown in equation (11b)v uIs different from the spring constant of the composite spring shown in the equation (1a) because kvt in the first term on the right side and kint in the third term on the right side.uThere are two places. Next, let us consider this point.
[0056]
(A) Calculation of the spring constant of the spring for evaluating the active behavior of the ground near the tip of the pile
Kimura and Koizumi (Examples of shield tunnel lining design) (For a method of designing a shield tunnel in consideration of the interaction between the ground and the lining, see JSCE, 624 / III-47, pp. 123-134, According to the study of 1999. 6.), the case where the lining is deformed to the outside of the tunnel and the ground shows passive behavior, and the case where the lining is deformed to the inside of the tunnel and the ground shows active behavior are shown. , Respectively, have different deformation characteristics. When these behaviors are modeled by elastic springs, model experiments have determined that the spring constant of the spring evaluating the active behavior is about half that of the passive behavior. FIG. 10 is a diagram schematically illustrating the concept, and state a) is a state in which only the weight of soil acts on the earth pillar. The state b) is a state in which the earth pillar is contracted more than the state a) due to a building load or the like, and corresponds to a state before the replacement. The state c) is a state in which a new load is applied to the state b) to further compress the earth column, and shows a passive behavior of the ground at the tip of the newly installed pile when stress is introduced. The state d) is a state in which the load is reduced to some extent from the state b) and the earth column is stretched, and shows the active behavior of the ground at the tip of the existing pile when stress is introduced.
[0057]
From this, the spring constant kvt of the spring for evaluating the active behavior of the ground at the tip of the existing pile was determined by the following equation.
[0058]
(Equation 12)
Figure 2004107971
Here, kvt: a spring constant of a spring that evaluates a ground reaction force when the ground shows active behavior in a compression region.
kv: a spring constant of a spring for evaluating a ground reaction force when the ground exhibits passive behavior.
[0059]
(7) Calculation of the spring constant of the spring for evaluating the interaction between the replacement version and the existing pile
In the case of underpinning in this construction procedure where stress is introduced while leaving the ground under the replacement pile, the interaction between the existing pile and the new pile and between the existing pile and the bottom of the replacement Occurs between The latter seems to be dominant in view of the distance from the position where the load acts. Therefore, we decided to evaluate the interaction between the existing pile and the replacement version.
[0060]
The spring constant kint of the spring that evaluates this interactionuIs calculated by the following equations (13a) and (13b). Note that the concept of calculating the spring constant is the same as that of Expression (8). However, in consideration of the state in which the load acts, the underground stress propagation is evaluated by the Boussinesq solution. The applied load at this time was a replacement load acting on the jack shaft core.
[0061]
(Equation 13)
Figure 2004107971
Where τrzi: Stress solution by Boussinesq (kN / m2)
δzi: Displacement solution by Boussinesq (m)
Ip: Coefficient indicating the effect of the shape of the pile (1.0 was set here)
n: Number of jack pedestals that affect the existing piles targeted
[0062]
In the cylindrical coordinate system (r, θ, z) shown in FIG. 11, the underground stress solution and displacement solution when a vertical concentrated load acts on the ground surface, that is, the Boussinesq stress solution and displacement solution are expressed by the following equation ( 14a) and (14b).
[0063]
[Equation 14]
Figure 2004107971
Where σz: vertical stress
P: Concentrated load
z, R, r: see FIG.
ν: Poisson's ratio
G: Shear modulus
[0064]
【Example】
Next, in this example, the validity of the displacement prediction method using the composite spring model was verified from the measurement results of the displacement of each point of the building obtained by actual underpinning work.
[0065]
(1) Outline of underpinning work
The target works are underpinning of three buildings in the first Hiromachi tunnel section of the second stage of the Rinkai Fukutoshin Line. The 1st Hiromachi Tunnel located between Oimachi Station and Osaki Station is a railway single-track cross-section tunnel with an outer diameter of 7100 mm constructed by a shield method. On this line, there are two buildings of JR Hiromachi Company Building (Building No. 6 and No. 3) with 12 stories RC building and Shinagawa Ward Disaster Prevention Center with 8 stories RC building, a total of 3 buildings. Underpinning was carried out because part of the foundation piles hindered tunnel excavation.
[0066]
As shown in Table 1, 152.8 MN of the total building weight of 618 MN will be replaced. As mentioned above, all three buildings are introducing pre-stressing (preloading while leaving the ground under the replacement version) for the purpose of shortening the construction period.
[0067]
[Table 1]
Figure 2004107971
[0068]
As for the soil quality, a buried layer is distributed about 1.8 m from the surface of the ground, and a Musashino gravel layer with an N value of about 30 is distributed thereunder with a thickness of about 3.4 m. In addition, a Tokyo clay layer having an N value of about 10 (partially with the Tokyo sand layer interposed) is distributed about 16 m, and a Tokyo gravel layer having an N value of 50 or more, which is a support layer for surrounding structures, is distributed underneath. This Tokyo gravel layer is rich in water. Permeability is k = 10-1-10-2cm / sec and has a pressure head of about 20 m. For this reason, ground improvement has been carried out in advance through the double-pipe double-phase injection method over the entire replacement area so as not to hinder the creation of replacement piles and removal of existing piles.
[0069]
Further, as shown in Table 2, there are 53 removal piles having a diameter of φ800 to φ2000, of which only the disaster prevention center is an expanded bottom pile. The replacement piles have a total diameter of φ2000 to φ2200, 37 in total, and all of them use expanded bottom piles. 12 to 15 show the status of the replacement.
[0070]
[Table 2]
Figure 2004107971
[0071]
(2) Comparison between measured and predicted values and consideration
(A) Behavior of building and replacement version
FIG. 16 and FIG. 17 show the displacement behavior of the building and the replacement plate at the time of introducing the stress in the two JR company buildings (the sixth building and the third building). In the figure, black circles represent actual measured values, white triangles represent predicted values by the conventional method, and open diamonds represent predicted values by the composite spring model according to the present invention. In the conventional method used here, the spring constant of the spring for evaluating the behavior of the pile is referred to as “JSCE: JNR Building Design Guideline, Foundation Structure Pile Earth Pressure Structure, pp. 182-183, 1986. Calculated based on The plus side in the upper half indicates the amount of uplift at each point in the building, and the minus side in the lower half indicates the amount of settlement at each point in the replacement version.
[0072]
From these figures, it can be seen that the predicted value by the composite spring model shows better agreement with the actually measured value as compared with the predicted value by the conventional method. The predicted value of the displacement of the building at the point E-6 shown in FIG. 16 (d) and the point B-3 shown in FIG. 17 (b) is slightly different from the actually measured value, but this is due to the influence of the non-replacement part. It is thought to be due to. In other words, the effect of the rigidity of the underground beams, foundation slabs and columns, walls, upper beams, etc. of the building outside the scope of the prediction calculation, or the effect of the peripheral friction of the foundation pile in that part is compared with other points. It is considered that the displacement of the point was suppressed because of being large. This means that if it is necessary to jack up the area adjacent to the non-replacement part in relation to the leveling of the building, etc., place a jack with sufficient reserve for the design load. It indicates that it is necessary.
[0073]
FIG. 18 shows the behavior of the building and the replacement version of the Shinagawa Ward Disaster Prevention Center. From this figure, it can be seen that the predicted values by the composite spring model better explain the measured values than the predicted values by the conventional method. However, the displacement of the building (displacement shown on the upper half side in the figure) did not agree very well, probably because the existing piles at the Disaster Prevention Center are expanded piles. Because the expanded bottom pile has a tapered shape in which the tip of the pile spreads downward, when a vertical upward load is applied to the pile, it is thought that this tapered part may behave in the direction pressed against the ground, It is considered that the actual amount of displacement became smaller.
[0074]
If the coefficient Ip for evaluating the shape of the pile in the above equation (13b) is back calculated so that the predicted value and the measured value match, in the case of the present expanded bottom pile, Ip = about 6 to 7. The shape factor Ip should be determined in consideration of factors such as the type of pile, the shape of the expanded bottom, and the deformation characteristics of the surrounding ground, and this result cannot be applied to other works as it is. However, the relative displacement between the piles is particularly important because the predicted values obtained by the composite spring model have the same distribution shape as the measured values, and the values show a better match than the conventional method. In the vicinity of the non-replacement area, it is considered that the method is sufficiently applicable to checking the soundness of the building.
[0075]
(B) Quantitative evaluation of the suitability of the composite spring model
It was found that the predicted value by the composite spring model was much better compatible with the actually measured value than the conventional method. In addition, it was shown that the displacement of the building may be affected by the rigidity of the building body near the non-replacement part. Here, an attempt is made to quantitatively evaluate the suitability of the composite spring model using the position from the non-replacement part as an index. The method for evaluating suitability is described below.
[0076]
The measured and predicted displacement of each point in the building is mi, AiFurther, assuming that the total number of measurement points having the same distance from the non-replacement unit is N, the average difference between the actually measured value and the predicted value over the entire replacement unit is expressed by Expression (15). S in equation (15)2Is called variance for convenience, and this variance S2It is determined that the smaller the value is, the higher the suitability is.
[0077]
[Equation 15]
Figure 2004107971
Note that all measurement points of the Shinagawa Ward Disaster Prevention Center are excluded here because they are all at the same distance from the non-replacement unit. In addition, the position of the non-replacement unit is indexed using a dimensionless one obtained by the equation (16) (see FIG. 19).
[0078]
(Equation 16)
Figure 2004107971
Here, Lx, Ly: width and depth (m) of the whole building
Lxu, Lyu,: Width and depth of the transfer part (m)
Lxi: Distance from non-replacement part to measurement point (m)
[0079]
FIG. 20 shows a result of comparing a predicted value by the conventional method and a predicted value by the composite spring model. From this figure, it can be seen that the predicted value based on the composite spring model is more quantitatively compatible with the actually measured value than the predicted value based on the conventional prediction method. Also, when the dimensionless position from the non-replacement unit is within 0.2, the variance is large. That is, it can be seen that the prediction accuracy has decreased.
[0080]
The accuracy required in predicting the behavior of underpinning construction differs depending on the type of existing structure to be replaced and its importance. In the case of JR Building No. 6 as an example, the primary control value of the relative displacement between piles of 4.20 mm and the absolute displacement of piles of 10.00 mm, the predicted value by the conventional method has an average error of 4.18 mm. It can be understood from FIG. 16 that the prediction value by the composite spring model has an error of 0.48 mm on average. Assuming a case where the predicted values of the adjacent piles are mutually dangerous values, in the case of this construction, it is considered that a prediction accuracy of at least about 2.00 mm is required.
[0081]
(3) Examination of applicability of the compound spring model to an example of underpinning construction where the surrounding area is a complex alternating ground
From the above results, it was found that the composite spring model has applicability in a layered ground of about two or three layers. Next, the displacement behavior was predicted for underpinning under more complicated ground conditions, and it was decided whether or not the composite spring model could be applied to alternate layers. The interaction spring in the composite spring model is calculated based on the Mindlin solution. As described above, since the Mindlin solution is intended for a semi-infinite elastic ground, it cannot be directly applied to an alternate ground. Therefore, in this examination example, the evaluation was made from the sum of the elastic solutions by the dispersed load as shown in Expression (6).
[0082]
(A) Outline of underpinning work
The verification case targeted was an underpinning construction of Nanya Building in Ningyocho construction area of Eidan Subway Line 11 constructed in 1985. Nanya Building is an SRC 8-story structure and is supported by a total of ten cast-in-place piles (φ1500 = 8, φ1000 = 2). The total weight of the building is 31 MN, of which 26.3 MN is replaced (see FIG. 21).
[0083]
The soil is a soft stratum about 4.5 m from the pile head, and alternating layers of fine sand and sand mixed with N value of about 0 to 1 are distributed. Below this, a clay layer having an N value of 8 is distributed about 8.0 m, a fine sand layer having an N value of 30 is distributed about 3.0 m, and a clay layer having an N value of 10 is distributed about 5.0 m.
[0084]
(B) Comparison between measured and predicted values and consideration
FIG. 22 shows actual measured values and predicted values of the displacement behavior of the building and the replacement plate at the time of stress introduction in the Nanya Building. From this figure, it can be seen that the predicted value by the composite spring model shows a better agreement with the measured value than the predicted value by the conventional method.
[0085]
Figure 23 shows the dispersion S for the Nanya Building and JR Building No. 62Are compared. The horizontal axis in the figure represents the distance from the end of the replacement plate. However, underpinning of Nanya Building has no engineering meaning because there is no non-replacement part. As for JR Building No. 6, the range affected by the non-replacement area is excluded.
[0086]
From this figure, it can be seen that the predicted value of the displacement behavior of the Nanya Building has a larger range of dispersion than that of the Building No. 6 of the JR company house, and the estimation accuracy is lowered. However, the square root of variance S is 0.60 mm on average, and considering the scale of replacement and the span of piles, the prediction accuracy in practical use is considered to be sufficiently high. It can be understood that the method can be applied to underpinning work in an alternate layer ground.
[0087]
【The invention's effect】
As described in detail above, according to the present invention, in underpinning work, when predicting the displacement behavior of a structure such as an existing structure or a replacement structure at the time of stress introduction (at the time of replacement), a predicted value and an actually measured value are used. It is possible to propose a prediction method that matches with high accuracy, and it is possible to appropriately evaluate the soundness of the building at the initial stage of replacement, the replacement load, and the soundness of the final building and the replacement structure Become.
[Brief description of the drawings]
FIG. 1 is an execution procedure diagram of underpinning in this embodiment.
FIG. 2 is a diagram showing a conventional underpinning procedure.
FIG. 3 is a conceptual diagram of a composite spring model according to the present invention.
FIG. 4 is an explanatory diagram of a calculation method of a spring constant of a rotary spring of a pile group.
FIG. 5 is a diagram showing a coordinate system of a Mindlin solution;
FIG. 6 is a relationship diagram between a displacement solution by Mindlin and ground characteristics.
FIG. 7 is an explanatory diagram of a calculation method of an interaction spring in an alternate ground.
FIG. 8 is an explanatory diagram of a method of calculating a spring constant of an interaction spring using a Mindlin solution.
FIG. 9 is an explanatory diagram of a calculation method of a building displacement.
FIG. 10 is an explanatory diagram of a spring for evaluating a ground reaction force when the ground exhibits active earth pressure behavior in a compression region.
FIG. 11 is a diagram showing a coordinate system of a Boussinesq solution.
FIG. 12 is an example (No. 1) of underpinning of the sixth building of the JR company house in the embodiment.
FIG. 13 is an example (part 2) of underpinning of a third building of a JR company house in the embodiment.
FIG. 14 is an example (part 3) of underpinning of the Shinagawa Ward Disaster Prevention Center in the embodiment.
FIG. 15 is a sectional view of the replacement status.
FIG. 16 is a comparison diagram between an actually measured value and a predicted value of an example of underpinning (part 1).
FIG. 17 is a comparison diagram between an actually measured value and a predicted value of an example of underpinning (part 2);
FIG. 18 is a diagram illustrating a comparison between an actually measured value and a predicted value of an underpinning example (part 3).
FIG. 19 is an index diagram in which the position from a non-replacement unit used for quantitative evaluation of the analysis model is dimensionless.
FIG. 20 is a quantitative evaluation diagram of the analysis model.
FIG. 21 is a diagram showing a replacement status of the Nanya Building.
FIG. 22 is a comparison diagram of measured values and predicted values in Nanya Building.
FIG. 23 is a variance S of predicted values of building displacement of the Nanya Building and the JR Building No. 6.2FIG.

Claims (4)

杭基礎を備える既設構造物の一部又は全部を、地下に新たに設けた杭基礎を備える受替構造体によって受替えるアンダーピニングにおいて前記既設構造物又は受替構造体の変位挙動を予測するための予測方法であって、
前記既設構造物および受替構造体を骨組構造でモデル化する際に、周辺地盤を介する前記既設杭と新設杭との相互作用を評価するばねを考慮した複合ばねを有するモデルを設定し、受替え時の変位挙動を解析することを特徴とするアンダーピニングにおける構造物の変位挙動の予測方法。
To predict the displacement behavior of the existing structure or the replacement structure in underpinning in which part or all of the existing structure having a pile foundation is replaced by a replacement structure having a pile foundation newly provided underground. Prediction method,
When modeling the existing structure and the replacement structure with a frame structure, a model having a compound spring in consideration of a spring for evaluating the interaction between the existing pile and the new pile via the surrounding ground is set, and A method for predicting the displacement behavior of a structure in underpinning, characterized by analyzing the displacement behavior at the time of replacement.
前記複合ばねモデルは、杭の弾性変形を評価するばねと、杭先端の地盤反力を評価するばねと、杭周面の地盤反力を評価するばねと、既設杭と新設杭との相互作用を評価するばねとから構成され、これらの内、杭の軸芯に作用するばねを直列に、杭の周面に作用するばねを並列に連結させ、杭本体および杭と地盤との間の挙動を複合的に評価するものである請求項1記載のアンダーピニングにおける構造物の変位挙動の予測方法。The compound spring model includes a spring for evaluating the elastic deformation of the pile, a spring for evaluating the ground reaction force at the tip of the pile, a spring for evaluating the ground reaction force at the periphery of the pile, and an interaction between the existing pile and the new pile. And the springs acting on the pile core are connected in series, and the springs acting on the peripheral surface of the pile are connected in parallel, and the behavior between the pile body and the pile and the ground The method for predicting the displacement behavior of a structure in underpinning according to claim 1, wherein the evaluation is performed in a complex manner. 前記受替構造体の基礎構造に応じて、杭の回転方向の複合ばねを設定するようにする請求項2記載のアンダーピニングにおける構造物の変位挙動の予測方法。The method for predicting a displacement behavior of a structure in underpinning according to claim 2, wherein a compound spring in a rotation direction of the pile is set according to a foundation structure of the replacement structure. 前記既設杭と新設杭との相互作用を評価するばねのばね定数の算定に当たり、半無限弾性地盤において集中荷重が作用する場合に任意点の応力と変位を与えるMindlinの解を用いる請求項1〜3いずれかに記載のアンダーピニングにおける構造物の変位挙動の予測方法。In calculating a spring constant of a spring for evaluating an interaction between the existing pile and the new pile, a Mindlin solution that gives stress and displacement at an arbitrary point when a concentrated load acts on a semi-infinite elastic ground is used. 3. A method for predicting a displacement behavior of a structure in underpinning according to any one of 3.
JP2002271046A 2002-09-18 2002-09-18 Prediction method of displacement behavior of structures in underpinning Expired - Lifetime JP4104944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002271046A JP4104944B2 (en) 2002-09-18 2002-09-18 Prediction method of displacement behavior of structures in underpinning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002271046A JP4104944B2 (en) 2002-09-18 2002-09-18 Prediction method of displacement behavior of structures in underpinning

Publications (2)

Publication Number Publication Date
JP2004107971A true JP2004107971A (en) 2004-04-08
JP4104944B2 JP4104944B2 (en) 2008-06-18

Family

ID=32268480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002271046A Expired - Lifetime JP4104944B2 (en) 2002-09-18 2002-09-18 Prediction method of displacement behavior of structures in underpinning

Country Status (1)

Country Link
JP (1) JP4104944B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132140A (en) * 2005-11-11 2007-05-31 Takenaka Komuten Co Ltd Physical quantity deriving device, physical quantity deriving method, and physical quantity deriving program
JP2007255021A (en) * 2006-03-22 2007-10-04 Yamaguchi Univ Design method considering effect of distributional peripheral surface frictional force of pile foundation comprising many pile members
JP2016079718A (en) * 2014-10-17 2016-05-16 株式会社大林組 Displacement adjustment method and jack control system in underpinning
CN110397092A (en) * 2019-05-14 2019-11-01 洛阳市轨道交通有限责任公司 Sandy gravel foundation pit displacement prediction method
JP2019203724A (en) * 2018-05-22 2019-11-28 株式会社免制震ディバイス Management method of building foundation and management method of building foundation group
CN114718105A (en) * 2022-04-13 2022-07-08 甘肃省公路交通建设集团有限公司 Pile foundation laying method and verification method for existing pile foundation condition
CN115369905A (en) * 2022-09-09 2022-11-22 中冶成都勘察研究总院有限公司 Modulus adjusting layer-based rigid pile composite foundation structure and construction method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109608173B (en) * 2018-12-28 2020-09-01 青海大学 Al (aluminum)2O3Complex phase ceramic sintered sample and shape control method
CN111560976B (en) * 2020-04-30 2022-07-08 中电建十一局工程有限公司 Two system conversion pile foundation underpins structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132140A (en) * 2005-11-11 2007-05-31 Takenaka Komuten Co Ltd Physical quantity deriving device, physical quantity deriving method, and physical quantity deriving program
JP2007255021A (en) * 2006-03-22 2007-10-04 Yamaguchi Univ Design method considering effect of distributional peripheral surface frictional force of pile foundation comprising many pile members
JP2016079718A (en) * 2014-10-17 2016-05-16 株式会社大林組 Displacement adjustment method and jack control system in underpinning
JP2019203724A (en) * 2018-05-22 2019-11-28 株式会社免制震ディバイス Management method of building foundation and management method of building foundation group
JP7049750B2 (en) 2018-05-22 2022-04-07 株式会社免制震ディバイス How to manage building foundations and how to manage building foundations
CN110397092A (en) * 2019-05-14 2019-11-01 洛阳市轨道交通有限责任公司 Sandy gravel foundation pit displacement prediction method
CN114718105A (en) * 2022-04-13 2022-07-08 甘肃省公路交通建设集团有限公司 Pile foundation laying method and verification method for existing pile foundation condition
CN115369905A (en) * 2022-09-09 2022-11-22 中冶成都勘察研究总院有限公司 Modulus adjusting layer-based rigid pile composite foundation structure and construction method

Also Published As

Publication number Publication date
JP4104944B2 (en) 2008-06-18

Similar Documents

Publication Publication Date Title
FARGNOLI et al. 3D numerical modelling of soil–structure interaction during EPB tunnelling
Chang et al. Seismic performance of an existing bridge with scoured caisson foundation
JP2004107971A (en) Method for predicting displacement behavior of structure in underpinning
Nejjar et al. Numerical modelling of a 32 m deep excavation in the suburbs of Paris
Larsson et al. Performance of micropiles used to underpin highway bridges
Prakhya et al. Numerical models in geotechnics including soil-structure interaction
Puzrin et al. Braced excavation collapse: nicoll highway, Singapore
Barron Finite element modeling of micropiles and the influence of steel casing on load transfer mechanisms
Thirukumaran et al. Successful design of large span caverns in the challenging ground conditions
Eslami et al. Performance of CAPS Method Considering its Interaction with Adjacent Structures–The Q7 Station of Tehran Metro Line 7
Karki Effects of deep excavations on circular tunnels in fine-grained soils
Ball et al. Impact of the Calder's Wharf development on Docklands Light Railway tunnels, London, UK
Bridges et al. A soil-nailed excavation for the Brisbane Airport Link project, Australia
Chu et al. Integrate approach for deep excavation along soft ground (MTRC) tunnels
Mekdash et al. Reinforcement of Concrete Shoring Systems by Prestressing
Grillo High Capacity Macropiles™ for a New 70 Story Tower in Manhattan
Shinde et al. NUMERICAL MODELLING OF BUILDING RESPONSE TO UNDERGROUND TUNNELING-A CASE STUDY OF PUNE METRO
Kim et al. Feasibility Study: Application of Steel Sheet-Piles for the Abutment of Water-Crossing Bridges in Nebraska
Theodossopoulos et al. Local effects of bonding on the strength of drystone masonry in Iron-age brochs
Baker et al. Challenges associated with geotechnical design of Te Kaha–Canterbury’s Multi-Use Arena
So Performance of high capacity socketed H-piles with long rock socket
Abdulmajeed Mamhusseini Design and Construction of Deep Excavations
Mekdash et al. Research Article Reinforcement of Concrete Shoring Systems by Prestressing
Romani et al. Tunnelling effects on the Basilica di Massenzio: Computed and observed displacement fields
Jalinoos et al. Foundation reuse and enhancement: A viable option for bridge widening and replacement projects

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040422

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4104944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term