JP2007255021A - Design method considering effect of distributional peripheral surface frictional force of pile foundation comprising many pile members - Google Patents

Design method considering effect of distributional peripheral surface frictional force of pile foundation comprising many pile members Download PDF

Info

Publication number
JP2007255021A
JP2007255021A JP2006079499A JP2006079499A JP2007255021A JP 2007255021 A JP2007255021 A JP 2007255021A JP 2006079499 A JP2006079499 A JP 2006079499A JP 2006079499 A JP2006079499 A JP 2006079499A JP 2007255021 A JP2007255021 A JP 2007255021A
Authority
JP
Japan
Prior art keywords
pile
force
foundation
action
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006079499A
Other languages
Japanese (ja)
Other versions
JP4734645B2 (en
Inventor
Fusanori Miura
房紀 三浦
Hiroshi Maehara
博 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaguchi University NUC
Original Assignee
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaguchi University NUC filed Critical Yamaguchi University NUC
Priority to JP2006079499A priority Critical patent/JP4734645B2/en
Publication of JP2007255021A publication Critical patent/JP2007255021A/en
Application granted granted Critical
Publication of JP4734645B2 publication Critical patent/JP4734645B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Foundations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reflect frictional force working on the peripheral surface of a pile member, in calculation for stability and behavior of a foundation structure. <P>SOLUTION: Strength of distribution peripheral surface frictional force τ<SB>Z</SB>and a range of distributed stratum are set in the same way as general setting of design external force to design a foundation. The effects of action (the action of τ<SB>ZN</SB>) resisting the axial deformation of the whole foundation, action (the action of τ<SB>Zϕ</SB>) resisting the flexural deformation of the whole foundation, and action (the action of τ<SB>Zθ</SB>) resisting the member flexural deformation of each member are reflected in a balanced manner to the components of resultant force of each cross-sectional force of the whole foundation, and a solution of a displacement function of an obtained equation is used for a design calculation expression. The former two action (the action of τ<SB>ZN</SB>and τ<SB>Zϕ</SB>) out of three kinds of action of the distribution peripheral surface frictional force τ<SB>Z</SB>has an effect of reducing the axial force of the pile. In the case of obtaining economical efficiency by reducing the axial force of the pile from the viewpoint of business, an expression reflecting the former two action is used to obtain a simple way of handling. These design methods are useful for the rational and economical design of the pile foundation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、多数の杭部材に周面摩擦力が働いている場合の杭基礎の設計法に関する。   The present invention relates to a method for designing a pile foundation when peripheral frictional force is applied to a large number of pile members.

従来の多数の杭からなる基礎の設計法は、その1本の杭に着目して、独立した1本の杭の曲げ変形の変位関数式を基にして部材を個々に扱っている。杭部材の曲げ変形式の基本式は、水平方向の地盤の抵抗を杭に沿って分布する水平地盤反力係数k(Kh、またはkHE)を用いて水平変位量に比例する地盤反力を受ける独立した1本の部材として導かれている。それを多数の杭部材からなる基礎に適用する設計法は道路橋示方書(非特許文献1)に示されている。その中の代表的な設計法は変位法である。しかし、道路橋示方書(非特許文献1)の設計法は、杭の軸方向変形と周面摩擦力の働きは間接的にしか考慮していない。 A conventional design method for a foundation including a large number of piles pays attention to the one pile, and individually handles members based on a displacement function equation of bending deformation of an independent pile. The basic formula of the bending deformation formula of pile members is the ground reaction force proportional to the horizontal displacement using the horizontal ground reaction force coefficient k H (Kh, or k HE ) that distributes the horizontal ground resistance along the pile. Is guided as an independent single member. A design method for applying it to a foundation composed of a large number of pile members is shown in a road bridge specification (Non-Patent Document 1). A typical design method among them is the displacement method. However, the design method of the road bridge specification (Non-Patent Document 1) only takes into account the axial deformation of the pile and the action of the peripheral friction force indirectly.

変位法以外の設計法は、骨組モデルによるフレームの設計法で、一般の杭基礎は3次元の立体的な構造をしているが、骨組モデルは2次元のモデルに簡素化して扱うことが普通行われる。杭部材を対象にした骨組モデルの変形式は独立した1本の部材を個々に扱う変形式が基になっている。その変形式を条件が変化する部位に設けた節点の区間毎に適用して、使用部材や地盤条件の変化を反映させて設計を行っている。   A design method other than the displacement method is a frame design method based on a frame model. A general pile foundation has a three-dimensional structure, but the frame model is usually handled in a simplified manner as a two-dimensional model. Done. The deformation model of the frame model for pile members is based on a deformation formula that handles one independent member individually. The deformation formula is applied to each node section provided in a region where the conditions change, and the design is performed by reflecting changes in the members used and the ground conditions.

道路橋示方書(非特許文献2)の杭基礎(図1参照)の骨組モデルでは、杭部材の軸方向変形を考慮していない。そのために杭部材の軸方向変形の効果を反映させるために、杭の載荷実験結果を別途に整理して、各杭の頭部に(集中)軸方向バネ定数KまたはKVEとして作用させている。この軸方向バネ定数は杭の種類別に代表的な値を、杭の材質、断面積および長さを考慮した計算式で示している。 The frame model of the pile foundation (see FIG. 1) in the road bridge specification (Non-patent Document 2) does not consider the axial deformation of the pile members. To reflect the effect of the axial deformation of the stake member in order that, to organize Loading Test results of pile separately, is allowed to act as the pile head (the concentration) of the axial spring constant K V or K VE Yes. This axial spring constant shows a typical value for each type of pile, using a calculation formula that takes into account the material, cross-sectional area and length of the pile.

道路橋示方書(非特許文献2)の杭基礎の骨組モデルでの杭の周面摩擦力が働く効果は、骨組モデルの杭部材そのものでは考慮できないが、杭頭に設定する(集中)軸方向バネ定数Kの値の中に、実験結果が含んでいた効果が暗に含まれていることになる。この軸方向バネ定数の用い方は先の変位法も同じである。したがって、基礎を設置する場所の地層構成を直接反映するものではない。 The effect of the peripheral frictional force of the pile in the frame model of the pile foundation in the Road Bridge Specification (Non-Patent Document 2) cannot be considered in the pile member itself of the frame model, but the (concentrated) axial direction set at the pile head in the value of the spring constant K V, so that the effect that included experimental results are implied. The method of using this axial spring constant is the same as in the previous displacement method. Therefore, it does not directly reflect the stratum structure of the place where the foundation is installed.

一方、図2に示す鉄道橋の構造物設計標準(非特許文献3)での骨組モデルは、杭の部材曲げ変形だけでなく軸方向変形も考慮するものであり、杭の周面摩擦力の効果を杭周面に働く(分布)設計せん断地盤反力係数kSVにより扱っている。そして、杭下端に(分布)設計鉛直地盤反力係数kを働かせており、地層構成を直接反映するモデルである。 On the other hand, the frame model in the railway bridge structure design standard (Non-Patent Document 3) shown in FIG. 2 considers not only the bending deformation of the pile but also the axial deformation. The effect is handled by the (distribution) design shear ground reaction force coefficient k SV acting on the circumferential surface of the pile. Then, the pile bottom (distribution) and exerts a design vertical ground reaction force coefficient k V, a model directly reflects the formation structure.

杭部材の周面摩擦力の効果を(分布)せん断地盤反力係数kSVで評価することは、骨組モデルの設計法の特性から節点間の部材の変形式として、分布ばね係数として扱う計算式が既につくられていることで馴染みやすいことと、他の水平や鉛直方向の地盤の効果を表す地盤反力係数と係数の性質を整合させるという考え方から採用されている。 The evaluation of the effect of frictional force on the surface of pile members with (distributed) shear ground reaction force coefficient k SV is a calculation formula that treats as a distributed spring coefficient as a deformation formula of members between nodes from the characteristics of the design method of the frame model Is already adopted, and it is adopted from the viewpoint of matching the properties of the coefficient with the ground reaction coefficient that represents the effect of other horizontal and vertical ground.

杭部材には通常の地盤では周面摩擦力は常に働いているものであるが、その性質と扱い方の研究が十分でなく、現状では普及しているとはいえない。その主要因は、普通の杭基礎の本体構造そのものが、多径間のフレーム構造をしており、高次の不静定構造をなしていることである。加えて、構造本体を地盤に設置することから、普通の杭基礎の安定計算を行う場合には地盤が持っている力学的に複雑な性質を計算に反映させる必要があることである。   Although the peripheral frictional force always works on the pile member in normal ground, the research on the property and how to handle it is not enough, and it cannot be said that it is popular at present. The main factor is that the main structure of a normal pile foundation itself has a multi-frame structure and a high-order indefinite structure. In addition, since the structural body is installed on the ground, it is necessary to reflect the mechanically complex properties of the ground in the calculation when performing stability calculations for ordinary pile foundations.

すなわち、普通の杭基礎の設計法の構成上の課題には構造体が持っている構造本体の複雑さと、地盤の性質が持っている複雑さの反映について、大きく2種類の複雑さの要因がある。この2種類の要因があることから、杭の周面摩擦力の扱い方は道路橋示方書が扱う水準のように、どこでもだれでも扱えるという状態にまで現在至っていない。   In other words, there are two types of complexity factors that reflect the complexity of the structural body of the structure and the complexity of the properties of the ground. is there. Because of these two types of factors, the handling of the peripheral frictional force of the pile has not reached the state where anyone can handle it anywhere, as the level handled by the road bridge specifications.

普通の杭基礎の安定計算では地盤が持っている複雑な性質を、水平地盤反力係数k等、鉛直地盤反力係数kおよび周面のせん断地盤反力係数kSVで表す。これら3種類の地盤反力係数の中で、第3番目の係数kSVに関係する周面摩擦力の扱い方に関する研究が最も遅れている。 Ordinary complex nature of the ground has a stable calculation of pile foundation, represented by horizontal subgrade reaction coefficient k H, etc., the vertical ground reaction force factor k V and the circumferential surface shear subgrade reaction coefficient k SV. Among these three types of ground reaction force coefficients, research on how to handle the peripheral frictional force related to the third coefficient k SV is the most delayed.

杭の周面摩擦力は載荷実験結果の軸力計測点間の軸力差から、計測点間に一様分布する摩擦力として算出されたものである。計測点は主な地層境界付近に設定され、かなりの区間長がある。算出された周面摩擦力の強度を縦軸にとり計測点中間の代表点の杭の相対変位量をすべり変位量として横軸にして図化すると、(分布)せん断地盤反力係数kSVはグラフの勾配として表される。 The peripheral frictional force of the pile is calculated as a frictional force that is uniformly distributed between the measurement points based on the axial force difference between the axial force measurement points in the loading test result. Measurement points are set near the main strata boundary and have a considerable section length. When the calculated vertical friction force strength is plotted on the vertical axis and the relative displacement of the pile at the representative point in the middle of the measurement points is plotted on the horizontal axis, the (distribution) shear ground reaction force coefficient k SV is a graph. Expressed as the slope of

しかし、こうして得られたせん断地盤反力係数kSVがその地層を代表する値であるとしても、地層にせん断バネが一様に分布する状態の下に得られた計算式の非直線性と、地層上下の鉛直弾性変位量の違いから、計測点間に一様分布する元の摩擦力の仮定状態は再現しにくい。このように、周面摩擦力の扱い方の問題は杭基礎の設計法の発展のボトルネックの一つになっている。 However, even if the shear ground reaction force coefficient k SV thus obtained is a value representative of the formation, the nonlinearity of the calculation formula obtained under the state where the shear springs are uniformly distributed in the formation, The assumption of the original frictional force that is uniformly distributed between measurement points is difficult to reproduce due to the difference in vertical elastic displacement above and below the formation. Thus, the problem of how to handle the peripheral frictional force is one of the bottlenecks in the development of the pile foundation design method.

部材の軸方向弾性変形を考慮した設計法では、長尺ものの杭部材を扱うと杭頭部の鉛直変位と全体回転変位の値に弾性変形の影響が現れて実状より大きめの値になる。それを防止するためには実態に合わせて周面摩擦力の効果を反映させる必要がある   In the design method considering the elastic deformation of the member in the axial direction, when a long pile member is handled, the effect of the elastic deformation appears on the vertical displacement and the overall rotational displacement of the pile head, and the value is larger than the actual value. In order to prevent it, it is necessary to reflect the effect of the peripheral friction force according to the actual situation.

杭の周面摩擦力をせん断地盤反力係数kSVにより考慮する場合は、摩擦力の強度が上限値に達した後は一定の上限値として扱うバイリニヤーの扱い方がなされる。周面摩擦力の効果を弾性域と塑性域の2段階で扱うことは合理的ではあるが、その評価精度と較べた場合摩擦力自体は相当ばらつく性質のものであり扱い方の複雑さを招いている。 When the frictional force of the peripheral surface of the pile is taken into account by the shear ground reaction force coefficient k SV, the bilinar is handled as a certain upper limit after the strength of the frictional force reaches the upper limit. Although it is reasonable to handle the effect of the peripheral frictional force in two stages, the elastic region and the plastic region, the frictional force itself is of a nature that varies considerably when compared with the evaluation accuracy, and this leads to complicated handling. It is.

そして、地盤が杭に作用する効果は、杭が1本の場合に計測された性質を基にしており、杭が多数ある場合の杭群前面や内部の地盤の効果を反映させることは、設計法としては既にできているがその精度は十分とはいえない。例えば、普通の基礎では杭の本数は前列の杭より第2列以降の杭の本数が多いが、前面の地盤の効果の反映のさせ方より杭群内部の地盤の効果の反映精度が通常悪い。この原因は、実大規模で数多くの実験をなかなかしにくいためである。杭基礎本体をフレーム構造でモデル化しても、フレーム構造そのものの計算精度に較べて、地盤の効果を反映させる係数の精度は釣り合ってはいない状況にある。   And the effect of the ground acting on the pile is based on the properties measured when there is only one pile, and the effect of the front of the pile group and the internal ground when there are many piles is the design The method has already been made, but its accuracy is not sufficient. For example, in normal foundations, the number of piles in the second and subsequent rows is greater than that in the front row, but the accuracy of reflecting the ground effect inside the pile group is usually worse than how the ground effect in the front is reflected. . This is because it is difficult to conduct many experiments on an actual scale. Even if the pile foundation body is modeled with a frame structure, the accuracy of the coefficient that reflects the effect of the ground is not balanced compared to the calculation accuracy of the frame structure itself.

杭基礎本体の構造モデルを骨組モデルのように複雑ではなく、簡単に扱うものとして以下に説明する「等価単杭モデルの式」を本発明者が既に‘群杭系基礎の計算式’として提案した(非特許文献4参照)。その後これらの式の総称を「等価単杭モデルの式」と呼ぶことになりこの計算法は、多数の杭部材を一括して基礎の中心線の変位関数で代表して扱うものであり、各部材の曲げ変形、軸方向変形およびせん断変形が考慮されている。   The present inventor has already proposed the "Equivalent Single Pile Model Formula", which is described below as an easy-to-handle structural model of the pile foundation body, which is not as complex as the framework model. (See Non-Patent Document 4). After that, these equations are collectively called “equivalent single pile model equations”, and this calculation method treats a large number of pile members as a representative of the displacement function of the center line of the foundation. The bending deformation, axial deformation and shear deformation of the member are taken into account.

通常1本の杭部材iには部材モーメントMi、部材軸力Niおよび部材せん断力Qiの3成分の断面力(Mi、Ni、Qi)が働いている。その基本的な状態を2つの部材要素を並列して図3((a)、(b),(c))に示す。このような部材要素からなる多数の杭部材の断面には、部材モーメントMiの和Msb、部材軸力Niの和N、部材せん断力Qiの和Qの他に、部材軸力Niがなすモーメントの和があり、これをMafで表す。一般に多数の杭部材の断面全体にはこの4成分の断面力(Msb、Maf、N、Q)が働いている。「等価単杭モデルの式」では類似した変形を起こす多数の部材を「部材集合体」と呼ぶ。部材iと「部材集合体」の断面力の関係を式(1)から式(4)で表す。   Usually, a single pile member i is subjected to three component cross-sectional forces (Mi, Ni, Qi) of member moment Mi, member axial force Ni, and member shear force Qi. The basic state is shown in FIG. 3 ((a), (b), (c)) with two member elements arranged in parallel. In the cross-sections of a large number of pile members composed of such member elements, in addition to the sum Msb of the member moment Mi, the sum N of the member axial force Ni, and the sum Q of the member shear force Qi, the moments formed by the member axial force Ni There is a sum, which is represented by Maf. In general, the four component cross-sectional forces (Msb, Maf, N, and Q) act on the entire cross-section of a large number of pile members. In the “equivalent single pile model formula”, a large number of members that cause similar deformation are called “member aggregates”. The relationship between the sectional force of the member i and the “member assembly” is expressed by the equations (1) to (4).

ここに、xiは集合体の中心から部材iの中心までの距離で、Σは部材n本分の総和を表す。なお、使用する記号の説明は文末にまとめている。   Here, xi is the distance from the center of the assembly to the center of the member i, and Σ represents the sum of n members. The explanation of the symbols used is summarized at the end of the sentence.

Figure 2007255021
Figure 2007255021

この4成分の断面力(Msb、Maf、N、Q)のおのおのに対応する、多数の部材が起こす4種類の変形の形式を基本変形パターンとして、その形態を図4((a)、(b),(c)、(d))に示す。これらの基本変形パターンは、部材モーメントの和Msbに対しては「部材曲げ変形」、軸力の和Nに対しては「軸方向変形」、せん断力の和Qに対しては「せん断変形」と従来の名称を踏襲して呼ぶ。そして軸力がなすモーメントの和Mafに対する変形は「全体曲げ変形」と新たな名称で呼ぶ。   4 types of deformation caused by a large number of members corresponding to each of the four component cross-sectional forces (Msb, Maf, N, Q) are used as basic deformation patterns, and the forms are shown in FIG. 4 ((a), (b ), (C), (d)). These basic deformation patterns are “member bending deformation” for the sum Msb of member moments, “axial deformation” for the sum N of axial forces, and “shear deformation” for the sum Q of shear forces. And follow the conventional name. And the deformation | transformation with respect to the sum Maf of the moment which an axial force makes is called with the new name "overall bending deformation."

このような変形を起こす多数の部材を「部材集合体」という。普通の杭基礎や矢板式基礎では杭などの鉛直部材の頭部に剛体的なフーチングや頂版が設けられる。この剛体的なフーチングが発揮する構造的な制約効果により、多数の杭部材が構造的な制約を受けて互いに近似した変形をする状態に着目する。多数の杭部材の断面力を4種類の断面力成分で表すと、等価な1本の部材の断面力として単純化したモデルで扱うことができる。そのモデル化の状態を図5((a)、(b))に示す。   A large number of members that cause such deformation are referred to as “member assemblies”. In ordinary pile foundations and sheet pile foundations, rigid footings and top plates are provided on the heads of vertical members such as piles. Attention is focused on a state in which a large number of pile members undergo deformation that approximates each other due to structural restrictions due to the structural restriction effect exhibited by the rigid footing. When the cross-sectional force of a large number of pile members is expressed by four types of cross-sectional force components, it can be handled by a simplified model as the cross-sectional force of one equivalent member. The modeling state is shown in FIG. 5 ((a), (b)).

「部材集合体」の上端に剛体的なフーチングがあるモデルを「群杭モデル」と呼ぶ。このモデルは普通の杭基礎と同じ形態である。4種類の基本変形パターンを代表する変位関数を選定して、基礎中心線の4種類の断面力と4種類の変位関数を基にして、基礎全体の変位や断面力を等価な1本の部材に単純化して扱う式の総称が「等価単杭モデルの式」である。この式の誘導の要点と代表的な計算式を以下に説明する。   A model having a rigid footing at the upper end of the “member assembly” is called a “group pile model”. This model has the same form as an ordinary pile foundation. Select a displacement function that represents four basic deformation patterns, and based on the four types of sectional force and the four types of displacement function of the foundation centerline, one member that is equivalent to the displacement and sectional force of the entire foundation The general term for the simplified expression is "Equivalent Single Pile Model". The main points of guidance of this formula and typical calculation formulas will be described below.

図6に全体座標(X,Z)と局部座標(ξ,ζ)を示し、図7に部材要素の断面力とその仮定方向を示す。変形後の構造体の任意点iの変位位置を(ui,wi)とし、その位置を基礎体中心線の基本変形パターンを反映する4種類の変位関数と座標で表す。基礎中心線の点oの4種類の変位関数には鉛直変位wno、水平変位uo、部材回転変位θmoおよび全体回転変位φを選び、部材iの回転角を(φ+θmi)で表す。「群杭モデル」の変形前後の状態と変位関数の表示内容を図8((a)、(b))に示す。   FIG. 6 shows the overall coordinates (X, Z) and the local coordinates (ξ, ζ), and FIG. 7 shows the sectional force of the member element and its assumed direction. The displacement position of the arbitrary point i of the structure after deformation is defined as (ui, wi), and the position is represented by four types of displacement functions and coordinates reflecting the basic deformation pattern of the basic body center line. The vertical displacement wno, the horizontal displacement uo, the member rotational displacement θmo and the total rotational displacement φ are selected as the four types of displacement functions of the base center line point o, and the rotational angle of the member i is represented by (φ + θmi). The state before and after the deformation of the “group pile model” and the display content of the displacement function are shown in FIG. 8 ((a), (b)).

任意点iの変位(ui,wi)を4種類の変位関数(uo,wno,φ,θmo)で表したものが式(5)と式(6)である。この2式は剛体的なフーチングが発揮する構造的な制約効果等による、3項目の近似仮定(1.部材中心軸ひずみの直線比例性(断面内でφは一定)、2.部材間距離の不変性(uo≒ui)、3.部材回転角の近似性(θmo≒θmi)を考慮して、基礎全体を簡易化して表現する場合の最も基本になる式である。この2式が「等価単杭モデルの式」の誘導の出発点になる。この式(5)と式(6)から誘導される4種類の断面力と変位関数の関係は式(7)から式(10)で表される。   Expressions (5) and (6) represent the displacement (ui, wi) of the arbitrary point i by four types of displacement functions (uo, wno, φ, θmo). These two formulas are approximate assumptions of three items (1. Linear proportionality of member center axis strain (φ is constant in the cross section), etc., due to the structural restriction effect exhibited by rigid footing, and 2. Distance between members 2. Invariance (uo≈ui) 3. Considering the approximation of the rotation angle of the member (θmo≈θmi), this is the most basic expression when the entire foundation is simplified and expressed. This is the starting point for the induction of the “single-pile model equation.” The relationship between the four types of cross-sectional forces and displacement functions derived from equations (5) and (6) is expressed by equations (7) to (10). Is done.

ここに、Eはヤング率、Gはせん断弾性定数、Agは全断面積、Ipは部材断面二次モーメントの和、Igは集合体中心に対して各部材がなす断面二次モーメントの和である。Z軸方向の微分を ’で表す。   Here, E is Young's modulus, G is the shear elastic constant, Ag is the total cross-sectional area, Ip is the sum of the member cross-sectional secondary moments, and Ig is the sum of the cross-sectional secondary moments formed by each member with respect to the center of the assembly. . The differential in the Z-axis direction is represented by ′.

Figure 2007255021
Figure 2007255021

多数の杭材と剛体的な頂版がなす「群杭モデル」に似た構造体の断面では、その形式に拘わらず式(7)から式(10)の関係は成立している。これを「等価単杭モデルの式」の「変位場の共通性」という。そして、「等価単杭モデルの式」の基本方程式は4種類の変位関数による2階の連立微分方程式であり式(11)から式(14)で表される。   In a cross section of a structure similar to the “group pile model” formed by a large number of pile materials and a rigid top plate, the relationship of Expression (7) to Expression (10) is established regardless of the form. This is called “commonness of displacement field” in the “equivalent single pile model formula”. The basic equation of the “equivalent single pile model equation” is a second-order simultaneous differential equation using four types of displacement functions, and is expressed by equations (11) to (14).

ここに、qは図7に示す水平分布外力qiの断面内の和である。   Here, q is the sum in the cross section of the horizontal distribution external force qi shown in FIG.

Figure 2007255021
Figure 2007255021

「等価単杭モデルの式」の基本方程式の内式(14)の中にある水平分布外力の和qの項に、水平変位量uoに比例する地盤反力の和として表される式(15)を代入すると式(16)になり、普通の杭基礎を扱う式となる。「弾性バネ支持モデル」の基本方程式は式(11)から式(13)および式(16)の4式である。この基本方程式の一般解は式(17)から式(20)で表され、この一般解には、つり合い条件式(特性式)として式(21)から式(24)と、解法上の係数の関係式(25)から式(28)が付随する。 An expression (15) expressed as the sum of ground reaction forces proportional to the horizontal displacement uo in the term of the sum q of the horizontal distributed external force in the inner expression (14) of the basic equation of the “equivalent single pile model expression” (15) ) Is substituted into Equation (16), which is an equation for handling ordinary pile foundations. The basic equations of the “elastic spring support model” are four formulas of formula (11) to formula (13) and formula (16). The general solution of this basic equation is expressed by equations (17) to (20). This general solution includes equations (21) to (24) as balance condition equations (characteristic equations), and coefficients of the solution. The relational expressions (25) to (28) are attached.

ここに、Khは代表的な水平地盤反力係数、Bは水平地盤反力係数が分布する基準幅、aはKhおよびBの補正係数、係数のA1〜D4 は12個の積分定数である。ただし、Ψ<1(式(28)参照)の場合である。 Where Kh is a representative horizontal ground reaction coefficient, B is a reference width in which the horizontal ground reaction coefficient is distributed, a is a correction coefficient for Kh and B, and coefficients A 1 to D 4 are 12 integral constants. is there. However, it is a case where Ψ <1 (see Expression (28)).

Figure 2007255021
Figure 2007255021

「弾性ばね支持モデル」の一般解の式(17)から式(20)は「群杭モデル」が弾性バネで支持された場合の一般解であり、地中に設置される各種の類似基礎形式に簡易設計法として適用する場合の基本となる式である。これらの「等価単杭モデルの式」は簡易な表現の式であるが部材の軸方向変形とせん断変形も同時に考慮されている。   Formulas (17) to (20) of the general solution of the “elastic spring support model” are general solutions when the “group pile model” is supported by the elastic spring, and various similar basic forms installed in the ground This is a basic formula when applied as a simple design method. These “Equivalent Single Pile Model Equations” are simple expressions, but the axial deformation and shear deformation of the members are considered simultaneously.

「等価単杭モデルの式」を各種の類似基礎形式に適用する最初の例は、式(14)に戻り分布水平外力qの項が0の場合である。その場合の解を求めれば、杭基礎本体が地上に突出している部分や多柱式基礎、あるいは柱部材だけの構造物に適用できる。一方、分布外力qの項に加えて鋼管矢板基礎に対しては部材本体の両側面に軸方向線状摩擦力が働くモデルとして、「等価単杭モデルの式」を展開する例が既に本発明者により報告されている(非特許文献5参照)。 The first example of applying the “equivalent single pile model formula” to various similar basic forms is the case where the term of the distributed horizontal external force q is 0, returning to formula (14). If the solution in that case is calculated | required, it can apply to the structure where only the pile foundation main body protrudes on the ground, a multi-column type foundation, or a column member. On the other hand, in addition to the term of distributed external force q, an example of developing an “equivalent single pile model formula” as a model in which an axial linear frictional force acts on both side surfaces of a member main body for a steel pipe sheet pile foundation is already in the present invention. (See Non-Patent Document 5).

このように「群杭モデル」に対してそれぞれ基礎の種類や形式の特徴に合わせて、働く外力の種類の組合せが異なる状態として、断面力と作用力のつり合い式を立てるという展開ができる。これを「応力場の展開性」という。   In this way, it is possible to develop a balance formula between the cross-sectional force and the acting force with different combinations of the types of external forces working according to the characteristics of the type and form of the foundation for the “group pile model”. This is called “stress field expansibility”.

「変位場の共通性」と「応力場の展開性」の2つの特性があることは「等価単杭モデルの式」が各種の類似形式の基礎に応用できる根拠になっている。   The two characteristics of "displacement field commonality" and "stress field deployment" are the grounds that "equivalent single pile model formula" can be applied to various similar types of foundations.

図9は、個々の部材を対象にして組み立てられている従来の計算体系を個別単杭形式の体系として簡略的に表し、「等価単杭モデルの式」で予測される主な展開項目を枠組みとする簡易設計法に体系化する場合を等価単杭形式の体系として、対比的に示したものである。   Fig. 9 is a simplified representation of a conventional calculation system assembled for individual members as an individual single pile format system, and the main development items predicted by the "Equivalent Single Pile Model Formula" are frameworks. This is shown in contrast to the case of systematizing the simplified design method as an equivalent single pile type system.

本発明は「群杭モデル」の杭部材に周面摩擦力が働く場合のモデルで、既述の3種類のモデルに継いで第4番目のモデルになる。これを図9には周面摩擦力を考慮として表している。実在する基礎の種類と形式を想定すると以上の4種類のモデルが設計計算上必要な基本的なモデルの種類である。これらの基本的なモデルが整うと、図9に示すように、それ以後は異種の材料や形式のモデルの組合せを始めとして、部材や材料の塑性領域の考慮や動的な設計法などへの展開が既存の手法に似た手順によりできるようになる。   The present invention is a model in the case where the peripheral frictional force acts on the pile members of the “group pile model”, and becomes the fourth model following the three types of models described above. This is shown in FIG. 9 considering the peripheral frictional force. Assuming the types and forms of existing foundations, the above four types of models are the basic model types necessary for design calculation. Once these basic models are in place, as shown in FIG. 9, after that, including the combination of models of different materials and types, consideration of the plastic region of members and materials and dynamic design methods, etc. Deployment can be done with procedures similar to existing methods.

本発明は、基礎構造物を簡潔に表現する方法と地盤の複雑な性質を簡単明瞭に表現するという2つの課題を同時に満足するもので、新しい設計法を発展させる場合の基本となるものである。
道路橋示方書・同解説 IV下部構造編 第12章 杭基礎の設計,pp.373〜375,378〜397,平成14年3月. 道路橋示方書・同解説 V耐震設計編 第12章 橋脚基礎の応答値と許容値,pp.215,平成14年3月. 鉄道構造物等設計標準・同解説 基礎構造物・坑土圧構造物 10 章 杭基礎,pp.219,平成11年10月. 前原博,中田恒和:群杭系基礎の新しい計算法,橋梁と基礎, pp.8〜12,1996−2. 前原博, 中田恒和:矢板式基礎の設計法に関する考察,橋梁と基礎, pp.32〜37,1996−3. 鋼管杭協会:鋼管杭基礎の設計と施工,道路橋示方書(平成14年3月版)改訂対応,3.4.3 設計法,pp.20, 平成14年4月.
The present invention simultaneously satisfies the two problems of simply expressing a foundation structure and expressing the complex nature of the ground simply and clearly, and is the basis for developing a new design method. .
Road Bridge Specification / Explanation IV Substructure Chapter 12 Pile Foundation Design, pp. 373-375, 378-397, March 2002. Road Bridge Specification / Explanation V Seismic Design Chapter 12 Response values and allowable values of pier foundation, pp. 215, March 2002. Railroad structure design standards and explanations Foundation structures and earth pressure structures Chapter 10 Pile foundations, pp. 219, October 1999. Hiroshi Maehara, Tsunekazu Nakata: New calculation method for group pile foundation, bridge and foundation, pp. 8-12, 1996-2. Hiroshi Maehara, Tsunekazu Nakata: Consideration on design method of sheet pile foundation, bridge and foundation, pp. 32-37, 1996-3. Steel Pipe Pile Association: Design and construction of steel pipe pile foundation, road bridge specification (March 2002 version) revision, 3.4.3 Design method, pp. 20, April 2002.

以上、説明したように、杭部材の周面には鉛直方向に地盤の摩擦力が通常働いている。しかし、その効果を地盤の構成に合わせて基礎構造物の安定や挙動の計算に反映させることは、土木構造物の分野では非特許文献3で行われているが複雑であり、周面摩擦力の特性を簡易な方法で実務的な設計に反映できるようにする必要がある。   As described above, the frictional force of the ground normally acts on the peripheral surface of the pile member in the vertical direction. However, reflecting the effect in the calculation of stability and behavior of the foundation structure according to the structure of the ground is performed in Non-Patent Document 3 in the field of civil engineering structures, it is complicated, and the circumferential frictional force It is necessary to be able to reflect the characteristics of this in practical design in a simple way.

基礎構造物の実務上の設計法としての基本要件は以下のようになる。
1)構造体の計算が骨組モデルによるフレーム解析のように複雑ではないこと。
2)力学的に複雑な地盤の性質の主要な効果を簡潔に計算に反映できること。
3)構造体と地盤の両者の扱い方の精度に格差が少ないこと。
4)基礎全体と各構成部材の主要な挙動を簡潔に表現できること。
5)類似形式の構造物に対し広く応用ができること。
The basic requirements for practical design of foundation structures are as follows.
1) The calculation of the structure is not as complicated as the frame analysis by the frame model.
2) The main effects of mechanically complex ground properties can be reflected in the calculation.
3) There is little disparity in the accuracy of how to handle both the structure and the ground.
4) The basic behavior of the entire foundation and each component can be expressed concisely.
5) It can be widely applied to structures of similar type.

杭の周面摩擦力は軸力の測点間に一様分布する摩擦力として算出されたものである。その値は測点そのものの相対変位量と厳密に対応していない。したがって、周面摩擦力を杭周面の(分布)せん断地盤反力係数kSVではなく分布摩擦力τとし、この摩擦力τの強度と分布範囲を一般的な設計外力と同じように設定して基礎を設計するものである。 The peripheral frictional force of the pile is calculated as a frictional force that is uniformly distributed between the measuring points of the axial force. The value does not correspond exactly to the relative displacement of the station itself. Therefore, the peripheral friction force is not the (distributed) shear ground reaction force coefficient k SV of the pile peripheral surface but the distributed friction force τ Z, and the strength and distribution range of this friction force τ Z are the same as general design external force. Set and design the foundation.

多数の部材が起こす基本変形パターンには、「軸方向変形」、「全体曲げ変形」、「部材曲げ変形」および「せん断変形」の4種類がある。この内、杭の周面摩擦力τは「せん断変形」以外の3種類の基本変形パターンに対して働き、その変形を少なくするように働く。周面摩擦力が働く3種類の基本変形パターンに対する周面摩擦力τの働き方を3種類(τZN、τZφ、τZθ)に分けてモデル化して図示したものが図10((a)、(b),(c)、(d))である。 There are four types of basic deformation patterns caused by a large number of members: “axial deformation”, “overall bending deformation”, “member bending deformation”, and “shear deformation”. Of these, the peripheral friction force τ Z of the pile works on three basic deformation patterns other than “shear deformation”, and works to reduce the deformation. FIG. 10 ((a) shows a model of the manner in which the peripheral surface friction force τ Z acts on the three basic deformation patterns on which the peripheral surface friction force works by dividing it into three types (τ ZN , τ , τ ). ), (B), (c), (d)).

図10は多数の杭部材を一括して捉えた場合の基本変形パターンに対して、周面摩擦力の働き方を3種類の作用パターンに分けて捉えた形態別の表現である。普通の杭基礎では図10の下半分の状態がフーチングより下面の杭の根入れ部で合成された状態で生じている。   FIG. 10 is an expression according to the form in which the working method of the peripheral friction force is divided into three types of action patterns with respect to the basic deformation pattern when a large number of pile members are captured at once. In an ordinary pile foundation, the state of the lower half of FIG. 10 occurs in a state where it is synthesized at the base of the pile below the footing.

従来の独立した1本の杭部材に対する周面摩擦力の働き方の扱い方では、1部材について押し込みか引き抜きかの2方向しか考慮していない。これに対して多数の杭部材を一括して捉えた場合には基本変形パターンに対して、多数の杭部材に周面摩擦力が働く状態を3種類の作用パターンに分けてモデル化し、それらの働きを個別に扱うのではなく同時に考慮して一括して扱う。   In the conventional way of handling the way of working the peripheral frictional force on one independent pile member, only two directions of pushing or pulling are considered for one member. On the other hand, when a large number of pile members are captured at once, the state in which the peripheral frictional force acts on a large number of pile members is modeled by dividing them into three types of action patterns against those of the basic deformation pattern. Instead of handling the work individually, treat them all together at the same time.

図10で3種類の周面摩擦力(τZN、τZφ、τZθ)の働きのパターンを具体的に説明する。部材の長さの中央を変形方向の境にしている。(a)の「部材曲げ変形」に対しては各部材毎に部材の曲げにより表面に伸縮が生じ、その伸縮と逆方向に周面摩擦力τZθが偶力的に部材毎の表面に働く。 FIG. 10 specifically explains the patterns of the action of the three types of peripheral surface frictional forces (τ ZN , τ , τ ). The center of the length of the member is the boundary of the deformation direction. With respect to the “member bending deformation” in (a), the surface is expanded and contracted by bending the member for each member, and the peripheral frictional force τ acts on the surface of each member in the opposite direction to the expansion and contraction. .

(b)の「全体曲げ変形」に対しては部材の位置により軸力の方向が異なり、それに応じて部材が伸び縮みをする。その伸び縮みと反対方向に周面摩擦力τZφが基礎の断面全体で偶力的に働く。そして、(c)の「軸方向変形」に対しては基礎全体が圧縮(または引張)する方向とは逆に周面摩擦力τZNが働く。 For (b) “overall bending deformation”, the direction of the axial force varies depending on the position of the member, and the member expands and contracts accordingly. The circumferential frictional force τ acts as a couple across the entire cross section of the foundation in the opposite direction to the expansion and contraction. And for the “axial deformation” of (c), the circumferential frictional force τ ZN acts in the opposite direction to the direction in which the entire foundation is compressed (or pulled).

図10に基づき多数の部材要素がなす3種類の基本変形パターンに対する周面摩擦力τの働き方の違いを、作用している断面力への影響として表すために代表的な部材要素について、各働き毎に具体的なモデルを示す。 In order to express the difference in working method of the peripheral friction force τ Z with respect to the three types of basic deformation patterns formed by a large number of member elements based on FIG. A specific model is shown for each function.

基礎中心に対してそれぞれ反対側にある部材要素iとjについて、この周面摩擦力の3種類の作用パターンを、各基本変形パターン別に働く状態をモデル化し図示したものが図11から図13((a)、(b),(c))である。   The member elements i and j on the opposite sides of the center of the foundation are modeled by modeling the three types of action patterns of the peripheral frictional force for each basic deformation pattern as shown in FIGS. (A), (b), (c)).

図11に示す周面摩擦力τZNは作用力Nに対してすべて同一方向(押し込みか引き抜き方向)に働く。図12に示す周面摩擦力τZφは作用力Mafに対して部材の位置により働く方向が異なり基礎全体で偶力的に働く。図13の(a)は断面力Msbに対する部材の曲げ変形に伴いその部材の表面に面積の伸縮が生じる状態を表す。(b)と(c)は断面が円形である場合の伸縮を起こす面に働く周面摩擦力τZθが部材表面で偶力的に働く状態を示す。この摩擦力τZθは部材の前面と背面で働く方向が異なる。以上の図11から図13は周面摩擦力の3種類の働き方を個別にモデル化して表現した図である。 The peripheral surface friction force τ ZN shown in FIG. 11 acts on the acting force N in the same direction (pushing or pulling direction). The circumferential frictional force τ shown in FIG. 12 differs depending on the position of the member with respect to the acting force Maf and acts on the entire foundation as a couple. (A) of FIG. 13 represents the state which the expansion-contraction of an area arises on the surface of the member with the bending deformation of the member with respect to cross-sectional force Msb. (B) and (c) show a state in which the peripheral frictional force τ acting on the surface causing expansion and contraction acts on the surface of the member when the cross section is circular. The frictional force τ is different in the working direction on the front surface and the back surface of the member. FIG. 11 to FIG. 13 are diagrams expressing three types of working methods of the peripheral frictional force by modeling them individually.

次に多数の部材の3種類の断面力の成分(N、Maf、Msb)に対する周面摩擦力τの3種類(τZN、τZφ、τZθ)の働きを、それぞれの断面力成分のつり合い式に定式化して表現する。その場合のモデルの変位場に図7の断面力の仮定方向を合わせて示したものが図14である。変位は元の位置を破線で示し正の変位後の位置を実線で示す。図7の曲げモーメントの仮定方向は回転の正方向とは逆であることに注意する。 Next, the action of the three types (τ ZN , τ , τ ) of the peripheral surface friction force τ Z on the three types of cross-sectional force components (N, Maf, Msb) of a large number of members, Expressed in a balanced formula. FIG. 14 shows the displacement field of the model in that case along with the assumed direction of the cross-sectional force in FIG. For the displacement, the original position is indicated by a broken line, and the position after the positive displacement is indicated by a solid line. Note that the assumed direction of bending moment in FIG. 7 is opposite to the forward direction of rotation.

図11と図14から全軸力Nに対する周面摩擦力τZNのつり合いを、図12と図14から部材軸力がなすモーメントの和Mafに対する周面摩擦力τZφのつり合いを、そして図13と図14から部材曲げモーメントの和Msbに対する周面摩擦力τZθのつり合いを個別にまとめ、せん断力Qのつり合いも分布水平外力qを考慮して、4成分の断面力のつり合いをまとめたものが式(29)から式(32)である。これらの4式は分布摩擦力τZN、τZφ、τZθ)が働く場合の「部材集合体」の断面力のつり合い式である。 11 and 14, the balance of the peripheral friction force τ ZN with respect to the total axial force N , the balance of the peripheral friction force τ with respect to the sum Maf of the moments formed by the member axial force from FIGS. 12 and 14, and FIG. 13. From FIG. 14 and FIG. 14, the balance of the peripheral friction force τ with respect to the sum Msb of the member bending moments is individually summarized, and the balance of the shear force Q is also taken into account in consideration of the distributed horizontal external force q. Are the equations (29) to (32). These four equations are balanced equations for the cross-sectional force of the “member assembly ” when the distributed frictional force τ ZZN , τ , τ ) works.

ここに、Uiは杭部材iの周長、riは半径、xeは集合体中心から外縁部材の中心までの距離で、記号の||は絶対値を表す。   Here, Ui is the circumference of the pile member i, ri is the radius, xe is the distance from the center of the assembly to the center of the outer edge member, and the symbol || represents the absolute value.

Figure 2007255021
Figure 2007255021

なお、図14では曲げモーメントの仮定方向と回転の正方向とは一致していない。また周面摩擦力τzφの着目全断面内の分布には、一様な分布(図15)と、基礎中心から部材中心の距離に比例する場合(図16)の二通りが考えられ、つり合い式への二通りの影響量を式(30)には示している。図15は地層の粘着力の影響がある場合、図16は粘着力の影響が少ない場合を想定している。   In FIG. 14, the assumed direction of the bending moment does not match the positive direction of rotation. The distribution of the peripheral frictional force τzφ within the entire cross section of interest can be divided into two types: a uniform distribution (FIG. 15) and a case where the peripheral surface friction force τzφ is proportional to the distance from the center of the base to the center of the member (FIG. 16). The two types of influences on are shown in equation (30). FIG. 15 assumes a case where there is an influence of the adhesive strength of the formation, and FIG. 16 assumes a case where the influence of the adhesive strength is small.

方程式の表現を簡潔にするために、係数F、F、F、F、Fを式(33)から式(37)のように定義し、周面摩擦力τZN、τZφ、τZθ)の働きを反映した断面力成分のつり合い式の式(29)から式(32)を、構造体中心線の4種類の変位関数(wno,φ,uo,θmo)で表したものが、杭の周面摩擦力を考慮した基本方程式になり式(38)から式(41)の連立微分方程式である。 In order to simplify the expression of the equation, the coefficients F A , F G , F T , F P , and F K are defined as in Expression (33) to Expression (37), and the peripheral friction force τ ZZN , Τ , τ ) are balanced force equations (29) to (32) of the cross-sectional force component, and four types of displacement functions (wno, φ, uo, θmo) of the structure center line are used. What is expressed is a basic equation that takes into account the peripheral frictional force of the pile, and is a simultaneous differential equation of equations (38) to (41).

Figure 2007255021
Figure 2007255021

Figure 2007255021
Figure 2007255021

この連立微分方程式の式(38)から式(41)の一般解を求めると式(42)から式(45)で表される。この式(42)から式(45)は周面摩擦力が働く多数の地中鉛直部材からなる基礎の一般的な計算式である。この内式(44)と式(45)には解法上の係数の関係式として式(46)から式(50)が付随する。ここにA1〜B2、E1 〜E4の8個の係数は積分定数である。 When the general solution of equation (41) is obtained from equation (38) of this simultaneous differential equation, it is expressed by equations (42) to (45). These formulas (42) to (45) are general calculation formulas for a foundation composed of a large number of underground vertical members on which circumferential frictional force acts. The internal expressions (44) and (45) are accompanied by expressions (46) to (50) as relational expressions of coefficients in the solution. Here, eight coefficients A 1 to B 2 and E 1 to E 4 are integral constants.

本発明の標題の周面摩擦力が働く多数の鉛直部材からなる基礎の汎用的な簡易設計法の一般解の式としては式(42)から式(45)と付随する式(46)から式(50)である。   Formulas (42) to (45) and accompanying formulas (46) and (46) are used as general solution formulas for a general-purpose simple design method for a foundation composed of a large number of vertical members on which the peripheral surface frictional force of the present invention works. (50).

Figure 2007255021
Figure 2007255021

実用的なより簡易な式としては、設計上の安全側の配慮として従来からとられている部材曲げモーメントに対する配慮の慣例にならい、部材曲げ変形に対して働く周面摩擦力τZθの働きを無視した式である。その式は式(51)から式(54)で表され、式(53)と式(54)には式(55)から式(62)が付随する。ここに、式(51)から式(54)のA1〜B2、C1 〜D4の12個の係数は積分定数である。 As a practical and simpler formula, the conventional frictional force τ acting on member bending deformation is used in accordance with the conventional practice of consideration for member bending moment as a safety consideration in design. Ignored expression. The equations are expressed by equations (51) to (54), and equations (53) and (54) are accompanied by equations (55) to (62). Here, the twelve coefficients A 1 to B 2 and C 1 to D 4 in the equations (51) to (54) are integral constants.

Figure 2007255021
Figure 2007255021

本発明は、多数の杭部材を対象にした「等価単杭モデルの式」を周面摩擦力が働いている場合に拡張して、分布周面摩擦力τの働き方を3種類(τZN、τZφ、τZθ)の働きに分けてモデル化し、それらの3種類の働きを定式化したものである。
分布周面摩擦力τzの働き方の主要な働きとして2種類(τZN、τZφ)の働きの部分を取り出したものが式(51)から式(54)である。
The present invention, the "expression of the equivalent single pile model" that target multiple stake member expands when the skin friction is working, three way acts as a distribution skin friction tau Z (tau ZN , τ , τ ) are modeled separately, and these three types of functions are formulated.
Expressions (51) to (54) are obtained by taking out two types (τ ZN , τ ) of working parts as the main workings of the distributed circumferential frictional force τz .

なお、一般解の式(17)から式(20)と、式(42)から式(45)および実用解の式(51)から式(54)に含まれる積分定数は、各式に付随するつり合い条件式(特性式)や解法上の係数の関係式と、構造体の上下で与えられる境界条件式(上下で各4式)から、条件式の数と未知数(積分定数)の数が一致して具体的な値が定められる。   The integral constants included in the general solution equations (17) to (20), equations (42) to (45), and practical solution equations (51) to (54) are associated with each equation. The number of conditional expressions and the number of unknowns (integral constants) are equal to each other from the balance conditional expression (characteristic expression), the relational expression of the coefficients in the solution, and the boundary condition expressions given above and below the structure (four expressions each above and below). Then, specific values are determined.

一般解の変位関数が具体的に定まると任意点の変位は式(5)と式(6)から、基礎全体の断面力は式(7)から式(10)より、そして部材断面力は式(1)から式(4)を逆に表現した式から具体的に求められる。   When the displacement function of the general solution is specifically determined, the displacement at an arbitrary point is obtained from the equations (5) and (6), the sectional force of the entire foundation is obtained from the equations (7) to (10), and the member sectional force is obtained from the equation. It is specifically obtained from an expression expressing the expression (4) in reverse from (1).

周面摩擦力の3種類の働き方を考慮した一般解の式(42)から式(45)は、周面摩擦力の影響を厳密に計算する場合に用いられる。   The general solution equations (42) to (45) considering the three types of working methods of the peripheral friction force are used when the influence of the peripheral friction force is strictly calculated.

また、杭頭部の変位や全体の回転の減少効果を期待しないで、杭の周面摩擦力による軸力減少効果のみを期待する場合は、つり合い式の式(29)と式(30)および係数の関係式(33)と式(34)から、断面力NとMafはそれぞれEA・FおよびEI・Fを係数としたZの1次関数で表され、簡易な活用ができる。 In addition, when not expecting the effect of reducing the displacement of the pile head and the overall rotation, but only expecting the effect of reducing the axial force due to the peripheral frictional force of the pile, the balanced equations (29) and (30) and from the coefficients of equation (33) and (34), is represented by a linear function of Z for each member forces N and Maf was coefficients EA g · F a and EI g · F G, it is a simple leverage .

地盤の評価の仕方の面では普通の地盤に働いている周面摩擦力を、水平と鉛直の両地盤反力の扱い方に加え、同時にしかも単純明快に扱えるようになることから、ボトルネックであった周面摩擦力に関連する問題の検討や研究を促すこととなる。特に、低周面摩擦力は軟弱な地盤でなければどこでも期待され、その効果の有効利用について着目される。   In terms of how to evaluate the ground, the peripheral frictional force acting on ordinary ground can be handled at the same time in a simple and clear manner, in addition to how to handle both horizontal and vertical ground reaction forces. It will encourage the examination and research of problems related to the peripheral friction force. In particular, the low peripheral surface friction force is expected everywhere as long as it is not soft ground, and attention is paid to the effective use of the effect.

また杭の周面摩擦力の課題の一つに、杭本体が持つ弾性体的な効果に対し、支持層の鉛直ばね効果と周面摩擦力の効果を加えて3者が共同で作用する杭頭の鉛直ばね効果の解明に関する課題がある。その特性を明確にする研究はこれまで十分には行われてこなかった。周面摩擦力が所定区間で一様に分布をする状態を簡易に扱える本発明の方法によるとこの研究がしやすくなり、この方面の研究を進展させることに役立つ。   In addition, one of the issues of the peripheral frictional force of the pile is the pile that the three parties work together by adding the vertical spring effect of the support layer and the peripheral frictional force to the elastic effect of the pile body. There is a problem concerning the elucidation of the vertical spring effect of the head. Until now, there has been insufficient research to clarify its characteristics. According to the method of the present invention that can easily handle the state in which the circumferential friction force is uniformly distributed in a predetermined section, this research is facilitated, which is useful for advancing research in this direction.

周面摩擦力の扱い方の実務上の面では、周面摩擦力の強度と分布を他の設計荷重と同じように扱うことから、本発明の方法ではその分布状況は明確である。一様な分布の周面摩擦力を設定する効果は杭の軸力の直線的な減少として生じ、その効果も明確に把握され活用できる利点がある。   In the practical aspect of how to handle the peripheral friction force, the strength and distribution of the peripheral friction force are handled in the same manner as other design loads, and the distribution state is clear in the method of the present invention. The effect of setting the circumferential friction force with a uniform distribution occurs as a linear decrease in the axial force of the pile, which has the advantage that it can be clearly understood and utilized.

合理的な杭基礎の設計法では杭本体の弾性変形を考慮するものであるが、杭の長さが長くなると大きい変形を防ぐ計算上の合理性と杭材の経済的な用い方の両面から周面摩擦力の働きを考慮する必要が生じる。その場合、本発明の方法は従来の方法と異なり、周面摩擦力の強度と分布を地盤の構成に合わせて設定できることと、しかもその効果を簡易な計算法で扱えることから、合理的で経済性の追求に有効な方法である。   The rational pile foundation design method takes into account the elastic deformation of the pile body, but from the viewpoint of both the computational rationality to prevent large deformation as the pile length increases and the economical use of the pile material It is necessary to consider the action of the peripheral friction force. In that case, unlike the conventional method, the method of the present invention can set the strength and distribution of the peripheral frictional force according to the structure of the ground, and the effect can be handled by a simple calculation method. It is an effective way to pursue sex.

さらに、杭の極限支持力の計算と基礎の安定計算時との地盤の扱い方を整合させて、基礎の設計計算を行うことが可能になる。   Furthermore, it is possible to perform foundation design calculation by matching the ground handling method between the calculation of the ultimate bearing capacity of the pile and the stability calculation of the foundation.

実施例と比較例
図17から図21は、24本(4列×6本)の場所打ち杭の基礎を例にして、周面摩擦力が働く場合を(a)、摩擦がない場合を(b)として対比して示したものである。なお杭頭部を深さ0mとしている。
Examples and Comparative Examples FIG. 17 to FIG. 21 show the case of 24 (4 rows × 6) cast-in-place piles as an example (a) when the peripheral surface friction force works, and (f) when there is no friction ( It is shown by contrast as b). The pile head has a depth of 0 m.

場所打杭は、径1.5m、長さ37.5mで、フーチングより下の根入れ地盤を5層に区分して計算したものである。   The cast-in-place pile has a diameter of 1.5 m and a length of 37.5 m, and is calculated by dividing the base ground below the footing into five layers.

地層の状態は、上層の3層は第1・第2層が埋立地盤であり、第3層は沖積層で砂層とシルト質粘土層の互層である。第2層部は埋立地盤ではあるが、地表から8mより深い部分でN値が10〜20前後続いている層である。第4層と第5層は洪積層で薄層の砂質層、礫混じり砂層、シルト質砂層およびシルト質粘土層の互層地盤で、第4層はN値が20〜30程度の互層で、第5層が支持層部のN値が35〜50程度の互層である。   The upper three layers are landfills in the first and second layers, and the third layer is an alluvial layer consisting of a sand layer and a silty clay layer. Although the second layer is a landfill board, it is a layer in which the N value continues around 10 to 20 in a portion deeper than 8 m from the ground surface. The 4th and 5th layers are divergent and thin sandy layers, gravel-mixed sand layers, silty sand layers and silty clay layers, and the 4th layer is an alternating layer with an N value of about 20-30. The fifth layer is an alternating layer having a support layer portion with an N value of about 35-50.

この支持層が薄層の互層であるので約11mの杭の根入れがしてある。杭の極限支持力を計算する時の周面摩擦力は第5層のみが考慮されている。   Since this support layer is a thin alternate layer, a pile of about 11 m is embedded. Only the fifth layer is considered for the peripheral frictional force when calculating the ultimate bearing capacity of the pile.

第2層は約11m、第4層は約9mの層厚があり、周面摩擦力が働いていると考えられるので中間層に周面摩擦力が働く効果を検討する。杭に働く初期の周面摩擦力の総計は鉛直荷重Voを超えない。第2層と第4層の層厚が大きいので杭の周面積が大きく、周面摩擦力τの初期設定値τZOは29.4KN/m(=3.0tf/m)と小さめの値とした。第2層と第4層の杭の周面にこの値を働かせた場合ほぼ平均軸力(2,736KN/本)に匹敵する量になるので、この比較計算では支持層の第5層には作用させないで検討する。また部材曲げ変形に対する摩擦力τZθの働きは無視して実用解の式(51)から式(54)により計算をした。 The second layer has a thickness of about 11 m and the fourth layer has a thickness of about 9 m, and it is considered that the peripheral frictional force is acting. Therefore, the effect of the peripheral frictional force acting on the intermediate layer is examined. The total of the initial peripheral friction force acting on the pile does not exceed the vertical load Vo. Since the layer thickness of the second and fourth layers is large, the circumferential area of the pile is large, and the initial set value τ ZO of the peripheral friction force τ Z is as small as 29.4 KN / m 2 (= 3.0 tf / m 2 ). The value of When this value is applied to the peripheral surfaces of the second and fourth layer piles, the amount is almost equivalent to the average axial force (2,736KN / piece). Consider without acting. In addition, the function of the frictional force τZθ with respect to the bending deformation of the member was ignored, and the calculation was performed using the practical solutions (51) to (54).

周面摩擦力τは第2層と第4層に働かせ、計算上の実作用値(τZN、τZφ)はそれぞれτZN=τZφ=τZO/2に設定した。これはレベル1相当の地震荷重に対し最大杭反力のほぼ半分が平均軸力であることからこのように仮定した。 The peripheral friction force τ Z was applied to the second layer and the fourth layer, and the calculated actual action values (τ ZN , τ ) were set to τ ZN = τ = τ ZO / 2, respectively. This is assumed in this way because almost half of the maximum pile reaction force is the average axial force for level 1 equivalent seismic loads.

周面摩擦力τzが働く区間では、単位区間当たり(τ×周長)分の軸力減少がある。この軸力減少に寄与するτZNとτZφの働きは地盤の圧縮領域では同質と考えられる。それぞれの軸力減少分の和がτによる軸力減少分になる。その状況を比較計算により検討する。 In the section in which the circumferential frictional force τz works, there is a reduction in axial force by (τ Z × circumferential length) per unit section. Work contributing tau ZN and tau Zfai this axial force reduction is considered homogeneous in the compression zone of ground. The sum of the axial forces decrease is axial force decrease due tau Z. The situation is examined by comparative calculation.

この比較計算では設定摩擦力τの値が大きくないので、地盤の粘性的な性質を考慮してτZφの分布は図15の一様分布とした。また、全てを一様分布とすることは実状に合いにくい面があるので、1次試算値で鉛直変位量が1mm未満の範囲については作用摩擦力の大きさを1/10に低減する補正を行った。 Since the value of the set friction force tau Z This comparison calculation is not large, the distribution of tau Zfai considering the viscous nature of the ground was uniform distribution of FIG 15. In addition, since it is difficult to make all distributions uniform, there is a correction that reduces the magnitude of the acting friction force to 1/10 in the range where the vertical displacement is less than 1 mm in the primary trial calculation value. went.

図17は計算結果の鉛直変位分布を比較したもので、杭の両端の1列と4列および基礎中心について図示している。周面摩擦を働かせる範囲が比較的広いので杭頭の最大鉛直変位量は6.3mmから4.5mm(71%)に減少している。(b)の分布は直線だが、(a)では周面摩擦の影響が現れ分布図の勾配に変化が生じ曲線になっている。(b)で鉛直変位量が1mm未満の範囲で作用摩擦力を1/10に低減する補正をしている。   FIG. 17 compares the vertical displacement distributions of the calculation results, and illustrates the first and fourth rows at both ends of the pile and the center of the foundation. Since the range in which the peripheral friction is applied is relatively wide, the maximum vertical displacement of the pile head is reduced from 6.3 mm to 4.5 mm (71%). The distribution of (b) is a straight line, but in (a), the influence of the peripheral surface friction appears and the gradient of the distribution map changes to form a curve. In (b), correction is made to reduce the applied frictional force to 1/10 within a range where the vertical displacement is less than 1 mm.

図18は、全軸力Nの結果の比較図で、図19は軸力がなすモーメントMaf(全体曲げモーメント)と全モーメント(Maf+Msb)の分布を示している。全軸力N(図(18))と軸力がなすモーメントMaf(図(19))は摩擦がない場合の(b)は上から下まで一定であるが、(a)では同強度の摩擦が働いている第2層と第4層の部分でそれぞれ同じ勾配で値が直線的に減少している。これは断面力のつり合い式(29)と式(30)の内容を表している。すなわち断面力NとMafの変化はZの1次関数で表される。   FIG. 18 is a comparative diagram of the result of the total axial force N, and FIG. 19 shows the distribution of the moment Maf (total bending moment) and the total moment (Maf + Msb) generated by the axial force. The total axial force N (Fig. (18)) and the moment Maf (Fig. (19)) formed by the axial force are constant from top to bottom when there is no friction. The values decrease linearly with the same slope in the second layer and fourth layer where the is working. This represents the contents of the balance force balance equations (29) and (30). That is, changes in the sectional force N and Maf are expressed by a linear function of Z.

Mafには水平外力の影響分も偶力的な軸力モーメントとして考慮されており、周面摩擦力は偶力的な軸力によるモーメントMafを減少させている。このことを図19(a)は明確に示している。偶力的な軸力モーメントが周面摩擦力τZφにより減少しているという現象は、従来のフレーム解析に一定の摩擦力を働かせても単純には表現できにくい現象である。しかし、本発明の方法では簡単に図19(a)で表される。 The influence of the horizontal external force is also considered as a couple of axial force moments in Maf, and the peripheral friction force reduces the moment Maf due to the couple of axial forces. This is clearly shown in FIG. The phenomenon that the couple of axial force moments is reduced by the peripheral frictional force τZφ is a phenomenon that cannot be expressed simply even if a constant frictional force is applied to the conventional frame analysis. However, the method of the present invention is simply represented in FIG.

全軸力Nでは約40%が、軸力がなすモーメントMafでは約50%が周面摩擦力により減少している。実質の作用摩擦力(τZN、τZφ)の値は14.7KN/m(=1.5tf/m)と小さいが働く面積がこのように大きいと、その影響が非常に大きいことを示している。 The total axial force N is reduced by about 40%, and the moment Maf generated by the axial force is reduced by about 50% by the peripheral frictional force. Although the value of the actual acting friction force (τ ZN , τ ) is as small as 14.7 KN / m 2 (= 1.5 tf / m 2 ), if the working area is so large, the effect is very large. Show.

なお、図19で全モーメント(Maf+Msb)と軸力がなすモーメントMafとのグラフの差は部材曲げモ−メントMsbである。(b)は(a)の横軸を倍に広げて示している。部材モ−メントMsbの分布形自体はほとんど変わらない。ただ、摩擦を考慮すると杭頭部でモーメントMafの絶対値が極わずかに大きくなるが、その分だけ杭頭部の部材モ−メントMsbの絶対値が変化する。その変化量は部材モ−メントMsbから見ると約10%になる場合がある。   In FIG. 19, the difference in graph between the total moment (Maf + Msb) and the moment Maf formed by the axial force is the member bending moment Msb. (B) shows the horizontal axis of (a) doubled. The distribution form itself of the member moment Msb is hardly changed. However, considering the friction, the absolute value of the moment Maf at the pile head is slightly increased, but the absolute value of the member moment Msb at the pile head changes accordingly. The amount of change may be about 10% when viewed from the member moment Msb.

部材モ−メントMsbは根入れの深い部分で0に収束する。この例の場合深さ20m弱で部材モ−メントMsbは0になっている。ここより深い部位では杭の変形は軸方向変形だけが生じている。この深い部位は全軸力Nと軸力がなすモーメントMafともに小さい値に減少している部位である。   The member moment Msb converges to 0 at a deeply embedded portion. In this example, the member moment Msb is 0 at a depth of less than 20 m. In the deeper part, only the axial deformation occurs in the pile. This deep part is a part where both the total axial force N and the moment Maf formed by the axial force are reduced to a small value.

図20は杭の軸力を杭列毎に示したものである。圧縮側が杭列4で、引き抜き側が杭列1である。この例では引き抜き力そのものは生じていない。図20(b)の杭の軸力は摩擦を考慮していないので一定である。図20(a)の圧縮側の杭列4では全軸力Nと軸力がなすモーメントMafの減少効果が重なり約45%の軸力が減少している。しかし、引き抜き側ではNとMafの減少効果が相殺して元の値とほとんど変わらない。   FIG. 20 shows the axial force of the piles for each pile row. The compression side is the pile row 4 and the drawing side is the pile row 1. In this example, the pulling force itself is not generated. The axial force of the pile in FIG. 20B is constant because it does not consider friction. In the pile row 4 on the compression side in FIG. 20A, the axial force N is reduced by about 45% due to the overlap effect of the total axial force N and the moment Maf formed by the axial force. However, on the extraction side, the reduction effect of N and Maf cancels out and is almost the same as the original value.

この最大圧縮軸力が約1/2に減少していることは、周面摩擦力τの初期設定値τZOの値と分布範囲を最大杭反力のほぼ半分の平均軸力に対して設定し、作用摩擦力をτZN=τZφ=τZO/2と設定したことによる。このように周面摩擦力の影響は本発明の設計法によれば初期設定の段階でその主たる効果が想定でき、扱い方が単純で明快である。 The fact that the maximum compression axial force is reduced to about ½ means that the initial set value τ ZO of the peripheral surface friction force τ Z and the distribution range are compared with the average axial force almost half of the maximum pile reaction force. This is because the acting frictional force is set as τ ZN = τ = τ ZO / 2. As described above, according to the design method of the present invention, the influence of the peripheral frictional force can assume its main effect at the initial setting stage, and the handling method is simple and clear.

図21は杭の水平変位量を比較したものである。杭頭部の水平変位量は3.9mmから3.5mm(90%)に減少している。なお、深さ0mより上の点はフーチングの回転水平変位量を杭頭変位量に加えたものである。フーチングの回転角は鉛直変位と同じく70%に減少している。上部構造への影響はこの回転角の影響が、鉛直や水平の変位の減少量よりも大きくなる。   FIG. 21 compares the horizontal displacement of the piles. The horizontal displacement of the pile head has decreased from 3.9 mm to 3.5 mm (90%). The point above the depth of 0 m is obtained by adding the rotational horizontal displacement of the footing to the pile head displacement. The rotation angle of the footing is reduced to 70% like the vertical displacement. As for the effect on the superstructure, the effect of this rotation angle is greater than the amount of decrease in vertical and horizontal displacement.

このように本発明の方法によると、当初仮定した周面摩擦力の効果を検証しやすく、杭の周面摩擦力を考慮すると、設定通り杭の軸力を減少さす効果があることを簡易な計算式で扱える。したがって良好な地盤に対しては周面摩擦力を適切に見積もることにより、杭材の設計をより経済的にすることができるようになる。   Thus, according to the method of the present invention, it is easy to verify the effect of the peripheral friction force initially assumed, and considering the peripheral friction force of the pile, it is simple that there is an effect of reducing the axial force of the pile as set. Can be handled by calculation formula. Therefore, the pile material design can be made more economical by appropriately estimating the peripheral frictional force for good ground.

本例では実作用摩擦力を小さめに設定したが、鋼管ソイルセメント杭の設計指針(非特許文献6)によると設計最大周面摩擦力は図22((a)砂質土,(b)粘性土)で示してある。その最大値は砂質土と粘性土とも200KN/mであり、本例の値(14.7KN/m)の13.6倍の値である。図22によるとN値が10前後の地層でも周面摩擦力は十分に期待でき、作用面積が大きいと本例のように杭の最大軸力が約1/2になる。 In this example, the actual working friction force was set to be small, but according to the design guideline for steel pipe soil cement piles (Non-Patent Document 6), the design maximum peripheral surface friction force is shown in FIG. 22 ((a) sandy soil, (b) viscous viscosity. (Sat) The maximum value is 200 KN / m 2 for both sandy and cohesive soils, which is 13.6 times the value of this example (14.7 KN / m 2 ). According to FIG. 22, the peripheral frictional force can be sufficiently expected even in the formation where the N value is around 10, and when the action area is large, the maximum axial force of the pile is about ½ as in this example.

本例では周面摩擦力の実作用値(τZN、τZφ)は同じ値にしているが、作用荷重の状況により使い分けの工夫がいる。例えば、レベル2の地震時の荷重はレベル1の場合の荷重に較べて、鉛直力Voの値はそれ程変化しないが水平力HoやモーメントMoは大きく変わる。周面摩擦力τの最大許容値をτZSAとすると、この場合τにはτZSAが採用される。大きい周面摩擦力が中間層で働くと作用摩擦力のτZNをτZSA/2としても、摩擦力τZNが鉛直力Voによる軸力分を消化する場合がある。それ以深ではつり合い式(29)は消滅するので、τ=τZSAが働く間にはτZφ=τZSA としての働きが残ることになる。τZφの値がτZSA/2からτZSAに急変するのは実状に合わないので、最終荷重時での最大軸力に対して鉛直力Voとそれ以外の分担割合を大まかに設定して最大許容値τZSAを分担することが考えられる。 In this example, the actual action values (τ ZN , τ ) of the peripheral surface friction force are set to the same value, but there are various ways of using them depending on the condition of the action load. For example, the load at the time of an earthquake at level 2 does not change much in the value of the vertical force Vo compared to the load at level 1, but the horizontal force Ho and the moment Mo change greatly. Assuming that the maximum allowable value of the circumferential frictional force τ Z is τ ZSA, τ ZSA is adopted as τ Z in this case. Greater skin friction is also tau ZN the working frictional force acting in the intermediate layer as tau ZSA / 2, there is a case where the frictional force tau ZN to digest the axial force caused by vertical forces Vo. Since the balance equation (29) disappears deeper than that, the function as τ = τ ZSA remains while τ Z = τ ZSA is working. The fact that the value of τ suddenly changes from τ ZSA / 2 to τ ZSA does not match the actual situation, so the vertical force Vo and other sharing ratios are roughly set for the maximum axial force at the final load and maximized. It is conceivable to share the allowable value τ ZSA .

これは終局荷重状態でのことであるが、よく発生する異常時の強風時やレベル1の地震時ではその状態の許容周面摩擦力τZAと平均軸力相当の初期摩擦力τZOを目安とし、それに外力荷重の軸力寄与率を考慮して、周面摩擦力の実作用値(τZN、τZφ)の使い方を工夫する。周面摩擦力の実作用値(τZN、τZφ)の使い方を決めることは、地盤の評価の新たな研究課題となるが、運用の目安としては以上のことを考慮して扱うことができる。 This is the ultimate load condition, but in the case of strong winds that occur frequently and during earthquakes of level 1, the allowable peripheral friction force τ ZA and the initial friction force τ ZO equivalent to the average axial force are used as a guide. In consideration of the axial force contribution ratio of the external force load, the usage of the actual action values (τ ZN , τ ) of the peripheral surface friction force is devised. Deciding how to use the actual action values (τ ZN , τ ) of the peripheral frictional force is a new research subject for ground evaluation, but it can be handled considering the above as a guideline for operation. .

地盤が軟弱でない場合、杭長が20mを超えるような場所打ち杭や鋼管ソイルセメント杭では周面摩擦の効果を考慮することにより経済的な設計が可能になり、杭長が長くなるとより効果が大きくなると考えられる。さらに、地震荷重のような一時的な荷重に対して、地盤の評価を適切に行うことを工夫するとその効果は非常に大きいものになる。   When the ground is not soft, cast-in-place piles and steel pipe soil cement piles with pile lengths exceeding 20 m can be economically designed by considering the effect of peripheral friction, and the longer the pile length, the more effective It is thought to grow. Furthermore, the effect becomes very large if it is devised to appropriately evaluate the ground for temporary loads such as seismic loads.

道路橋示方書の杭基礎モデルの説明図。Explanatory drawing of the pile foundation model of a road bridge specification. 鉄道構造物等設計標準の杭基礎モデルの説明図。Explanatory drawing of the pile foundation model of design standard, such as a railway structure. 部材要素の3種類の断面力と変形を示す説明図。Explanatory drawing which shows three types of cross-sectional force and deformation | transformation of a member element. 部材集合体の4種類の断面力と変形を示す説明図。Explanatory drawing which shows four types of cross-sectional force and deformation | transformation of a member assembly. 多数の部材を等価な1本の部材にモデル化する説明図。Explanatory drawing which models many members into one equivalent member. 全体座標と局部座標の説明図。Explanatory drawing of a global coordinate and a local coordinate. 部材要素の断面力と仮定方向の説明図。Explanatory drawing of the cross-sectional force and assumed direction of a member element. 変形モデルと変位関数の表示内容の説明図。Explanatory drawing of the display content of a deformation model and a displacement function. 設計手法の体系図。System diagram of the design method. 周面摩擦力が3種類の変形成分別に働く状態の説明図。Explanatory drawing of the state which a circumferential surface friction force works according to three types of deformation components. 軸方向変形に対する分布摩擦力の説明図。Explanatory drawing of the distributed frictional force with respect to axial deformation. 軸力がなすモーメントによる変形に対する分布摩擦力の説明図。Explanatory drawing of the distributed frictional force with respect to the deformation | transformation by the moment which axial force makes. 部材曲げ変形による表面の伸縮状態と分布摩擦力の説明図。Explanatory drawing of the expansion-contraction state and distributed frictional force of the surface by member bending deformation. 部材要素iとjの変位場と断面力の仮定方向の説明図。Explanatory drawing of the assumption direction of the displacement field and section force of member elements i and j. 分布摩擦力τZφが一様分布の状態の説明図。Explanatory drawing of the state where distributed frictional force (tau) Zphi is uniformly distributed. 分布摩擦力が中心から距離に比例してτZφになる状態の説明図。Explanatory drawing of the state in which distributed friction force becomes τ in proportion to the distance from the center. 鉛直変位分布の比較図。Comparison chart of vertical displacement distribution. 全軸力分布Nの比較図。Comparison diagram of total axial force distribution N. 軸力がなすモーメントMafおよび全モーメントの分布の比較図。The comparison figure of distribution of moment Maf which axial force makes, and all moments. 杭の軸力分布の比較図。The comparison figure of axial force distribution of a pile. 杭の水平変位分布およびフーチングの水平変位と傾斜の比較図。Comparison diagram of horizontal displacement distribution of pile and horizontal displacement and inclination of footing. 周面摩擦力度とN値の関係図(鋼管ソイルセメント杭)。Relationship diagram between peripheral friction force and N value (steel pipe soil cement pile).

符号の説明Explanation of symbols

Mi:部材iの断面力の曲げモーメント、
Ni:部材iの断面力の軸力、
Qi:部材iの断面力のせん断力、
Msb:部材集合体の断面力の部材モーメントの和、
Maf:部材集合体の部材軸力がなすモーメントの和、
N:部材集合体の部材軸力の和、
Q:部材集合体の部材せん断力の和、
Ag:部材集合体の全断面積、
Ip:部材集合体の部材の断面2次モーメントの和、
Ig:部材断面が集合体中心に対してなす断面2次モーメントの和、
E,G:部材のヤング率,せん断弾性係数、
xi:部材集合体中心線と部材iの中心との距離、
Σ:全部材n本分の和を表す、
X、Z,ξ,ζ:全体座標系および局部座標系、
ui,wi:任意点iのX軸,Z軸方向の変位成分(ui≒uo)、
uo,wno:集合体中心線の点oのX軸,Z軸方向の変位成分、
φ:全体曲げ変形による全断面の回転角、
θmo,θmi:中心線の点oと任意点iの部材曲げ変形の影響による回転角で角度φを除く量(θmi≒θmo)、
△:変数の微小量、
’:Z軸方向の微分、
Vo、Mo、Ho:フーチング下面の作用力で鉛直力、モーメント、水平力、
qi,q:水平分布外力とその全断面内の和(q=Σqi)、
a:KhおよびBの補正係数、
B:水平地盤反力が作用する面の基準幅、
Kh:地層の代表的な水平地盤反力係数、
、kHE:水平地盤反力係数、
:鉛直地盤反力係数、
SV:杭周面のせん断地盤反力係数,
,KVE:杭頭の軸方向バネ定数、
Ui,ri:部材iの周長、半径、
xe:部材集合体中心線と外側部材の中心との距離、
τ:深さZで働く杭の周面摩擦力、
τZN:軸方向変位wnoに対して働く周面摩擦力、
τZφ:全体回転角φによる変位に対して働く周面摩擦力、
τZθ:部材回転角(φ+θmo)による変形に対して働く周面摩擦力、
τZO:鉛直力Voに対応する摩擦力以下の初期設定周面摩擦力、
τZA:杭の許容周面摩擦力、
τZSA:杭の最大許容周面摩擦力、
ω:式の誘導または解法上の角度の助変数、
α:α=β(1+Ψ)1/2 or r1/4cos(ω/2)、
β:β=(aKhB/4EIp)1/4 or r1/4sin(ω/2)、
η:η=β(1−Ψ)1/2 and Ψ<1、
Ψ:Ψ=(aKhB・EIp)1/2/2GAg、
:F=ΣτZNUi/EAg、
:F=ΣτZφUi|xi|/EIg
or ΣτZφUixi/xeEIg、
:F=πΣτZθ・ri/EIp、
:F=GAg/EIp、
:F=aKhB/GAg、
1:k1=(1−F/r1/2)α、
2:k2=(1+F/r1/2)β、
p:p=F+F
r:r=(F+F)F and p−4r<0、
cosω=p/2r1/2 and sinω=(4r−p1/2/2r1/2
Mi: bending moment of the sectional force of the member i,
Ni: axial force of the sectional force of the member i,
Qi: Shear force of the sectional force of the member i,
Msb: Sum of member moments of cross-sectional force of member assembly,
Maf: sum of moments formed by member axial forces of the member assembly,
N: Sum of member axial forces of the member assembly,
Q: Sum of member shear force of member assembly,
Ag: total cross-sectional area of the member assembly,
Ip: the sum of the moments of section of the members of the member assembly,
Ig: Sum of moments of section formed by the member section with respect to the center of the assembly,
E, G: Young's modulus of member, shear elastic modulus,
xi: distance between the member assembly center line and the center of the member i,
Σ: represents the sum of all n members,
X, Z, ξ, ζ: global coordinate system and local coordinate system,
ui, wi: Displacement components of the arbitrary point i in the X-axis and Z-axis directions (ui≈uo),
uo, wno: the displacement component in the X-axis and Z-axis directions of the point o of the aggregate center line,
φ: rotation angle of the entire cross section due to the overall bending deformation,
θmo, θmi: The amount excluding the angle φ by the rotation angle due to the influence of bending deformation of the member at the center line point o and the arbitrary point i (θmi≈θmo),
Δ: micro amount of variable,
': Differential in the Z-axis direction,
Vo, Mo, Ho: Vertical force, moment, horizontal force, acting force on the bottom of the footing,
qi, q: horizontal distribution external force and its sum in all cross sections (q = Σqi),
a: correction coefficient for Kh and B,
B: Reference width of the surface on which the horizontal ground reaction force acts,
Kh: Typical horizontal ground reaction force coefficient of the stratum,
k H , k HE : horizontal ground reaction force coefficient,
k V : vertical ground reaction force coefficient,
k SV : Shear ground reaction force coefficient of pile circumference,
K V , K VE : Axial spring constant of the pile head,
Ui, ri: circumference of member i, radius,
xe: the distance between the member assembly center line and the center of the outer member,
τ Z : peripheral frictional force of the pile working at depth Z,
τZN : peripheral frictional force acting on axial displacement wno,
τ : peripheral frictional force acting on displacement due to the overall rotation angle φ,
τ : peripheral frictional force acting against deformation due to member rotation angle (φ + θmo),
τ ZO : Initially set peripheral surface friction force equal to or less than the friction force corresponding to the vertical force Vo,
τ ZA : Permissible circumferential frictional force of the pile,
τ ZSA : Maximum allowable peripheral friction force of the pile,
ω: the parameter of the angle in the derivation or solution of the equation,
α: α = β (1 + Ψ) 1/2 or r 1/4 cos (ω / 2),
β: β = (aKhB / 4EIp) 1/4 or r 1/4 sin (ω / 2),
η: η = β (1−Ψ) 1/2 and Ψ <1,
Ψ: Ψ = (aKhB · EIp) 1/2 / 2GAg,
F A : F A = Στ ZN Ui / EAg,
F G : F G = Στ Ui | xi | / EIg
or Στ Uixi 2 / xeEIg,
F T : F T = πΣτ · ri 3 / EIp,
F P : F P = GAg / EIp,
F K : F K = aKhB / GAg,
k 1 : k 1 = (1−F K / r 1/2 ) α,
k 2 : k 2 = (1 + F K / r 1/2 ) β,
p: p = F T + F K ,
r: r = (F P + F T ) F K and p 2 −4r <0,
cosω = p / 2r 1/2 and sinω = (4r−p 2 ) 1/2 / 2r 1/2

Claims (2)

多数の杭部材からなる杭基礎の設計法であって、弾性バネ支持モデルにおいて、各杭部材に働く分布周面摩擦力τを多数の部材群が起こす3種類の変形成分(軸方向変形、全体曲げ変形及び部材曲げ変形)に基づく3種類の働き方(τZN、τZφ、τZθ)に分け、それぞれの断面力成分の合力毎のつり合い式から設計計算式を求めることを特徴とする多数の杭部材からなる杭基礎の設計法。 A design method of pile foundation consisting of a number of stake member, resilient spring in the support model, three deformation component (axial deformation distribution skin friction tau Z acting on the stake member are a number of member groups causes, It is divided into three kinds of working methods (τ ZN , τ , τ ) based on total bending deformation and member bending deformation, and a design calculation formula is obtained from a balance formula for each resultant force of each sectional force component A pile foundation design method consisting of a large number of pile members. 多数の杭部材からなる杭基礎の設計法であって、弾性バネ支持モデルにおいて、各杭部材に働く分布周面摩擦力τを多数の部材群が起こす3種類の変形成分(軸方向変形、全体曲げ変形及び部材曲げ変形)に基づく3種類の働き方(τZN、τZφ、τZθ)に分け、それぞれのうちの(τZN、τZφ)の2種類の働き方について断面力成分の各合力毎のつり合い式から設計計算式を求めることを特徴とする多数の杭部材からなる杭基礎の設計法。 A design method of pile foundation consisting of a number of stake member, resilient spring in the support model, three deformation component (axial deformation distribution skin friction tau Z acting on the stake member are a number of member groups causes, It is divided into three types of working methods (τ ZN , τ , τ ) based on total bending deformation and member bending deformation, and each of the two types of working methods (τ ZN , τ ) A design method for pile foundations consisting of a large number of pile members, characterized in that a design calculation formula is obtained from the balance formula for each resultant force.
JP2006079499A 2006-03-22 2006-03-22 A design method considering the action of distributed peripheral frictional force of pile foundations composed of many pile members Active JP4734645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006079499A JP4734645B2 (en) 2006-03-22 2006-03-22 A design method considering the action of distributed peripheral frictional force of pile foundations composed of many pile members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006079499A JP4734645B2 (en) 2006-03-22 2006-03-22 A design method considering the action of distributed peripheral frictional force of pile foundations composed of many pile members

Publications (2)

Publication Number Publication Date
JP2007255021A true JP2007255021A (en) 2007-10-04
JP4734645B2 JP4734645B2 (en) 2011-07-27

Family

ID=38629533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006079499A Active JP4734645B2 (en) 2006-03-22 2006-03-22 A design method considering the action of distributed peripheral frictional force of pile foundations composed of many pile members

Country Status (1)

Country Link
JP (1) JP4734645B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015141639A1 (en) * 2014-03-19 2017-04-13 旭化成建材株式会社 Steel pipe pile with spiral blades, composite pile, and method for constructing composite pile
CN115048819A (en) * 2022-08-15 2022-09-13 中国长江三峡集团有限公司 Method and device for predicting pile foundation pull-down force and electronic equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002054157A (en) * 2000-08-07 2002-02-20 Taisei Corp Horizontal resistance calculation method of foundation and computer readable storage medium for recording calculated program
JP2002194750A (en) * 2000-12-27 2002-07-10 Taisei Corp Pile foundation constructing method
JP2004107971A (en) * 2002-09-18 2004-04-08 Atsushi Koizumi Method for predicting displacement behavior of structure in underpinning
JP2006161363A (en) * 2004-12-06 2006-06-22 Shimizu Corp Pile design system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002054157A (en) * 2000-08-07 2002-02-20 Taisei Corp Horizontal resistance calculation method of foundation and computer readable storage medium for recording calculated program
JP2002194750A (en) * 2000-12-27 2002-07-10 Taisei Corp Pile foundation constructing method
JP2004107971A (en) * 2002-09-18 2004-04-08 Atsushi Koizumi Method for predicting displacement behavior of structure in underpinning
JP2006161363A (en) * 2004-12-06 2006-06-22 Shimizu Corp Pile design system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015141639A1 (en) * 2014-03-19 2017-04-13 旭化成建材株式会社 Steel pipe pile with spiral blades, composite pile, and method for constructing composite pile
CN115048819A (en) * 2022-08-15 2022-09-13 中国长江三峡集团有限公司 Method and device for predicting pile foundation pull-down force and electronic equipment
JP7261344B1 (en) 2022-08-15 2023-04-19 中国長江三峡集団有限公司 Pile foundation pull-down force prediction method, device, and electronic device
JP2024026024A (en) * 2022-08-15 2024-02-28 中国長江三峡集団有限公司 Method, device, and electronic apparatus for predicting pulling force of pile foundation

Also Published As

Publication number Publication date
JP4734645B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
Randolph Science and empiricism in pile foundation design
Tan et al. Measured performance of a 26 m deep top-down excavation in downtown Shanghai
Georgiadis et al. Development of p–y curves for undrained response of piles near slopes
Sun et al. Design method for stabilization of earth slopes with micropiles
Yoo Interaction between tunneling and bridge foundation–A 3D numerical investigation
Zhao et al. A numerical study on the influence of anchorage failure for a deep excavation retained by anchored pile walls
Lemnitzer et al. Nonlinear efficiency of bored pile group under lateral loading
Richards, Jr et al. Lateral loads on pin piles (micropiles)
Sarkar et al. Seismic requalification of pile foundations in liquefiable soils
Zhou et al. Determination of large diameter bored pile's effective length based on Mindlin's solution
Chang et al. Seismic performance of an existing bridge with scoured caisson foundation
Zhu et al. Field study of pile–prefabricated vertical drain (PVD) interaction in soft clay
Han et al. Design analysis and observed performance of a tieback anchored pile wall in sand
Sun et al. Design of micropiles to increase earth slopes stability
Tang et al. Design and measurement of piled-raft foundations
JP4734645B2 (en) A design method considering the action of distributed peripheral frictional force of pile foundations composed of many pile members
Phien-Wej et al. Numerical modeling of diaphragm wall behavior in Bangkok soil using hardening soil model
Thusoo et al. Response of buildings with soil-structure interaction with varying soil types
Ashour et al. Pile cap interaction with bridge pile foundations under lateral loads
Yooprasertchai et al. An application of precast hybrid moment-resisting frames for seismic improvement
Theinat 3D numerical modelling of micropiles interaction with soil & rock
Nhu et al. Using numerical modeling method for design and constructive controlling of excavation wall in Madison Building, Ho Chi Minh city
Haberfield Practical application of soil structure interaction analysis
Pedro et al. Numerical modelling of the Ivens shaft construction in Lisbon, Portugal
Kim et al. A probabilistic capacity spectrum strategy for the reliability analysis of bridge pile shafts considering soil structure interaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150