JP7049750B2 - How to manage building foundations and how to manage building foundations - Google Patents

How to manage building foundations and how to manage building foundations Download PDF

Info

Publication number
JP7049750B2
JP7049750B2 JP2018097582A JP2018097582A JP7049750B2 JP 7049750 B2 JP7049750 B2 JP 7049750B2 JP 2018097582 A JP2018097582 A JP 2018097582A JP 2018097582 A JP2018097582 A JP 2018097582A JP 7049750 B2 JP7049750 B2 JP 7049750B2
Authority
JP
Japan
Prior art keywords
axis
time
relative displacement
series
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018097582A
Other languages
Japanese (ja)
Other versions
JP2019203724A (en
Inventor
滋樹 中南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aseismic Devices Co Ltd
Original Assignee
Aseismic Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aseismic Devices Co Ltd filed Critical Aseismic Devices Co Ltd
Priority to JP2018097582A priority Critical patent/JP7049750B2/en
Publication of JP2019203724A publication Critical patent/JP2019203724A/en
Application granted granted Critical
Publication of JP7049750B2 publication Critical patent/JP7049750B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

本発明は、基礎に配され建物を支持する複数の支持機構を有する建物基礎の管理方法と建物基礎群の管理方法とに関する。 The present invention relates to a method for managing a building foundation having a plurality of support mechanisms arranged on the foundation and supporting the building, and a method for managing the building foundation group.

建物基礎が地盤に設けられ、建物を支持する。
建物が複数の柱と複数の梁とスラブとで構成される。
例えば、建物基礎は、コンクリート層と複数の基礎杭と基礎構造とで構成される。
基礎杭がコンクリート層を貫通して地盤に打ち込まれる。
基礎構造は、複数の基礎部材と複数の梁部材とで構成される。
上から見て、複数の基礎部材が碁盤の目状に散らばる様に配置される。
梁部材が基礎部材を繋ぐ。
支持機構が基礎杭の杭頭に固定される。
地震が発生すると、基礎杭が建物に作用した加速度による水平力を支持機構を介して支持する。
例えば、地震が発生すると、基礎杭が建物に作用した加速度による水平力を免震機能付き支持機構を介して支持する。
The foundation of the building is installed on the ground to support the building.
The building consists of multiple columns, multiple beams and slabs.
For example, a building foundation consists of a concrete layer, multiple foundation piles and a foundation structure.
Foundation piles penetrate the concrete layer and are driven into the ground.
The foundation structure is composed of a plurality of foundation members and a plurality of beam members.
When viewed from above, a plurality of foundation members are arranged so as to be scattered in a grid pattern.
Beam members connect the foundation members.
The support mechanism is fixed to the pile head of the foundation pile.
When an earthquake occurs, the foundation pile supports the horizontal force due to the acceleration applied to the building through the support mechanism.
For example, when an earthquake occurs, the horizontal force due to the acceleration of the foundation pile acting on the building is supported via a support mechanism with a seismic isolation function.

近年の地震により、設計時に予定しなかった水平変位が生ずる可能性があることは分かってきた。
大きな水平変位があると、水平力により基礎杭に過大な曲げモーメントと剪断力が生じ、基礎杭または支持機構が予想外の損傷をうける可能性がある。
一方、建物に大きな転倒モーメントが作用すると、支持機構の一部の支持構造が浮き上げようとするロッキングが発生し、基礎杭または支持機構が予想外の損傷をうける可能性がある。
It has become clear that recent earthquakes can cause horizontal displacements that were not planned at the time of design.
With large horizontal displacements, the horizontal forces cause excessive bending moments and shear forces on the foundation pile, which can cause unexpected damage to the foundation pile or support mechanism.
On the other hand, when a large overturning moment acts on the building, locking of a part of the support structure of the support mechanism may occur, and the foundation pile or the support mechanism may be unexpectedly damaged.

例えば、支持機構は、建物と基礎との相対変位に対応してばね力、減衰力を発生させる免震機能付き支持機構である。
例えば、支持機構は、建物と基礎との相対変位に対応して可能なかぎり小さな減衰力を発生させる免震機能付き支持機構である。
地震が発生したとき、免震機能付き支持機構が支持機構を設けられる箇所での建物と基礎との相対変位を許して、水平建物に過大な荷重が作用しない様にする。
しかし、想定を越える規模の地震が発生すると、基礎杭、免震機能付き支持機構、建物に予期しない損傷が発生することがある。
For example, the support mechanism is a support mechanism with a seismic isolation function that generates spring force and damping force in response to the relative displacement between the building and the foundation.
For example, the support mechanism is a support mechanism with a seismic isolation function that generates the smallest possible damping force in response to the relative displacement between the building and the foundation.
When an earthquake occurs, the support mechanism with seismic isolation function allows the relative displacement between the building and the foundation at the place where the support mechanism is installed so that an excessive load does not act on the horizontal building.
However, if an earthquake of a larger scale than expected occurs, unexpected damage may occur to the foundation piles, the support mechanism with seismic isolation function, and the building.

従来の建物基礎の管理方法は以下の通りである。
専門業者が、建物基礎の竣工時に支持機構の初期値を計測し、その後5年、10年と定期点検を行い、大きな地震が発生したときは緊急点検を行う。計測項目は、温度、湿度等の環境情報、水平変位や鉛直変位の変化量、外観検査、その他である。一般に、水平変位や鉛直変位は、マイクロメータやスケールで計測する。
社団法人免震構造協会は、「免震建物の維持管理基準」を発行している。
また、地震時の建物全体の動きを簡易的にモニタリングする装置として、罫書き型が一般に知られている。
The conventional management method of the building foundation is as follows.
A specialist will measure the initial value of the support mechanism when the building foundation is completed, then perform regular inspections for 5 to 10 years, and perform emergency inspections when a large earthquake occurs. The measurement items are environmental information such as temperature and humidity, the amount of change in horizontal displacement and vertical displacement, visual inspection, and others. Generally, horizontal displacement and vertical displacement are measured with a micrometer or scale.
The Seismic Isolation Structure Association publishes "Maintenance Standards for Seismic Isolation Buildings".
In addition, the scribe type is generally known as a device for simply monitoring the movement of the entire building during an earthquake.

上記の通り、維持管理において、竣工時、定期点検または緊急点検が一般的である。施行業者または施主(建物保有者)から連絡があってから点検を行う。建物基礎になんらかの不具合が生じているとしても、事後処理にならざるをえず、不具合の原因の特定が遅れる。
リアルタイムまたは日常的に支持機構または免震層を監視し、異常が発生し、または発生しそうな場合に警告などの通知が所有者に得られることができれば、問題を回避することが可能となる。
As mentioned above, in maintenance, periodic inspections or emergency inspections are common at the time of completion. The inspection will be conducted after contacting the contractor or the owner (building owner). Even if there is something wrong with the building foundation, it will have to be post-processed, and the identification of the cause of the trouble will be delayed.
Problems can be avoided if the owner can be notified in real time or on a daily basis, such as warnings, if an abnormality has occurred or is likely to occur by monitoring the support mechanism or seismic isolation layer.

防災科学技術研究所が我が国の地震観測システムを運用している。
我が国の地震観測システムである強震観測網K-NET、KiK-NETは、全国に設置された加速度センサから得られる情報を提供する。加速度は地表面に設置されており建物内の情報ではない。
The National Research Institute for Earth Science and Disaster Prevention operates Japan's seismic observation system.
The strong motion observation networks K-NET and KiK-NET, which are seismic observation systems in Japan, provide information obtained from acceleration sensors installed all over the country. Acceleration is installed on the ground surface and is not information inside the building.

思いがけない地域で地震が発生した場合、簡易でよいので地域の地震による揺れを迅速に把握したいという要請がある。 When an earthquake occurs in an unexpected area, there is a request to quickly grasp the shaking caused by the earthquake in the area because it is simple.

本発明は以上に述べた問題点に鑑み案出されたもので、簡易な構造により基礎に配され建物を支持する複数の支持機構を有する建物基礎の管理方法と建物基礎群の管理方法とを提供しようとする。 The present invention has been devised in view of the above-mentioned problems, and includes a method for managing a building foundation having a plurality of support mechanisms for supporting a building and a method for managing the building foundation group, which are arranged on the foundation by a simple structure. Try to provide.

上記目的を達成するため、本発明に係る基礎に配され建物を支持する複数の支持機構を有する建物基礎の管理方法であって、複数の支持機構の配される位置での基礎と建物との間の時系列の相対変位を複数の支持機構に各々に対応する記録時系列相対変位として測定記録する変位測定機器を準備する準備工程と、発生した地震が収まったとき、複数の支持機構に各々に対応する記録時系列相対変位を基に演算して建物と基礎との時系列の相対変位である演算時系列相対変位を求める演算工程と、前記演算時系列相対変位が建物について予め定められる限界相対変位を時系列の何時かの時に越えているか否かを判断基準として建物基礎の健全性を判定する判定工程と、を備えるものとした。 In order to achieve the above object, it is a management method of a building foundation having a plurality of support mechanisms arranged on the foundation according to the present invention and supporting the building, and the foundation and the building at the position where the plurality of support mechanisms are arranged. Recording the relative displacement of the time series between multiple support mechanisms corresponding to each The preparatory step of preparing a displacement measuring device to measure and record as the time series relative displacement, and when the generated earthquake subsides, each of the multiple support mechanisms The calculation process for obtaining the calculation time-series relative displacement, which is the time-series relative displacement between the building and the foundation, and the limit in which the calculation time-series relative displacement is predetermined for the building. It is provided with a judgment step for judging the soundness of the building foundation based on whether or not the relative displacement is exceeded at some time in the time series.

上記本発明の構成により、準備工程が、複数の支持機構の配される位置での基礎と建物との間の時系列の相対変位を複数の支持機構に各々に対応する記録時系列相対変位として測定記録する変位測定機器を準備する。演算工程が、発生した地震が収まったとき、複数の支持機構に各々に対応する記録時系列相対変位を基に演算して建物と基礎との時系列の相対変位である演算時系列相対変位を求める。判定工程が、前記演算時系列相対変位が建物について予め定められる限界相対変位を時系列の何時かの時に越えているか否かを判断基準として建物基礎の健全性を判定する。
その結果、発生した地震が収まったときに速やかに建物基礎の健全性を判定できる。
According to the above-mentioned configuration of the present invention, the preparation step sets the relative displacement of the time series between the foundation and the building at the position where the plurality of support mechanisms are arranged as the recorded time-series relative displacement corresponding to each of the plurality of support mechanisms. Prepare a displacement measuring device to measure and record. When the generated earthquake subsides, the calculation process calculates based on the recorded time-series relative displacement corresponding to each of the multiple support mechanisms, and calculates the time-series relative displacement, which is the time-series relative displacement between the building and the foundation. demand. The determination step determines the soundness of the building foundation based on whether or not the calculated time-series relative displacement exceeds a predetermined limit relative displacement for the building at some time in the time series.
As a result, the soundness of the building foundation can be quickly determined when the earthquake that has occurred has subsided.

以下に、本発明の実施形態に係る建物基礎の管理方法を説明する。本発明は、以下に記載した実施形態のいずれか、またはそれらの中の二つ以上が組み合わされた態様を含む。 The method of managing the building foundation according to the embodiment of the present invention will be described below. The present invention includes any of the embodiments described below, or a combination of two or more of them.

また、本発明の実施形態に係る建物基礎の管理方法は、水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、垂直方向の軸の回りをz軸回りまたはZ軸回りと定義し、前記記録時系列相対変位は対応する支持機構の配される位置でのx軸方向の時系列の相対変位であるx軸方向時系列変位とy軸方向の時系列の相対変位であるy軸方向時系列変位とであり、前記演算時系列相対変位はX軸方向の時系列の相対変位である演算X軸方向時系列変位とY軸方向の時系列の相対変位である演算Y軸方向時系列変位との対応する極座標系での半径方向の変位である演算R軸方向時系列変位であり、前記限界相対変位は極座標系での半径方向の限界変位である限界R軸方向変位である。
上記本発明に係る実施形態の構成により、水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、垂直方向の軸の回りをz軸回りまたはZ軸回りと定義する。前記記録時系列相対変位は対応する支持機構の配される位置でのx軸方向の時系列の相対変位であるx軸方向時系列変位とy軸方向の時系列の相対変位であるy軸方向時系列変位とである。前記演算時系列相対変位はX軸方向の時系列の相対変位である演算X軸方向時系列変位とY軸方向の時系列の相対変位である演算Y軸方向時系列変位との対応する極座標系での半径方向の変位である演算R軸方向時系列変位である。前記限界相対変位は極座標系での半径方向の限界変位である限界R軸方向変位である。
その結果、発生した地震が収まったときに速やかに建物基礎の健全性を判定できる。
Further, in the method of managing the building foundation according to the embodiment of the present invention, the axes orthogonal to each other in the horizontal plane are x-axis or X-axis, y-axis or Y-axis, and the vertical axis is z-axis or Z-axis, in the vertical direction. The axis of The displacement is the relative displacement in the y-axis direction, which is the time-series displacement in the y-axis direction. The calculation is the relative displacement in the time series in the axial direction. The calculation is the time-series displacement in the R-axis direction, which is the displacement in the radial direction in the corresponding polar coordinate system with the time-series displacement in the Y-axis direction. It is the limit R-axis direction displacement which is the limit displacement in the radial direction.
According to the configuration of the embodiment according to the present invention, the axes orthogonal to each other in the horizontal plane are x-axis or X-axis, y-axis or Y-axis, the vertical axis is z-axis, or Z-axis, and the axis in the vertical direction is rotated. Defined as z-axis or Z-axis. The recorded time-series relative displacements are the x-axis direction time-series displacement, which is the x-axis direction relative displacement at the position where the corresponding support mechanism is arranged, and the y-axis direction, which is the y-axis direction time-series relative displacement. It is a time-series displacement. The calculated time-series relative displacement is a polar coordinate system corresponding to the calculated X-axis direction time-series displacement, which is the time-series relative displacement in the X-axis direction, and the calculated Y-axis direction time-series displacement, which is the Y-axis direction time-series relative displacement. It is a time-series displacement in the calculated R-axis direction, which is a displacement in the radial direction in. The limit relative displacement is a limit R-axis displacement which is a radial limit displacement in a polar coordinate system.
As a result, the soundness of the building foundation can be quickly determined when the earthquake that has occurred has subsided.

また、本発明の実施形態に係る建物基礎の管理方法は、水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、垂直方向の軸の回りをz軸回りまたはZ軸回りと定義し、前記記録時系列相対変位は対応する支持機構の配される位置でのx軸方向の時系列の相対変位であるx軸方向時系列変位とy軸方向の時系列の相対変位であるy軸方向時系列変位とであり、前記演算時系列相対変位はX軸方向の時系列の相対変位である演算X軸方向時系列変位とY軸方向の時系列の相対変位である演算Y軸方向時系列変位であり、前記限界相対変位はX方向の限界変位である限界X軸方向変位とY方向の限界変位である限界X軸方向変位とである。
上記本発明に係る実施形態の構成により、水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、垂直方向の軸の回りをz軸回りまたはZ軸回りと定義する。前記記録時系列相対変位は対応する支持機構の配される位置でのx軸方向の時系列の相対変位であるx軸方向時系列変位とy軸方向の時系列の相対変位であるy軸方向時系列変位とである。前記演算時系列相対変位はX軸方向の時系列の相対変位である演算X軸方向時系列変位とY軸方向の時系列の相対変位である演算Y軸方向時系列変位である。前記限界相対変位はX方向の限界変位である限界X軸方向変位とY方向の限界変位である限界X軸方向変位とである。
その結果、発生した地震が収まったときに速やかに建物基礎の健全性を判定できる。
Further, in the method of managing the building foundation according to the embodiment of the present invention, the axes orthogonal to each other in the horizontal plane are x-axis or X-axis, y-axis or Y-axis, and the vertical axis is z-axis or Z-axis, in the vertical direction. The axis of The displacement is the relative displacement in the y-axis direction, which is the time-series displacement in the y-axis direction. Calculation of time-series relative displacement in the axial direction Y-axis time-series displacement, the limit relative displacement is the limit X-axis direction displacement which is the limit displacement in the X direction and the limit X-axis direction displacement which is the limit displacement in the Y direction. And.
According to the configuration of the embodiment according to the present invention, the axes orthogonal to each other in the horizontal plane are x-axis or X-axis, y-axis or Y-axis, the vertical axis is z-axis, or Z-axis, and the axis in the vertical direction is rotated. It is defined as around the z-axis or around the Z-axis. The recorded time-series relative displacements are the x-axis direction time-series displacement, which is the x-axis direction relative displacement at the position where the corresponding support mechanism is arranged, and the y-axis direction, which is the y-axis direction time-series relative displacement. It is a time-series displacement. The calculated time-series relative displacement is a calculated X-axis direction time-series displacement which is a time-series relative displacement in the X-axis direction and a calculated Y-axis direction time-series displacement which is a time-series relative displacement in the Y-axis direction. The limit relative displacement is a limit X-axis displacement which is a limit displacement in the X direction and a limit X-axis direction displacement which is a limit displacement in the Y direction.
As a result, the soundness of the building foundation can be quickly determined when the earthquake that has occurred has subsided.

また、本発明の実施形態に係る建物基礎の管理方法は、水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、垂直方向の軸の回りをz軸回りまたはZ軸回りと定義し、前記記録時系列相対変位は対応する支持機構の配される位置でのx軸方向の時系列相対変位であるx軸方向時系列変位とy軸方向の時系列相対変位であるy軸方向時系列変位とであり、前記演算時系列相対変位はZ軸回りの時系列相対変位角である演算Z軸回り時系列相対変位角であり、前記限界相対変位はZ軸回りの限界相対変位角である限界Z軸回り変位角である。
上記本発明に係る実施形態の構成により、水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、垂直方向の軸の回りをz軸回りまたはZ軸回りと定義する。前記記録時系列相対変位は対応する支持機構の配される位置でのx軸方向の時系列相対変位であるx軸方向時系列変位とy軸方向の時系列相対変位であるy軸方向時系列変位とである。前記演算時系列相対変位はZ軸回りの時系列相対変位角である演算Z軸回り時系列相対変位角である。前記限界相対変位はZ軸回りの限界相対変位角である限界Z軸回り変位角である。
その結果、発生した地震が収まったときに速やかに建物基礎の健全性を判定できる。
Further, in the method of managing the building foundation according to the embodiment of the present invention, the axes orthogonal to each other in the horizontal plane are x-axis or X-axis, y-axis or Y-axis, and the vertical axis is z-axis or Z-axis, in the vertical direction. The axis of And the time-series relative displacement in the y-axis direction, and the calculated time-series relative displacement is the calculated time-series relative displacement angle around the Z-axis, which is the time-series relative displacement angle around the Z-axis. The limit relative displacement is a limit Z-axis displacement angle which is a limit relative displacement angle around the Z axis.
According to the configuration of the embodiment according to the present invention, the axes orthogonal to each other in the horizontal plane are x-axis or X-axis, y-axis or Y-axis, the vertical axis is z-axis, or Z-axis, and the axis in the vertical direction is rotated. It is defined as around the z-axis or around the Z-axis. The recorded time-series relative displacements are the x-axis direction time-series displacement, which is the x-axis direction time-series relative displacement at the position where the corresponding support mechanism is arranged, and the y-axis direction time-series, which is the y-axis direction time-series relative displacement. It is a displacement. The calculated time-series relative displacement is a time-series relative displacement angle around the Z-axis, which is a time-series relative displacement angle around the Z-axis. The limit relative displacement is a limit Z-axis displacement angle which is a limit relative displacement angle around the Z axis.
As a result, the soundness of the building foundation can be quickly determined when the earthquake that has occurred has subsided.

また、本発明の実施形態に係る建物基礎の管理方法は、水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、垂直方向の軸の回りをz軸回りまたはZ軸回りと定義し、前記記録時系列相対変位は対応する支持機構の配される位置でのz軸方向の時系列の相対変位であるz軸方向時系列相対変位であり、前記演算時系列相対変位はZ軸方向の時系列の相対変位である演算Z軸方向時系列相対変位であり、前記限界相対変位はZ軸方向の限界相対変位である限界Z軸方向変位である。
上記本発明に係る実施形態の構成により、水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、垂直方向の軸の回りをz軸回りまたはZ軸回りと定義する。前記記録時系列相対変位は対応する支持機構の配される位置でのz軸方向の時系列の相対変位であるz軸方向時系列相対変位である。前記演算時系列相対変位はZ軸方向の時系列の相対変位である演算Z軸方向時系列相対変位である。前記限界相対変位はZ軸方向の限界相対変位である限界Z軸方向変位である。
その結果、発生した地震が収まったときに速やかに建物基礎の健全性を判定できる。
Further, in the method of managing the building foundation according to the embodiment of the present invention, the axes orthogonal to each other in the horizontal plane are x-axis or X-axis, y-axis or Y-axis, and the vertical axis is z-axis or Z-axis, in the vertical direction. The circumference of the axis is defined as z-axis circumference or Z-axis rotation, and the recording time-series relative displacement is the z-axis direction time series which is the relative displacement of the z-axis direction at the position where the corresponding support mechanism is arranged. It is a relative displacement, the calculated time-series relative displacement is a calculated Z-axis direction time-series relative displacement which is a time-series relative displacement in the Z-axis direction, and the limit relative displacement is a limit Z which is a limit relative displacement in the Z-axis direction. Axial displacement.
According to the configuration of the embodiment according to the present invention, the axes orthogonal to each other in the horizontal plane are x-axis or X-axis, y-axis or Y-axis, the vertical axis is z-axis, or Z-axis, and the axis in the vertical direction is rotated. Defined as z-axis or Z-axis. The recorded time-series relative displacement is a z-axis direction time-series relative displacement which is a z-axis direction time-series relative displacement at a position where the corresponding support mechanism is arranged. The calculated time-series relative displacement is a calculated Z-axis direction time-series relative displacement, which is a time-series relative displacement in the Z-axis direction. The limit relative displacement is a limit Z-axis direction displacement which is a limit relative displacement in the Z-axis direction.
As a result, the soundness of the building foundation can be quickly determined when the earthquake that has occurred has subsided.

上記目的を達成するため、本発明に係る基礎に配され建物を支持する複数の支持機構を有する建物基礎の管理方法であって、複数の支持機構の配される位置での基礎と建物との間の時系列の相対変位を複数の支持機構に各々に対応する記録時系列相対変位として測定記録する変位測定機器を準備する準備工程と、発生した地震が収まったとき、複数の支持機構のうちの特定の一つの支持機構である特定支持機構を定め、複数の前記支持機構に各々に対応する記録時系列相対変位を基に演算して、該特定支持機構の配される位置での基礎と建物との相対変位である時系列相対変位を該特定支持機構に対応する演算時系列相対変位として求める演算工程と、前記特定支持機構に対応する記録時系列相対変位が前記特定支持機構について予め定められる限界相対変位を時系列の何時かの時に越えているか否かを判断基準として前記特定支持機構の健全性を判定する判定工程と、を備え、ものとした。 In order to achieve the above object, it is a management method of a building foundation having a plurality of support mechanisms arranged on the foundation according to the present invention and supporting the building, and the foundation and the building at the position where the plurality of support mechanisms are arranged. Recording the relative displacement of the time series between multiple support mechanisms corresponding to each The preparatory step of preparing a displacement measuring device to measure and record as the time series relative displacement, and when the generated earthquake subsides, among the multiple support mechanisms A specific support mechanism, which is one specific support mechanism, is defined, and a calculation is performed based on the recorded time-series relative displacement corresponding to each of the plurality of the support mechanisms, and the basis at the position where the specific support mechanism is arranged is used. The calculation process for obtaining the time-series relative displacement, which is the relative displacement with the building, as the calculated time-series relative displacement corresponding to the specific support mechanism, and the recorded time-series relative displacement corresponding to the specific support mechanism are predetermined for the specific support mechanism. It is provided with a determination step of determining the soundness of the specific support mechanism based on whether or not the limit relative displacement is exceeded at any time in the time series.

上記本発明の構成により、準備工程が、複数の支持機構の配される位置での基礎と建物との間の時系列の相対変位を複数の支持機構に各々に対応する記録時系列相対変位として測定記録する変位測定機器を準備する。演算工程が、発生した地震が収まったとき、複数の支持機構のうちの特定の一つの支持機構である特定支持機構を定め、複数の前記支持機構に各々に対応する記録時系列相対変位を基に演算して、該特定支持機構の配される位置での基礎と建物との相対変位である時系列相対変位を該特定支持機構に対応する演算時系列相対変位として求める。判定工程が、前記特定支持機構に対応する記録時系列相対変位が前記特定支持機構について予め定められる限界相対変位を時系列の何時かの時に越えているか否かを判断基準として前記特定支持機構の健全性を判定する。
その結果、発生した地震が収まったときに速やかに建物基礎の健全性を判定できる。
According to the above-mentioned configuration of the present invention, the preparation step sets the relative displacement of the time series between the foundation and the building at the position where the plurality of support mechanisms are arranged as the recorded time-series relative displacement corresponding to each of the plurality of support mechanisms. Prepare a displacement measuring device to measure and record. When the generated earthquake subsides, the calculation process determines a specific support mechanism, which is a specific support mechanism among the plurality of support mechanisms, and is based on the recorded time-series relative displacement corresponding to each of the plurality of support mechanisms. The time-series relative displacement, which is the relative displacement between the foundation and the building at the position where the specific support mechanism is arranged, is obtained as the calculated time-series relative displacement corresponding to the specific support mechanism. The determination step of the specific support mechanism is based on whether or not the recorded time-series relative displacement corresponding to the specific support mechanism exceeds the limit relative displacement predetermined for the specific support mechanism at some time in the time series. Judge soundness.
As a result, the soundness of the building foundation can be quickly determined when the earthquake that has occurred has subsided.

以下に、本発明の実施形態に係る建物基礎の管理方法を説明する。本発明は、以下に記載した実施形態のいずれか、またはそれらの中の二つ以上が組み合わされた態様を含む。 The method of managing the building foundation according to the embodiment of the present invention will be described below. The present invention includes any of the embodiments described below, or a combination of two or more of them.

また、水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、垂直方向の軸の回りをz軸回りまたはZ軸回りと定義し、前記記録時系列相対変位が対応する支持機構の配される位置でのx軸方向の時系列の相対変位であるx軸方向時系列相対変位とy軸方向の時系列の相対変位であるy軸方時系列相対変位であり、前記演算時系列相対変位が、対応する前記特定支持機構の配される位置でのz軸回りの時系列の相対変位角であるz軸回り時系列相対変位角であり、前記限界相対変位が、z軸回りの限界変位角である限界z軸回り変位角である、
上記本発明に係る実施形態の構成により、水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、垂直方向の軸の回りをz軸回りまたはZ軸回りと定義する。前記記録時系列相対変位が対応する支持機構の配される位置でのx軸方向の時系列の相対変位であるx軸方向時系列相対変位とy軸方向の時系列の相対変位であるy軸方時系列相対変位である。前記演算時系列相対変位が、対応する前記特定支持機構の配される位置でのz軸回りの時系列の相対変位角であるz軸回り時系列相対変位角である。前記限界相対変位が、z軸回りの限界変位角である限界z軸回り変位角である。
その結果、発生した地震が収まったときに速やかに建物基礎の健全性を判定できる。
Also, axes that are orthogonal to each other in the horizontal plane are defined as x-axis or X-axis, y-axis or Y-axis, vertical axis is defined as z-axis or Z-axis, and vertical axis is defined as z-axis or Z-axis. Then, the recorded time-series relative displacement is the x-axis direction time-series relative displacement and the y-axis direction time-series relative displacement at the position where the corresponding support mechanism is arranged. It is a y-axis time-series relative displacement, and the calculated time-series relative displacement is a z-axis time-series relative displacement which is a time-series relative displacement angle around the z-axis at a position where the corresponding specific support mechanism is arranged. It is an angle, and the limit relative displacement is a limit displacement angle around the z-axis, which is a limit displacement angle around the z-axis.
According to the configuration of the embodiment according to the present invention, the axes orthogonal to each other in the horizontal plane are x-axis or X-axis, y-axis or Y-axis, the vertical axis is z-axis, or Z-axis, and the axis in the vertical direction is rotated. Defined as z-axis or Z-axis. The recorded time-series relative displacement is the x-axis direction time-series relative displacement at the position where the corresponding support mechanism is arranged, and the y-axis is the y-axis direction time-series relative displacement. It is a relative displacement in a square time series. The calculated time-series relative displacement is a z-axis time-series relative displacement angle which is a time-series relative displacement angle around the z-axis at a position where the corresponding specific support mechanism is arranged. The limit relative displacement is the limit z-axis displacement angle, which is the limit displacement angle around the z-axis.
As a result, the soundness of the building foundation can be quickly determined when the earthquake that has occurred has subsided.

上記目的を達成するため、本発明に係る基礎に配され建物を支持する複数の支持機構を有する建物基礎の管理方法であって、複数の支持機構の配される位置での基礎と建物との間の時系列の相対変位を複数の支持機構に各々に対応して記録時系列相対変位として測定記録する変位測定機器を準備する準備工程と、発生した地震が収まったとき、複数の支持機構のうちの特定の一つの支持機構である特定支持機構を定め、複数の前記支持機構のうち該特定支持機構を除く複数の前記支持機構に各々に対応する記録時系列相対変位を基に演算して、該特定支持機構の配される位置での基礎と建物との相対変位である時系列相対変位を前記特定支持機構に対応する演算時系列相対変位として求める演算工程と、前記特定支持機構に対応する演算時系列相対変位が予め前記特定支持機構について定められる限界相対変位を時系列の何時かの時に越えているか否かを判断基準として前記特定支持機構の健全性を判定する判定工程と、を備え、ものとした。 In order to achieve the above object, it is a management method of a building foundation having a plurality of support mechanisms arranged on the foundation according to the present invention and supporting the building, and the foundation and the building at the position where the plurality of support mechanisms are arranged. Recording the relative displacement of the time series between multiple support mechanisms corresponding to each. The preparatory process to prepare the displacement measuring equipment to measure and record as the relative displacement of the time series, and when the generated earthquake subsides, the multiple support mechanisms A specific support mechanism, which is one of the specific support mechanisms, is defined, and a calculation is performed based on the recorded time-series relative displacement corresponding to each of the plurality of the support mechanisms excluding the specific support mechanism among the plurality of the support mechanisms. Corresponds to the arithmetic process of obtaining the time-series relative displacement, which is the relative displacement between the foundation and the building at the position where the specific support mechanism is arranged, as the arithmetic time-series relative displacement corresponding to the specific support mechanism, and the specific support mechanism. The determination step of determining the soundness of the specific support mechanism based on whether or not the time-series relative displacement to be calculated exceeds the limit relative displacement previously determined for the specific support mechanism at some time in the time series. I prepared for it.

上記本発明の構成により、準備工程が、複数の支持機構の配される位置での基礎と建物との間の時系列の相対変位を複数の支持機構に各々に対応して記録時系列相対変位として測定記録する変位測定機器を準備する。演算工程が、発生した地震が収まったとき、複数の支持機構のうちの特定の一つの支持機構である特定支持機構を定め、複数の前記支持機構のうち該特定支持機構を除く複数の前記支持機構に各々に対応する記録時系列相対変位を基に演算して、該特定支持機構の配される位置での基礎と建物との相対変位である時系列相対変位を前記特定支持機構に対応する演算時系列相対変位として求める。判定工程が、前記特定支持機構に対応する演算時系列相対変位が予め前記特定支持機構について定められる限界相対変位を時系列の何時かの時に越えているか否かを判断基準として前記特定支持機構の健全性を判定する。
その結果、発生した地震が収まったときに速やかに建物基礎の健全性を判定できる。
According to the above-mentioned configuration of the present invention, the preparation step records the relative displacement of the time series between the foundation and the building at the position where the plurality of support mechanisms are arranged, corresponding to each of the plurality of support mechanisms. Prepare a displacement measuring device to measure and record as. When the generated earthquake subsides, the arithmetic process determines a specific support mechanism that is a specific support mechanism among the plurality of support mechanisms, and a plurality of the support mechanisms other than the specific support mechanism among the plurality of support mechanisms. Calculated based on the recorded time-series relative displacement corresponding to each mechanism, and the time-series relative displacement, which is the relative displacement between the foundation and the building at the position where the specific support mechanism is arranged, corresponds to the specific support mechanism. Calculated as a relative displacement in time series. The determination step of the specific support mechanism is based on whether or not the calculated time-series relative displacement corresponding to the specific support mechanism exceeds the limit relative displacement previously determined for the specific support mechanism at some time in the time series. Judge soundness.
As a result, the soundness of the building foundation can be quickly determined when the earthquake that has occurred has subsided.

以下に、本発明の実施形態に係る建物基礎の管理方法を説明する。本発明は、以下に記載した実施形態のいずれか、またはそれらの中の二つ以上が組み合わされた態様を含む。 The method of managing the building foundation according to the embodiment of the present invention will be described below. The present invention includes any of the embodiments described below, or a combination of two or more of them.

また、前記記録時系列相対変位が、対応する支持機構の配される位置でのx軸方向の時系列の相対変位である記録x軸時系列相対変位とy軸方向の時系列の相対変位である記録y軸時系列変位であり、前記演算時系列相対変位は、対応する前記特定支持機構の配される位置でのx軸方向の時系列な相対変位である演算x軸方向時系列変位とy軸方向の時系列な相対変位である演算y軸方向時系列変位とに対応する極座標系での半径方向の想定変位である演算r時系列変位であり、前記限界相対変位は、極座標系での半径方向の限界変位である限界r軸方向変位である。
上記本発明に係る実施形態の構成により、前記記録時系列相対変位が、対応する支持機構の配される位置でのx軸方向の時系列の相対変位である記録x軸時系列相対変位とy軸方向の時系列の相対変位である記録y軸時系列変位である。前記演算時系列相対変位は、対応する前記特定支持機構の配される位置でのx軸方向の時系列な相対変位である演算x軸方向時系列変位とy軸方向の時系列な相対変位である演算y軸方向時系列変位とに対応する極座標系での半径方向の相対変位である演算r時系列変位である。前記限界相対変位は、極座標系での半径方向の限界変位である限界r軸方向変位である。
その結果、発生した地震が収まったときに速やかに建物基礎の健全性を判定できる。
Further, the recorded time-series relative displacement is the recorded x-axis time-series relative displacement, which is the x-axis direction time-series relative displacement at the position where the corresponding support mechanism is arranged, and the y-axis direction time-series relative displacement. A record y-axis time-series displacement, the calculated time-series relative displacement is a calculated x-axis direction time-series displacement, which is a time-series relative displacement in the x-axis direction at the position where the corresponding specific support mechanism is arranged. Calculation r time-series displacement, which is an assumed radial displacement in the polar coordinate system corresponding to the time-series relative displacement in the y-axis direction. The limit relative displacement is the polar coordinate system. It is the limit r-axis direction displacement which is the limit displacement in the radial direction of.
According to the configuration of the embodiment according to the present invention, the recorded time-series relative displacement is the recorded x-axis time-series relative displacement which is the relative displacement of the time-series in the x-axis direction at the position where the corresponding support mechanism is arranged. It is a recorded y-axis time-series displacement that is a relative displacement in the time-series in the axial direction. The calculated time-series relative displacement is a time-series relative displacement in the x-axis direction and a time-series relative displacement in the y-axis direction, which are time-series relative displacements in the x-axis direction at the position where the specific support mechanism is arranged. It is an operation r time-series displacement which is a relative displacement in the radial direction in the polar coordinate system corresponding to a certain operation y-axis direction time-series displacement. The limit relative displacement is a limit r-axis displacement which is a radial limit displacement in a polar coordinate system.
As a result, the soundness of the building foundation can be quickly determined when the earthquake that has occurred has subsided.

また、前記記録時系列相対変位が、対応する支持機構の配される位置でのx軸方向の時系列の相対変位である記録x軸時系列相対変位とy軸方向の時系列の相対変位である記録y軸時系列変位であり、前記演算時系列相対変位は、対応する前記特定支持機構の配される位置でのx軸方向の時系列な相対変位である演算x軸方向時系列変位とy軸方向の時系列な相対変位である演算y軸方向時系列変位であり、前記限界相対変位は、x軸方向の限界変位である限界x軸方向変位とy軸方向の限界変位である限界y軸方向変位とである。
上記本発明に係る実施形態の構成により、前記記録時系列相対変位が、対応する支持機構の配される位置でのx軸方向の時系列の相対変位である記録x軸時系列相対変位とy軸方向の時系列の相対変位である記録y軸時系列変位である。前記演算時系列相対変位は、対応する前記特定支持機構の配される位置でのx軸方向の時系列な相対変位である演算x軸方向時系列変位とy軸方向の時系列な相対変位である演算y軸方向時系列変位である。
前記限界相対変位は、x軸方向の限界変位である限界x軸方向変位とy軸方向の限界変位である限界y軸方向変位とである。
その結果、発生した地震が収まったときに速やかに建物基礎の健全性を判定できる。
Further, the recorded time-series relative displacement is the recorded x-axis time-series relative displacement, which is the x-axis direction time-series relative displacement at the position where the corresponding support mechanism is arranged, and the y-axis direction time-series relative displacement. A record y-axis time-series displacement, the calculated time-series relative displacement is a calculated x-axis direction time-series displacement, which is a time-series relative displacement in the x-axis direction at the position where the corresponding specific support mechanism is arranged. The calculation is a time-series relative displacement in the y-axis direction, and the limit relative displacement is a limit x-axis direction displacement which is a limit displacement in the x-axis direction and a limit displacement which is a limit displacement in the y-axis direction. It is a displacement in the y-axis direction.
According to the configuration of the embodiment according to the present invention, the recorded time-series relative displacement is the recorded x-axis time-series relative displacement which is the relative displacement of the time-series in the x-axis direction at the position where the corresponding support mechanism is arranged. It is a recorded y-axis time-series displacement that is a relative displacement in the time-series in the axial direction. The calculated time-series relative displacement is a time-series relative displacement in the x-axis direction and a time-series relative displacement in the y-axis direction, which are time-series relative displacements in the x-axis direction at the position where the specific support mechanism is arranged. A certain operation y-axis direction time-series displacement.
The limit relative displacement is a limit x-axis direction displacement which is a limit displacement in the x-axis direction and a limit y-axis direction displacement which is a limit displacement in the y-axis direction.
As a result, the soundness of the building foundation can be quickly determined when the earthquake that has occurred has subsided.

また、水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、垂直方向の軸の回りをz軸回りまたはZ軸回りと定義し、前記記録時系列相対変位が対応する支持機構の配される位置でのz軸方向の時系列の相対変位であるz軸方向時系列相対変位であり、前記演算時系列相対変位が対応する前記特定支持機構の配される位置でのz軸方向の時系列の相対変位であるz軸方向時系列相対変位であり、前記限界相対変位がz軸方向の限界変位である限界z軸方向変位である。
上記本発明に係る実施形態の構成により、水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、垂直方向の軸の回りをz軸回りまたはZ軸回りと定義する。前記記録時系列相対変位が対応する支持機構の配される位置でのz軸方向の時系列の相対変位であるz軸方向時系列相対変位である。前記演算時系列相対変位が対応する前記特定支持機構の配される位置でのz軸方向の時系列の相対変位である演算z軸方向時系列相対変位である。前記限界相対変位がz軸方向の限界変位である限界z軸方向変位である。
その結果、発生した地震が収まったときに速やかに建物基礎の健全性を判定できる。
Also, the axes orthogonal to each other in the horizontal plane are defined as x-axis or X-axis, y-axis or Y-axis, the vertical axis is defined as z-axis or Z-axis, and the circumference of the vertical axis is defined as z-axis or Z-axis. The recorded time-series relative displacement is the z-axis direction time-series relative displacement, which is the z-axis direction time-series relative displacement at the position where the corresponding support mechanism is arranged, and the calculated time-series relative displacement corresponds to the corresponding. It is the z-axis direction time-series relative displacement which is the z-axis direction relative displacement at the position where the specific support mechanism is arranged, and the limit relative displacement is the limit z-axis direction displacement which is the z-axis direction limit displacement. Is.
According to the configuration of the embodiment according to the present invention, the axes orthogonal to each other in the horizontal plane are x-axis or X-axis, y-axis or Y-axis, the vertical axis is z-axis, or Z-axis, and the axis in the vertical direction is rotated. It is defined as around the z-axis or around the Z-axis. The recorded time-series relative displacement is the z-axis direction time-series relative displacement, which is the z-axis direction time-series relative displacement at the position where the corresponding support mechanism is arranged. The calculated time-series relative displacement is the calculated z-axis direction time-series relative displacement which is the z-axis direction time-series relative displacement at the position where the specific support mechanism is arranged. The limit relative displacement is the limit z-axis direction displacement, which is the limit displacement in the z-axis direction.
As a result, the soundness of the building foundation can be quickly determined when the earthquake that has occurred has subsided.

上記目的を達成するため、本発明に係る基礎に配され建物を支持する複数の支持機構を有する建物基礎の管理方法であって、複数の支持機構の配される位置での基礎と建物との間の時系列の相対変位を複数の支持機構に各々に対応する記録時系列相対変位として測定記録する変位測定機器を準備する準備工程と、発生した地震が収まったとき、複数の支持機構のうちの特定の一つの支持機構である特定支持機構を定め、複数の支持機構のうちの該特定支持機構を除く複数の支持機構に各々に対応する記録時系列相対変位を基に演算して、該特定支持機構の配される位置での基礎と建物との相対変位である時系列相対変位を該特定支持機構に対応する演算時系列相対変位として求める演算工程と、前記特定支持機構に対応する前記演算時系列相対変位と前記特定支持機構に対応する前記記録時系列相対変位との同一軸方向毎の時系列の偏差の大きさを判断基準としてに前記特定支持機構の健全性を判定する判定工程と、を備えるものとした。 In order to achieve the above object, it is a management method of a building foundation having a plurality of support mechanisms arranged on the foundation according to the present invention and supporting the building, and the foundation and the building at the position where the plurality of support mechanisms are arranged. Recording the relative displacement of the time series between multiple support mechanisms corresponding to each The preparatory step of preparing a displacement measuring device to measure and record as the time series relative displacement, and when the generated earthquake subsides, among the multiple support mechanisms A specific support mechanism, which is one specific support mechanism, is defined, and a calculation is performed based on the recorded time-series relative displacement corresponding to each of the plurality of support mechanisms excluding the specific support mechanism among the plurality of support mechanisms. The calculation step of obtaining the time-series relative displacement, which is the relative displacement between the foundation and the building at the position where the specific support mechanism is arranged, as the calculated time-series relative displacement corresponding to the specific support mechanism, and the above-mentioned corresponding to the specific support mechanism. Judgment step to judge the soundness of the specific support mechanism based on the magnitude of the time-series deviation in the same axial direction between the calculated time-series relative displacement and the recorded time-series relative displacement corresponding to the specific support mechanism. And, it was supposed to be equipped.

上記本発明の構成により、準備工程が、複数の支持機構の配される位置での基礎と建物との間の時系列の相対変位を複数の支持機構に各々に対応する記録時系列相対変位として測定記録する変位測定機器を準備する。演算工程が、発生した地震が収まったとき、複数の支持機構のうちの特定の一つの支持機構である特定支持機構を定め、複数の支持機構のうちの該特定支持機構を除く複数の支持機構に各々に対応する記録時系列相対変位を基に演算して、該特定支持機構の配される位置での基礎と建物との相対変位である時系列相対変位を該特定支持機構に対応する演算時系列相対変位として求める。判定工程が、前記特定支持機構に対応する前記演算時系列相対変位と前記特定支持機構に対応する前記記録時系列相対変位との同一軸方向毎の時系列の偏差の大きさを判断基準としてに前記特定支持機構の健全性を判定する。
その結果、発生した地震が収まったときに速やかに建物基礎の健全性を判定できる。
According to the above-mentioned configuration of the present invention, the preparation step sets the relative displacement of the time series between the foundation and the building at the position where the plurality of support mechanisms are arranged as the recorded time-series relative displacement corresponding to each of the plurality of support mechanisms. Prepare a displacement measuring device to measure and record. When the generated earthquake subsides, the arithmetic process determines a specific support mechanism that is a specific support mechanism among a plurality of support mechanisms, and a plurality of support mechanisms other than the specific support mechanism among the plurality of support mechanisms. The time-series relative displacement, which is the relative displacement between the foundation and the building at the position where the specific support mechanism is arranged, is calculated based on the recorded time-series relative displacement corresponding to each. Obtained as a time-series relative displacement. The determination step uses the magnitude of the time-series deviation for each axial direction between the calculated time-series relative displacement corresponding to the specific support mechanism and the recording time-series relative displacement corresponding to the specific support mechanism as a determination criterion. The soundness of the specific support mechanism is determined.
As a result, the soundness of the building foundation can be quickly determined when the earthquake that has occurred has subsided.

以下に、本発明の実施形態に係る建物基礎の管理方法を説明する。本発明は、以下に記載した実施形態のいずれか、またはそれらの中の二つ以上が組み合わされた態様を含む。 The method of managing the building foundation according to the embodiment of the present invention will be described below. The present invention includes any of the embodiments described below, or a combination of two or more of them.

また、水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、と定義し、前記記録時系列相対変位が対応する支持機構の配される位置でのx軸方向に時系列な相対変位である記録x軸方向時系列相対変位とy軸方向の時系列の相対変位である記録y軸方向時系列相対変位とであり、前記演算時系列相対変位が対応する前記特定支持機構の配される位置でのx軸方向の時系列の相対変位である演算x軸方向時系列相対変位とy軸方向の時系列の相対変位である演算y軸方向時系列相対変位とである、、
上記本発明に係る実施形態の構成により、水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、と定義する。前記記録時系列相対変位が対応する支持機構の配される位置でのx軸方向に時系列な相対変位である記録x軸方向時系列相対変位とy軸方向の時系列の相対変位である記録y軸方向時系列相対変位とである。前記演算時系列相対変位が対応する前記特定支持機構の配される位置でのx軸方向の時系列の相対変位である演算x軸方向時系列相対変位とy軸方向の時系列の相対変位である演算y軸方向時系列相対変位とである。
その結果、発生した地震が収まったときに速やかに建物基礎の健全性を判定できる。
Further, an axis orthogonal to each other in the horizontal plane is defined as an x-axis or an X-axis, a y-axis or a Y-axis, and a vertical axis is defined as a z-axis or a Z-axis. The recorded x-axis direction time-series relative displacement, which is the time-series relative displacement in the x-axis direction at the arranged position, and the recorded y-axis direction time-series relative displacement, which is the y-axis direction time-series relative displacement. The calculated time-series relative displacement is the relative displacement of the time-series in the x-axis direction at the position where the specific support mechanism corresponds, and the relative displacement of the time-series in the x-axis direction and the time-series in the y-axis direction. Calculation: Time-series relative displacement in the y-axis direction ,,
According to the configuration of the embodiment according to the present invention, the axes orthogonal to each other in the horizontal plane are defined as x-axis or X-axis, y-axis or Y-axis, and the vertical axis is defined as z-axis or Z-axis. The recording time-series relative displacement is a recording that is a time-series relative displacement in the x-axis direction at the position where the corresponding support mechanism is arranged. A recording that is a time-series relative displacement in the x-axis direction and a time-series relative displacement in the y-axis direction. It is a time-series relative displacement in the y-axis direction. The calculated relative displacement in the time series in the x-axis direction and the relative displacement in the time series in the y-axis direction, which are the relative displacements in the time series in the x-axis direction at the position where the specific support mechanism corresponds to the relative displacement in the time series. It is a certain operation y-axis direction time-series relative displacement.
As a result, the soundness of the building foundation can be quickly determined when the earthquake that has occurred has subsided.

また、水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、と定義し、前記記録時系列相対変位が対応する支持機構の配される位置でのz軸方向の時系列の相対変位である記録z軸方向時系列相対変位であり、前記演算時系列相対変位が対応する前記特定支持機構の配される位置でのz軸方向の時系列の相対変位である演算z軸方向時系列相対変位である。
上記本発明に係る実施形態の構成により、水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、と定義する。前記記録時系列相対変位が対応する支持機構の配される位置でのz軸方向の時系列の相対変位である記録z軸方向時系列相対変位である。前記演算時系列相対変位が対応する前記特定支持機構の配される位置でのz軸方向の時系列の相対変位である演算z軸方向時系列相対変位である。
その結果、発生した地震が収まったときに速やかに建物基礎の健全性を判定できる。
Further, the axes orthogonal to each other in the horizontal plane are defined as the x-axis or the X-axis, the y-axis or the Y-axis, and the vertical axis is defined as the z-axis or the Z-axis. Recorded z-axis direction time-series relative displacement, which is the z-axis direction relative displacement at the arranged position, and the z-axis at the arrangement position of the specific support mechanism to which the calculated time-series relative displacement corresponds. Calculation It is a time-series relative displacement in the z-axis direction, which is a relative displacement in the time-series in the direction.
According to the configuration of the embodiment according to the present invention, the axes orthogonal to each other in the horizontal plane are defined as x-axis or X-axis, y-axis or Y-axis, and the vertical axis is defined as z-axis or Z-axis. The recorded time-series relative displacement is the recorded z-axis direction time-series relative displacement which is the z-axis direction time-series relative displacement at the position where the corresponding support mechanism is arranged. The calculated time-series relative displacement is the calculated z-axis direction time-series relative displacement which is the z-axis direction time-series relative displacement at the position where the specific support mechanism is arranged.
As a result, the soundness of the building foundation can be quickly determined when the earthquake that has occurred has subsided.

上記目的を達成するため、本発明に係る基礎に各々に配され建物を支持する複数の支持機構を各々に有する複数の建物基礎を含む建物基礎群の管理方法であって、複数の建物基礎の各々毎に複数の支持機構の配される位置での基礎と建物との間の時系列の相対変位を複数の支持機構に各々に対応する記録時系列相対変位として測定記録する変位測定機器を準備する準備工程と、発生した地震が収まったとき、複数の建物基礎の各々毎に複数の支持機構に各々に対応する記録時系列相対変位を基に演算して建物と基礎との時系列の相対変位である演算時系列相対変位を求める演算工程と、複数の建物基礎の各々毎に前記演算時系列相対変位と基礎、建物、及び建物基礎の全体振動特性とから建物基礎の位置する基礎の絶対変位を建物基礎に対応して基礎絶対時系列変位として各々に推定する推定工程と、複数の建物基礎に各々に対応する複数の基礎時系列絶対変位と複数の建物の各々に位置データとを関連づけて複数の建物基礎の配される地域全体の時系列の絶対変位マップを生成する生成工程と、を備えるものとした。 In order to achieve the above object, it is a management method of a building foundation group including a plurality of building foundations each having a plurality of support mechanisms arranged in each of the foundations according to the present invention to support the building, and is a method of managing a plurality of building foundations. Prepare a displacement measuring device that measures and records the time-series relative displacement between the foundation and the building at the position where multiple support mechanisms are arranged for each, as the recording time-series relative displacement corresponding to each of the multiple support mechanisms. Preparatory steps to be performed and when the generated earthquake subsides, each of the multiple building foundations is calculated based on the recorded time-series relative displacement corresponding to each of the multiple support mechanisms, and the time-series relative between the building and the foundation. Absolute of the foundation on which the building foundation is located from the calculation process for obtaining the calculated time-series relative displacement, which is the displacement, and the calculated time-series relative displacement for each of the plurality of building foundations and the overall vibration characteristics of the foundation, the building, and the building foundation. The estimation process that estimates the displacement as the absolute time-series displacement of the foundation corresponding to the building foundation, and the multiple foundation time-series absolute displacements corresponding to each of the multiple building foundations and the position data for each of the multiple buildings are associated with each other. It is provided with a generation process for generating a time-series absolute displacement map of the entire area where a plurality of building foundations are arranged.

上記本発明の構成により、準備工程が、複数の建物基礎の各々毎に複数の支持機構の配される位置での基礎と建物との間の時系列の相対変位を複数の支持機構に各々に対応する記録時系列相対変位として測定記録する変位測定機器を準備する。演算工程が、発生した地震が収まったとき、複数の建物基礎の各々毎に複数の支持機構に各々に対応する記録時系列相対変位を基に演算して建物と基礎との時系列の相対変位である演算時系列相対変位を求める。推定工程が、複数の建物基礎の各々毎に前記演算時系列相対変位と基礎、建物、及び建物基礎の全体振動特性とから建物基礎の位置する基礎の絶対変位を建物基礎に対応して基礎絶対時系列変位として各々に推定する。生成工程が、複数の建物基礎に各々に対応する複数の基礎時系列絶対変位と複数の建物の各々の位置データとを関連づけて複数の建物基礎の配される地域全体の時系列の絶対変位のデータベースである時系列絶対変位マップを生成する。
その結果、地域内の基礎時系列絶対変位の分布を把握でき、地域での任意の位置での時系列の絶対変位を類推できるマップを得る。
According to the above-mentioned configuration of the present invention, the preparatory step transfers the relative displacement of the time series between the foundation and the building at the position where the plurality of support mechanisms are arranged for each of the plurality of building foundations to the plurality of support mechanisms. Corresponding recording Prepare a displacement measuring device to measure and record as a time-series relative displacement. When the generated earthquake subsides, the calculation process calculates based on the recorded time-series relative displacement corresponding to each of the multiple support mechanisms for each of the multiple building foundations, and the time-series relative displacement between the building and the foundation. The calculation time series relative displacement is obtained. The estimation process determines the absolute displacement of the foundation on which the building foundation is located from the calculated time-series relative displacement and the overall vibration characteristics of the foundation, the building, and the building foundation for each of the multiple building foundations. Estimated for each as a time-series displacement. The generation process correlates the multiple foundation time-series absolute displacements corresponding to each of the multiple building foundations with the position data of each of the multiple buildings, and the time-series absolute displacement of the entire area where the multiple building foundations are arranged. Generate a time-series absolute displacement map, which is a database.
As a result, the distribution of the basic time-series absolute displacement in the area can be grasped, and a map that can infer the time-series absolute displacement at an arbitrary position in the area is obtained.

以下に、本発明の実施形態に係る建物基礎群の管理方法を説明する。本発明は、以下に記載した実施形態のいずれか、またはそれらの中の二つ以上が組み合わされた態様を含む。 The method of managing the building foundation group according to the embodiment of the present invention will be described below. The present invention includes any of the embodiments described below, or a combination of two or more of them.

また、本発明の実施形態に係る建物基礎群の管理方法は、前記時系列絶対変位マップを基に前記地域に含まれる任意の位置での基礎時系列絶対変位を類推する類推工程と、を備える。
上記本発明に係る実施形態の構成により、類推工程が、前記時系列絶対変位マップを基に前記地域に含まれる任意の位置での基礎時系列絶対変位を類推する。
その結果、任意の位置にある建物を支持する建物基礎に作用する絶対変位を得ることができる。
Further, the method for managing the building foundation group according to the embodiment of the present invention includes an analogy step of estimating the foundation time-series absolute displacement at an arbitrary position included in the area based on the time-series absolute displacement map. ..
According to the configuration of the embodiment according to the present invention, the analogy step estimates the basic time-series absolute displacement at an arbitrary position included in the area based on the time-series absolute displacement map.
As a result, it is possible to obtain an absolute displacement acting on the building foundation that supports the building at any position.

また、本発明の実施形態に係る建物基礎群の管理方法は、前記任意の位置における前記基礎時系列絶対変位と前記任意の位置に配される建物基礎と建物の全体振動特性とから前記任意の位置における建物と基礎との時系列の相対変位である演算時系列相対変位を求める類推演算工程と、を備える。
上記本発明に係る実施形態の構成により、類推演算工程が、前記任意の位置における前記基礎時系列絶対変位と前記任意の位置に配される建物基礎と建物の全体振動特性とから前記任意の位置における建物と基礎との時系列の相対変位である演算時系列相対変位を求める。
その結果、地域に含まれる任意の位置にある建物基礎の健全性を判断する材料をえることができる。
Further, the method for managing the building foundation group according to the embodiment of the present invention is the above-mentioned arbitrary from the above-mentioned absolute displacement of the foundation time series at the above-mentioned arbitrary position, the building foundation arranged at the above-mentioned arbitrary position, and the overall vibration characteristics of the building. A calculation that is a relative displacement of a building and a foundation at a position in a time series. An analogy calculation step for obtaining a relative displacement in a time series is provided.
According to the configuration of the embodiment according to the present invention, the analogy calculation step is performed at the arbitrary position based on the absolute time-series displacement of the foundation at the arbitrary position, the building foundation arranged at the arbitrary position, and the overall vibration characteristics of the building. Calculate the time-series relative displacement, which is the time-series relative displacement between the building and the foundation in.
As a result, it is possible to obtain materials for judging the soundness of the building foundation at any position included in the area.

上記目的を達成するため、本発明に係る基礎に各々に配され建物を支持する複数の支持機構を各々に有する複数の建物基礎を含む建物基礎群の管理方法であって、複数の建物基礎の各々毎に、複数の支持機構の配される位置での基礎と建物との間の時系列の相対変位を複数の支持機構に各々に対応する記録時系列相対変位として測定記録する変位測定機器を準備する準備工程と、発生した地震が収まったとき、複数の建物基礎の各々毎に、複数の支持機構に各々に対応する記録時系列相対変位を基に演算して建物と基礎との時系列の相対変位である演算時系列相対変位を求める演算工程と、複数の建物基礎の各々毎に、前記演算時系列相対変位と基礎、建物、及び建物基礎の全体振動特性とから建物基礎の位置する基礎の絶対変位を建物基礎に対応して基礎時系列絶対変位として各々に推定する推定工程と、複数の建物基礎の位置データと対応する前記基礎時系列絶対変位とから複数の建物基礎の配される地域に含まれる任意の位置での基礎時系列絶対変位を類推する類推工程と、を備えるものとした。 In order to achieve the above object, it is a management method of a building foundation group including a plurality of building foundations each having a plurality of support mechanisms arranged in each of the foundations according to the present invention to support the building, and is a method of managing a plurality of building foundations. For each, a displacement measuring device that measures and records the time-series relative displacement between the foundation and the building at the position where multiple support mechanisms are arranged as the recording time-series relative displacement corresponding to each of the multiple support mechanisms. Preparation process and when the generated earthquake subsides, the time series between the building and the foundation is calculated based on the recorded time series relative displacement corresponding to each of the multiple support mechanisms for each of the multiple building foundations. The location of the building foundation is based on the calculation process for obtaining the calculation time-series relative displacement, which is the relative displacement of, and the calculation time-series relative displacement and the overall vibration characteristics of the foundation, the building, and the building foundation for each of the plurality of building foundations. Multiple building foundations are arranged from the estimation process that estimates the absolute displacement of the foundation as the absolute time-series displacement of the foundation corresponding to the building foundation, and the absolute displacement of the foundation time-series corresponding to the position data of the multiple building foundations. It is provided with an analogy process for estimating the basic time-series absolute displacement at any position included in the area.

上記本発明の構成により、準備工程が、複数の建物基礎の各々毎に、複数の支持機構の配される位置での基礎と建物との間の時系列の相対変位を複数の支持機構に各々に対応する記録時系列相対変位として測定記録する変位測定機器を準備する。演算工程が、発生した地震が収まったとき、複数の建物基礎の各々毎に、複数の支持機構に各々に対応する記録時系列相対変位を基に演算して建物と基礎との時系列の相対変位である演算時系列相対変位を求める。推定工程が、複数の建物基礎の各々毎に、前記演算時系列相対変位と基礎、建物、及び建物基礎の全体振動特性とから建物基礎の位置する基礎の絶対変位を建物基礎に対応して基礎時系列絶対変位として各々に推定する。類推工程が、複数の建物基礎の位置データと対応する前記基礎時系列絶対変位とから複数の建物基礎の配される地域に含まれる任意の位置での基礎時系列絶対変位を類推する。
その結果、任意の位置にある建物を支持する建物基礎に作用する絶対変位を得ることができる。
According to the above-mentioned configuration of the present invention, the preparatory process transfers the relative displacement of the time series between the foundation and the building at the position where the plurality of support mechanisms are arranged to the plurality of support mechanisms for each of the plurality of building foundations. Prepare a displacement measurement device that measures and records as a relative displacement in time series. When the generated earthquake subsides, the calculation process calculates for each of the multiple building foundations based on the recorded time-series relative displacements corresponding to each of the multiple support mechanisms, and the time-series relative between the building and the foundation. Calculate the relative displacement in time series, which is the displacement. The estimation process is based on the absolute displacement of the foundation on which the building foundation is located, corresponding to the building foundation, from the calculated time-series relative displacement and the overall vibration characteristics of the foundation, the building, and the building foundation for each of the multiple building foundations. Estimated for each as a time-series absolute displacement. The analogy process infers the foundation time-series absolute displacement at an arbitrary position included in the area where the plurality of building foundations are arranged from the foundation time-series absolute displacement corresponding to the position data of the plurality of building foundations.
As a result, it is possible to obtain an absolute displacement acting on the building foundation that supports the building at any position.

以下に、本発明の実施形態に係る建物基礎群の管理方法を説明する。本発明は、以下に記載した実施形態のいずれか、またはそれらの中の二つ以上が組み合わされた態様を含む。 The method of managing the building foundation group according to the embodiment of the present invention will be described below. The present invention includes any of the embodiments described below, or a combination of two or more of them.

また、本発明の実施形態に係る建物基礎群の管理方法は、前記任意の位置における前記基礎時系列絶対変位と前記任意の位置に配される建物基礎と建物の全体振動特性とから前記任意の位置における建物と基礎との時系列の相対変位である演算時系列相対変位を求める類推演算工程と、を備える。
上記本発明に係る実施形態の構成により、類推演算工程が、前記任意の位置における前記基礎時系列絶対変位と前記任意の位置に配される建物基礎と建物の全体振動特性とから前記任意の位置における建物と基礎との時系列の相対変位である演算時系列相対変位を求める。
その結果、地域に含まれる任意の位置にある建物基礎の健全性を判断する材料をえることができる。
Further, the method for managing the building foundation group according to the embodiment of the present invention is the above-mentioned arbitrary from the above-mentioned absolute displacement of the foundation time series at the above-mentioned arbitrary position, the building foundation arranged at the above-mentioned arbitrary position, and the overall vibration characteristics of the building. A calculation that is a relative displacement of a building and a foundation at a position in a time series. An analogy calculation step for obtaining a relative displacement in a time series is provided.
According to the configuration of the embodiment according to the present invention, the analogy calculation step is performed at the arbitrary position based on the absolute time-series displacement of the foundation at the arbitrary position, the building foundation arranged at the arbitrary position, and the overall vibration characteristics of the building. Calculate the time-series relative displacement, which is the time-series relative displacement between the building and the foundation in.
As a result, it is possible to obtain materials for judging the soundness of the building foundation at any position included in the area.

以上説明したように、本発明に係る建物基礎の管理方法は、その構成により、以下の効果を有する。
発生した地震が収まったとき、変位測定機器により測定記録された複数の支持機構に各々に対応して記録された時系列の相対変位を基に演算した演算時系列相対変位が建物について予め定められる限界相対変位を時系列の何時かの時に越えているか否かを判断基準として建物基礎の健全性を判定する様にしたので、発生した地震が収まったときに速やかに建物基礎の健全性を判定できる。
また、発生した地震が収まったとき、変位測定機器により測定記録された複数の支持機構に各々に対応して記録された時系列のX軸方向相対変位とY軸方向相対変位とを基に演算した極座標の半径方向の相対変位が建物について予め定められる限界R軸方向変位を時系列の何時かの時に越えているか否かを判断基準として建物基礎の健全性を判定する様にしたので、発生した地震が収まったときに速やかに建物基礎の健全性を判定できる。
また、発生した地震が収まったとき、変位測定機器により測定記録された複数の支持機構に各々に対応して記録された時系列のx軸方向相対変位とy軸方向相対変位とを基に演算した建物と基礎との相対変位であるX軸方向相対変位とY軸方向相対変位が建物について予め定められる限界X軸方向変位と限界Y軸方向変位とを時系列の何時かの時に越えているか否かを判断基準として建物基礎の健全性を判定する様にしたので、発生した地震が収まったときに速やかに建物基礎の健全性を判定できる。
また、発生した地震が収まったとき、変位測定機器により測定記録された複数の支持機構に各々に対応して記録された時系列のx軸方向相対変位とy軸方向相対変位とを基に演算したZ軸回りの相対変位角が建物について予め定められる限界Z軸回り変位角を時系列の何時かの時に越えているか否かを判断基準として建物基礎の健全性を判定する様にしたので、発生した地震が収まったときに速やかに建物基礎の健全性を判定できる。
また、発生した地震が収まったとき、変位測定機器により測定記録された複数の支持機構に各々に対応して記録された時系列のz軸方向相対変位を基に演算したZ軸方向の相対変位角が建物について予め定められる限界Z軸方向変位を時系列の何時かの時に越えているか否かを判断基準として建物基礎の健全性を判定する様にしたので、発生した地震が収まったときに速やかに建物基礎の健全性を判定できる。
As described above, the building foundation management method according to the present invention has the following effects depending on its configuration.
When the generated earthquake subsides, the calculated time-series relative displacement calculated based on the time-series relative displacement recorded corresponding to each of the multiple support mechanisms measured and recorded by the displacement measuring device is predetermined for the building. Since the soundness of the building foundation is judged based on whether or not the limit relative displacement is exceeded at some time in the time series, the soundness of the building foundation is quickly judged when the earthquake that occurs has subsided. can.
In addition, when the generated earthquake subsides, it is calculated based on the relative displacement in the X-axis direction and the relative displacement in the Y-axis direction of the time series recorded corresponding to each of the multiple support mechanisms measured and recorded by the displacement measuring device. Since the soundness of the building foundation is judged based on whether or not the relative displacement in the radial direction of the polar coordinates exceeds the predetermined limit R-axis displacement for the building at some time in the time series. The soundness of the building foundation can be quickly judged when the earthquake that has occurred has subsided.
In addition, when the generated earthquake subsides, it is calculated based on the relative displacement in the x-axis direction and the relative displacement in the y-axis direction of the time series recorded corresponding to each of the multiple support mechanisms measured and recorded by the displacement measuring device. Whether the X-axis relative displacement and the Y-axis relative displacement, which are the relative displacements between the building and the foundation, exceed the predetermined limit X-axis displacement and the limit Y-axis displacement for the building at some time in the time series. Since the soundness of the building foundation is judged based on whether or not it is judged, the soundness of the building foundation can be quickly judged when the generated earthquake subsides.
In addition, when the generated earthquake subsides, it is calculated based on the time-series x-axis relative displacement and y-axis relative displacement recorded corresponding to each of the multiple support mechanisms measured and recorded by the displacement measuring device. Since the soundness of the building foundation is judged based on whether or not the relative displacement angle around the Z-axis exceeds the predetermined limit Z-axis displacement angle for the building at some time in the time series. When the earthquake that has occurred has subsided, the soundness of the building foundation can be determined promptly.
In addition, when the generated earthquake subsides, the relative displacement in the Z-axis direction calculated based on the relative displacement in the z-axis direction of the time series recorded corresponding to each of the multiple support mechanisms measured and recorded by the displacement measuring device. Since the soundness of the building foundation is judged based on whether or not the angle exceeds the predetermined limit Z-axis displacement for the building at some time in the time series, when the earthquake that occurs has subsided. The soundness of the building foundation can be determined quickly.

発生した地震が収まったとき、変位測定機器により測定記録された複数の支持機構に各々に対応して記録された時系列の相対変位を基に演算した特定支持機構に対応する演算時系列相対変位が特定支持機構について予め定められる限界相対変位を越えているか否かを判断基準として建物基礎の健全性を判定する様にしたので、発生した地震が収まったときに速やかに建物基礎の健全性を判定できる。
また、発生した地震が収まったとき、変位測定機器により測定記録された複数の支持機構に各々に対応して記録された時系列の相対変位を基に演算した特定支持機構に対応するz軸回り時系列相対変位角が特定支持機構について予め定められる限界z軸回り変位角を越えているか否かを判断基準として建物基礎の健全性を判定する様にしたので、発生した地震が収まったときに速やかに建物基礎の健全性を判定できる。
When the generated earthquake subsides, the calculated time-series relative displacement corresponding to the specific support mechanism calculated based on the time-series relative displacement recorded corresponding to each of the multiple support mechanisms measured and recorded by the displacement measuring device. Since the soundness of the building foundation is judged based on whether or not the specific support mechanism exceeds the predetermined relative displacement, the soundness of the building foundation is promptly determined when the earthquake that occurs has subsided. It can be judged.
In addition, when the generated earthquake subsides, the z-axis rotation corresponding to the specific support mechanism calculated based on the relative displacement of the time series recorded corresponding to each of the multiple support mechanisms measured and recorded by the displacement measuring device. Since the soundness of the building foundation is judged based on whether or not the time-series relative displacement angle exceeds the predetermined limit z-axis displacement angle for the specific support mechanism, when the generated earthquake subsides. The soundness of the building foundation can be determined quickly.

発生した地震が収まったとき、変位測定機器により測定記録された複数の前記支持機構のうち該特定支持機構を除く複数の支持機構に各々に対応して記録された時系列の相対変位を基に演算した特定支持機構を配される位置での演算時系列相対変位が特定支持機構について予め定められる限界相対変位を時系列の何時かの時に越えているか否かを判断基準として建物基礎の健全性を判定する様にしたので、発生した地震が収まったときに速やかに建物基礎の健全性を判定できる。
また、発生した地震が収まったとき、変位測定機器により測定記録された複数の前記支持機構のうち該特定支持機構を除く複数の支持機構に各々に対応して記録された時系列の相対変位を基に演算した特定支持機構を配される位置での演算r時系列変位が特定支持機構について予め定められる限界r軸方向変位を時系列の何時かの時に越えているか否かを判断基準として建物基礎の健全性を判定する様にしたので、発生した地震が収まったときに速やかに建物基礎の健全性を判定できる。
また、発生した地震が収まったとき、変位測定機器により測定記録された複数の前記支持機構のうち該特定支持機構を除く複数の支持機構に各々に対応して記録された時系列の相対変位を基に演算した特定支持機構を配される位置での演算x軸方向時系列変位と演算y軸方向時系列変位とが特定支持機構について予め定められる限界x軸方向変位と限界y軸方向変位とを時系列の何時かの時に越えているか否かを判断基準として建物基礎の健全性を判定する様にしたので、発生した地震が収まったときに速やかに建物基礎の健全性を判定できる。
また、発生した地震が収まったとき、変位測定機器により測定記録された複数の前記支持機構のうち該特定支持機構を除く複数の支持機構に各々に対応して記録された時系列の相対変位を基に演算した特定支持機構を配される位置での演算z軸方向時系列相対変位が特定支持機構について予め定められる限界z軸方向変位を時系列の何時かの時に越えているか否かを判断基準として建物基礎の健全性を判定する様にしたので、発生した地震が収まったときに速やかに建物基礎の健全性を判定できる。
また、特定支持機構の演算相対変位と記録相対変位の偏差発生した地震が収まったとき、変位測定機器により測定記録された複数の支持機構のうちの該特定支持機構を除く複数の支持機構に各々に対応して記録された時系列の相対変位を基に演算した該特定支持機構に対応する演算時系列相対変位と前記特定支持機構に対応する前記記録時系列相対変位との時系列の偏差の大きさを判断基準としてに前記特定支持機構の健全性を判定する様にしたので、発生した地震が収まったときに速やかに建物基礎の健全性を判定できる。
また、発生した地震が収まったとき、変位測定機器により測定記録された複数の支持機構のうちの該特定支持機構を除く複数の支持機構に各々に対応して記録された時系列の相対変位を基に演算した該特定支持機構に対応する演算x軸方向時系列相対変位とy演算y軸方向時系列相対変位と前記特定支持機構に対応する記録x軸方向時系列相対変位と記録y軸方向時系列相対変位との時系列の偏差の大きさを判断基準としてに前記特定支持機構の健全性を判定する様にしたので、発生した地震が収まったときに速やかに建物基礎の健全性を判定できる。
また、発生した地震が収まったとき、変位測定機器により測定記録された複数の支持機構のうちの該特定支持機構を除く複数の支持機構に各々に対応して記録された時系列の相対変位を基に演算した該特定支持機構に対応する前記演算z軸方向時系列相対変位と前記特定支持機構に対応する前記記録z軸方向時系列相対変位との時系列の偏差の大きさを判断基準としてに前記特定支持機構の健全性を判定する様にしたので、発生した地震が収まったときに速やかに建物基礎の健全性を判定できる。
When the generated earthquake subsides, based on the time-series relative displacement recorded correspondingly to each of the plurality of support mechanisms other than the specific support mechanism among the plurality of support mechanisms measured and recorded by the displacement measuring device. The soundness of the building foundation is based on whether or not the calculated time-series relative displacement at the position where the calculated specific support mechanism is placed exceeds the predetermined limit relative displacement for the specific support mechanism at some time in the time series. Therefore, it is possible to quickly judge the soundness of the building foundation when the earthquake that has occurred has subsided.
In addition, when the generated earthquake subsides, the relative displacement of the time series recorded corresponding to each of the plurality of support mechanisms other than the specific support mechanism among the plurality of support mechanisms measured and recorded by the displacement measuring device is recorded. Calculation based on the calculation at the position where the specific support mechanism is arranged r Time-series displacement exceeds the predetermined limit r-axis displacement for the specific support mechanism at some time in the time series. Since the soundness of the foundation is judged, the soundness of the building foundation can be quickly judged when the earthquake that has occurred has subsided.
In addition, when the generated earthquake subsides, the relative displacement of the time series recorded corresponding to each of the plurality of support mechanisms other than the specific support mechanism among the plurality of support mechanisms measured and recorded by the displacement measuring device is recorded. The calculation x-axis direction time-series displacement and the calculation y-axis direction time-series displacement at the position where the specific support mechanism calculated based on is arranged are the limit x-axis direction displacement and the limit y-axis direction displacement that are predetermined for the specific support mechanism. Since the soundness of the building foundation is judged based on whether or not the above is exceeded at some time in the time series, the soundness of the building foundation can be quickly judged when the generated earthquake subsides.
In addition, when the generated earthquake subsides, the relative displacement of the time series recorded corresponding to each of the plurality of support mechanisms other than the specific support mechanism among the plurality of support mechanisms measured and recorded by the displacement measuring device is recorded. Calculation based on the calculation at the position where the specific support mechanism is arranged Determine whether the z-axis direction time-series relative displacement exceeds the predetermined limit z-axis direction displacement for the specific support mechanism at some time in the time series. Since the soundness of the building foundation is judged as a standard, the soundness of the building foundation can be quickly judged when the earthquake that has occurred has subsided.
In addition, when the deviation between the calculated relative displacement and the recorded relative displacement of the specific support mechanism is settled, each of the multiple support mechanisms measured and recorded by the displacement measuring device, excluding the specific support mechanism, is used. Of the time-series deviation between the calculated time-series relative displacement corresponding to the specific support mechanism and the recorded time-series relative displacement corresponding to the specific support mechanism calculated based on the time-series relative displacement recorded corresponding to. Since the soundness of the specific support mechanism is judged based on the size, the soundness of the building foundation can be quickly judged when the generated earthquake subsides.
In addition, when the generated earthquake subsides, the relative displacement of the time series recorded corresponding to each of the plurality of support mechanisms other than the specific support mechanism among the plurality of support mechanisms measured and recorded by the displacement measuring device is recorded. Calculations corresponding to the specific support mechanism calculated based on x-axis direction time-series relative displacement and y calculation y-axis direction time-series relative displacement and recording x-axis direction time-series relative displacement and recording y-axis direction corresponding to the specific support mechanism Since the soundness of the specific support mechanism is judged based on the magnitude of the time-series deviation from the time-series relative displacement, the soundness of the building foundation is quickly judged when the generated earthquake subsides. can.
In addition, when the generated earthquake subsides, the relative displacement of the time series recorded corresponding to each of the plurality of support mechanisms other than the specific support mechanism among the plurality of support mechanisms measured and recorded by the displacement measuring device is recorded. Based on the magnitude of the time-series deviation between the calculated z-axis direction time-series relative displacement corresponding to the specific support mechanism and the recorded z-axis direction time-series relative displacement corresponding to the specific support mechanism as a criterion. Since the soundness of the specific support mechanism is determined, the soundness of the building foundation can be quickly determined when the generated earthquake subsides.

発生した地震が収まったとき、変位測定機器により測定記録された複数の支持機構に各々に対応して記録された時系列の相対変位を基に演算した複数の演算時系列相対変位と建物基礎の全体振動特性とから複数の建物基礎の各々毎に基礎の時系列の絶対変位を推定し、複数の建物基礎の配される地域内での基礎時系列絶対変位と建物の位置データを関連づけたデータベースを生成する様にしたので、地域内の基礎時系列絶対変位の分布を把握でき、地域での任意の位置での時系列の絶対変位を類推できるマップを得る。
また、前記時系列絶対変位マップを基に前記地域に含まれる任意の位置での基礎時系列絶対変位を類推する様にしたので、任意の位置にある建物を支持する建物基礎に作用する絶対変位を得ることができる。
また、前記任意の位置における前記基礎時系列絶対変位と前記任意の位置に配される建物基礎と建物の全体振動特性の全体振動特性とから前記任意の位置における建物と基礎との時系列の相対変位である演算時系列相対変位を求める様にしたので、
地域に含まれる任意の位置にある建物基礎の健全性を判断する材料をえることができる。
その結果、簡易な構造により基礎に配され建物を支持する複数の支持機構を有する建物基礎の管理方法と建物基礎群の管理方法とを提供できる。
When the generated earthquake subsides, multiple calculated time-series relative displacements and building foundations calculated based on the time-series relative displacements recorded corresponding to each of the multiple support mechanisms measured and recorded by the displacement measuring device. A database that estimates the absolute displacement of the foundation in time series for each of multiple building foundations from the overall vibration characteristics, and associates the absolute displacement of the foundation time series in the area where multiple building foundations are arranged with the position data of the building. Therefore, the distribution of the basic time-series absolute displacement in the area can be grasped, and a map that can infer the absolute displacement of the time-series at an arbitrary position in the area is obtained.
In addition, since the basic time-series absolute displacement at any position included in the area is estimated based on the time-series absolute displacement map, the absolute displacement acting on the building foundation that supports the building at any position. Can be obtained.
Further, from the absolute displacement of the foundation time series at the arbitrary position and the total vibration characteristics of the building foundation arranged at the arbitrary position and the total vibration characteristics of the building, the relative of the time series between the building and the foundation at the arbitrary position. Since the calculation time-series relative displacement, which is the displacement, is calculated.
It is possible to obtain materials to judge the soundness of the building foundation at any position included in the area.
As a result, it is possible to provide a management method of a building foundation having a plurality of support mechanisms arranged on the foundation and supporting the building by a simple structure and a management method of the building foundation group.

発生した地震が収まったとき、変位測定機器により測定記録された複数の支持機構に各々に対応して記録された時系列の相対変位を基に演算した複数の演算時系列相対変位と建物基礎の全体振動特性とから複数の建物基礎の各々毎に基礎の時系列の絶対変位を推定し、前記地域に含まれる任意の位置での基礎時系列絶対変位を類推する様にしたので、任意の位置にある建物を支持する建物基礎に作用する絶対変位を得ることができる。
また、前記地域に含まれる任意の位置での基礎時系列絶対変位を類推する様にしたので、任意の位置にある建物を支持する建物基礎に作用する絶対変位を得ることができる。
When the generated earthquake subsides, multiple calculated time-series relative displacements and building foundations calculated based on the time-series relative displacements recorded corresponding to each of the multiple support mechanisms measured and recorded by the displacement measuring device. The absolute displacement of the foundation in time series is estimated for each of the multiple building foundations from the overall vibration characteristics, and the absolute displacement of the foundation time series at any position included in the area is estimated. You can get the absolute displacement acting on the building foundation that supports the building in.
Further, since the absolute time-series displacement of the foundation at an arbitrary position included in the area is estimated, the absolute displacement acting on the building foundation supporting the building at an arbitrary position can be obtained.

本発明の実施形態に係る建物基礎の概念図である。It is a conceptual diagram of the building foundation which concerns on embodiment of this invention. 本発明の実施形態に係る建物基礎のA-A矢視図である。It is AA arrow view of the building foundation which concerns on embodiment of this invention. 本発明の実施形態に係る建物基礎の支持機構の概念図である。It is a conceptual diagram of the support mechanism of the building foundation which concerns on embodiment of this invention. 本発明の第一の実施形態に係る建物基礎の管理方法の手順図である。It is a procedure diagram of the management method of the building foundation which concerns on 1st Embodiment of this invention. 本発明の実施形態に係る建物基礎の支持機構のxy軸変位記録図である。It is xy-axis displacement record drawing of the support mechanism of the building foundation which concerns on embodiment of this invention. 本発明の実施形態に係る建物基礎の基礎構造のz軸変位記録図である。It is a z-axis displacement record diagram of the foundation structure of the building foundation which concerns on embodiment of this invention. 本発明の第二乃至四の実施形態に係る建物基礎の管理方法の手順図である。It is a procedure diagram of the management method of the building foundation which concerns on 2nd to 4th Embodiment of this invention. 本発明の実施形態に係る建物基礎の建物基礎の座標図である。It is a coordinate diagram of the building foundation of the building foundation which concerns on embodiment of this invention. 本発明の実施形態に係る建物基礎の建物基礎の管理システム図である。It is a management system diagram of the building foundation of the building foundation which concerns on embodiment of this invention. 本発明の第一の実施形態に係る建物基礎群の管理方法の手順図である。It is a procedure diagram of the management method of the building foundation group which concerns on 1st Embodiment of this invention. 本発明の第一の実施形態に係る建物基礎の地域の建物の座標図である。It is a coordinate diagram of the building of the area of the building foundation which concerns on the 1st Embodiment of this invention. 本発明の第一の実施形態に係る建物基礎群のモデル概念図である。It is a model conceptual diagram of the building foundation group which concerns on 1st Embodiment of this invention. 本発明の第一の実施形態に係る建物基礎群のマップ概念図である。It is a map conceptual diagram of a building foundation group which concerns on 1st Embodiment of this invention. 本発明の第一の実施形態に係る建物基礎群の管理システム図である。It is a management system diagram of the building foundation group which concerns on 1st Embodiment of this invention. 本発明の第二の実施形態に係る建物基礎群の管理方法の手順図である。It is a procedure diagram of the management method of the building foundation group which concerns on the 2nd Embodiment of this invention. 本発明の第二の実施形態に係る建物基礎群の管理システム図である。It is a management system diagram of the building foundation group which concerns on the 2nd Embodiment of this invention. 本発明の第三の実施形態に係る建物基礎群の管理システム図である。It is a management system diagram of the building foundation group which concerns on the 3rd Embodiment of this invention.

以下、本発明を実施するための最良の形態を、図面を参照して説明する。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.

本発明の実施形態に係る建物基礎は、基礎Bに配され建物を支持する複数の支持機構を有する。
例えば、本発明の実施形態に係る建物基礎は、基礎Bに配され建物を支持する複数の免震機能付き支持機構を有する。
図1は、本発明の実施形態に係る建物基礎の概念図である。図2は、本発明の実施形態に係る建物基礎のA-A矢視図である。図3は、本発明の実施形態に係る建物基礎の支持機構の概念図である。
建物Oは、複数の柱(図示せず)と複数の梁(図示せず)とで構成されてももよい。
建物Oは、複数の柱(図示せず)と複数の梁(図示せず)と複数のスラブ床(図示せず)とで構成されてももよい。
柱の下部は、後述する上部基礎構造9tの上部に固定される。
例えば、柱の鉄筋は上部基礎構造9tの上部の鉄筋に繋がる。
梁は、隣り合った柱を繋ぐ。
The building foundation according to the embodiment of the present invention has a plurality of support mechanisms arranged on the foundation B to support the building.
For example, the building foundation according to the embodiment of the present invention has a plurality of support mechanisms with seismic isolation functions arranged on the foundation B to support the building.
FIG. 1 is a conceptual diagram of a building foundation according to an embodiment of the present invention. FIG. 2 is an arrow view of the building foundation according to the embodiment of the present invention. FIG. 3 is a conceptual diagram of a building foundation support mechanism according to an embodiment of the present invention.
The building O may be composed of a plurality of columns (not shown) and a plurality of beams (not shown).
The building O may be composed of a plurality of columns (not shown), a plurality of beams (not shown), and a plurality of slab floors (not shown).
The lower part of the pillar is fixed to the upper part of the upper foundation structure 9t described later.
For example, the reinforcing bar of the column is connected to the reinforcing bar of the upper part of the upper foundation structure 9t.
Beams connect adjacent columns.

建物基礎Mは、基礎Bに配される。
建物基礎Mは、建物Oを支持する複数の支持機構1を有する。
支持機構1は、下部基礎構造9bに固定される。
下部基礎構造9bは、基礎杭Tの頭頂に固定される。
The building foundation M is arranged on the foundation B.
The building foundation M has a plurality of support mechanisms 1 that support the building O.
The support mechanism 1 is fixed to the lower foundation structure 9b.
The lower foundation structure 9b is fixed to the top of the foundation pile T.

支持機構1は、上部基礎構造9tと下部基礎構造9bとの間に配されて建物し支持する機構である。
支持機構1の形式には、積層ゴム支承1Aと転がり滑り支承1Bと剛すべり支承1C等、がある。
図2には、積層ゴム支承1Aと転がり滑り支承1Bと剛すべり支承1Cとダンパー1Dとが下部基礎構造9bと上部基礎構造9tとの間に、配される様子が示される。
The support mechanism 1 is a mechanism that is arranged between the upper foundation structure 9t and the lower foundation structure 9b to build and support.
Types of the support mechanism 1 include laminated rubber bearings 1A, rolling slide bearings 1B, rigid sliding bearings 1C, and the like.
FIG. 2 shows how the laminated rubber bearing 1A, the rolling slip bearing 1B, the rigid sliding bearing 1C, and the damper 1D are arranged between the lower foundation structure 9b and the upper foundation structure 9t.

積層ゴム支承1Aは、上下一対の取付フランジの間に積層された複数のゴム板を挟んだ支承構造をもつ。
積層ゴム支承1Aは、上下一対の取付フランジの間に交互に積層された複数のゴム板と複数の金属板とを挟んだ支承構造をもつ。
The laminated rubber bearing 1A has a bearing structure in which a plurality of laminated rubber plates are sandwiched between a pair of upper and lower mounting flanges.
The laminated rubber bearing 1A has a bearing structure in which a plurality of rubber plates alternately laminated between a pair of upper and lower mounting flanges and a plurality of metal plates are sandwiched between them.

転がり滑り支承1Bは、上下一対の取付フランジを球軸受け等の転がり機構によりに水平方向に相対移動できる支承構造をもつ。 The rolling and sliding bearing 1B has a bearing structure in which a pair of upper and lower mounting flanges can be relatively moved in the horizontal direction by a rolling mechanism such as a ball bearing.

剛すべり支承1Cは、上下一対の取付フランジを滑りにより水平方向に相対移動できる支承構造をもつ。 The rigid sliding bearing 1C has a bearing structure that can move a pair of upper and lower mounting flanges in a horizontal direction by sliding.

ダンパ1Dは、下部基礎構造9bと上部基礎構造9tとの水平方向の相対移動に対応して減衰力を発生させる構造をもつ。 The damper 1D has a structure that generates a damping force corresponding to the horizontal relative movement between the lower foundation structure 9b and the upper foundation structure 9t.

複数の支持機構1のうちのいくつかの支持機構1は、後述する変位測定機器を構成するセンサシステム2を組み込まれる。
複数の支持機構1の全ての支持機構1が、後述する変位測定機器を構成するセンサシステム2を組み込まれてもよい。
以下に、センサシステム2を組み込まれた支持機構1の具体的な構造を、図を基に説明する。
説明の便宜上、リニアレールをもちいた転がり滑り支承1Bに変位測定機器を構成するセンサシステム2を組み込まれた構造を例に説明する。
リニアブロック11は、内部に組み込まれた循環できる複数の球体をリニアレール12の表面に形成された案内溝を案内される様に転がして、小さい転がり抵抗を発生させてリニアレール12の長手方向に移動できる構造をもつ。
Some of the support mechanisms 1 among the plurality of support mechanisms 1 incorporate a sensor system 2 that constitutes a displacement measuring device described later.
All the support mechanisms 1 of the plurality of support mechanisms 1 may incorporate the sensor system 2 constituting the displacement measuring device described later.
Hereinafter, the specific structure of the support mechanism 1 incorporating the sensor system 2 will be described with reference to the drawings.
For convenience of explanation, a structure in which a sensor system 2 constituting a displacement measuring device is incorporated in a rolling slip bearing 1B using a linear rail will be described as an example.
The linear block 11 rolls a plurality of circulatory spheres incorporated therein so as to be guided by a guide groove formed on the surface of the linear rail 12, and generates a small rolling resistance in the longitudinal direction of the linear rail 12. It has a movable structure.

図3に、上部リニアブロック11tと下部リニアブロック11bと上部リニアレール12tと下部リニアレール12bと上部フランジプレート13tと下部フランジプレート13bとゴムシム14とx軸方向変位センサ15xとy軸方向変位センサ15yとターゲット16とz軸方向変位センサ17とタグ18と温湿度センサ19とルータ20と周辺機器21とで構成される転がり滑り支承1Bが上部基礎構造9tと下部基礎構造9bとの間に配される様子が示される。
上部リニアレール12tは上部基礎構造9tに上部フランジプレート13tを介して固定され長手方向をX軸方向に延ばすリニアレールである。
上部リニアブロック11tは上部リニアレール12tに長手方向に移動自在に案内されるリニアブロックである。
下部リニアレール12bは下部基礎構造9bに下部フランジプレート13bを介して固定され長手方向をY軸方向に延ばすリニアレールである。
下部リニアブロック11bは下部リニアレール12bに長手方向に移動自在に案内されるリニアブロックである。
ゴムシム14は、上部リニアブロック11tと下部リニアブロック11bとの間に挟まれる弾性のある部材である。例えば、ゴムシム14はゴム製の部材である。
上から見て、上部リニアブロック11tと下部リニアブロック11bとがZ軸回りに相対変位すると、ゴムシム14が撓む。
In FIG. 3, the upper linear block 11t, the lower linear block 11b, the upper linear rail 12t, the lower linear rail 12b, the upper flange plate 13t, the lower flange plate 13b, the rubber shim 14, the x-axis displacement sensor 15x, and the y-axis displacement sensor 15y are shown. A rolling slip support 1B composed of a target 16, a z-axis displacement sensor 17, a tag 18, a temperature / humidity sensor 19, a router 20, and a peripheral device 21 is arranged between the upper foundation structure 9t and the lower foundation structure 9b. The state is shown.
The upper linear rail 12t is a linear rail that is fixed to the upper foundation structure 9t via an upper flange plate 13t and extends in the longitudinal direction in the X-axis direction.
The upper linear block 11t is a linear block that is movably guided in the longitudinal direction by the upper linear rail 12t.
The lower linear rail 12b is a linear rail that is fixed to the lower foundation structure 9b via the lower flange plate 13b and extends in the longitudinal direction in the Y-axis direction.
The lower linear block 11b is a linear block that is movably guided in the longitudinal direction by the lower linear rail 12b.
The rubber shim 14 is an elastic member sandwiched between the upper linear block 11t and the lower linear block 11b. For example, the rubber shim 14 is a rubber member.
When the upper linear block 11t and the lower linear block 11b are relatively displaced around the Z axis when viewed from above, the rubber shim 14 bends.

以下に、転がり滑り支承1Bに組み込んだセンサシステム2の構造を詳述する。
センサシステム2は、x軸方向変位センサ15xとy軸方向変位センサ15yとターゲット16とz軸方向変位センサ17とで構成される。
x軸方向変位センサ15xは、建物Oと基礎Bとのx軸方向の相対変位を測定する電子機器である。
例えば、x軸方向変位センサ15xは、上部リニアブック11tに固定される超音波式測距センサである。x軸方向変位センサ15xは、上部リニアレール12tに固定されたターゲット16との離間距離を測定する。
The structure of the sensor system 2 incorporated in the rolling slip bearing 1B will be described in detail below.
The sensor system 2 includes a displacement sensor 15x in the x-axis direction, a displacement sensor 15y in the y-axis direction, a target 16, and a displacement sensor 17 in the z-axis direction.
The x-axis direction displacement sensor 15x is an electronic device that measures the relative displacement of the building O and the foundation B in the x-axis direction.
For example, the displacement sensor 15x in the x-axis direction is an ultrasonic distance measuring sensor fixed to the upper linear book 11t. The displacement sensor 15x in the x-axis direction measures the distance from the target 16 fixed to the upper linear rail 12t.

y軸方向変位センサ15yは、建物Oと基礎とのy軸方向の相対変位を測定する電子機器である。
例えば、y軸方向変位センサ15yは、下部リニアブック11bに固定される超音波式測距センサである。y軸方向変位センサ15yは、下部リニアレール12bに固定されたターゲット16との離間距離を測定する。
The y-axis direction displacement sensor 15y is an electronic device that measures the relative displacement of the building O and the foundation in the y-axis direction.
For example, the y-axis direction displacement sensor 15y is an ultrasonic distance measuring sensor fixed to the lower linear book 11b. The y-axis direction displacement sensor 15y measures the distance from the target 16 fixed to the lower linear rail 12b.

z軸方向変位センサ17は、建物Oと基礎Bとのz軸方向の相対変位を測定する電子機器である。
例えば、z軸方向変位センサ17が下部フランジプレート13bまたは上部フランジプレート13tの一方に固定され、下部フランジプレート13bまたは上部フランジプレート13tの他方との離間距離を測定する。
The z-axis direction displacement sensor 17 is an electronic device that measures the relative displacement of the building O and the foundation B in the z-axis direction.
For example, the z-axis direction displacement sensor 17 is fixed to one of the lower flange plate 13b or the upper flange plate 13t, and measures the separation distance of the lower flange plate 13b or the upper flange plate 13t from the other.

タグ18は、対応する支持機構1を識別するための機器である。
例えば、タグ18は固定される支持機構1を識別するための識別コードが付与されている。
タグ18は、支持機構1を構成するリニアレール、リニアブロック、結合部材の各々に固定され、リニアレール、リニアブロック、結合部材を各々に識別する識別コードが付与されていてもよい。
タグ18は、製造工程上での材料証明書(例えば、ミルシート)、寸法検査記録データが記録されていてもよい。
後述するWiFi機能付きマイコンは、識別コードと測定した相対変位とを関連づける。
The tag 18 is a device for identifying the corresponding support mechanism 1.
For example, the tag 18 is provided with an identification code for identifying the support mechanism 1 to be fixed.
The tag 18 may be fixed to each of the linear rail, the linear block, and the coupling member constituting the support mechanism 1, and may be given an identification code for identifying each of the linear rail, the linear block, and the coupling member.
The tag 18 may record a material certificate (for example, a mill sheet) and dimensional inspection record data in the manufacturing process.
The microcomputer with a WiFi function, which will be described later, associates the identification code with the measured relative displacement.

センサ19は、支持機構1の雰囲気の温湿度を検知する温湿度センサである。
ルータ20は、後述する建物基礎Mの管理のためのシステムと通信をするための通信機器である。
センサ19は、発電機能をもっていてもよい。
センサ19は、蓄電機能をもっていてもよい。
センサ19は、送電機能をもっていてもよい。
例えば、センサ19は、熱電対素子を内蔵し、建物基礎Mに発生する熱エネルギーを電力に変換する。
例えば、センサ19は、圧電素子を内蔵し、建物基礎Mに生じる歪みを電力に変換する。
The sensor 19 is a temperature / humidity sensor that detects the temperature / humidity of the atmosphere of the support mechanism 1.
The router 20 is a communication device for communicating with a system for managing the building foundation M, which will be described later.
The sensor 19 may have a power generation function.
The sensor 19 may have a storage function.
The sensor 19 may have a power transmission function.
For example, the sensor 19 has a built-in thermocouple element and converts the thermal energy generated in the building foundation M into electric power.
For example, the sensor 19 has a built-in piezoelectric element and converts the distortion generated in the building foundation M into electric power.

以下に、本発明の第一の実施形態にかかる建物基礎の管理方法を、図を基に、説明する。
本発明の第一の実施形態にかかる建物基礎の管理方法は、支持機構1と地盤との相対変位から建物基礎との相対変位を求め、相対変位を基に建物基礎の健全性を判定する方法である。
図4は、本発明の第一の実施形態に係る建物基礎の管理方法の手順図である。
Hereinafter, the method of managing the building foundation according to the first embodiment of the present invention will be described with reference to the drawings.
The method for managing a building foundation according to the first embodiment of the present invention is a method of obtaining a relative displacement with a building foundation from the relative displacement between the support mechanism 1 and the ground, and determining the soundness of the building foundation based on the relative displacement. Is.
FIG. 4 is a procedural diagram of a building foundation management method according to the first embodiment of the present invention.

本発明の第一の実施形態に係る建物基礎の管理方法は、準備工程S10と演算工程S20と判定工程S30とで構成される。
本発明の第一の実施形態に係る建物基礎の管理方法は、準備工程S10と演算工程S20と判定工程S30と検査工程S40とで構成されてもよい。
The building foundation management method according to the first embodiment of the present invention includes a preparation step S10, a calculation step S20, and a determination step S30.
The building foundation management method according to the first embodiment of the present invention may be composed of a preparation step S10, a calculation step S20, a determination step S30, and an inspection step S40.

準備工程S10は、変位測定機器2を準備する工程である。
変位測定機器は、複数の支持機構1の配される位置での基礎Bと建物Oとの間の時系列の相対変位を複数の支持機構1に各々に対応する記録時系列相対変位として測定記録する機器である。
変位測定機器は、複数の支持機構1のうちのいくつかの支持機構1の配される位置での基礎Bと建物Oとの間の時系列の相対変位を複数の支持機構1に各々に対応する記録時系列相対変位として測定記録してもよい。
変位測定機器は、複数の支持機構1の全ての支持機構1の配される位置での基礎Bと建物Oとの間の時系列の相対変位を複数の支持機構1に各々に対応する記録時系列相対変位として測定記録してもよい。
変位測定機器は、地震が発生したとき複数の支持機構1の配される位置での基礎Bと建物Oとの間の時系列の相対変位を複数の支持機構1に各々に対応する記録時系列相対変位として測定記録してもよい。
変位測定機器は、複数の支持機構1の配される位置での基礎Bに結合する支持機構1の結合箇所と建物に結合する支持機構1の結合箇所との間の時系列の相対変位を複数の支持機構1に各々に対応する記録時系列相対変位として測定記録してもよい。
変位測定機器の詳細な事例は、支持機構1の詳細事例の説明のなかで説明する。
The preparation step S10 is a step of preparing the displacement measuring device 2.
The displacement measuring device measures and records the time-series relative displacement between the foundation B and the building O at the position where the plurality of support mechanisms 1 are arranged as the recording time-series relative displacement corresponding to each of the plurality of support mechanisms 1. It is a device to be displaced.
The displacement measuring device corresponds to each of the plurality of support mechanisms 1 with a time-series relative displacement between the foundation B and the building O at the position where some of the support mechanisms 1 are arranged. The measurement may be recorded as a time-series relative displacement.
The displacement measuring device records the relative displacement of the time series between the foundation B and the building O at the positions where all the support mechanisms 1 of the plurality of support mechanisms 1 are arranged, corresponding to each of the plurality of support mechanisms 1. It may be measured and recorded as a series relative displacement.
The displacement measuring device records the relative displacement of the time series between the foundation B and the building O at the positions where the plurality of support mechanisms 1 are arranged when an earthquake occurs, in a time series corresponding to each of the plurality of support mechanisms 1. It may be measured and recorded as a relative displacement.
The displacement measuring device has a plurality of time-series relative displacements between the connection point of the support mechanism 1 connected to the foundation B and the connection point of the support mechanism 1 connected to the building at the positions where the plurality of support mechanisms 1 are arranged. It may be measured and recorded as a recording time-series relative displacement corresponding to each of the support mechanisms 1 of the above.
A detailed example of the displacement measuring device will be described in the description of the detailed example of the support mechanism 1.

演算工程S20は、複数の支持機構1に各々に対応する記録時系列相対変位を基に演算して建物Oと基礎Bとの時系列の相対変位である演算時系列相対変位を求める工程である。
演算工程S20は、発生した地震が収まったとき、複数の支持機構1に各々に対応する記録時系列相対変位を基に演算して建物Oと基礎Bとの時系列の相対変位である演算時系列相対変位を求めてもよい。
演算工程S20は、発生した地震が収まったとき、複数の支持機構1に各々に対応する地震が発生した時から収まった時までの記録時系列相対変位を基に演算して建物Oと基礎Bとの時系列の相対変位である演算時系列相対変位を求めてもよい。
例えば、演算工程S20は、建物Oと基礎Bとが剛体であると仮定して、複数の支持機構1に各々に対応する記録時系列相対変位を基に演算して建物Oと基礎Bとの時系列の相対変位である演算時系列相対変位を求めてもよい。
例えば、演算工程S20は、建物Oと基礎Bとが所定の剛性をもつ固体であると仮定して、複数の支持機構1に各々に対応する記録時系列相対変位を基に演算して建物Oと基礎Bとの時系列の相対変位である演算時系列相対変位を求めてもよい。
例えば、演算工程S20は、建物Oと基礎Bとが所定のバネ剛性をもつ固体であると仮定して、複数の支持機構1に各々に対応する記録時系列相対変位を基に演算して建物Oと基礎Bとの時系列の相対変位である演算時系列相対変位を求めてもよい。
The calculation step S20 is a step of calculating based on the recorded time-series relative displacement corresponding to each of the plurality of support mechanisms 1 to obtain the calculation time-series relative displacement which is the time-series relative displacement between the building O and the foundation B. ..
In the calculation step S20, when the generated earthquake is settled, the calculation is performed based on the recorded time-series relative displacement corresponding to each of the plurality of support mechanisms 1, and the calculation time is the time-series relative displacement between the building O and the foundation B. The series relative displacement may be obtained.
In the calculation step S20, when the generated earthquake is settled, the building O and the foundation B are calculated based on the recorded time-series relative displacements from the time when the earthquake corresponding to each of the plurality of support mechanisms 1 is generated to the time when the earthquake is settled. The operation time-series relative displacement, which is the time-series relative displacement with and from, may be obtained.
For example, in the calculation step S20, assuming that the building O and the foundation B are rigid bodies, the calculation step S20 calculates based on the recorded time-series relative displacement corresponding to each of the plurality of support mechanisms 1, and the building O and the foundation B are calculated. The operation time-series relative displacement, which is a time-series relative displacement, may be obtained.
For example, in the calculation step S20, assuming that the building O and the foundation B are solids having predetermined rigidity, the calculation step S20 calculates the building O based on the recorded time-series relative displacement corresponding to each of the plurality of support mechanisms 1. The calculated time-series relative displacement, which is the time-series relative displacement between the and the foundation B, may be obtained.
For example, in the calculation step S20, assuming that the building O and the foundation B are solids having predetermined spring rigidity, the calculation step S20 calculates the building based on the recorded time-series relative displacement corresponding to each of the plurality of support mechanisms 1. The calculated time-series relative displacement, which is the time-series relative displacement between O and the foundation B, may be obtained.

判定工程S30は、演算時系列相対変位が建物について予め定められる限界相対変位を時系列の何時かの時に越えているか否かを判断基準として建物基礎Mの健全性を判定する工程である。
判定工程S30は、演算時系列相対変位が建物について予め定められる限界相対変位を同一軸方向毎または同一軸周り毎に時系列の何時かの時に越えているか否かを判断基準として建物基礎Mの健全性を判定する工程である。
演算時系列相対変位が建物について予め定められる限界相対変位を同一軸方向毎または同一軸周り毎に時系列の何時かの時に越えているとき、建物基礎Mの健全性を疑う。
限界相対変位は、その様な相対変位が発生したとき、建物基礎Mの健全性が疑われる場合の相対変位である。
例えば、限界相対変位は、設計上の許容相対変位である。
例えば、限界相対変位は、公的な設計基準に基づき設計したときの許容相対変位である。
The determination step S30 is a step of determining the soundness of the building foundation M based on whether or not the calculated time-series relative displacement exceeds the limit relative displacement predetermined for the building at some time in the time series.
In the determination step S30, whether or not the calculated time-series relative displacement exceeds the predetermined limit relative displacement for the building at any time in the time series for each of the same axial directions or for each of the same axes is used as a determination criterion for the building foundation M. This is the process of determining the soundness.
The soundness of the building foundation M is suspected when the calculated time-series relative displacement exceeds the predetermined limit relative displacement for the building at some time in the time series for each axis direction or for each axis.
The limit relative displacement is a relative displacement when the soundness of the building foundation M is suspected when such a relative displacement occurs.
For example, the limit relative displacement is a design permissible relative displacement.
For example, the limit relative displacement is the permissible relative displacement when designed based on public design standards.

検査工程S40は、建物基礎Mの健全性が疑われるとき、建物基礎Mを目視検査する工程である。
建物基礎Mの複数の支持機構1の損傷の有無を目視検査する。
例えば、建物基礎Mの複数の支持機構1の損傷の有無を直接に目視検査する。
例えば、建物基礎Mの複数の支持機構1の映像を端末に送信し、端末の画面により建物基礎Mの複数の支持機構1の損傷の有無を間接に目視検査する。
The inspection step S40 is a step of visually inspecting the building foundation M when the soundness of the building foundation M is suspected.
Visually inspect the building foundation M for damage to the plurality of support mechanisms 1.
For example, the presence or absence of damage to the plurality of support mechanisms 1 of the building foundation M is directly inspected.
For example, the images of the plurality of support mechanisms 1 of the building foundation M are transmitted to the terminal, and the presence or absence of damage to the plurality of support mechanisms 1 of the building foundation M is indirectly visually inspected on the screen of the terminal.

以下で、本発明の第一の実施形態に係る建物基礎の管理方法における相対変位の具体的な実施形態を説明する。
以下では、説明の便宜上、水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、垂直方向の軸の回りをz軸回りまたはZ軸回りと定義する。
X軸、Y軸、Z軸は、建物Oに対応する座標である。
x軸、y軸、z軸は、各々の支持機構1に対応する座標である。
Hereinafter, a specific embodiment of the relative displacement in the building foundation management method according to the first embodiment of the present invention will be described.
In the following, for convenience of explanation, axes orthogonal to each other in the horizontal plane are x-axis or X-axis, y-axis or Y-axis, vertical axis is z-axis or Z-axis, and vertical axis is z-axis or It is defined as around the Z axis.
The X-axis, Y-axis, and Z-axis are coordinates corresponding to the building O.
The x-axis, y-axis, and z-axis are coordinates corresponding to the respective support mechanisms 1.

最初に、本発明の第一の実施形態に係る建物基礎の管理方法における相対変位の具体的な実施形態その1を説明する。
記録時系列相対変位は、対応する支持機構1の配される位置でのx軸方向の時系列の相対変位であるx軸方向時系列変位とy軸方向の時系列の相対変位であるy軸方向時系列変位とであり、
演算時系列相対変位は、X軸方向の時系列の相対変位である演算X軸方向時系列変位とY軸方向の時系列の相対変位である演算Y軸方向時系列変位との対応する極座標系での半径方向の変位である演算R軸方向時系列変位であり、
限界相対変位は、極座標系での半径方向の限界変位である限界R軸方向変位である。
図5に、XY座標に表された限界R軸方向変位Rmaxが示される。
First, a specific embodiment 1 of relative displacement in the building foundation management method according to the first embodiment of the present invention will be described.
The recorded time-series relative displacements are the x-axis direction time-series displacement, which is the x-axis direction relative displacement at the position where the corresponding support mechanism 1 is arranged, and the y-axis, which is the y-axis direction time-series relative displacement. It is a directional time-series displacement.
The calculated time-series relative displacement is the corresponding polar coordinate system of the calculated X-axis direction time-series displacement, which is the time-series relative displacement in the X-axis direction, and the calculated Y-axis direction time-series displacement, which is the Y-axis direction time-series relative displacement. It is a calculated R-axis time-series displacement, which is the displacement in the radial direction in.
The limit relative displacement is a limit R-axis displacement, which is a radial limit displacement in a polar coordinate system.
FIG. 5 shows the limit R-axis displacement Rmax represented by the XY coordinates.

次に、本発明の第一の実施形態に係る建物基礎の管理方法における相対変位の具体的な実施形態その2を説明する。
記録時系列相対変位は、対応する支持機構1の配される位置でのx軸方向の時系列の相対変位であるx軸方向時系列変位とy軸方向の時系列の相対変位であるy軸方向時系列変位とである。
演算時系列相対変位は、X軸方向の時系列の相対変位である演算X軸方向時系列変位とY軸方向の時系列の相対変位である演算Y軸方向時系列変位であり、
限界相対変位はX軸方向の限界変位である限界X軸方向変位とY軸方向の限界変位である限界X軸方向変位とである。
図5に、XY座標に表された限界X軸方向変位Xmaxと限界X軸方向変位Ymaxが示される。
Next, a specific embodiment 2 of the relative displacement in the building foundation management method according to the first embodiment of the present invention will be described.
The recorded time-series relative displacements are the x-axis direction time-series displacement, which is the x-axis direction relative displacement at the position where the corresponding support mechanism 1 is arranged, and the y-axis, which is the y-axis direction time-series relative displacement. It is a directional time-series displacement.
The calculated time-series relative displacement is the calculated Y-axis direction time-series displacement, which is the calculated X-axis direction time-series displacement and the Y-axis direction time-series relative displacement.
The limit relative displacement is a limit X-axis displacement, which is a limit displacement in the X-axis direction, and a limit X-axis direction displacement, which is a limit displacement in the Y-axis direction.
FIG. 5 shows the limit X-axis displacement Xmax and the limit X-axis displacement Ymax expressed in XY coordinates.

次に、本発明の第一の実施形態に係る建物基礎の管理方法における相対変位の具体的な実施形態その3を説明する。
記録時系列相対変位は、対応する支持機構1の配される位置でのx軸方向の時系列相対変位であるx軸方向時系列変位とy軸方向の時系列相対変位であるy軸方向時系列変位とであり、
演算時系列相対変位は、Z軸回りの時系列相対変位角である演算Z軸回り時系列相対変位角である。
限界相対変位は、Z軸回りの限界相対変位角である限界Z軸回り変位角である。
Next, a specific embodiment 3 of the relative displacement in the building foundation management method according to the first embodiment of the present invention will be described.
The recorded time-series relative displacements are the x-axis direction time-series displacement, which is the x-axis direction time-series relative displacement at the position where the corresponding support mechanism 1 is arranged, and the y-axis direction, which is the y-axis direction time-series relative displacement. It is a series displacement,
The calculated time-series relative displacement is a time-series relative displacement angle around the Z-axis, which is a time-series relative displacement angle around the Z-axis.
The limit relative displacement is a limit Z-axis displacement angle which is a limit relative displacement angle around the Z axis.

次に、本発明の第一の実施形態に係る建物基礎の管理方法における相対変位の具体的な実施形態その4を説明する。
記録時系列相対変位は、対応する支持機構1の配される位置でのz軸方向の時系列の相対変位であるz軸方向時系列相対変位であり、
演算時系列相対変位は、Z軸方向の時系列の相対変位である演算Z軸方向時系列相対変位であり、
限界相対変位はZ軸方向の限界相対変位である限界Z軸方向変位である。
例えば、限界Z軸方向変位は、予め実験で得たZ軸方向変位とZ軸方向荷重との関係を用いて限界Z軸方向荷重から決定してもよい。
図6に、Z軸方向変位とZ軸方向荷重の関係を表すグラフに、限界Z軸方向変位δmaxが示される。
Next, a specific embodiment 4 of the relative displacement in the building foundation management method according to the first embodiment of the present invention will be described.
The recording time-series relative displacement is a z-axis direction time-series relative displacement, which is a z-axis direction time-series relative displacement at the position where the corresponding support mechanism 1 is arranged.
The calculated time-series relative displacement is a calculated Z-axis direction time-series relative displacement, which is a Z-axis direction time-series relative displacement.
The limit relative displacement is the limit Z-axis direction displacement, which is the limit relative displacement in the Z-axis direction.
For example, the limit Z-axis displacement may be determined from the limit Z-axis load using the relationship between the Z-axis displacement and the Z-axis load obtained in advance in an experiment.
FIG. 6 shows the limit Z-axis displacement δmax in the graph showing the relationship between the Z-axis displacement and the Z-axis load.

以下に、本発明の第二の実施形態にかかる建物基礎の管理方法を、図を基に、説明する。
本発明の第二の実施形態にかかる建物基礎Mの管理方法は、複数の支持機構1の相対変位から演算してえた特定の支持機構1の相対変位を限界相対と比較して、特定の支持機構1の健全性を判定する点に特徴のある方法である。
図7は、本発明の第二乃至四の実施形態に係る建物基礎の管理方法の手順図である。
Hereinafter, the method of managing the building foundation according to the second embodiment of the present invention will be described with reference to the drawings.
In the management method of the building foundation M according to the second embodiment of the present invention, the relative displacement of the specific support mechanism 1 calculated from the relative displacements of the plurality of support mechanisms 1 is compared with the limit relative to the specific support. This method is characterized in that the soundness of the mechanism 1 is determined.
FIG. 7 is a procedural diagram of a building foundation management method according to the second to fourth embodiments of the present invention.

本発明の第二の実施形態に係る建物基礎の管理方法は、準備工程S10と演算工程S20と判定工程S30とで構成される。
本発明の第二の実施形態に係る建物基礎の管理方法は、準備工程S10と演算工程S20と判定工程S30と検査工程S40とで構成されてもよい。
The building foundation management method according to the second embodiment of the present invention includes a preparation step S10, a calculation step S20, and a determination step S30.
The building foundation management method according to the second embodiment of the present invention may be composed of a preparation step S10, a calculation step S20, a determination step S30, and an inspection step S40.

準備工程S10は、変位測定機器を準備する工程である。
変位測定機器は、複数の支持機構1の配される位置での基礎Bと建物Oとの間の時系列の相対変位を複数の支持機構1に各々に対応する記録時系列相対変位として測定記録する。
変位測定機器は、地震が発生したとき複数の支持機構1の配される位置での基礎Bと建物Oとの間の時系列の相対変位を複数の支持機構1に各々に対応する記録時系列相対変位として測定記録してもよい。
変位測定機器は、地震が発生したとき複数の支持機構1の配される位置での基礎Bに結合する支持機構1の結合箇所と建物Oに結合する支持機構1の結合箇所との間の時系列の相対変位を複数の支持機構1に各々に対応する記録時系列相対変位として測定記録してもよい。
The preparation step S10 is a step of preparing a displacement measuring device.
The displacement measuring device measures and records the time-series relative displacement between the foundation B and the building O at the position where the plurality of support mechanisms 1 are arranged as the recording time-series relative displacement corresponding to each of the plurality of support mechanisms 1. do.
The displacement measuring device records the relative displacement of the time series between the foundation B and the building O at the positions where the plurality of support mechanisms 1 are arranged when an earthquake occurs, in a time series corresponding to each of the plurality of support mechanisms 1. It may be measured and recorded as a relative displacement.
The displacement measuring device is used when an earthquake occurs between the connection point of the support mechanism 1 that is connected to the foundation B at the position where the plurality of support mechanisms 1 are arranged and the connection point of the support mechanism 1 that is connected to the building O. The relative displacement of the series may be measured and recorded as the recording time-series relative displacement corresponding to each of the plurality of support mechanisms 1.

演算工程S20は、複数の支持機構1のうちの特定の一つの支持機構1である特定支持機構1を定め、複数の支持機構1に各々に対応する記録時系列相対変位を基に演算して、特定支持機構1の配される位置での基礎Bと建物Oとの相対変位である時系列相対変位を特定支持機構1に対応する演算時系列相対変位として求める工程である。
演算工程S20は、発生した地震が収まったとき、複数の支持機構1のうちの特定の一つの支持機構1である特定支持機構1を定め、複数の支持機構1に各々に対応する記録時系列相対変位を基に演算して、特定支持機構1の配される位置での基礎Bと建物Oとの相対変位である時系列相対変位を特定支持機構1に対応する演算時系列相対変位として求めてもよい。
演算工程S20は、発生した地震が収まったとき、複数の支持機構1のうちの特定の一つの支持機構1である特定支持機構1を定め、複数の支持機構1に各々に対応する地震が発生した時から収まった時までの記録時系列相対変位を基に演算して、特定支持機構1の配される位置での基礎Bと建物Oとの相対変位である時系列相対変位を特定支持機構1に対応する演算時系列相対変位として求めてもよい。。
例えば、演算工程S20は、発生した地震が収まったとき、建物Oと基礎Bとが剛体であると仮定して、複数の支持機構1のうちの特定の一つの支持機構1である特定支持機構1を定め、複数の支持機構1に各々に対応する記録時系列相対変位を基に演算して、特定支持機構1の配される位置での基礎Bと建物Oとの相対変位である時系列相対変位を特定支持機構1に対応する演算時系列相対変位として求めてもよい。
例えば、演算工程S20は、発生した地震が収まったとき、建物Oと基礎Bとが所定の剛性をもつ固体であると仮定して、複数の支持機構1のうちの特定の一つの支持機構1である特定支持機構1を定め、複数の支持機構1に各々に対応する記録時系列相対変位を基に演算して、特定支持機構1の配される位置での基礎Bと建物Oとの相対変位である時系列相対変位を特定支持機構1に対応する演算時系列相対変位として求めてもよい。
In the calculation step S20, the specific support mechanism 1 which is a specific support mechanism 1 among the plurality of support mechanisms 1 is determined, and the calculation is performed based on the recorded time-series relative displacement corresponding to each of the plurality of support mechanisms 1. This is a step of obtaining the time-series relative displacement, which is the relative displacement between the foundation B and the building O at the position where the specific support mechanism 1 is arranged, as the calculated time-series relative displacement corresponding to the specific support mechanism 1.
In the calculation step S20, when the generated earthquake is settled, the specific support mechanism 1 which is a specific support mechanism 1 among the plurality of support mechanisms 1 is determined, and the recording time series corresponding to each of the plurality of support mechanisms 1 is recorded. Calculated based on the relative displacement, the time-series relative displacement, which is the relative displacement between the foundation B and the building O at the position where the specific support mechanism 1 is arranged, is obtained as the calculated time-series relative displacement corresponding to the specific support mechanism 1. You may.
In the calculation step S20, when the generated earthquake is settled, a specific support mechanism 1 which is a specific support mechanism 1 among the plurality of support mechanisms 1 is determined, and an earthquake corresponding to each of the plurality of support mechanisms 1 is generated. The time-series relative displacement, which is the relative displacement between the foundation B and the building O at the position where the specific support mechanism 1 is arranged, is calculated based on the recorded time-series relative displacement from the time when it is set to the time when it is settled. It may be obtained as a calculated time-series relative displacement corresponding to 1. ..
For example, in the calculation step S20, when the generated earthquake is settled, it is assumed that the building O and the foundation B are rigid bodies, and the specific support mechanism 1 is a specific one of the plurality of support mechanisms 1. 1 is determined and calculated based on the recorded time-series relative displacement corresponding to each of the plurality of support mechanisms 1, and the time-series is the relative displacement between the foundation B and the building O at the position where the specific support mechanism 1 is arranged. The relative displacement may be obtained as the calculated time-series relative displacement corresponding to the specific support mechanism 1.
For example, in the calculation step S20, when the generated earthquake is settled, it is assumed that the building O and the foundation B are solids having predetermined rigidity, and the support mechanism 1 is one of the plurality of support mechanisms 1. The specific support mechanism 1 is defined, and the calculation is performed based on the recorded time-series relative displacement corresponding to each of the plurality of support mechanisms 1, and the relative between the foundation B and the building O at the position where the specific support mechanism 1 is arranged. The time-series relative displacement, which is the displacement, may be obtained as the calculated time-series relative displacement corresponding to the specific support mechanism 1.

例えば、限界相対変位は、基礎杭T、下部基礎構造、支持機構1、上部基礎構造で構成される建物を支持する構造の設計的に許容される最大変位であってもよい。 For example, the limit relative displacement may be the maximum designly permissible displacement of a structure that supports a building composed of a foundation pile T, a lower foundation structure, a support mechanism 1, and an upper foundation structure.

判定工程S30は、特定支持機構1に対応する記録時系列相対変位が特定支持機構1について予め定められる限界相対変位を時系列の何時かの時に越えているか否かを判断基準として特定支持機構1の健全性を判定する工程である。
判定工程S30は、特定支持機構1に対応する記録時系列相対変位が特定支持機構1について予め定められる限界相対変位を同一軸方向毎または同一軸周り毎に時系列の何時かの時に越えているか否かを判断基準として特定支持機構1の健全性を判定してもよい。
In the determination step S30, the specific support mechanism 1 is based on whether or not the recorded time-series relative displacement corresponding to the specific support mechanism 1 exceeds the limit relative displacement predetermined for the specific support mechanism 1 at some time in the time series. It is a process of judging the soundness of.
In the determination step S30, does the recording time-series relative displacement corresponding to the specific support mechanism 1 exceed the limit relative displacement predetermined for the specific support mechanism 1 at any time in the time series in the same axial direction or every time around the same axis? The soundness of the specific support mechanism 1 may be determined based on whether or not it is determined.

検査工程S40は、特定支持機構1を複数の支持機構1のうちから順に特定して演算工程と判定工程を実行することを繰り返し、支持機構1の健全性が疑われるとき、建物基礎Mを直接または間接に目視検査する工程である。 In the inspection step S40, the specific support mechanism 1 is repeatedly specified from among the plurality of support mechanisms 1 in order to execute the calculation step and the determination step, and when the soundness of the support mechanism 1 is suspected, the building foundation M is directly used. Alternatively, it is a process of indirect visual inspection.

複数の支持機構1のうちから順に特定支持機構1を定めて、定めた特定支持機構1について、演算工程S20と判定工程S30と検査工程S40とを実行してもよい。
特定支持機構1は、センサシステム2を設けられている支持機構1であってもよい。
特定支持機構1は、センサシステム2を設けられていない支持機構1であってもよい。
The specific support mechanism 1 may be determined in order from the plurality of support mechanisms 1, and the calculation step S20, the determination step S30, and the inspection step S40 may be executed for the determined specific support mechanism 1.
The specific support mechanism 1 may be a support mechanism 1 provided with a sensor system 2.
The specific support mechanism 1 may be a support mechanism 1 that is not provided with the sensor system 2.

以下で、本発明の第二の実施形態に係る建物基礎の管理方法における相対変位の具体的な実施形態を説明する。
以下では、説明の便宜上、水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、垂直方向の軸の回りをz軸回りまたはZ軸回りと定義する。
X軸、Y軸、Z軸は、建物Oに対応する座標である。
x軸、y軸、z軸は、支持機構1に対応する座標である。
Hereinafter, a specific embodiment of the relative displacement in the building foundation management method according to the second embodiment of the present invention will be described.
In the following, for convenience of explanation, axes orthogonal to each other in the horizontal plane are x-axis or X-axis, y-axis or Y-axis, vertical axis is z-axis or Z-axis, and vertical axis is z-axis or It is defined as around the Z axis.
The X-axis, Y-axis, and Z-axis are coordinates corresponding to the building O.
The x-axis, y-axis, and z-axis are coordinates corresponding to the support mechanism 1.

最初に、本発明の第二の実施形態に係る建物基礎の管理方法における相対変位の具体的な実施形態その1を説明する。
記録時系列相対変位は、対応する支持機構1の配される位置でのx軸方向の時系列の相対変位であるx軸方向時系列相対変位とy軸方向の時系列の相対変位であるy軸方時系列相対変位である。
演算時系列相対変位は、対応する特定支持機構1の配される位置でのz軸回りの時系列の相対変位角であるz軸回り時系列相対変位角である。
限界相対変位は、z軸回りの限界変位角である限界z軸回り変位角である。
First, a specific embodiment 1 of relative displacement in the building foundation management method according to the second embodiment of the present invention will be described.
The recorded time-series relative displacements are the x-axis direction time-series relative displacement and the y-axis direction time-series relative displacement at the position where the corresponding support mechanism 1 is arranged. Axial time-series relative displacement.
The calculated time-series relative displacement is a z-axis time-series relative displacement angle which is a time-series relative displacement angle around the z-axis at the position where the corresponding specific support mechanism 1 is arranged.
The limit relative displacement is a limit z-axis displacement angle, which is a limit displacement angle around the z-axis.

以下に、本発明の第三の実施形態にかかる建物基礎の管理方法を、図を基に、説明する。
本発明の第三の実施形態にかかる建物基礎の管理方法は、特定の支持機構1を除く複数の支持機構1の相対変位からえた特定の支持機構1の相対変位を限界変位と比較して、特定の支持機構1の健全性を判定する点に特徴のある方法である。
図7は、本発明の第二乃至四の実施形態に係る建物基礎の管理方法の手順図である。
Hereinafter, the method of managing the building foundation according to the third embodiment of the present invention will be described with reference to the drawings.
In the management method of the building foundation according to the third embodiment of the present invention, the relative displacement of the specific support mechanism 1 obtained from the relative displacement of the plurality of support mechanisms 1 excluding the specific support mechanism 1 is compared with the limit displacement. This method is characterized in that the soundness of a specific support mechanism 1 is determined.
FIG. 7 is a procedural diagram of a building foundation management method according to the second to fourth embodiments of the present invention.

本発明の第三の実施形態に係る建物基礎の管理方法は、準備工程S10と演算工程S20と判定工程S30とで構成される。
本発明の第三の実施形態に係る建物基礎の管理方法は、準備工程S10と演算工程S20と判定工程S30と検査工程S40とで構成されてもよい。
The building foundation management method according to the third embodiment of the present invention includes a preparation step S10, a calculation step S20, and a determination step S30.
The building foundation management method according to the third embodiment of the present invention may be composed of a preparation step S10, a calculation step S20, a determination step S30, and an inspection step S40.

準備工程S10は、変位測定機器を準備する工程である。
変位測定機器は、複数の支持機構1の配される位置での基礎Bと建物Oとの間の時系列の相対変位を複数の支持機構1に各々に対応して記録時系列相対変位として測定記録する機器である。
変位測定機器は、複数の支持機構1のうちのいくつかの支持機構1の配される位置での基礎Bと建物Oとの間の時系列の相対変位を複数の支持機構1に各々に対応して記録時系列相対変位として測定記録してもよい。
変位測定機器は、複数の支持機構1の全てのの支持機構1の配される位置での基礎Bと建物Oとの間の時系列の相対変位を複数の支持機構1に各々に対応して記録時系列相対変位として測定記録してもよい。
変位測定機器は、地震が発生したとき複数の支持機構1の配される位置での基礎Bと建物Oとの間の時系列の相対変位を複数の支持機構1に各々に対応して記録時系列相対変位として測定記録してもよい。
変位測定機器は、地震が発生したとき複数の支持機構1の配される位置での基礎Bに結合する支持機構1の結合箇所と建物Oに結合する支持機構1の結合箇所との間の時系列の相対変位を複数の支持機構1に各々に対応して記録時系列相対変位として測定記録してもよい
The preparation step S10 is a step of preparing a displacement measuring device.
The displacement measuring device measures the time-series relative displacement between the foundation B and the building O at the position where the plurality of support mechanisms 1 are arranged as the recorded time-series relative displacement corresponding to each of the plurality of support mechanisms 1. It is a recording device.
The displacement measuring device corresponds to each of the plurality of support mechanisms 1 with a time-series relative displacement between the foundation B and the building O at the position where some of the support mechanisms 1 are arranged. Then, it may be measured and recorded as a time-series relative displacement.
The displacement measuring device corresponds to each of the plurality of support mechanisms 1 by the relative displacement of the time series between the foundation B and the building O at the positions where all the support mechanisms 1 of the plurality of support mechanisms 1 are arranged. It may be measured and recorded as a recording time-series relative displacement.
When an earthquake occurs, the displacement measuring device records the relative displacement of the time series between the foundation B and the building O at the positions where the plurality of support mechanisms 1 are arranged, corresponding to each of the plurality of support mechanisms 1. It may be measured and recorded as a series relative displacement.
The displacement measuring device is used when an earthquake occurs between the connection point of the support mechanism 1 that is connected to the foundation B at the position where the plurality of support mechanisms 1 are arranged and the connection point of the support mechanism 1 that is connected to the building O. The relative displacement of the series may be measured and recorded as a time-series relative displacement corresponding to each of the plurality of support mechanisms 1.

演算工程S20は、複数の支持機構1のうちの特定の一つの支持機構1である特定支持機構1を定め、複数の支持機構1のうち特定支持機構1を除く複数の支持機構1に各々に対応する記録時系列相対変位を基に演算して、特定支持機構1の配される位置での基礎Bと建物Oとの相対変位である時系列相対変位を特定支持機構1に対応する演算時系列相対変位として求める工程である。
演算工程S20は、発生した地震が収まったとき、複数の支持機構1のうちの特定の一つの支持機構1である特定支持機構1を定め、複数の支持機構1のうち特定支持機構1を除く複数の支持機構1に各々に対応する記録時系列相対変位を基に演算して、特定支持機構1の配される位置での基礎Bと建物Oとの相対変位である時系列相対変位を特定支持機構1に対応する演算時系列相対変位として求めてもよい。
演算工程S20は、発生した地震が収まったとき、複数の支持機構1のうちの特定の一つの支持機構1である特定支持機構1を定め、複数の支持機構1のうち特定支持機構1を除く複数の支持機構1に各々に対応する地震が発生した時から収まった時までの記録時系列相対変位を基に演算して、特定支持機構1の配される位置での基礎Bと建物Oとの相対変位である時系列相対変位を特定支持機構1に対応する演算時系列相対変位として求めてもよい。
例えば、演算工程S20は、発生した地震が収まったとき、建物と基礎Bとが剛体であるると仮定して、複数の支持機構1のうちの特定の一つの支持機構1である特定支持機構1を定め、複数の支持機構1のうち特定支持機構1を除く複数の支持機構1に各々に対応する記録時系列相対変位を基に演算して、特定支持機構1の配される位置での基礎Bと建物Oとの相対変位である時系列相対変位を特定支持機構1に対応する演算時系列相対変位として求めてもよい。
例えば、演算工程S20は、発生した地震が収まったとき、建物と基礎Bとが所定の剛性をもつ固体であると仮定して、複数の支持機構1のうちの特定の一つの支持機構1である特定支持機構1を定め、複数の支持機構1のうち特定支持機構1を除く複数の支持機構1に各々に対応する記録時系列相対変位を基に演算して、特定支持機構1の配される位置での基礎Bと建物Oとの相対変位である時系列相対変位を特定支持機構1に対応する演算時系列相対変位として求めてもよい。
In the calculation step S20, a specific support mechanism 1 which is a specific support mechanism 1 among the plurality of support mechanisms 1 is defined, and each of the plurality of support mechanisms 1 except the specific support mechanism 1 is assigned to each of the plurality of support mechanisms 1. Calculated based on the corresponding recorded time-series relative displacement, and the time-series relative displacement, which is the relative displacement between the foundation B and the building O at the position where the specific support mechanism 1 is arranged, is calculated at the time of calculation corresponding to the specific support mechanism 1. This is the process of obtaining the relative displacement of the series.
In the calculation step S20, when the generated earthquake is settled, the specific support mechanism 1 which is a specific support mechanism 1 among the plurality of support mechanisms 1 is defined, and the specific support mechanism 1 among the plurality of support mechanisms 1 is excluded. Calculate based on the recorded time-series relative displacement corresponding to each of the plurality of support mechanisms 1, and specify the time-series relative displacement which is the relative displacement between the foundation B and the building O at the position where the specific support mechanism 1 is arranged. It may be obtained as a calculated time-series relative displacement corresponding to the support mechanism 1.
In the calculation step S20, when the generated earthquake is settled, the specific support mechanism 1 which is a specific support mechanism 1 among the plurality of support mechanisms 1 is defined, and the specific support mechanism 1 among the plurality of support mechanisms 1 is excluded. The foundation B and the building O at the position where the specific support mechanism 1 is arranged are calculated based on the recorded time-series relative displacement from the time when the earthquake corresponding to each of the plurality of support mechanisms 1 occurs to the time when it is settled. The time-series relative displacement, which is the relative displacement of, may be obtained as the calculated time-series relative displacement corresponding to the specific support mechanism 1.
For example, in the calculation step S20, it is assumed that the building and the foundation B are rigid bodies when the generated earthquake is settled, and the specific support mechanism 1 is a specific one of the plurality of support mechanisms 1. 1 is determined, and calculation is performed based on the recording time-series relative displacement corresponding to each of the plurality of support mechanisms 1 excluding the specific support mechanism 1 among the plurality of support mechanisms 1, and the specific support mechanism 1 is arranged at the position where the specific support mechanism 1 is arranged. The time-series relative displacement, which is the relative displacement between the foundation B and the building O, may be obtained as the calculated time-series relative displacement corresponding to the specific support mechanism 1.
For example, in the calculation step S20, when the generated earthquake is settled, it is assumed that the building and the foundation B are solids having predetermined rigidity, and the support mechanism 1 is one of the plurality of support mechanisms 1. A specific support mechanism 1 is defined, and the specific support mechanism 1 is arranged by calculating based on the recorded time-series relative displacement corresponding to each of the plurality of support mechanisms 1 excluding the specific support mechanism 1 among the plurality of support mechanisms 1. The time-series relative displacement, which is the relative displacement between the foundation B and the building O at a certain position, may be obtained as the calculated time-series relative displacement corresponding to the specific support mechanism 1.

判定工程S30は、特定支持機構1に対応する演算時系列相対変位が予め特定支持機構1について定められる限界相対変位を時系列の何時かの時に越えているか否かを判断基準として特定支持機構1の健全性を判定する工程である。
判定工程S30は、特定支持機構1に対応する演算時系列相対変位が予め特定支持機構1について定められる限界相対変位を同一軸方向毎または同一軸周り毎に時系列の何時かの時に越えているか否かを判断基準として特定支持機構1の健全性を判定してもよい。
In the determination step S30, the specific support mechanism 1 is determined based on whether or not the calculated time-series relative displacement corresponding to the specific support mechanism 1 exceeds the limit relative displacement previously determined for the specific support mechanism 1 at some time in the time series. It is a process of judging the soundness of.
In the determination step S30, whether the calculated time-series relative displacement corresponding to the specific support mechanism 1 exceeds the limit relative displacement predetermined for the specific support mechanism 1 in the same axial direction or every time around the same axis at some time in the time series. The soundness of the specific support mechanism 1 may be determined based on whether or not it is determined.

例えば、限界相対変位は、基礎杭T、下部基礎構造、支持機構1、上部基礎構造で構成される建物を支持する構造の設計的に許容される最大変位であってもよい。 For example, the limit relative displacement may be the maximum designly permissible displacement of a structure that supports a building composed of a foundation pile T, a lower foundation structure, a support mechanism 1, and an upper foundation structure.

検査工程S40は、特定支持機構1を複数の支持機構1のうちから順に特定して演算工程と判定工程を実行することを繰り返し、特定支持機構1の健全性が疑われるとき、建物基礎Mを直接または間接に目視検査する工程である。
特定支持機構1は、センサシステム2を設けられている支持機構1であってもよい。
特定支持機構1は、センサシステム2を設けられていない支持機構1であってもよい。
In the inspection step S40, the specific support mechanism 1 is repeatedly specified from among the plurality of support mechanisms 1 in order to execute the calculation step and the determination step, and when the soundness of the specific support mechanism 1 is suspected, the building foundation M is used. It is a process of direct or indirect visual inspection.
The specific support mechanism 1 may be a support mechanism 1 provided with a sensor system 2.
The specific support mechanism 1 may be a support mechanism 1 that is not provided with the sensor system 2.

複数の支持機構1のうちから順に特定支持機構1を定めて、定めた特定支持機構1について、演算工程S20と判定工程S30と検査工程S40とを実行してもよい。
特定支持機構1は、センサシステム2を設けられている支持機構1であってもよい。
特定支持機構1は、センサシステム2を設けられていない支持機構1であってもよい。
The specific support mechanism 1 may be determined in order from the plurality of support mechanisms 1, and the calculation step S20, the determination step S30, and the inspection step S40 may be executed for the determined specific support mechanism 1.
The specific support mechanism 1 may be a support mechanism 1 provided with a sensor system 2.
The specific support mechanism 1 may be a support mechanism 1 that is not provided with the sensor system 2.

以下で、本発明の第三の実施形態に係る建物基礎の管理方法における相対変位の具体的な実施形態を説明する。
以下では、説明の便宜上、水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、垂直方向の軸の回りをz軸回りまたはZ軸回りと定義する。
X軸、Y軸、Z軸は、建物に対応する座標である。
x軸、y軸、z軸は、支持機構1に対応する座標である。
Hereinafter, a specific embodiment of the relative displacement in the building foundation management method according to the third embodiment of the present invention will be described.
In the following, for convenience of explanation, axes orthogonal to each other in the horizontal plane are x-axis or X-axis, y-axis or Y-axis, vertical axis is z-axis or Z-axis, and vertical axis is z-axis or It is defined as around the Z axis.
The X-axis, Y-axis, and Z-axis are coordinates corresponding to the building.
The x-axis, y-axis, and z-axis are coordinates corresponding to the support mechanism 1.

最初に、本発明の第三の実施形態に係る建物基礎の管理方法における相対変位の具体的な実施形態その1を説明する。
記録時系列相対変位は、対応する支持機構1の配される位置でのx軸方向の時系列の相対変位である記録x軸時系列相対変位とy軸方向の時系列の相対変位である記録y軸時系列変位である。
演算時系列相対変位は、対応する特定支持機構1の配される位置でのx軸方向の時系列な相対変位である演算x軸方向時系列変位とy軸方向の時系列な相対変位である演算y軸方向時系列変位とに対応する極座標系での半径方向の相対変位である演算r時系列変位である。
限界相対変位は、極座標系での半径方向の限界変位である限界r軸方向変位である。
First, a specific embodiment 1 of relative displacement in the building foundation management method according to the third embodiment of the present invention will be described.
The recording time-series relative displacement is the recording x-axis time-series relative displacement, which is the x-axis direction time-series relative displacement at the position where the corresponding support mechanism 1 is arranged, and the recording, which is the y-axis direction time-series relative displacement. This is the y-axis time-series displacement.
The calculated time-series relative displacement is a time-series relative displacement in the x-axis direction at the position where the corresponding specific support mechanism 1 is arranged, and a time-series relative displacement in the y-axis direction. Calculation r time-series displacement, which is a relative displacement in the radial direction in the polar coordinate system corresponding to the time-series displacement in the y-axis direction.
The limit relative displacement is a limit r-axis displacement, which is a radial limit displacement in a polar coordinate system.

最初に、本発明の第三の実施形態に係る建物基礎の管理方法における相対変位の具体的な実施形態その2を説明する。
記録時系列相対変位が、対応する支持機構1の配される位置でのx軸方向の時系列の相対変位である記録x軸時系列相対変位とy軸方向の時系列の相対変位である記録y軸時系列変位である。
演算時系列相対変位が、対応する特定支持機構1の配される位置でのx軸方向の時系列な相対変位である演算x軸方向時系列変位とy軸方向の時系列な相対変位である演算y軸方向時系列変位であり。
限界相対変位が、x軸方向の限界変位である限界x軸方向変位とy軸方向の限界変位である限界y軸方向変位とである。
First, a specific embodiment 2 of relative displacement in the building foundation management method according to the third embodiment of the present invention will be described.
The recording time-series relative displacement is the recording x-axis time-series relative displacement and the y-axis direction time-series relative displacement at the position where the corresponding support mechanism 1 is arranged. This is the y-axis time-series displacement.
The calculated time-series relative displacement is the time-series relative displacement in the x-axis direction at the position where the corresponding specific support mechanism 1 is arranged. The calculated x-axis direction time-series displacement and the y-axis direction time-series relative displacement. Calculation It is a time-series displacement in the y-axis direction.
The limit relative displacement is a limit x-axis direction displacement which is a limit displacement in the x-axis direction and a limit y-axis direction displacement which is a limit displacement in the y-axis direction.

最初に、本発明の第三の実施形態に係る建物基礎の管理方法における相対変位の具体的な実施形態その3を説明する。
記録時系列相対変位は、対応する支持機構1の配される位置でのz軸方向の時系列の相対変位であるz軸方向時系列相対変位である。
演算時系列相対変位は、対応する特定支持機構1の配される位置でのz軸方向の時系列の相対変位である演算z軸方向時系列相対変位である。
限界相対変位は、z軸方向の限界変位である限界z軸方向変位である。
First, a specific embodiment 3 of relative displacement in the building foundation management method according to the third embodiment of the present invention will be described.
The recorded time-series relative displacement is a z-axis direction time-series relative displacement which is a z-axis direction time-series relative displacement at the position where the corresponding support mechanism 1 is arranged.
The calculated time-series relative displacement is a calculated time-series relative displacement which is a time-series relative displacement in the z-axis direction at the position where the corresponding specific support mechanism 1 is arranged.
The limit relative displacement is a limit z-axis direction displacement which is a limit displacement in the z-axis direction.

以下に、本発明の第四の実施形態にかかる建物基礎の管理方法を、図を基に、説明する。
本発明の第四の実施形態にかかる建物基礎の管理方法は、特定の支持機構1を除く複数の支持機構1の相対変位をもとに演算で得た特定の支持機構1の相対変位と特定支持機構1に対応して記録した相対変位とを比較して、支持機構1の健全性を判定する点に特徴のある方法である。
図7は、本発明の第二乃至四の実施形態に係る建物基礎の管理方法の手順図である。
Hereinafter, the method of managing the building foundation according to the fourth embodiment of the present invention will be described with reference to the drawings.
The method for managing the building foundation according to the fourth embodiment of the present invention specifies the relative displacement of the specific support mechanism 1 obtained by calculation based on the relative displacement of the plurality of support mechanisms 1 excluding the specific support mechanism 1. This method is characterized in that the soundness of the support mechanism 1 is determined by comparing with the relative displacement recorded corresponding to the support mechanism 1.
FIG. 7 is a procedural diagram of a building foundation management method according to the second to fourth embodiments of the present invention.

本発明の第四の実施形態に係る建物基礎の管理方法は、準備工程S10と演算工程S20と判定工程S30とで構成される。
本発明の第四の実施形態に係る建物基礎の管理方法は、準備工程S10と演算工程S20と判定工程S30と検査工程S40とで構成されてもよい。
The building foundation management method according to the fourth embodiment of the present invention includes a preparation step S10, a calculation step S20, and a determination step S30.
The building foundation management method according to the fourth embodiment of the present invention may be composed of a preparation step S10, a calculation step S20, a determination step S30, and an inspection step S40.

準備工程S10は、変位測定機器を準備する工程である。
変位測定機器は、複数の支持機構1の配される位置での基礎Bと建物Oとの間の時系列の相対変位を複数の支持機構1に各々に対応する記録時系列相対変位として測定記録する機器である。
変位測定機器は、複数の支持機構1のうちのいくつかの支持機構1のの配される位置での基礎Bと建物Oとの間の時系列の相対変位を複数の支持機構1に各々に対応する記録時系列相対変位として測定記録してもよい。
変位測定機器は、複数の支持機構1のすべての支持機構1のの配される位置での基礎Bと建物Oとの間の時系列の相対変位を複数の支持機構1に各々に対応する記録時系列相対変位として測定記録してもよい。
変位測定機器は、地震が発生したとき複数の支持機構1の配される位置での基礎Bと建物Oとの間の時系列の相対変位を複数の支持機構1に各々に対応する記録時系列相対変位として測定記録してもよい。
変位測定機器は、地震が発生したとき複数の支持機構1の配される位置での基礎Bに結合する支持機構1の結合箇所と建物Oに結合する支持機構1の結合箇所との間の時系列の相対変位を複数の支持機構1に各々に対応する記録時系列相対変位として測定記録してもよい。
The preparation step S10 is a step of preparing a displacement measuring device.
The displacement measuring device measures and records the time-series relative displacement between the foundation B and the building O at the position where the plurality of support mechanisms 1 are arranged as the recording time-series relative displacement corresponding to each of the plurality of support mechanisms 1. It is a device to do.
The displacement measuring device applies a time-series relative displacement between the foundation B and the building O at the position where some of the support mechanisms 1 are arranged among the plurality of support mechanisms 1 to each of the plurality of support mechanisms 1. It may be measured and recorded as the corresponding recording time series relative displacement.
The displacement measuring device records the relative displacement of the time series between the foundation B and the building O at the arranged positions of all the support mechanisms 1 of the plurality of support mechanisms 1 corresponding to each of the plurality of support mechanisms 1. It may be measured and recorded as a time-series relative displacement.
The displacement measuring device records the relative displacement of the time series between the foundation B and the building O at the positions where the plurality of support mechanisms 1 are arranged when an earthquake occurs, in a time series corresponding to each of the plurality of support mechanisms 1. It may be measured and recorded as a relative displacement.
The displacement measuring device is used when an earthquake occurs between the connection point of the support mechanism 1 that is connected to the foundation B at the position where the plurality of support mechanisms 1 are arranged and the connection point of the support mechanism 1 that is connected to the building O. The relative displacement of the series may be measured and recorded as the recording time-series relative displacement corresponding to each of the plurality of support mechanisms 1.

演算工程S20は、複数の支持機構1のうちの特定の一つの支持機構1である特定支持機構1を定め、複数の支持機構1のうちの特定支持機構1を除く複数の支持機構1に各々に対応する記録時系列相対変位を基に演算して、特定支持機構1の配される位置での基礎Bと建物Oとの相対変位である時系列相対変位を特定支持機構1に対応する演算時系列相対変位として求める工程である。
演算工程S20は、発生した地震が収まったとき、複数の支持機構1のうちの特定の一つの支持機構1である特定支持機構1を定め、複数の支持機構1のうちの特定支持機構1を除く複数の支持機構1に各々に対応する記録時系列相対変位を基に演算して、特定支持機構1の配される位置での基礎Bと建物Oとの相対変位である時系列相対変位を特定支持機構1に対応する演算時系列相対変位として求めてもよい。
演算工程S20は、発生した地震が収まったとき、複数の支持機構1のうちの特定の一つの支持機構1である特定支持機構1を定め、複数の支持機構1のうちの特定支持機構1を除く複数の支持機構1に各々に対応する地震が発生した時から収まった時までの記録時系列相対変位を基に演算して、特定支持機構1の配される位置での基礎Bと建物Oとの相対変位である時系列相対変位を特定支持機構1に対応する演算時系列相対変位として求めてもよい。
例えば、演算工程S20は、発生した地震が収まったとき、建物Oと基礎Bとが剛体であると仮定して、複数の支持機構1のうちの特定の一つの支持機構1である特定支持機構1を定め、複数の支持機構1のうちの特定支持機構1を除く複数の支持機構1に各々に対応する記録時系列相対変位を基に演算して、特定支持機構1の配される位置での基礎Bと建物Oとの相対変位である時系列相対変位を特定支持機構1に対応する演算時系列相対変位として求めてもよい。
例えば、演算工程S20は、発生した地震が収まったとき、建物Oと基礎Bとが所定の剛性をもつ固体であると仮定して、複数の支持機構1のうちの特定の一つの支持機構1である特定支持機構1を定め、複数の支持機構1のうちの特定支持機構1を除く複数の支持機構1に各々に対応する記録時系列相対変位を基に演算して、特定支持機構1の配される位置での基礎Bと建物Oとの相対変位である時系列相対変位を特定支持機構1に対応する演算時系列相対変位として求めてもよい。
In the calculation step S20, a specific support mechanism 1 which is a specific support mechanism 1 among the plurality of support mechanisms 1 is defined, and each of the plurality of support mechanisms 1 excluding the specific support mechanism 1 among the plurality of support mechanisms 1 is provided. The time-series relative displacement, which is the relative displacement between the foundation B and the building O at the position where the specific support mechanism 1 is arranged, is calculated based on the recorded time-series relative displacement corresponding to the specific support mechanism 1. This is the process of obtaining the relative displacement in time series.
In the calculation step S20, when the generated earthquake is settled, the specific support mechanism 1 which is a specific support mechanism 1 among the plurality of support mechanisms 1 is defined, and the specific support mechanism 1 among the plurality of support mechanisms 1 is designated. The time-series relative displacement, which is the relative displacement between the foundation B and the building O at the position where the specific support mechanism 1 is arranged, is calculated based on the recorded time-series relative displacement corresponding to each of the plurality of support mechanisms 1 excluding. It may be obtained as a calculated time-series relative displacement corresponding to the specific support mechanism 1.
In the calculation step S20, when the generated earthquake is settled, the specific support mechanism 1 which is a specific support mechanism 1 among the plurality of support mechanisms 1 is defined, and the specific support mechanism 1 among the plurality of support mechanisms 1 is designated. The foundation B and the building O at the position where the specific support mechanism 1 is arranged are calculated based on the recorded time-series relative displacements from the time when the earthquake corresponding to each of the plurality of support mechanisms 1 is generated to the time when they are settled. The time-series relative displacement, which is the relative displacement with and from, may be obtained as the calculated time-series relative displacement corresponding to the specific support mechanism 1.
For example, in the calculation step S20, when the generated earthquake is settled, it is assumed that the building O and the foundation B are rigid bodies, and the specific support mechanism 1 is a specific one of the plurality of support mechanisms 1. 1 is determined, and calculation is performed based on the recording time-series relative displacement corresponding to each of the plurality of support mechanisms 1 excluding the specific support mechanism 1 among the plurality of support mechanisms 1, and at the position where the specific support mechanism 1 is arranged. The time-series relative displacement, which is the relative displacement between the foundation B and the building O, may be obtained as the calculated time-series relative displacement corresponding to the specific support mechanism 1.
For example, in the calculation step S20, when the generated earthquake is settled, it is assumed that the building O and the foundation B are solids having predetermined rigidity, and the support mechanism 1 is one of the plurality of support mechanisms 1. The specific support mechanism 1 is defined, and the specific support mechanism 1 is calculated based on the recorded time-series relative displacement corresponding to each of the plurality of support mechanisms 1 excluding the specific support mechanism 1 among the plurality of support mechanisms 1. The time-series relative displacement, which is the relative displacement between the foundation B and the building O at the arranged position, may be obtained as the calculated time-series relative displacement corresponding to the specific support mechanism 1.

判定工程S30は、特定支持機構1に対応する演算時系列相対変位と特定支持機構1に対応する記録時系列相対変位との時系列の偏差の大きさを判断基準としてに特定支持機構1の健全性を判定する工程である。
判定工程S30は、特定支持機構1に対応する演算時系列相対変位と特定支持機構1に対応する記録時系列相対変位との同一軸方向毎の時系列の偏差の大きさを判断基準としてに特定支持機構1の健全性を判定してもよい。
In the determination step S30, the soundness of the specific support mechanism 1 is determined based on the magnitude of the time series deviation between the calculated time-series relative displacement corresponding to the specific support mechanism 1 and the recording time-series relative displacement corresponding to the specific support mechanism 1. This is the process of determining the sex.
The determination step S30 specifies the magnitude of the time-series deviation in the same axial direction between the calculated time-series relative displacement corresponding to the specific support mechanism 1 and the recording time-series relative displacement corresponding to the specific support mechanism 1 as a determination criterion. The soundness of the support mechanism 1 may be determined.

特定支持機構1に対応する演算時系列相対変位と特定支持機構1に対応する記録時系列相対変位との同一軸方向毎の時系列の偏差の大きさが予め定められた値より大きいとき、支持機構1、下部基礎構造、上部基礎構造、基礎杭T等に、予期しない損傷が生じている疑いがある。
例えば、下部基礎構造と基礎杭Tとの接合部に過度の荷重が作用したことが疑われる。
例えば、下部基礎構造と支持機構1との接合部に過度の荷重が作用したことが疑われる。
例えば、支持機構1に過度の荷重が作用したことが疑われる。
例えば、上部基礎構造と支持機構1との接合部に過度の荷重が作用したことが疑われる。
例えば、上部基礎構造に過度の荷重が作用したことが疑われる。
Support when the magnitude of the time-series deviation in the same axial direction between the calculated time-series relative displacement corresponding to the specific support mechanism 1 and the recording time-series relative displacement corresponding to the specific support mechanism 1 is larger than a predetermined value. There is a suspicion that unexpected damage has occurred to the mechanism 1, the lower foundation structure, the upper foundation structure, the foundation pile T, and the like.
For example, it is suspected that an excessive load has acted on the joint between the lower foundation structure and the foundation pile T.
For example, it is suspected that an excessive load has acted on the joint between the lower foundation structure and the support mechanism 1.
For example, it is suspected that an excessive load has acted on the support mechanism 1.
For example, it is suspected that an excessive load has acted on the joint between the upper foundation structure and the support mechanism 1.
For example, it is suspected that an excessive load was applied to the upper foundation structure.

検査工程S40は、特定支持機構1を複数の支持機構1のうちから順に特定して演算工程S20と判定工程S30を実行することを繰り返し、支持機構1の健全性が疑われるとき、建物基礎Mを直接または間接に目視検査する工程である。 The inspection step S40 repeatedly specifies the specific support mechanism 1 from among the plurality of support mechanisms 1 in order and executes the calculation step S20 and the determination step S30, and when the soundness of the support mechanism 1 is suspected, the building foundation M Is a process of directly or indirectly visually inspecting.

複数の支持機構1のうちから順に特定支持機構1を定めて、定めた特定支持機構1について、演算工程S20と判定工程S30と検査工程S40とを実行してもよい。
特定支持機構1は、センサシステム2を設けられている支持機構1である。
The specific support mechanism 1 may be determined in order from the plurality of support mechanisms 1, and the calculation step S20, the determination step S30, and the inspection step S40 may be executed for the determined specific support mechanism 1.
The specific support mechanism 1 is a support mechanism 1 provided with a sensor system 2.

次に、本発明の実施形態にかかる建物基礎の管理方法を実行するための建物基礎の管理システムの概要を、図を基に説明する。
図9は、本発明の実施形態にかかる建物基礎の管理方法を実行するための建物基礎の管理システムの概要を示す。
本発明の実施形態にかかる建物基礎の管理方法を実行するための建物基礎の管理システムは、変位測定機器2を持つ。
Next, the outline of the building foundation management system for executing the building foundation management method according to the embodiment of the present invention will be described with reference to the drawings.
FIG. 9 shows an outline of a building foundation management system for executing the building foundation management method according to the embodiment of the present invention.
The building foundation management system for executing the building foundation management method according to the embodiment of the present invention includes the displacement measuring device 2.

変位測定機器は、複数の支持機構1の配される位置での基礎Bと建物Oとの間の時系列の相対変位を複数の支持機構1に各々に対応する記録時系列相対変位として測定記録する機器である。
変位測定機器は、複数の支持機構1の配される位置での基礎Bに結合する支持機構1の結合箇所と建物Oに結合する支持機構1の結合箇所との間の時系列の相対変位を複数の支持機構1に各々に対応する記録時系列相対変位として測定記録してもよい。
変位測定機器は、センサシステム2とWiFi機能付きマイコン3とMQTTクライアント4とルータ5とクラウドサーバ6と端末7と周辺機器8とで構成される。
変位測定機器は、いくつかのセンサシステム2といくつかのWiFi機能付きマイコン3とMQTTクライアント4とルータ5とクラウドサーバ6と端末7と周辺機器8とで構成されてもよい。
The displacement measuring device measures and records the time-series relative displacement between the foundation B and the building O at the position where the plurality of support mechanisms 1 are arranged as the recording time-series relative displacement corresponding to each of the plurality of support mechanisms 1. It is a device to be displaced.
The displacement measuring device determines the relative displacement in time series between the connection point of the support mechanism 1 connected to the foundation B and the connection point of the support mechanism 1 connected to the building O at the positions where the plurality of support mechanisms 1 are arranged. It may be measured and recorded as a recording time-series relative displacement corresponding to each of the plurality of support mechanisms 1.
The displacement measuring device includes a sensor system 2, a microcomputer 3 with a WiFi function, an MQTT client 4, a router 5, a cloud server 6, a terminal 7, and a peripheral device 8.
The displacement measuring device may be composed of some sensor system 2, some microcomputer 3 with WiFi function, MQTT client 4, router 5, cloud server 6, terminal 7, and peripheral device 8.

センサシステム2は、支持機構1の配される位置での基礎Bと建物Oとの間の時系列の相対変位を測定する。
センサシステム2は、複数の支持機構1のうちのいくつかの支持機構1の配される位置での基礎Bと建物Oとの間の時系列の相対変位を測定してもよい。
センサシステム2は、複数の支持機構1の全ての支持機構1の配される位置での基礎Bと建物Oとの間の時系列の相対変位を測定してもよい。
The sensor system 2 measures the time-series relative displacement between the foundation B and the building O at the position where the support mechanism 1 is arranged.
The sensor system 2 may measure the time-series relative displacement between the foundation B and the building O at the positions where some of the support mechanisms 1 of the plurality of support mechanisms 1 are arranged.
The sensor system 2 may measure the relative displacement in time series between the foundation B and the building O at the positions where all the support mechanisms 1 of the plurality of support mechanisms 1 are arranged.

WiFi機能付きマイコン3は、支持機構1に対応して配され、センサシステム2の測定した相対変位に対応するデータである相対変位データを通信により送信する機器である。
WiFi機能付きマイコン3は、支持機構1に対応して配され、センサシステム2の測定した相対変位に対応するデータである相対変位データを無線通信により送信してもよい。
WiFi機能付きマイコン3は、支持機構1に対応して配され、センサシステム2の測定した相対変位に対応するデータである相対変位データをWiFi通信により送信してもよい。
The microcomputer 3 with a WiFi function is a device that is arranged corresponding to the support mechanism 1 and transmits relative displacement data, which is data corresponding to the relative displacement measured by the sensor system 2, by communication.
The microcomputer 3 with a WiFi function may be arranged corresponding to the support mechanism 1 and may transmit relative displacement data, which is data corresponding to the relative displacement measured by the sensor system 2, by wireless communication.
The microcomputer 3 with a WiFi function may be arranged corresponding to the support mechanism 1 and may transmit relative displacement data, which is data corresponding to the relative displacement measured by the sensor system 2, by WiFi communication.

MQTTクライアント4は、WiFi機能付きマイコン3から送信された複数の相対変位データを受信する機器である。 The MQTT client 4 is a device that receives a plurality of relative displacement data transmitted from the microcomputer 3 with a WiFi function.

ルータ5は、MQTTクライアント4が受信した複数の相対変位データをクラウドサーバ6とへ送信する機器である。
クラウドサーバ6は、ルータ5から受信した複数の支持機構1に対応する相対変位データと基に、相対変位を記録し、本発明の実施形態にかかる建物基礎Mの管理方法を実行する。
The router 5 is a device that transmits a plurality of relative displacement data received by the MQTT client 4 to the cloud server 6.
The cloud server 6 records the relative displacement based on the relative displacement data corresponding to the plurality of support mechanisms 1 received from the router 5, and executes the management method of the building foundation M according to the embodiment of the present invention.

端末7は、クラウドサーバ6と操作者とのコミュニケーションツールである。 The terminal 7 is a communication tool between the cloud server 6 and the operator.

周辺機器8は、管理を実行するためのその他のデータ取得をする機器である。
例えば、周辺機器8は、支持機構の様子がわかる映像を取得するカメラシステムである。
The peripheral device 8 is a device for acquiring other data for executing management.
For example, the peripheral device 8 is a camera system that acquires an image showing the state of the support mechanism.

次に、本発明の第一の実施形態にかかる建物基礎群の管理方法を、図を基に説明する。
本発明の実施形態にかかる建物基礎群の管理方法は、支持機構1に対応する相対変位を演算して得た建物Oと基礎Bとの相対変位から地盤の絶対変位を推定して絶対変位マップを生成する点に特徴のある方法である。
図10は、本発明の実施形態に係る建物基礎群の管理方法の手順図である。図11は、本発明の実施形態に係る建物基礎の地域の建物の座標図である。図12は、本発明の実施形態に係る建物基礎群のモデル概念図である。図13は、本発明の実施形態に係る建物基礎群のマップ概念図である。
Next, the management method of the building foundation group according to the first embodiment of the present invention will be described with reference to the drawings.
In the method for managing the building foundation group according to the embodiment of the present invention, the absolute displacement of the ground is estimated from the relative displacement between the building O and the foundation B obtained by calculating the relative displacement corresponding to the support mechanism 1, and the absolute displacement map is used. It is a characteristic method in that it produces.
FIG. 10 is a procedural diagram of a building foundation group management method according to an embodiment of the present invention. FIG. 11 is a coordinate diagram of a building in the area of the building foundation according to the embodiment of the present invention. FIG. 12 is a model conceptual diagram of a building foundation group according to an embodiment of the present invention. FIG. 13 is a map conceptual diagram of a building foundation group according to an embodiment of the present invention.

本発明の第一の実施形態にかかる建物基礎群の管理方法は、基礎Bに各々に配され建物Oを支持する複数の支持機構1を各々に有する複数の建物基礎を含む建物基礎群の管理する方法である。
本発明の第一の実施形態にかかる建物基礎群の管理方法は、準備工程S100と演算工程S200と推定工程S300と生成工程S400とで構成される。
本発明の第一の実施形態にかかる建物基礎群の管理方法は、準備工程S100と演算工程S200と推定工程S300と生成工程S400と類推工程S500で構成されてもよい。
本発明の第一の実施形態にかかる建物基礎群の管理方法は、準備工程S100と演算工程S200と推定工程S300と生成工程S400と類推工程S500と類推演算工程S600とで構成されてもよい。
The method for managing a building foundation group according to the first embodiment of the present invention is to manage a building foundation group including a plurality of building foundations each having a plurality of support mechanisms 1 arranged on the foundation B and supporting the building O. How to do it.
The building foundation group management method according to the first embodiment of the present invention is composed of a preparation step S100, a calculation step S200, an estimation step S300, and a generation step S400.
The building foundation group management method according to the first embodiment of the present invention may be composed of a preparation step S100, a calculation step S200, an estimation step S300, a generation step S400, and an analogy step S500.
The building foundation group management method according to the first embodiment of the present invention may be composed of a preparation step S100, a calculation step S200, an estimation step S300, a generation step S400, an analogy step S500, and an analogy calculation step S600.

準備工程S100は、複数の建物基礎の各々毎に、変位測定機器を準備する工程である。
変位測定機器は、複数の支持機構1の配される位置での基礎Bと建物Oとの間の時系列の相対変位を複数の支持機構1に各々に対応する記録時系列相対変位として測定記録する機器である。
変位測定機器は、地震が発生したとき、複数の支持機構1の配される位置での基礎Bと建物Oとの間の時系列の相対変位を複数の支持機構1に各々に対応する記録時系列相対変位として測定記録してもよい。
変位測定機器は、地震が発生したとき、複数の支持機構1の配される位置での基礎Bに結合する支持機構1の結合箇所と建物Oに結合する支持機構1の結合箇所との間の時系列の相対変位を複数の支持機構1に各々に対応する記録時系列相対変位として測定記録してもよい。
The preparation step S100 is a step of preparing a displacement measuring device for each of the plurality of building foundations.
The displacement measuring device measures and records the time-series relative displacement between the foundation B and the building O at the position where the plurality of support mechanisms 1 are arranged as the recording time-series relative displacement corresponding to each of the plurality of support mechanisms 1. It is a device to be displaced.
When an earthquake occurs, the displacement measuring device records the relative displacement of the time series between the foundation B and the building O at the positions where the plurality of support mechanisms 1 are arranged for each of the plurality of support mechanisms 1. It may be measured and recorded as a series relative displacement.
When an earthquake occurs, the displacement measuring device is provided between the connection point of the support mechanism 1 that is connected to the foundation B at the position where the plurality of support mechanisms 1 are arranged and the connection point of the support mechanism 1 that is connected to the building O. The time-series relative displacement may be measured and recorded as a recording time-series relative displacement corresponding to each of the plurality of support mechanisms 1.

演算工程S200は、複数の建物基礎Mの各々毎に、複数の支持機構1に各々に対応する記録時系列相対変位を基に演算して建物Oと基礎Bとの時系列の相対変位である演算時系列相対変位を求める工程である。
演算工程S200は、発生した地震が収まったとき、複数の建物基礎Mの各々毎に、複数の支持機構1に各々に対応する記録時系列相対変位を基に演算して建物Oと基礎Bとの時系列の相対変位である演算時系列相対変位を求めてもよい。
演算工程S200は、発生した地震が収まったとき、複数の建物基礎Mの各々毎に、複数の支持機構1に各々に対応する地震が発生した時から収まった時までの記録時系列相対変位を基に演算して建物Oと基礎Bとの時系列の相対変位である演算時系列相対変位を求めてもよい。
例えば、演算工程S200は、発生した地震が収まったとき、建物Oと基礎bとが剛体であると仮定して、複数の建物基礎Mの各々毎に、複数の支持機構1に各々に対応する記録時系列相対変位を基に演算して建物Oと基礎Bとの時系列の相対変位である演算時系列相対変位を求めてもよい。
例えば、演算工程S200は、発生した地震が収まったとき、建物Oと基礎bとが所定の剛性をもつ固体であると仮定して、複数の建物基礎Mの各々毎に、複数の支持機構1に各々に対応する記録時系列相対変位を基に演算して建物Oと基礎Bとの時系列の相対変位である演算時系列相対変位を求めてもよい。
The calculation step S200 is a time-series relative displacement between the building O and the foundation B by calculating based on the recorded time-series relative displacement corresponding to each of the plurality of support mechanisms 1 for each of the plurality of building foundations M. This is the process of finding the calculated relative displacement in time series.
In the calculation step S200, when the generated earthquake is settled, the building O and the foundation B are calculated based on the recorded time-series relative displacement corresponding to each of the plurality of support mechanisms 1 for each of the plurality of building foundations M. The calculated time-series relative displacement, which is the time-series relative displacement of, may be obtained.
In the calculation step S200, when the generated earthquake is settled, the recorded time-series relative displacement from the time when the earthquake corresponding to each of the plurality of support mechanisms 1 is generated to the time when the generated earthquake is settled for each of the plurality of building foundations M is recorded. The calculated time-series relative displacement, which is the time-series relative displacement between the building O and the foundation B, may be calculated based on the calculation.
For example, the calculation step S200 corresponds to a plurality of support mechanisms 1 for each of the plurality of building foundations M, assuming that the building O and the foundation b are rigid bodies when the generated earthquake is settled. The calculated time-series relative displacement, which is the time-series relative displacement between the building O and the foundation B, may be calculated based on the recorded time-series relative displacement.
For example, in the calculation step S200, when the generated earthquake is settled, it is assumed that the building O and the foundation b are solids having predetermined rigidity, and a plurality of support mechanisms 1 are provided for each of the plurality of building foundations M. The calculated time-series relative displacement, which is the time-series relative displacement between the building O and the foundation B, may be calculated based on the recorded time-series relative displacement corresponding to each.

推定工程S300は、複数の建物基礎Mの各々毎に、演算時系列相対変位と基礎B、建物O、及び建物基礎Mの全体振動特性から建物基礎Mの位置する基礎の絶対変位を建物基礎Mに対応して基礎時系列絶対変位として各々に推定する工程である。
推定工程S300は、複数の建物基礎Mの各々毎に、演算時系列相対変位と基礎B、建物O、及び建物基礎Mの全体振動特性を表す振動モデルとから建物基礎Mの位置する基礎の絶対変位を建物基礎Mに対応して基礎時系列絶対変位として各々に推定する工程である。
図12は、基礎、建物、及び建物基礎の全体振動特性を表す振動モデルの一例を示す。
事前の数値モデル、実験模型、実機による振動試験により基礎時系列絶対変位の変位強制振動をうけたときの振動モデルに生ずる時系列相対変位を取得し、基礎時系列絶対変位を時系列相対変位に変換する伝達関数を求める。
例えば、伝達関数を、多変数の基礎時系列絶対変位を多変数の時系列相対変位に変換するマトリックスの形式で求めることができる。
逆マトリックスを用いることにより演算時系列相対変位から基礎時系列絶対変位を演算できる。
In the estimation process S300, for each of the plurality of building foundations M, the absolute displacement of the foundation on which the building foundation M is located is calculated from the calculated relative displacement and the total vibration characteristics of the foundation B, the building O, and the building foundation M. It is a process of estimating each as the absolute displacement in the basic time series corresponding to.
In the estimation process S300, for each of the plurality of building foundations M, the absolute displacement of the foundation on which the building foundation M is located is obtained from the calculated time-series relative displacement and the vibration model representing the overall vibration characteristics of the foundation B, the building O, and the building foundation M. This is a process of estimating the displacement as the absolute displacement in time series of the foundation corresponding to the building foundation M.
FIG. 12 shows an example of a vibration model representing the foundation, the building, and the overall vibration characteristics of the building foundation.
The time-series relative displacement that occurs in the vibration model when subjected to forced vibration is obtained by a vibration test using a numerical model, an experimental model, and an actual machine in advance, and the basic time-series absolute displacement is converted to the time-series relative displacement. Find the transfer function to transform.
For example, the transfer function can be found in the form of a matrix that transforms the multivariable basic time-series absolute displacements into the multivariable time-series relative displacements.
By using the inverse matrix, the basic time-series absolute displacement can be calculated from the calculated time-series relative displacement.

生成工程S400は、複数の建物基礎Mに各々に対応する複数の基礎時系列絶対変位と複数の建物の各々の位置データとを関連づけて複数の建物基礎Mの配される地域A全体の時系列の絶対変位のデータベースである時系列絶対変位マップを生成する工程である。
図13に時系列絶対変位マップの様子を図示する。
In the generation step S400, a plurality of foundation time series absolute displacements corresponding to each of the plurality of building foundations M are associated with the position data of each of the plurality of buildings, and the time series of the entire region A in which the plurality of building foundations M are arranged. This is the process of generating a time-series absolute displacement map, which is a database of absolute displacements of.
FIG. 13 illustrates the state of the time-series absolute displacement map.

類推工程S500は、時系列絶対変位マップを基に地域Aに含まれる任意の位置での基礎時系列絶対変位を類推する工程である。
類推工程S500は、時系列絶対変位マップを基に地域Aに含まれる建物基礎の管理方法の管理対象でない建物が建つ位置での基礎時系列絶対変位を類推してもよい。
例えば、時系列絶対変位マップにおける複数Aの地点における基礎時系列絶対変位の相互の位相、振幅から地震波の進行方向、地震波の単位距離当たりの減衰の程度を推定できる。
例えば、時系列絶対変位マップにおける複数Aの地点における基礎時系列絶対変位の相互の位相、振幅から地震波のX軸方向、Y軸方向の位相の進行、地震波の単位距離当たりの減衰の程度を推定できる。
その結果、時系列絶対変位マップに表される複数の地点における基礎時系列絶対変位の相互の位相、振幅の比較から任意の位置での基礎時系列絶対変位を類推する。
The analogy step S500 is a step of estimating the basic time-series absolute displacement at an arbitrary position included in the area A based on the time-series absolute displacement map.
The analogy step S500 may infer the foundation time-series absolute displacement at the position where the building not to be managed by the management method of the building foundation included in the area A is built based on the time-series absolute displacement map.
For example, the traveling direction of a seismic wave and the degree of attenuation of a seismic wave per unit distance can be estimated from the mutual phase and amplitude of the basic time-series absolute displacements at a plurality of points A in the time-series absolute displacement map.
For example, the mutual phase of the basic time-series absolute displacements at multiple points A in the time-series absolute displacement map, the progress of the phase of the seismic wave in the X-axis direction and the Y-axis direction, and the degree of attenuation per unit distance of the seismic wave are estimated from the amplitude. can.
As a result, the basic time-series absolute displacement at an arbitrary position is inferred from the mutual phase and amplitude comparison of the basic time-series absolute displacements at a plurality of points represented by the time-series absolute displacement map.

類推演算工程S600は、地域A内の任意の位置Pにおける基礎時系列絶対変位と任意の位置に配される建物基礎Mと建物の全体振動特性とから任意の位置における建物と基礎との時系列の相対変位である演算時系列相対変位を求める工程である。
類推演算工程S600は、地域A内の任意の位置Pにおける基礎時系列絶対変位と任意の位置に配される建物基礎Mと建物の全体振動特性を表す振動モデルとから任意の位置における建物と基礎との時系列の相対変位である演算時系列相対変位を求める工程である。
前述の伝達関数を用いることにより、地域A内の任意の位置Pにおける基礎時系列絶対変位から任意の位置における建物Oと基礎Bとの時系列の相対変位である演算時系列相対変位を求めることができる。
The analogy calculation step S600 is a time series of the building and the foundation at an arbitrary position from the absolute displacement of the foundation at an arbitrary position P in the area A, the building foundation M arranged at the arbitrary position, and the overall vibration characteristics of the building. This is the process of finding the calculated time-series relative displacement, which is the relative displacement of.
The analogy calculation step S600 is based on the absolute displacement of the foundation time series at an arbitrary position P in the area A, the building foundation M arranged at an arbitrary position, and the vibration model representing the overall vibration characteristics of the building, and the building and the foundation at an arbitrary position. This is the process of obtaining the calculated time-series relative displacement, which is the time-series relative displacement of.
By using the above-mentioned transfer function, the calculated time-series relative displacement, which is the time-series relative displacement between the building O and the foundation B at an arbitrary position, can be obtained from the foundation time-series absolute displacement at any position P in the area A. Can be done.

次に、前述した建物基礎Mの管理方法を実行するための第一の実施形態にかかる建物基礎群の管理システムの概要を、図を基に、説明する。
図14は、本発明の第一の実施形態に係る建物基礎群の管理システム図である。
本発明の実施形態かかる建物基礎群の管理方法を実行するための建物基礎群の管理システムは、複数の建物基礎MとMQTTクライアント4とルータ5とクラウドサーバ6と端末7とで構成される。
建物基礎Mは、複数の支持機構1と複数のセンサシステム2とWiFi機能付きマイコン3とを持つ。
MQTTクライアント4とルータ5とクラウドサーバ6と端末7との構成は、本発明の実施形態かかる建物基礎Mの管理方法を実行するための建物基礎Mの管理システムで説明したものと同じなので、説明を省略する。
Next, the outline of the management system of the building foundation group according to the first embodiment for executing the management method of the building foundation M described above will be described with reference to the figure.
FIG. 14 is a management system diagram of a building foundation group according to the first embodiment of the present invention.
Embodiment of the present invention The building foundation group management system for executing the building foundation group management method includes a plurality of building foundations M, an MQTT client 4, a router 5, a cloud server 6, and a terminal 7.
The building foundation M has a plurality of support mechanisms 1, a plurality of sensor systems 2, and a microcomputer 3 with a WiFi function.
The configuration of the MQTT client 4, the router 5, the cloud server 6, and the terminal 7 is the same as that described in the management system of the building foundation M for executing the management method of the building foundation M according to the embodiment of the present invention. Is omitted.

次に、本発明の第二の実施形態にかかる建物基礎群の管理方法を、図を基に説明する。
本発明の実施形態にかかる建物基礎群の管理方法は、支持機構1に対応する相対変位を演算して得た建物Oと基礎Bとの相対変位から得た地盤の絶対変位を基に任意の位置の地盤の絶対変位を推定する点に特徴のある方法である。
本発明の第二の実施形態にかかる建物基礎群の管理方法は、準備工程S100と演算工程S200と推定工程S300と類推工程S500とで構成される。
本発明の第二の実施形態にかかる建物基礎群の管理方法は、準備工程S100と演算工程S200と推定工程S300と類推工程S500と類推演算工程S600とで構成されてもよい。
Next, the management method of the building foundation group according to the second embodiment of the present invention will be described with reference to the drawings.
The method for managing the building foundation group according to the embodiment of the present invention is arbitrary based on the absolute displacement of the ground obtained from the relative displacement between the building O and the foundation B obtained by calculating the relative displacement corresponding to the support mechanism 1. This method is unique in that it estimates the absolute displacement of the ground at the position.
The building foundation group management method according to the second embodiment of the present invention includes a preparation process S100, an calculation process S200, an estimation process S300, and an analogy process S500.
The building foundation group management method according to the second embodiment of the present invention may be composed of a preparation step S100, a calculation step S200, an estimation step S300, an analogy step S500, and an analogy calculation step S600.

準備工程S100と演算工程S200と推定工程S300と構成は、第一の実施形態にかかる建物基礎群の管理方法のものと同じなので説明を省略する。 Since the configuration of the preparation process S100, the calculation process S200, and the estimation process S300 is the same as that of the building foundation group management method according to the first embodiment, the description thereof will be omitted.

類推工程S500は、複数の建物基礎の各々毎に、前記演算時系列相対変位と基礎、建物、及び建物基礎の全体振動特性とから建物基礎の位置する基礎の絶対変位を建物基礎に対応して基礎時系列絶対変位として各々に推定する工程である。
類推工程S500は、複数の建物基礎の各々毎に、前記演算時系列相対変位と基礎、建物、及び建物基礎の全体振動特性を表す振動モデルとから建物基礎の位置する基礎の絶対変位を建物基礎に対応して基礎時系列絶対変位として各々に推定してもよい。
In the analogy step S500, the absolute displacement of the foundation on which the building foundation is located corresponds to the building foundation from the calculated time-series relative displacement and the overall vibration characteristics of the foundation, the building, and the building foundation for each of the plurality of building foundations. This is the process of estimating each as the basic time-series absolute displacement.
In the analogy step S500, the absolute displacement of the foundation on which the building foundation is located is calculated from the calculated time-series relative displacement and the vibration model representing the overall vibration characteristics of the foundation, the building, and the building foundation for each of the plurality of building foundations. It may be estimated as an absolute displacement in the basic time series corresponding to each.

類推演算工程S600は、前記任意の位置Pにおける前記基礎時系列絶対変位と前記任意の位置に配される建物基礎と建物の全体振動特性とから前記任意の位置における建物と基礎との時系列の相対変位である演算時系列相対変位を求める工程である。
類推演算工程S600は、前記任意の位置Pにおける前記基礎時系列絶対変位と前記任意の位置に配される建物基礎と建物の全体振動特性を表す振動モデルとから前記任意の位置における建物と基礎との時系列の相対変位である演算時系列相対変位を求めてもよい。
The analogy calculation step S600 is a time series of the building and the foundation at the arbitrary position from the absolute displacement of the foundation time series at the arbitrary position P and the building foundation arranged at the arbitrary position and the overall vibration characteristics of the building. This is a process for obtaining a calculated time-series relative displacement, which is a relative displacement.
In the analogy calculation step S600, the foundation time-series absolute displacement at the arbitrary position P, the building foundation arranged at the arbitrary position, and the vibration model representing the overall vibration characteristics of the building are used to obtain the building and the foundation at the arbitrary position. The calculated time-series relative displacement, which is the time-series relative displacement of, may be obtained.

次に、前述した建物基礎Mの管理方法を実行するための第二の実施形態にかかる建物基礎群の管理システムの概要を、図を基に、説明する。
図16は、本発明の第二の実施形態に係る建物基礎群の管理システム図である。
本発明の実施形態かかる建物基礎群の管理方法を実行するための建物基礎群の管理システムは、複数の建物基礎Mと複数のMQTTクライアント4と複数のルータ5と複数のクラウドサーバ6と端末7とで構成される。
建物基礎Mは、複数の支持機構1と複数のセンサシステム2とWiFi機能付きマイコン3とを持つ。
MQTTクライアント4とルータ5とクラウドサーバ6と端末7との構成は、本発明の実施形態かかる建物基礎Mの管理方法を実行するための建物基礎Mの管理システムで説明したものと同じなので、説明を省略する。
クラウドサーバ6は、相互に通信し、他のクラウドサーバから複数の建物基礎の位置データと対応する基礎時系列絶対変位を受信できる。
クラウドサーバ6は、他のクラウドサーバから受信した複数の建物基礎の位置データと対応する基礎時系列絶対変位を基に、類推工程S500と類推演算工程S600とを実行する。
Next, the outline of the management system of the building foundation group according to the second embodiment for executing the management method of the building foundation M described above will be described with reference to the figure.
FIG. 16 is a management system diagram of a building foundation group according to a second embodiment of the present invention.
Embodiment of the present invention The building foundation group management system for executing the building foundation group management method includes a plurality of building foundations M, a plurality of MQTT clients 4, a plurality of routers 5, a plurality of cloud servers 6, and a terminal 7. Consists of.
The building foundation M has a plurality of support mechanisms 1, a plurality of sensor systems 2, and a microcomputer 3 with a WiFi function.
The configuration of the MQTT client 4, the router 5, the cloud server 6, and the terminal 7 is the same as that described in the management system of the building foundation M for executing the management method of the building foundation M according to the embodiment of the present invention. Is omitted.
The cloud server 6 communicates with each other and can receive the position data of a plurality of building foundations and the corresponding basic time-series absolute displacement from other cloud servers.
The cloud server 6 executes the analogy step S500 and the analogy calculation step S600 based on the position data of the plurality of building foundations received from other cloud servers and the corresponding basic time series absolute displacement.

以上説明したように、本発明の第一の実施形態に係る建物基礎の管理方法は、その構成により、以下の効果を有する。
発生した地震が収まったとき、変位測定機器により測定記録された複数の支持機構1に各々に対応して記録された時系列の相対変位を基に演算した演算時系列相対変位が建物について予め定められる限界相対変位を時系列の何時かの時に越えているか否かを判断基準として建物基礎Mの健全性を判定する様にしたので、発生した地震が収まったときに速やかに建物基礎Mの健全性を判定できる。
発生した地震が収まったとき、変位測定機器により測定記録された複数の支持機構1に各々に対応して記録された時系列のX軸方向相対変位とY軸方向相対変位とを基に演算した極座標の半径方向の相対変位が建物について予め定められる限界R軸方向変位を時系列の何時かの時に越えているか否かを判断基準として建物基礎Mの健全性を判定する様にしたので、発生した地震が収まったときに速やかに建物基礎Mの健全性を判定できる。
また、発生した地震が収まったとき、変位測定機器により測定記録された複数の支持機構1に各々に対応して記録された時系列のx軸方向相対変位とy軸方向相対変位とを基に演算した建物Oと基礎Bとの相対変位であるX軸方向相対変位とY軸方向相対変位が建物について予め定められる限界X軸方向変位と限界Y軸方向変位とを時系列の何時かの時に越えているか否かを判断基準として建物基礎Mの健全性を判定する様にしたので、発生した地震が収まったときに速やかに建物基礎Mの健全性を判定できる。
また、発生した地震が収まったとき、変位測定機器により測定記録された複数の支持機構1に各々に対応して記録された時系列のx軸方向相対変位とy軸方向相対変位とを基に演算したZ軸回りの相対変位角が建物について予め定められる限界Z軸回り変位角を時系列の何時かの時に越えているか否かを判断基準として建物基礎Mの健全性を判定する様にしたので、発生した地震が収まったときに速やかに建物基礎Mの健全性を判定できる。
また、発生した地震が収まったとき、変位測定機器により測定記録された複数の支持機構1に各々に対応して記録された時系列のz軸方向相対変位を基に演算したZ軸方向の相対変位角が建物について予め定められる限界Z軸方向変位を時系列の何時かの時に越えているか否かを判断基準として建物基礎Mの健全性を判定する様にしたので、発生した地震が収まったときに速やかに建物基礎Mの健全性を判定できる。
As described above, the building foundation management method according to the first embodiment of the present invention has the following effects depending on its configuration.
When the generated earthquake subsides, the calculated time-series relative displacement calculated in advance based on the time-series relative displacement recorded corresponding to each of the plurality of support mechanisms 1 measured and recorded by the displacement measuring device is determined in advance for the building. Since the soundness of the building foundation M is judged based on whether or not the relative displacement is exceeded at some time in the time series, the soundness of the building foundation M is promptly determined when the earthquake that occurs has subsided. Gender can be determined.
When the generated earthquake subsided, it was calculated based on the time-series X-axis relative displacement and Y-axis relative displacement recorded correspondingly to each of the plurality of support mechanisms 1 measured and recorded by the displacement measuring device. Occurrence because the soundness of the building foundation M is judged based on whether or not the relative displacement in the radial direction of the polar coordinates exceeds the predetermined limit R-axis displacement for the building at some time in the time series. The soundness of the building foundation M can be quickly determined when the earthquake has subsided.
In addition, when the generated earthquake subsides, based on the time-series x-axis relative displacement and y-axis relative displacement recorded corresponding to each of the plurality of support mechanisms 1 measured and recorded by the displacement measuring device. The calculated relative displacement between the building O and the foundation B, which is the relative displacement in the X-axis direction and the relative displacement in the Y-axis direction, is the limit X-axis direction displacement and the limit Y-axis direction displacement that are predetermined for the building at some time in the time series. Since the soundness of the building foundation M is determined based on whether or not the displacement is exceeded, the soundness of the building foundation M can be quickly determined when the generated earthquake subsides.
In addition, when the generated earthquake subsides, based on the time-series x-axis relative displacement and y-axis relative displacement recorded correspondingly to each of the plurality of support mechanisms 1 measured and recorded by the displacement measuring device. The soundness of the building foundation M is judged based on whether or not the calculated relative displacement angle around the Z-axis exceeds the predetermined limit Z-axis displacement angle for the building at some time in the time series. Therefore, the soundness of the building foundation M can be quickly determined when the generated earthquake has subsided.
Further, when the generated earthquake subsides, the relative in the Z-axis direction calculated based on the relative displacement in the z-axis direction of the time series recorded corresponding to each of the plurality of support mechanisms 1 measured and recorded by the displacement measuring device. Since the soundness of the building foundation M was judged based on whether or not the displacement angle exceeded the predetermined limit Z-axis displacement for the building at some time in the time series, the earthquake that occurred was settled. Sometimes the soundness of the building foundation M can be quickly determined.

本発明の第二の実施形態に係る建物基礎の管理方法は、その構成により、以下の効果を有する。
発生した地震が収まったとき、変位測定機器により測定記録された複数の支持機構1に各々に対応して記録された時系列の相対変位を基に演算した特定支持機構1に対応する演算時系列相対変位が特定支持機構1について予め定められる限界相対変位を越えているか否かを判断基準として建物基礎Mの健全性を判定する様にしたので、発生した地震が収まったときに速やかに建物基礎Mの健全性を判定できる。
また、発生した地震が収まったとき、変位測定機器により測定記録された複数の支持機構1に各々に対応して記録された時系列の相対変位を基に演算した特定支持機構1に対応するz軸回り時系列相対変位角が特定支持機構1について予め定められる限界z軸回り変位角を越えているか否かを判断基準として建物基礎Mの健全性を判定する様にしたので、発生した地震が収まったときに速やかに建物基礎Mの健全性を判定できる。
The building foundation management method according to the second embodiment of the present invention has the following effects depending on its configuration.
When the generated earthquake subsides, the calculated time series corresponding to the specific support mechanism 1 calculated based on the relative displacement of the time series recorded corresponding to each of the plurality of support mechanisms 1 measured and recorded by the displacement measuring device. Since the soundness of the building foundation M is judged based on whether or not the relative displacement exceeds the predetermined relative displacement of the specific support mechanism 1, the building foundation is promptly determined when the earthquake that occurs has subsided. The soundness of M can be determined.
Further, when the generated earthquake subsides, z corresponding to the specific support mechanism 1 calculated based on the relative displacement of the time series recorded corresponding to each of the plurality of support mechanisms 1 measured and recorded by the displacement measuring device. Since the soundness of the building foundation M is judged based on whether or not the axial relative displacement angle exceeds the predetermined limit z axial displacement angle for the specific support mechanism 1, the earthquake that occurred occurs. When it is settled, the soundness of the building foundation M can be quickly determined.

本発明の第三の実施形態に係る建物基礎の管理方法は、その構成により、以下の効果を有する。
発生した地震が収まったとき、変位測定機器により測定記録された(複数の支持機構1のうち特定支持機構1を除く)複数の支持機構1に各々に対応して記録された時系列の相対変位を基に演算した特定支持機構1を配される位置での演算時系列相対変位が特定支持機構1について予め定められる限界相対変位を時系列の何時かの時に越えているか否かを判断基準として建物基礎Mの健全性を判定する様にしたので、発生した地震が収まったときに速やかに建物基礎Mの健全性を判定できる。
また、発生した地震が収まったとき、変位測定機器により測定記録された(複数の支持機構1のうち特定支持機構1を除く)複数の支持機構1に各々に対応して記録された時系列の相対変位を基に演算した特定支持機構1を配される位置での演算r時系列変位が特定支持機構1について予め定められる限界r軸方向変位を時系列の何時かの時に越えているか否かを判断基準として建物基礎Mの健全性を判定する様にしたので、発生した地震が収まったときに速やかに建物基礎Mの健全性を判定できる。
また、発生した地震が収まったとき、変位測定機器により測定記録された(複数の支持機構1のうち特定支持機構1を除く)複数の支持機構1に各々に対応して記録された時系列の相対変位を基に演算した特定支持機構1を配される位置での演算x軸方向時系列変位と演算y軸方向時系列変位とが特定支持機構1について予め定められる限界x軸方向変位と限界y軸方向変位とを時系列の何時かの時に越えているか否かを判断基準として建物基礎Mの健全性を判定する様にしたので、発生した地震が収まったときに速やかに建物基礎Mの健全性を判定できる。
また、発生した地震が収まったとき、変位測定機器により測定記録された(複数の支持機構1のうち特定支持機構1を除く)複数の支持機構1に各々に対応して記録された時系列の相対変位を基に演算した特定支持機構1を配される位置での演算z軸方向時系列相対変位が特定支持機構1について予め定められる限界z軸方向変位を時系列の何時かの時に越えているか否かを判断基準として建物基礎Mの健全性を判定する様にしたので、発生した地震が収まったときに速やかに建物基礎Mの健全性を判定できる。
The building foundation management method according to the third embodiment of the present invention has the following effects depending on its configuration.
When the generated earthquake subsides, the relative displacement of the time series recorded correspondingly to each of the plurality of support mechanisms 1 measured and recorded by the displacement measuring device (excluding the specific support mechanism 1 among the plurality of support mechanisms 1). Calculation based on whether or not the time-series relative displacement at the position where the specific support mechanism 1 is arranged exceeds the predetermined limit relative displacement for the specific support mechanism 1 at some time in the time series as a criterion. Since the soundness of the building foundation M is determined, the soundness of the building foundation M can be quickly determined when the generated earthquake subsides.
In addition, when the generated earthquake subsides, the time series recorded corresponding to each of the plurality of support mechanisms 1 measured and recorded by the displacement measuring device (excluding the specific support mechanism 1 among the plurality of support mechanisms 1). Calculation based on relative displacement Calculation at the position where the specific support mechanism 1 is arranged r Whether the time-series displacement exceeds the predetermined limit r-axis displacement for the specific support mechanism 1 at some time in the time series. Since the soundness of the building foundation M is judged based on the above, the soundness of the building foundation M can be quickly judged when the generated earthquake subsides.
In addition, when the generated earthquake subsides, the time series recorded corresponding to each of the plurality of support mechanisms 1 measured and recorded by the displacement measuring device (excluding the specific support mechanism 1 among the plurality of support mechanisms 1). The calculation x-axis direction time-series displacement and the calculation y-axis direction time-series displacement at the position where the specific support mechanism 1 calculated based on the relative displacement is the predetermined limit x-axis direction displacement and limit for the specific support mechanism 1. Since the soundness of the building foundation M is judged based on whether or not the displacement in the y-axis direction is exceeded at some time in the time series, the soundness of the building foundation M is promptly determined when the generated earthquake subsides. The soundness can be judged.
In addition, when the generated earthquake subsides, the time series recorded corresponding to each of the plurality of support mechanisms 1 measured and recorded by the displacement measuring device (excluding the specific support mechanism 1 among the plurality of support mechanisms 1). Calculation based on relative displacement Calculation at the position where the specific support mechanism 1 is arranged z-axis direction time series Relative displacement exceeds the predetermined limit z-axis direction displacement for the specific support mechanism 1 at some time in the time series. Since the soundness of the building foundation M is determined based on whether or not it is present, the soundness of the building foundation M can be quickly determined when the generated earthquake subsides.

本発明の第四の実施形態に係る建物基礎の管理方法は、その構成により、以下の効果を有する。
発生した地震が収まったとき、変位測定機器により測定記録された複数の支持機構1のうちの(特定支持機構1を除く)複数の支持機構1に各々に対応して記録された時系列の相対変位を基に演算した特定支持機構1に対応する演算時系列相対変位と特定支持機構1に対応する記録時系列相対変位との時系列の偏差の大きさを判断基準としてに特定支持機構1の健全性を判定する様にしたので、発生した地震が収まったときに速やかに建物基礎Mの健全性を判定できる。
また、発生した地震が収まったとき、変位測定機器により測定記録された複数の支持機構1のうちの特定支持機構1を除く複数の支持機構1に各々に対応して記録された時系列の相対変位を基に演算した特定支持機構1に対応する演算x軸方向時系列相対変位とy演算y軸方向時系列相対変位と特定支持機構1に対応する記録x軸方向時系列相対変位と記録y軸方向時系列相対変位との時系列の偏差の大きさを判断基準としてに特定支持機構1の健全性を判定する様にしたので、発生した地震が収まったときに速やかに建物基礎Mの健全性を判定できる。
また、発生した地震が収まったとき、変位測定機器により測定記録された複数の支持機構1のうちの特定支持機構1を除く複数の支持機構1に各々に対応して記録された時系列の相対変位を基に演算した特定支持機構1に対応する演算z軸方向時系列相対変位と特定支持機構1に対応する記録z軸方向時系列相対変位との時系列の偏差の大きさを判断基準としてに特定支持機構1の健全性を判定する様にしたので、発生した地震が収まったときに速やかに建物基礎Mの健全性を判定できる。
The building foundation management method according to the fourth embodiment of the present invention has the following effects depending on its configuration.
When the generated earthquake subsides, the time-series relatives recorded corresponding to each of the plurality of support mechanisms 1 (excluding the specific support mechanism 1) among the plurality of support mechanisms 1 measured and recorded by the displacement measuring device. Calculation of the specific support mechanism 1 calculated based on the displacement Based on the magnitude of the time series deviation between the time-series relative displacement corresponding to the specific support mechanism 1 and the recorded time-series relative displacement corresponding to the specific support mechanism 1. Since the soundness is judged, the soundness of the building foundation M can be quickly judged when the generated earthquake has subsided.
In addition, when the generated earthquake subsides, the relative time series recorded corresponding to each of the plurality of support mechanisms 1 excluding the specific support mechanism 1 among the plurality of support mechanisms 1 measured and recorded by the displacement measuring device. Calculations corresponding to the specific support mechanism 1 calculated based on the displacement x-axis direction time-series relative displacement and y calculation y-axis direction time-series relative displacement and recording corresponding to the specific support mechanism 1 x-axis direction time-series relative displacement and recording y Since the soundness of the specific support mechanism 1 is judged based on the magnitude of the time-series deviation from the axial time-series relative displacement, the soundness of the building foundation M is promptly settled when the generated earthquake subsides. Gender can be determined.
In addition, when the generated earthquake subsides, the time-series relatives recorded corresponding to each of the plurality of support mechanisms 1 excluding the specific support mechanism 1 among the plurality of support mechanisms 1 measured and recorded by the displacement measuring device. Calculation based on the displacement The magnitude of the time-series deviation between the z-axis direction time-series relative displacement corresponding to the specific support mechanism 1 and the recorded z-axis direction time-series relative displacement corresponding to the specific support mechanism 1 is used as a criterion. Since the soundness of the specific support mechanism 1 is determined, the soundness of the building foundation M can be quickly determined when the generated earthquake has subsided.

本発明の第一の実施形態に係る建物基礎群の管理方法は、その構成により、以下の効果を有する。
発生した地震が収まったとき、変位測定機器により測定記録された複数の支持機構1に各々に対応して記録された時系列の相対変位を基に線ざんした複数の演算時系列相対変位と建物基礎Mの全体振動特性とから複数の建物基礎Mの各々毎に基礎Bの時系列の絶対変位を推定し、複数の建物基礎Mの配される地域内での基礎時系列絶対変位と建物Oの位置データを関連づけたデータベースを生成する様にしたので、地域内の基礎時系列絶対変位の分布を把握でき、地域での任意の位置での時系列の絶対変位を類推できるマップを得る。
また、時系列絶対変位マップを基に地域に含まれる任意の位置での基礎時系列絶対変位を類推する様にしたので、任意の位置にある建物を支持する建物基礎Mに作用する絶対変位を得ることができる。
また、任意の位置における基礎時系列絶対変位と任意の位置に配される建物基礎Mと建物の全体振動特性の全体振動特性とから任意の位置における建物Oと基礎Bとの時系列の相対変位である演算時系列相対変位を求める様にしたので、地域に含まれる任意の位置にある建物基礎Mの健全性を判断する材料をえることができる。
The building foundation group management method according to the first embodiment of the present invention has the following effects depending on its configuration.
When the generated earthquake subsides, multiple calculated time-series relative displacements and buildings lined up based on the time-series relative displacements recorded corresponding to each of the multiple support mechanisms 1 measured and recorded by the displacement measuring device. The absolute displacement of the foundation B in the time series is estimated for each of the plurality of building foundations M from the overall vibration characteristics of the foundation M, and the absolute displacement of the foundation time series and the building O in the area where the plurality of building foundations M are arranged. Since the database related to the position data of is generated, the distribution of the basic time-series absolute displacement in the area can be grasped, and the map that can infer the absolute displacement of the time-series at any position in the area is obtained.
In addition, since the basic time-series absolute displacement at any position included in the area is estimated based on the time-series absolute displacement map, the absolute displacement acting on the building foundation M that supports the building at any position can be calculated. Obtainable.
Further, from the absolute displacement of the foundation time series at an arbitrary position and the total vibration characteristics of the building foundation M arranged at an arbitrary position and the total vibration characteristics of the building, the relative displacement of the building O and the foundation B at an arbitrary position in the time series. Since the calculation time-series relative displacement is obtained, it is possible to obtain a material for judging the soundness of the building foundation M at an arbitrary position included in the area.

本発明の第二の実施形態に係る建物基礎群の管理方法は、その構成により、以下の効果を有する。
発生した地震が収まったとき、変位測定機器により測定記録された複数の支持機構1に各々に対応して記録された時系列の相対変位を基に演算した複数の演算時系列相対変位と建物基礎の全体振動特性とから複数の建物基礎の各々毎に基礎の時系列の絶対変位を推定し、地域に含まれる任意の位置での基礎時系列絶対変位を類推する様にしたので、任意の位置にある建物を支持する建物基礎に作用する絶対変位を得ることができる。
また、地域に含まれる任意の位置での基礎時系列絶対変位を類推する様にしたので、任意の位置にある建物を支持する建物基礎に作用する絶対変位を得ることができる。
The building foundation group management method according to the second embodiment of the present invention has the following effects depending on its configuration.
When the generated earthquake subsides, multiple calculated time-series relative displacements and building foundations calculated based on the time-series relative displacements recorded corresponding to each of the multiple support mechanisms 1 measured and recorded by the displacement measuring device. The absolute displacement of the foundation in time series is estimated for each of the multiple building foundations from the overall vibration characteristics of, and the absolute displacement of the foundation time series at any position included in the area is estimated. You can get the absolute displacement acting on the building foundation that supports the building in.
In addition, since the absolute time-series displacement of the foundation at any position included in the area is estimated, the absolute displacement acting on the building foundation supporting the building at any position can be obtained.

本発明は以上に述べた実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で各種の変更が可能である。
例えば、記録データを複数の管理者で管理しても良い。
例えば、発電機能をもつ建物基礎Mと他の建物基礎Mとが電力のやり取りしても良い。
例えば、発電機能をもつ建物基礎Mの発電した電気エネルギーを一箇所または適当なグループ毎にまとめて管理してもよい。
例えば、発電機能をもつ建物基礎Mの発電した電力エネルギーは同じまたは異なる建物基礎Mのダンパーの回生エネルギーであってもよい。
図17は、複数の建物基礎Mの間で発電した電力をやりとりする様子を示している。
The present invention is not limited to the embodiments described above, and various modifications can be made without departing from the gist of the invention.
For example, the recorded data may be managed by a plurality of administrators.
For example, electric power may be exchanged between a building foundation M having a power generation function and another building foundation M.
For example, the electric energy generated by the building foundation M having a power generation function may be collectively managed at one location or for each appropriate group.
For example, the electric power energy generated by the building foundation M having a power generation function may be the regenerative energy of the dampers of the same or different building foundation M.
FIG. 17 shows how the electric power generated between the plurality of building foundations M is exchanged.

A 地域
M 建物基礎
B 基礎
O 建物
T 基礎杭
P 任意の位置
1 支持機構
1A 積層ゴム支承
1B 転がり滑り支承
1C 剛すべり支承
1D ダンパ
2 センサシステム
3 WiFi機能付きマイコン
4 MQTTクライアント
5 ルータ
6 クラウドサーバ
7 端末
8 周辺機器
9t 上部基礎構造
9b 下部基礎構造
10 基礎梁
11t 上部リニアブロック
11b 下部リニアブロック
12t 上部リニアレール
12b 下部リニアレール
13t 上部フランジプレート
13b 下部フランジプレート
14 ゴムシム
15x x軸方向変位センサ
15y y軸方向変位センサ
16 ターゲット
17 z軸方向変位センサ
18 タグ
19 センサ
20 ルータ
21 周辺機器
S10 準備工程
S20 演算工程
S30 判定工程
S40 検査工程
S100 準備工程
S200 演算工程
S300 推定工程
S400 生成工程
S500 類推工程
S600 類推演算工程
Area A Area M Building foundation B Foundation O Building T Foundation pile P Arbitrary position 1 Support mechanism 1A Laminated rubber bearing 1B Rolling slip bearing 1C Rigid sliding bearing 1D Damper 2 Sensor system 3 WiFi function Microcomputer 4 MQTT client 5 Router 6 Cloud server 7 Terminal 8 Peripheral equipment 9t Upper foundation structure 9b Lower foundation structure 10 Foundation beam 11t Upper linear block 11b Lower linear block 12t Upper linear rail 12b Lower linear rail 13t Upper flange plate 13b Lower flange plate 14 Rubber shim 15x x Axial displacement sensor 15y y-axis Directional displacement sensor 16 Target 17 z-axis directional displacement sensor 18 Tag 19 Sensor 20 Router 21 Peripheral equipment S10 Preparation process S20 Calculation process S30 Judgment process S40 Inspection process S100 Preparation process S200 Calculation process S300 Estimation process S400 Generation process S500 By analogy process S600 Process

特開平5-99648Japanese Patent Application Laid-Open No. 5-99648 特開2016-161416JP 2016-161416 特開2017-72238JP-A-2017-72238

Claims (23)

基礎に配され建物を支持する複数の支持機構を有する建物基礎の管理方法であって、
複数の支持機構の配される位置での基礎と建物との間の時系列の相対変位を複数の支持機構に各々に対応する記録時系列相対変位として測定記録する変位測定機器を準備する準備工程と、
発生した地震が収まったとき、複数の支持機構に各々に対応する記録時系列相対変位を基に建物と基礎とが所定のばね剛性をもつ固体であると仮定して演算して建物と基礎との時系列の相対変位である演算時系列相対変位を求める演算工程と、
前記演算時系列相対変位が建物について予め定められる限界相対変位を同一軸方向毎または同一軸周り毎に時系列の何時かの時に越えているか否かを判断基準として建物基礎の健全性を判定する判定工程と、
を備えることを特徴とする建物基礎の管理方法。
It is a management method of a building foundation that has multiple support mechanisms that are placed on the foundation and support the building.
Preparation process to prepare a displacement measuring device to measure and record the time-series relative displacement between the foundation and the building at the position where multiple support mechanisms are arranged as the recording time-series relative displacement corresponding to each of the multiple support mechanisms. When,
When the generated earthquake subsides, the building and the foundation are calculated on the assumption that the building and the foundation are solids with predetermined spring rigidity based on the recorded time-series relative displacements corresponding to each of the multiple support mechanisms. Calculation process that is the relative displacement of the time series of
The soundness of the building foundation is judged based on whether or not the calculated time-series relative displacement exceeds the predetermined limit relative displacement for the building at any time in the time series in the same axial direction or around the same axis. Judgment process and
A method of managing building foundations, which is characterized by being equipped with.
水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、垂直方向の軸の回りをz軸回りまたはZ軸回りと定義し、
前記記録時系列相対変位は対応する支持機構の配される位置でのx軸方向の時系列の相対変位であるx軸方向時系列変位とy軸方向の時系列の相対変位であるy軸方向時系列変位とであり、
前記演算時系列相対変位はX軸方向の時系列の相対変位である演算X軸方向時系列変位とY軸方向の時系列の相対変位である演算Y軸方向時系列変位との対応する極座標系での半径方向の変位である演算R軸方向時系列変位であり、
前記限界相対変位は極座標系での半径方向の限界変位である限界R軸方向変位である、
ことを特徴とする請求項1に記載の建物基礎の管理方法。
Axis orthogonal to each other in the horizontal plane is defined as x-axis or X-axis, y-axis or Y-axis, vertical axis is z-axis or Z-axis, and vertical axis is defined as z-axis or Z-axis.
The recorded time-series relative displacements are the x-axis direction time-series displacement, which is the x-axis direction relative displacement at the position where the corresponding support mechanism is arranged, and the y-axis direction, which is the y-axis direction time-series relative displacement. It is a time-series displacement,
The calculated time-series relative displacement is a polar coordinate system corresponding to the calculated X-axis direction time-series displacement, which is the time-series relative displacement in the X-axis direction, and the calculated Y-axis direction time-series displacement, which is the Y-axis direction time-series relative displacement. It is a calculated R-axis time-series displacement, which is the displacement in the radial direction in.
The limit relative displacement is a limit R-axis displacement, which is a radial limit displacement in a polar coordinate system.
The method for managing a building foundation according to claim 1.
水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、垂直方向の軸の回りをz軸回りまたはZ軸回りと定義し、
前記記録時系列相対変位は対応する支持機構の配される位置でのx軸方向の時系列の相対変位であるx軸方向時系列変位とy軸方向の時系列の相対変位であるy軸方向時系列変位とであり、
前記演算時系列相対変位はX軸方向の時系列の相対変位である演算X軸方向時系列変位とY軸方向の時系列の相対変位である演算Y軸方向時系列変位であり、
前記限界相対変位はX軸方向の限界変位である限界X軸方向変位とY軸方向の限界変位である限界軸方向変位とである、
ことを特徴とする請求項2に記載の建物基礎の管理方法。
Axis orthogonal to each other in the horizontal plane is defined as x-axis or X-axis, y-axis or Y-axis, vertical axis is z-axis or Z-axis, and vertical axis is defined as z-axis or Z-axis.
The recorded time-series relative displacements are the x-axis direction time-series displacement, which is the x-axis direction relative displacement at the position where the corresponding support mechanism is arranged, and the y-axis direction, which is the y-axis direction time-series relative displacement. It is a time-series displacement,
The calculated time-series relative displacement is a calculated X-axis direction time-series displacement which is a time-series relative displacement in the X-axis direction and a calculated Y-axis direction time-series displacement which is a Y-axis direction time-series relative displacement.
The limit relative displacement is a limit X-axis displacement, which is a limit displacement in the X-axis direction, and a limit Y -axis displacement, which is a limit displacement in the Y-axis direction.
The method for managing a building foundation according to claim 2, wherein the building foundation is characterized by the above.
水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、垂直方向の軸の回りをz軸回りまたはZ軸回りと定義し、
前記記録時系列相対変位は対応する支持機構の配される位置でのx軸方向の時系列相対変位であるx軸方向時系列変位とy軸方向の時系列相対変位であるy軸方向時系列変位とであり、
前記演算時系列相対変位はZ軸回りの時系列相対変位角である演算Z軸回り時系列相対変位角であり、
前記限界相対変位はZ軸回りの限界相対変位角である限界Z軸回り変位角である、
ことを特徴とする請求項3に記載の建物基礎の管理方法。
Axis orthogonal to each other in the horizontal plane is defined as x-axis or X-axis, y-axis or Y-axis, vertical axis is z-axis or Z-axis, and vertical axis is defined as z-axis or Z-axis.
The recorded time-series relative displacements are the x-axis direction time-series displacement, which is the x-axis direction time-series relative displacement at the position where the corresponding support mechanism is arranged, and the y-axis direction time-series, which is the y-axis direction time-series relative displacement. Displacement and
The calculated time-series relative displacement is a time-series relative displacement angle around the Z-axis, which is a time-series relative displacement angle around the Z-axis.
The limit relative displacement is a limit Z-axis displacement angle, which is a limit relative displacement angle around the Z axis.
The method for managing a building foundation according to claim 3, wherein the building foundation is characterized by the above.
水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、垂直方向の軸の回りをz軸回りまたはZ軸回りと定義し、
前記記録時系列相対変位は対応する支持機構の配される位置でのz軸方向の時系列の相対変位であるz軸方向時系列相対変位であり、
前記演算時系列相対変位はZ軸方向の時系列の相対変位である演算Z軸方向時系列相対変位であり、
前記限界相対変位はZ軸方向の限界相対変位である限界Z軸方向変位である、
ことを特徴とする請求項4に記載の建物基礎の管理方法。
Axis orthogonal to each other in the horizontal plane is defined as x-axis or X-axis, y-axis or Y-axis, vertical axis is z-axis or Z-axis, and vertical axis is defined as z-axis or Z-axis.
The recorded time-series relative displacement is a z-axis direction time-series relative displacement, which is a z-axis direction time-series relative displacement at the position where the corresponding support mechanism is arranged.
The calculated time-series relative displacement is a calculated Z-axis direction time-series relative displacement, which is a Z-axis direction time-series relative displacement.
The limit relative displacement is a limit Z-axis direction displacement, which is a limit relative displacement in the Z-axis direction.
The method for managing a building foundation according to claim 4, wherein the building foundation is characterized by the above.
水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、垂直方向の軸の回りをz軸回りまたはZ軸回りと定義し、
前記記録時系列相対変位は対応する支持機構の配される位置でのx軸方向の時系列の相対変位であるx軸方向時系列変位とy軸方向の時系列の相対変位であるy軸方向時系列変位とであり、
前記演算時系列相対変位はX軸方向の時系列の相対変位である演算X軸方向時系列変位とY軸方向の時系列の相対変位である演算Y軸方向時系列変位であり、
前記限界相対変位はX軸方向の限界変位である限界X軸方向変位とY軸方向の限界変位である限界軸方向変位とである、
ことを特徴とする請求項1に記載の建物基礎の管理方法。
Axis orthogonal to each other in the horizontal plane is defined as x-axis or X-axis, y-axis or Y-axis, vertical axis is z-axis or Z-axis, and vertical axis is defined as z-axis or Z-axis.
The recorded time-series relative displacements are the x-axis direction time-series displacement, which is the x-axis direction relative displacement at the position where the corresponding support mechanism is arranged, and the y-axis direction, which is the y-axis direction time-series relative displacement. It is a time-series displacement,
The calculated time-series relative displacement is a calculated X-axis direction time-series displacement which is a time-series relative displacement in the X-axis direction and a calculated Y-axis direction time-series displacement which is a Y-axis direction time-series relative displacement.
The limit relative displacement is a limit X-axis displacement, which is a limit displacement in the X-axis direction, and a limit Y -axis displacement, which is a limit displacement in the Y-axis direction.
The method for managing a building foundation according to claim 1.
水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、垂直方向の軸の回りをz軸回りまたはZ軸回りと定義し、
前記記録時系列相対変位は対応する支持機構の配される位置でのx軸方向の時系列相対変位であるx軸方向時系列変位とy軸方向の時系列相対変位であるy軸方向時系列変位とであり、
前記演算時系列相対変位はZ軸回りの時系列相対変位角である演算Z軸回り時系列相対変位角であり、
前記限界相対変位はZ軸回りの限界相対変位角である限界Z軸回り変位角である、
ことを特徴とする請求項1に記載の建物基礎の管理方法。
Axis orthogonal to each other in the horizontal plane is defined as x-axis or X-axis, y-axis or Y-axis, vertical axis is z-axis or Z-axis, and vertical axis is defined as z-axis or Z-axis.
The recorded time-series relative displacements are the x-axis direction time-series displacement, which is the x-axis direction time-series relative displacement at the position where the corresponding support mechanism is arranged, and the y-axis direction time-series, which is the y-axis direction time-series relative displacement. Displacement and
The calculated time-series relative displacement is a time-series relative displacement angle around the Z-axis, which is a time-series relative displacement angle around the Z-axis.
The limit relative displacement is a limit Z-axis displacement angle, which is a limit relative displacement angle around the Z axis.
The method for managing a building foundation according to claim 1.
水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、垂直方向の軸の回りをz軸回りまたはZ軸回りと定義し、
前記記録時系列相対変位は対応する支持機構の配される位置でのz軸方向の時系列の相対変位であるz軸方向時系列相対変位であり、
前記演算時系列相対変位はZ軸方向の時系列の相対変位である演算Z軸方向時系列相対変位であり、
前記限界相対変位はZ軸方向の限界相対変位である限界Z軸方向変位である、
ことを特徴とする請求項1に記載の建物基礎の管理方法。
Axis orthogonal to each other in the horizontal plane is defined as x-axis or X-axis, y-axis or Y-axis, vertical axis is z-axis or Z-axis, and vertical axis is defined as z-axis or Z-axis.
The recorded time-series relative displacement is a z-axis direction time-series relative displacement, which is a z-axis direction time-series relative displacement at the position where the corresponding support mechanism is arranged.
The calculated time-series relative displacement is a calculated Z-axis direction time-series relative displacement, which is a Z-axis direction time-series relative displacement.
The limit relative displacement is a limit Z-axis direction displacement, which is a limit relative displacement in the Z-axis direction.
The method for managing a building foundation according to claim 1.
基礎に配され建物を支持する複数の支持機構を有する建物基礎の管理方法であって、
複数の支持機構の配される位置での基礎と建物との間の時系列の相対変位を複数の支持機構に各々に対応する記録時系列相対変位として測定記録する変位測定機器を準備する準備工程と、
発生した地震が収まったとき、複数の支持機構のうちの特定の一つの支持機構である特定支持機構を定め、複数の前記支持機構に各々に対応する記録時系列相対変位を基に演算して、該特定支持機構の配される位置での基礎と建物との相対変位である時系列相対変位を該特定支持機構に対応する演算時系列相対変位として求める演算工程と、
前記特定支持機構に対応する記録時系列相対変位が前記特定支持機構について予め定められる限界相対変位を同一軸方向毎または同一軸周り毎に時系列の何時かの時に越えているか否かを判断基準として前記特定支持機構の健全性を判定する判定工程と、
を備え、
水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、垂直方向の軸の回りをz軸回りまたはZ軸回りと定義し、
前記記録時系列相対変位が対応する支持機構の配される位置でのx軸方向の時系列の相対
変位であるx軸方向時系列相対変位とy軸方向の時系列の相対変位であるy軸方時系列相対変位であり、
前記演算時系列相対変位が、対応する前記特定支持機構の配される位置でのz軸回りの時系列の相対変位角であるz軸回り時系列相対変位角であり、
前記限界相対変位が、z軸回りの限界変位角である限界z軸回り変位角である、
ことを特徴とする建物基礎の管理方法。
It is a management method of a building foundation that has multiple support mechanisms that are placed on the foundation and support the building.
Preparation process to prepare a displacement measuring device to measure and record the time-series relative displacement between the foundation and the building at the position where multiple support mechanisms are arranged as the recording time-series relative displacement corresponding to each of the multiple support mechanisms. When,
When the generated earthquake subsides, a specific support mechanism, which is a specific support mechanism among the plurality of support mechanisms, is determined, and the calculation is performed based on the recorded time-series relative displacement corresponding to each of the plurality of support mechanisms. , A calculation process for obtaining a time-series relative displacement, which is a relative displacement between the foundation and the building at the position where the specific support mechanism is arranged, as an operation time-series relative displacement corresponding to the specific support mechanism.
Criteria for determining whether or not the recorded time-series relative displacement corresponding to the specific support mechanism exceeds the limit relative displacement predetermined for the specific support mechanism at any time in the time series in the same axial direction or around the same axis. As a determination step for determining the soundness of the specific support mechanism,
Equipped with
Axis orthogonal to each other in the horizontal plane is defined as x-axis or X-axis, y-axis or Y-axis, vertical axis is z-axis or Z-axis, and vertical axis is defined as z-axis or Z-axis.
The recorded time-series relative displacement is the x-axis direction time-series relative displacement at the position where the corresponding support mechanism is arranged, and the y-axis is the y-axis direction time-series relative displacement. It is a relative displacement in a square time series.
The calculated time-series relative displacement is a z-axis time-series relative displacement angle which is a time-series relative displacement angle around the z-axis at the position where the corresponding specific support mechanism is arranged.
The limit relative displacement is the limit z-axis displacement angle, which is the limit displacement angle around the z-axis.
A method of managing building foundations, which is characterized by this.
基礎に配され建物を支持する複数の支持機構を有する建物基礎の管理方法であって、
複数の支持機構の配される位置での基礎と建物との間の時系列の相対変位を複数の支持機構に各々に対応して記録時系列相対変位として測定記録する変位測定機器を準備する準備工程と、
発生した地震が収まったとき、複数の支持機構のうちの特定の一つの支持機構である特定支持機構を定め、複数の前記支持機構のうち該特定支持機構を除く複数の前記支持機構に各々に対応する記録時系列相対変位を基に演算して、該特定支持機構の配される位置での基礎と建物との相対変位である時系列相対変位を前記特定支持機構に対応する演算時系列相対変位として求める演算工程と、
前記特定支持機構に対応する演算時系列相対変位が予め前記特定支持機構について定められる限界相対変位を同一軸方向毎または同一軸周り毎に時系列の何時かの時に越えているか否かを判断基準として前記特定支持機構の健全性を判定する判定工程と、
を備え、
前記記録時系列相対変位が対応する支持機構の配される位置でのx軸方向の時系列の相対変位である記録x軸時系列相対変位とy軸方向の時系列の相対変位である記録y軸時系列変位であり、
前記演算時系列相対変位が対応する前記特定支持機構の配される位置でのx軸方向の時系列な相対変位である演算x軸方向時系列変位とy軸方向の時系列な相対変位である演算y軸方向時系列変位とに対応する極座標系での半径方向の相対変位である演算r時系列変位であり、
前記限界相対変位が極座標系での半径方向の限界変位である限界r軸方向変位である、
ことを特徴とする建物基礎の管理方法。
It is a management method of a building foundation that has multiple support mechanisms that are placed on the foundation and support the building.
Preparation for preparing a displacement measuring device that measures and records the time-series relative displacement between the foundation and the building at the position where multiple support mechanisms are arranged as the time-series relative displacement for each of the multiple support mechanisms. Process and
When the generated earthquake subsides, a specific support mechanism, which is a specific support mechanism among the plurality of support mechanisms, is defined, and each of the plurality of the support mechanisms excluding the specific support mechanism is assigned to each of the plurality of support mechanisms. Calculated based on the corresponding recorded time-series relative displacement, the time-series relative displacement, which is the relative displacement between the foundation and the building at the position where the specific support mechanism is arranged, is the calculated time-series relative corresponding to the specific support mechanism. The calculation process obtained as displacement and
Criteria for determining whether or not the calculated time-series relative displacement corresponding to the specific support mechanism exceeds the limit relative displacement previously determined for the specific support mechanism at any time in the time series in the same axial direction or around the same axis. As a determination step for determining the soundness of the specific support mechanism,
Equipped with
The recording time-series relative displacement is the recording x-axis time-series relative displacement and the y-axis direction time-series relative displacement at the position where the corresponding support mechanism is arranged. Axis time series displacement,
The calculated time-series relative displacement is the time-series relative displacement in the x-axis direction at the position where the specific support mechanism is arranged. The calculated x-axis direction time-series displacement and the y-axis direction time-series relative displacement. Calculation r time-series displacement, which is a relative displacement in the radial direction in the polar coordinate system corresponding to the time-series displacement in the y-axis direction.
The limit relative displacement is the limit r-axis displacement, which is the radial limit displacement in the polar coordinate system.
A method of managing building foundations, which is characterized by this.
水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、垂直方向の軸の回りをz軸回りまたはZ軸回りと定義し、
前記記録時系列相対変位が対応する支持機構の配される位置でのx軸方向の時系列の相対変位である記録x軸時系列相対変位とy軸方向の時系列の相対変位である記録y軸時系列変位であり、
前記演算時系列相対変位が対応する前記特定支持機構の配される位置でのx軸方向の時系列な相対変位である演算x軸方向時系列変位とy軸方向の時系列な相対変位である演算y軸方向時系列変位であり、
前記限界相対変位がx軸方向の限界変位である限界x軸方向変位とy軸方向の限界変位である限界y軸方向変位とである、
ことを特徴とする請求項10に記載の建物基礎の管理方法。
Axis orthogonal to each other in the horizontal plane is defined as x-axis or X-axis, y-axis or Y-axis, vertical axis is z-axis or Z-axis, and vertical axis is defined as z-axis or Z-axis.
The recording time-series relative displacement is the recording x-axis time-series relative displacement and the y-axis direction time-series relative displacement at the position where the corresponding support mechanism is arranged. Axis time series displacement,
The calculated time-series relative displacement is the time-series relative displacement in the x-axis direction at the position where the specific support mechanism is arranged. The calculated x-axis direction time-series displacement and the y-axis direction time-series relative displacement. Calculation: Time-series displacement in the y-axis direction.
The limit relative displacement is a limit x-axis displacement, which is a limit displacement in the x-axis direction, and a limit y-axis displacement, which is a limit displacement in the y-axis direction.
The method for managing a building foundation according to claim 10.
水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、垂直方向の軸の回りをz軸回りまたはZ軸回りと定義し、
前記記録時系列相対変位が対応する支持機構の配される位置でのz軸方向の時系列の相対変位であるz軸方向時系列相対変位であり、
前記演算時系列相対変位が対応する前記特定支持機構の配される位置でのz軸方向の時系列の相対変位である演算z軸方向時系列相対変位であり、
前記限界相対変位がz軸方向の限界変位である限界z軸方向変位である、
ことを特徴とする請求項11に記載の建物基礎の管理方法。
Axis orthogonal to each other in the horizontal plane is defined as x-axis or X-axis, y-axis or Y-axis, vertical axis is z-axis or Z-axis, and vertical axis is defined as z-axis or Z-axis.
The recorded time-series relative displacement is the z-axis direction time-series relative displacement, which is the z-axis direction time-series relative displacement at the position where the corresponding support mechanism is arranged.
The calculated time-series relative displacement is the calculated z-axis direction time-series relative displacement, which is the z-axis direction time-series relative displacement at the position where the specific support mechanism is arranged.
The limit relative displacement is the limit z-axis direction displacement, which is the limit displacement in the z-axis direction.
The method for managing a building foundation according to claim 11.
複数の支持機構の配される位置での基礎と建物との間の時系列の相対変位を複数の支持機構に各々に対応して記録時系列相対変位として測定記録する変位測定機器を準備する準備工程と、
発生した地震が収まったとき、複数の支持機構のうちの特定の一つの支持機構である特定支持機構を定め、複数の前記支持機構のうち該特定支持機構を除く複数の前記支持機構に各々に対応する記録時系列相対変位を基に演算して、該特定支持機構の配される位置での基礎と建物との相対変位である時系列相対変位を前記特定支持機構に対応する演算時系列相対変位として求める演算工程と、
前記特定支持機構に対応する演算時系列相対変位が予め前記特定支持機構について定められる限界相対変位を同一軸方向毎または同一軸周り毎に時系列の何時かの時に越えているか否かを判断基準として前記特定支持機構の健全性を判定する判定工程と、
を備え、
水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、垂直方向の軸の回りをz軸回りまたはZ軸回りと定義し、
前記記録時系列相対変位が対応する支持機構の配される位置でのx軸方向の時系列の相対変位である記録x軸時系列相対変位とy軸方向の時系列の相対変位である記録y軸時系列変位であり、
前記演算時系列相対変位が対応する前記特定支持機構の配される位置でのx軸方向の時系列な相対変位である演算x軸方向時系列変位とy軸方向の時系列な相対変位である演算y軸方向時系列変位であり、
前記限界相対変位がx軸方向の限界変位である限界x軸方向変位とy軸方向の限界変位である限界y軸方向変位とである、
ことを特徴とする建物基礎の管理方法。
Preparation for preparing a displacement measuring device that measures and records the time-series relative displacement between the foundation and the building at the position where multiple support mechanisms are arranged as the time-series relative displacement for each of the multiple support mechanisms. Process and
When the generated earthquake subsides, a specific support mechanism, which is a specific support mechanism among the plurality of support mechanisms, is defined, and each of the plurality of the support mechanisms excluding the specific support mechanism is assigned to each of the plurality of support mechanisms. Calculated based on the corresponding recorded time-series relative displacement, the time-series relative displacement, which is the relative displacement between the foundation and the building at the position where the specific support mechanism is arranged, is the calculated time-series relative corresponding to the specific support mechanism. The calculation process obtained as displacement and
Criteria for determining whether or not the calculated time-series relative displacement corresponding to the specific support mechanism exceeds the limit relative displacement previously determined for the specific support mechanism at any time in the time series in the same axial direction or around the same axis. As a determination step for determining the soundness of the specific support mechanism,
Equipped with
Axis orthogonal to each other in the horizontal plane is defined as x-axis or X-axis, y-axis or Y-axis, vertical axis is z-axis or Z-axis, and vertical axis is defined as z-axis or Z-axis.
The recording time-series relative displacement is the recording x-axis time-series relative displacement and the y-axis direction time-series relative displacement at the position where the corresponding support mechanism is arranged. Axis time series displacement,
The calculated time-series relative displacement is the time-series relative displacement in the x-axis direction at the position where the specific support mechanism is arranged. The calculated x-axis direction time-series displacement and the y-axis direction time-series relative displacement. Calculation: Time-series displacement in the y-axis direction.
The limit relative displacement is a limit x-axis displacement, which is a limit displacement in the x-axis direction, and a limit y-axis displacement, which is a limit displacement in the y-axis direction.
A method of managing building foundations, which is characterized by this.
複数の支持機構の配される位置での基礎と建物との間の時系列の相対変位を複数の支持機構に各々に対応して記録時系列相対変位として測定記録する変位測定機器を準備する準備工程と、
発生した地震が収まったとき、複数の支持機構のうちの特定の一つの支持機構である特定支持機構を定め、複数の前記支持機構のうち該特定支持機構を除く複数の前記支持機構に各々に対応する記録時系列相対変位を基に演算して、該特定支持機構の配される位置での基礎と建物との相対変位である時系列相対変位を前記特定支持機構に対応する演算時系列相対変位として求める演算工程と、
前記特定支持機構に対応する演算時系列相対変位が予め前記特定支持機構について定められる限界相対変位を同一軸方向毎または同一軸周り毎に時系列の何時かの時に越えているか否かを判断基準として前記特定支持機構の健全性を判定する判定工程と、
を備え、
水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、垂直方向の軸の回りをz軸回りまたはZ軸回りと定義し、
前記記録時系列相対変位が対応する支持機構の配される位置でのz軸方向の時系列の相対変位であるz軸方向時系列相対変位であり、
前記演算時系列相対変位が対応する前記特定支持機構の配される位置でのz軸方向の時系列の相対変位である演算z軸方向時系列相対変位であり、
前記限界相対変位がz軸方向の限界変位である限界z軸方向変位である、
ことを特徴とする建物基礎の管理方法。
Preparation for preparing a displacement measuring device that measures and records the time-series relative displacement between the foundation and the building at the position where multiple support mechanisms are arranged as the time-series relative displacement for each of the multiple support mechanisms. Process and
When the generated earthquake subsides, a specific support mechanism, which is a specific support mechanism among the plurality of support mechanisms, is defined, and each of the plurality of the support mechanisms excluding the specific support mechanism is assigned to each of the plurality of support mechanisms. Calculated based on the corresponding recorded time-series relative displacement, the time-series relative displacement, which is the relative displacement between the foundation and the building at the position where the specific support mechanism is arranged, is the calculated time-series relative corresponding to the specific support mechanism. The calculation process obtained as displacement and
Criteria for determining whether or not the calculated time-series relative displacement corresponding to the specific support mechanism exceeds the limit relative displacement previously determined for the specific support mechanism at any time in the time series in the same axial direction or around the same axis. As a determination step for determining the soundness of the specific support mechanism,
Equipped with
Axis orthogonal to each other in the horizontal plane is defined as x-axis or X-axis, y-axis or Y-axis, vertical axis is z-axis or Z-axis, and vertical axis is defined as z-axis or Z-axis.
The recorded time-series relative displacement is the z-axis direction time-series relative displacement, which is the z-axis direction time-series relative displacement at the position where the corresponding support mechanism is arranged.
The calculated time-series relative displacement is the calculated z-axis direction time-series relative displacement, which is the z-axis direction time-series relative displacement at the position where the specific support mechanism is arranged.
The limit relative displacement is the limit z-axis direction displacement, which is the limit displacement in the z-axis direction.
A method of managing building foundations, which is characterized by this.
基礎に配され建物を支持する複数の支持機構を有する建物基礎の管理方法であって、
複数の支持機構の配される位置での基礎と建物との間の時系列の相対変位を複数の支持機構に各々に対応する記録時系列相対変位として測定記録する変位測定機器を準備する準備工程と、
発生した地震が収まったとき、複数の支持機構のうちの特定の一つの支持機構である特定支持機構を定め、複数の支持機構のうちの該特定支持機構を除く複数の支持機構に各々に対応する記録時系列相対変位を基に演算して、該特定支持機構の配される位置での基礎と建物との相対変位である時系列相対変位を該特定支持機構に対応する演算時系列相対変位として求める演算工程と、
前記特定支持機構に対応する前記演算時系列相対変位と前記特定支持機構に対応する前記記録時系列相対変位との同一軸方向毎の時系列の偏差の大きさを判断基準としてに前記特定支持機構の健全性を判定する判定工程と、
を備えることを特徴とする建物基礎の管理方法。
It is a management method of a building foundation that has multiple support mechanisms that are placed on the foundation and support the building.
Preparation process to prepare a displacement measuring device to measure and record the time-series relative displacement between the foundation and the building at the position where multiple support mechanisms are arranged as the recording time-series relative displacement corresponding to each of the multiple support mechanisms. When,
When the earthquake that has occurred has subsided, a specific support mechanism that is a specific support mechanism among multiple support mechanisms is defined, and each of the multiple support mechanisms other than the specific support mechanism is supported. The time-series relative displacement, which is the relative displacement between the foundation and the building at the position where the specific support mechanism is arranged, is calculated based on the recorded time-series relative displacement. And the calculation process to be obtained as
The specific support mechanism is based on the magnitude of the time-series deviation of the calculated time-series relative displacement corresponding to the specific support mechanism and the recorded time-series relative displacement corresponding to the specific support mechanism for each axial direction. Judgment process to judge the soundness of
A method of managing building foundations, which is characterized by being equipped with.
水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、と定義し、
前記記録時系列相対変位が対応する支持機構の配される位置でのx軸方向に時系列な相対変位である記録x軸方向時系列相対変位とy軸方向の時系列の相対変位である記録y軸方向時系列相対変位とであり、
前記演算時系列相対変位が対応する前記特定支持機構の配される位置でのx軸方向の時系列の相対変位である演算x軸方向時系列相対変位とy軸方向の時系列の相対変位である演算y軸方向時系列相対変位とである、
ことを特徴とする請求項15に記載の建物基礎の管理方法。
Axis orthogonal to each other in the horizontal plane is defined as x-axis or X-axis, y-axis or Y-axis, and vertical axis is defined as z-axis or Z-axis.
The recording time-series relative displacement is a recording that is a time-series relative displacement in the x-axis direction at the position where the corresponding support mechanism is arranged. A recording that is a time-series relative displacement in the x-axis direction and a time-series relative displacement in the y-axis direction. It is a relative displacement in time series in the y-axis direction.
The calculated relative displacement in the time series in the x-axis direction and the relative displacement in the time series in the y-axis direction, which are the relative displacements in the time series in the x-axis direction at the position where the specific support mechanism corresponds to the relative displacement in the time series. A certain operation y-axis direction time series relative displacement,
The method for managing a building foundation according to claim 15, characterized in that.
水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、と定義し、
前記記録時系列相対変位が対応する支持機構の配される位置でのz軸方向の時系列の相対変位である記録z軸方向時系列相対変位であり、
前記演算時系列相対変位が対応する前記特定支持機構の配される位置でのz軸方向の時系列の相対変位である演算z軸方向時系列相対変位である、
ことを特徴とする請求項15に記載の建物基礎の管理方法。
Axis orthogonal to each other in the horizontal plane is defined as x-axis or X-axis, y-axis or Y-axis, and vertical axis is defined as z-axis or Z-axis.
The recorded time-series relative displacement is the recorded z-axis direction time-series relative displacement, which is the z-axis direction time-series relative displacement at the position where the corresponding support mechanism is arranged.
The calculated time-series relative displacement is the calculated z-axis direction time-series relative displacement, which is the z-axis direction time-series relative displacement at the position where the specific support mechanism is arranged.
The method for managing a building foundation according to claim 15, characterized in that.
水平面内で互いに直交する軸をx軸またはX軸、y軸またはY軸、垂直方向の軸をz軸、またはZ軸、と定義し、
前記記録時系列相対変位が対応する支持機構の配される位置でのz軸方向の時系列の相対変位である記録z軸方向時系列相対変位であり、
前記演算時系列相対変位が対応する前記特定支持機構の配される位置でのz軸方向の時系列の相対変位である演算z軸方向時系列相対変位である、
ことを特徴とする請求項15に記載の建物基礎の管理方法。
Axis orthogonal to each other in the horizontal plane is defined as x-axis or X-axis, y-axis or Y-axis, and vertical axis is defined as z-axis or Z-axis.
The recorded time-series relative displacement is the recorded z-axis direction time-series relative displacement, which is the z-axis direction time-series relative displacement at the position where the corresponding support mechanism is arranged.
The calculated time-series relative displacement is the calculated z-axis direction time-series relative displacement, which is the z-axis direction time-series relative displacement at the position where the specific support mechanism is arranged.
The method for managing a building foundation according to claim 15, characterized in that.
基礎に各々に配され建物を支持する複数の支持機構を各々に有する複数の建物基礎を含む建物基礎群の管理方法であって、
複数の建物基礎の各々毎に、複数の支持機構の配される位置での基礎と建物との間の時系列の相対変位を複数の支持機構に各々に対応する記録時系列相対変位として測定記録する変位測定機器を準備する準備工程と、
発生した地震が収まったとき、複数の建物基礎の各々毎に、複数の支持機構に各々に対応する記録時系列相対変位を基に演算して建物と基礎との時系列の相対変位である演算時系列相対変位を求める演算工程と、
複数の建物基礎の各々毎に、前記演算時系列相対変位と基礎、建物、及び建物基礎の全体振動特性とから建物基礎の位置する基礎の絶対変位を建物基礎に対応して基礎時系列絶対変位として各々に推定する推定工程と、
複数の建物基礎に各々に対応する複数の基礎時系列絶対変位と複数の建物の各々の位置データとを関連づけて複数の建物基礎の配される地域全体の時系列の絶対変位のデータベースである時系列絶対変位マップを生成する生成工程と、
を備えることを特徴とする建物基礎群の管理方法。
It is a management method of a building foundation group including a plurality of building foundations each having a plurality of support mechanisms arranged on the foundation and supporting the building.
For each of the multiple building foundations, the time-series relative displacement between the foundation and the building at the position where the multiple support mechanisms are arranged is measured and recorded as the time-series relative displacement corresponding to each of the multiple support mechanisms. Preparation process for preparing displacement measuring equipment and
When the earthquake that has occurred has subsided, it is calculated based on the recorded time-series relative displacement corresponding to each of the multiple support mechanisms for each of the multiple building foundations, and is the time-series relative displacement between the building and the foundation. The calculation process for finding the relative displacement in time series and
For each of the plurality of building foundations, the absolute displacement of the foundation on which the building foundation is located is calculated from the calculated relative displacement in time series and the overall vibration characteristics of the foundation, the building, and the building foundation. As an estimation process to estimate for each,
When it is a database of time-series absolute displacements of the entire area where multiple building foundations are arranged by associating multiple foundation time-series absolute displacements corresponding to each of multiple building foundations with the position data of each of multiple buildings. The generation process to generate the series absolute displacement map and
A method of managing building foundations, which is characterized by being equipped with.
前記時系列絶対変位マップを基に前記地域に含まれる任意の位置での基礎時系列絶対変位を類推する類推工程と、
を備えることを特徴とする請求項19に記載の建物基礎群の管理方法。
An analogy process that infers the basic time-series absolute displacement at an arbitrary position included in the area based on the time-series absolute displacement map.
19. The method for managing a building foundation group according to claim 19.
前記任意の位置における前記基礎時系列絶対変位と前記任意の位置に配される建物基礎と建物の全体振動特性とから前記任意の位置における建物と基礎との時系列の相対変位である演算時系列相対変位を求める類推演算工程と、
を備えることを特徴とする請求項20に記載の建物基礎群の管理方法。
Calculation time series that is the relative displacement of the building and the foundation at the arbitrary position from the absolute displacement of the foundation time series at the arbitrary position and the building foundation arranged at the arbitrary position and the overall vibration characteristics of the building. An analogy calculation process for finding relative displacement, and
The method for managing a building foundation group according to claim 20, wherein the building foundation group is provided.
基礎に各々に配され建物を支持する複数の支持機構を各々に有する複数の建物基礎を含む建物基礎群の管理方法であって、
複数の建物基礎の各々毎に、複数の支持機構の配される位置での基礎と建物との間の時系列の相対変位を複数の支持機構に各々に対応する記録時系列相対変位として測定記録する変位測定機器を準備する準備工程と、
発生した地震が収まったとき、複数の建物基礎の各々毎に、複数の支持機構に各々に対応する記録時系列相対変位を基に演算して建物と基礎との時系列の相対変位である演算時系列相対変位を求める演算工程と、
複数の建物基礎の各々毎に、前記演算時系列相対変位と基礎、建物、及び建物基礎の全体振動特性とから建物基礎の位置する基礎の絶対変位を建物基礎に対応して基礎時系列絶対変位として各々に推定する推定工程と、
複数の建物基礎の位置データと対応する前記基礎時系列絶対変位とから複数の建物基礎の配される地域に含まれる任意の位置での基礎時系列絶対変位を類推する類推工程と、
を備えることを特徴とする建物基礎群の管理方法。
It is a management method of a building foundation group including a plurality of building foundations each having a plurality of support mechanisms arranged on the foundation and supporting the building.
For each of the multiple building foundations, the time-series relative displacement between the foundation and the building at the position where the multiple support mechanisms are arranged is measured and recorded as the time-series relative displacement corresponding to each of the multiple support mechanisms. Preparation process for preparing displacement measuring equipment and
When the earthquake that has occurred has subsided, it is calculated based on the recorded time-series relative displacement corresponding to each of the multiple support mechanisms for each of the multiple building foundations, and is the time-series relative displacement between the building and the foundation. The calculation process for finding the relative displacement in time series and
For each of the plurality of building foundations, the absolute displacement of the foundation on which the building foundation is located is calculated from the calculated relative displacement in time series and the overall vibration characteristics of the foundation, the building, and the building foundation. As an estimation process to estimate for each,
An analogy process that infers the absolute time-series displacement of the foundation at any position included in the area where the foundations of multiple buildings are arranged from the position data of the foundations of multiple buildings and the corresponding absolute displacement of the foundation time series.
A method of managing building foundations, which is characterized by being equipped with.
前記任意の位置における前記基礎時系列絶対変位と前記任意の位置に配される建物基礎と建物の全体振動特性とから前記任意の位置における建物と基礎との時系列の相対変位である演算時系列相対変位を求める類推演算工程と、
を備えることを特徴とする請求項22に記載の建物基礎群の管理方法。
Calculation time series that is the relative displacement of the building and the foundation at the arbitrary position from the absolute displacement of the foundation time series at the arbitrary position and the building foundation arranged at the arbitrary position and the overall vibration characteristics of the building. An analogy calculation process for finding relative displacement, and
22. The method for managing a building foundation group according to claim 22.
JP2018097582A 2018-05-22 2018-05-22 How to manage building foundations and how to manage building foundations Active JP7049750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018097582A JP7049750B2 (en) 2018-05-22 2018-05-22 How to manage building foundations and how to manage building foundations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018097582A JP7049750B2 (en) 2018-05-22 2018-05-22 How to manage building foundations and how to manage building foundations

Publications (2)

Publication Number Publication Date
JP2019203724A JP2019203724A (en) 2019-11-28
JP7049750B2 true JP7049750B2 (en) 2022-04-07

Family

ID=68726654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018097582A Active JP7049750B2 (en) 2018-05-22 2018-05-22 How to manage building foundations and how to manage building foundations

Country Status (1)

Country Link
JP (1) JP7049750B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7429594B2 (en) 2020-04-27 2024-02-08 株式会社免制震ディバイス Damage diagnosis method for building seismic isolation devices
CN116824518B (en) * 2023-08-31 2023-11-10 四川嘉乐地质勘察有限公司 Pile foundation static load detection method, device and processor based on image recognition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004036084A (en) 2002-06-28 2004-02-05 Nichiha Corp Base-isolating member and external monitoring system therefor
JP2004107971A (en) 2002-09-18 2004-04-08 Atsushi Koizumi Method for predicting displacement behavior of structure in underpinning
JP2004125776A (en) 2002-07-31 2004-04-22 Topy Ind Ltd Fatigue diagnostic method of structures
JP2012137339A (en) 2010-12-24 2012-07-19 Takenaka Komuten Co Ltd Base-isolating device supervisory system
JP2014016286A (en) 2012-07-10 2014-01-30 Ohbayashi Corp Displacement measuring device and displacement history recording method
WO2014053025A1 (en) 2012-10-04 2014-04-10 University Of Technology, Sydney Adaptive mre vibration isolation assembly and system
JP2016109449A (en) 2014-12-02 2016-06-20 株式会社Nttファシリティーズ Vibration measurement method of structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259638A (en) * 1988-08-25 1990-02-28 Mitsubishi Heavy Ind Ltd Compensating method for input of vibration tester
JP2639254B2 (en) * 1991-10-08 1997-08-06 株式会社大林組 Automatic measurement method for maintenance of seismically isolated buildings

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004036084A (en) 2002-06-28 2004-02-05 Nichiha Corp Base-isolating member and external monitoring system therefor
JP2004125776A (en) 2002-07-31 2004-04-22 Topy Ind Ltd Fatigue diagnostic method of structures
JP2004107971A (en) 2002-09-18 2004-04-08 Atsushi Koizumi Method for predicting displacement behavior of structure in underpinning
JP2012137339A (en) 2010-12-24 2012-07-19 Takenaka Komuten Co Ltd Base-isolating device supervisory system
JP2014016286A (en) 2012-07-10 2014-01-30 Ohbayashi Corp Displacement measuring device and displacement history recording method
WO2014053025A1 (en) 2012-10-04 2014-04-10 University Of Technology, Sydney Adaptive mre vibration isolation assembly and system
JP2016109449A (en) 2014-12-02 2016-06-20 株式会社Nttファシリティーズ Vibration measurement method of structure

Also Published As

Publication number Publication date
JP2019203724A (en) 2019-11-28

Similar Documents

Publication Publication Date Title
JP4992084B2 (en) Structure damage diagnostic system and method
JP5809174B2 (en) Building safety verification system, building safety verification method and program
JP7049750B2 (en) How to manage building foundations and how to manage building foundations
JP4918291B2 (en) Bridge soundness evaluation system, bridge soundness evaluation method, and bridge soundness evaluation program
KR101886309B1 (en) Bridge displacement measurement system
Winkler et al. Improved structural health monitoring of London’s docklands light railway bridges using digital image correlation
Kalaitzakis et al. Drone-based StereoDIC: System development, experimental validation and infrastructure application
Hernandez et al. Estimation of element‐by‐element demand‐to‐capacity ratios in instrumented SMRF buildings using measured seismic response
Baeza et al. Structural health monitoring systems for smart heritage and infrastructures in Spain
Calabrese et al. Investigation of the seismic performances of an FRBs base isolated steel frame through hybrid testing
JP7047914B2 (en) Information processing equipment, systems, methods, and programs
JP3956302B2 (en) Damaged part detection device for structure and method for detecting damaged part of structure
Aihara et al. A vibration estimation method for wind turbine blades
Zhang et al. Internal force monitoring and estimation of a long‐span ring beam using long‐gauge strain sensing
Oh et al. Dynamic displacements‐based model updating with motion capture system
Kohut et al. Application of vision based damage detection for real civil engineering structure
JP2015127707A (en) Building safety verification system, building safety verification method, and program
JP2019049465A (en) Method and system for evaluating building structure safety performance
Dizaji et al. Detecting and Reconstructing the 3D Geometry of Subsurface Structural Damages Using Full-Field Image-Based Sensing and Topology Optimization
Kawamura et al. Structural health monitoring of layered structure by strain measurements
JP5878341B2 (en) Laminated rubber inspection device
JP2017194309A (en) Earthquake damage estimation system, structure having earthquake damage estimation system, and earthquake damage estimation program
JP2020012723A (en) Acceleration record system of seismic isolation building, and earthquake displacement monitoring system
CN113536923B (en) Structure local model-free nonlinear positioning identification technology based on monitoring data driving
Adarsh et al. Displacement-Strain Transformation Matrix Updating for Earthquake Simulation Studies and Damage Localization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220326

R150 Certificate of patent or registration of utility model

Ref document number: 7049750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150