JP2004107796A - Coating solution for insulation film of grain-oriented silicon steel sheet having excellent sticking resistance and space factor, and method for forming insulation film - Google Patents

Coating solution for insulation film of grain-oriented silicon steel sheet having excellent sticking resistance and space factor, and method for forming insulation film Download PDF

Info

Publication number
JP2004107796A
JP2004107796A JP2003357929A JP2003357929A JP2004107796A JP 2004107796 A JP2004107796 A JP 2004107796A JP 2003357929 A JP2003357929 A JP 2003357929A JP 2003357929 A JP2003357929 A JP 2003357929A JP 2004107796 A JP2004107796 A JP 2004107796A
Authority
JP
Japan
Prior art keywords
steel sheet
mass
space factor
silicon steel
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003357929A
Other languages
Japanese (ja)
Other versions
JP4520720B2 (en
Inventor
Hiroyasu Fujii
藤井 浩康
Osamu Tanaka
田中 收
Kimihiko Sugiyama
杉山 公彦
Norihiro Yamamoto
山本 紀宏
Ikuo Miyamoto
宮本 郁雄
Koji Yamazaki
山崎 幸司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP2003357929A priority Critical patent/JP4520720B2/en
Publication of JP2004107796A publication Critical patent/JP2004107796A/en
Application granted granted Critical
Publication of JP4520720B2 publication Critical patent/JP4520720B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming an insulation film of a grain-oriented silicon steel sheet by which a space factor and resistance to sticking of steel sheets to each other during stress-relieving annealing can be improved. <P>SOLUTION: Inorganic mineral particles having >2 to 20μm average particle size and having no electric charge are incorporated into a coating solution for insulation film formation in an amount of 0.02 to 20 mass% at the ratio of solid content in the coating solution. The coating solution is applied to a finish-annealed grain-oriented silicon steel sheet. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は仕上げ焼鈍済みの一方向性珪素鋼板上に張力付与性の絶縁皮膜を形成する方法に関する技術である。 The present invention relates to a method for forming a tension imparting insulating film on a finish-annealed unidirectional silicon steel sheet.

 一方向性珪素鋼板は電圧変換用電気機器、主に変圧器の鉄心材料として用いられる。変圧器用鉄心製作法には大きく分けて2種類の方法がある。1つは所定の形状と寸法に調製した一方向性珪素鋼板を積層して鉄心を製作する積み鉄心法である。もう1つは所定の形状と寸法に調製した一方向性珪素鋼板を円筒状に巻き取り、鉄心とする巻き鉄心法である。 Unidirectional silicon steel sheet is used as electric core material for voltage conversion electrical equipment, mainly transformers. There are two main types of transformer core manufacturing methods. One is a stacked iron core method of manufacturing an iron core by laminating unidirectional silicon steel sheets of a predetermined shape and size. The other is a wound iron method in which a unidirectional silicon steel sheet adjusted to a predetermined shape and size is wound into a cylindrical shape and used as an iron core.

 このうち後者の巻き鉄心法は次に述べるような工程を経る。まず、一方向性珪素鋼板を所定の幅に剪断し、次にこれを円筒形に巻き取る。ついで、この円筒状に巻き取ったもの(以後、コアと呼ぶ)に曲げ加工を施し、所定の形態に成形する。この時、曲げ加工に伴い、鋼板に機械的歪みが導入される。導入された歪は鉄心特性を劣化させてしまうので、歪みを取り除くためにコアに対する焼鈍を施す。 う ち The latter method involves the following steps. First, the unidirectional silicon steel sheet is sheared to a predetermined width, and then is wound into a cylindrical shape. Next, this cylindrically wound product (hereinafter, referred to as a core) is subjected to a bending process and formed into a predetermined form. At this time, a mechanical strain is introduced into the steel sheet with the bending. Since the introduced strain deteriorates the core properties, the core is annealed to remove the strain.

 焼鈍したコアは一旦、展開される。展開された焼鈍済み鋼板を銅線等の間に挿入し、変圧器となる。このコアの展開と銅線への巻き込みの一連の作業はレーシング作業と呼ばれる。レーシング作業は変圧器製造の生産性を左右する重要な工程である。この作業の際、コアの展開に時間を要すると生産性が低下してしまう。そのため、焼鈍されたコアは展開し易いことが望まれている。ところが、時として焼鈍済みコアにおいて鋼板同士が一種の癒着現象を起こすことがある。鋼板同士が癒着を起こすとコア展開に多大の労力と時間が必要となり、生産性を低下させてしまう。そこで、このような癒着現象を誘起させない技術として以下に示す技術が開示されている。 コ ア The annealed core is deployed once. The developed annealed steel sheet is inserted between copper wires and the like to form a transformer. A series of work of unfolding the core and winding it around the copper wire is called a racing work. Racing is an important step that affects the productivity of transformer manufacturing. In this operation, if it takes time to develop the core, the productivity is reduced. Therefore, it is desired that the annealed core be easily developed. However, sometimes the steel sheets in the annealed core cause a kind of adhesion phenomenon. When the steel sheets adhere to each other, a great deal of labor and time are required for core development, and the productivity is reduced. Therefore, the following technology is disclosed as a technology that does not induce such an adhesion phenomenon.

 例えば、塗布液中に粉末を添加する技術として次のようなものがある。まず、特許文献1において、コロイド状シリカ、第1リン酸塩、クロム酸を主体とする水分散液に一次粒子径70〜500Å(7〜50nm)、見掛け比重100g/リットル以下のSiO2 、Al23 、TiO2 粒子の1種または2種以上を添加する技術が提案された。 For example, as a technique for adding a powder to a coating liquid, there is the following technique. First, in Patent Document 1, an aqueous dispersion mainly composed of colloidal silica, a first phosphate, and chromic acid contains SiO 2 and Al having a primary particle size of 70 to 500 ° (7 to 50 nm) and an apparent specific gravity of 100 g / liter or less. A technique for adding one or more of 2 O 3 and TiO 2 particles has been proposed.

 次に、特許文献2において、リチウムシリケート水溶液中にアルミナ、シリカ、チタニア、マイカの粉末の1種を添加する技術が提案された。また、特許文献3において、コロイド状シリカ、リン酸アルミニウム、ホウ酸、硫酸塩を主体とする水分散液に一次粒子径1000Å(100nm)以下の超微粒のSiO2 、Al23 、TiO2 粒子1種または2種以上を添加する技術が提案された。 Next, Patent Literature 2 proposes a technique of adding one kind of alumina, silica, titania, and mica powders to a lithium silicate aqueous solution. Also, in Patent Document 3, ultrafine particles of SiO 2 , Al 2 O 3 , and TiO 2 having a primary particle diameter of 1000 ° (100 nm) or less are added to an aqueous dispersion mainly composed of colloidal silica, aluminum phosphate, boric acid, and sulfate. Techniques for adding one or more particles have been proposed.

 更には、特許文献4において、リン酸塩、クロム酸、粒子径50nm以下のコロイド状シリカを主体とする塗布液に粒子径が5〜2000nmの非コロイド状の固形物を添加する技術が提案された。上述の塗布液中への粉末添加技術とは別に、比較的小さな粒径と比較的大きな粒径をもつコロイド状シリカを使用する技術として特開平3−39484号公報において、リン酸塩、クロム酸を主体とする水分散液に粒子径20nm以下のコロイド状シリカと粒子径80〜2000mμm(80nm〜2000nm)のコロイド状シリカを添加する技術も提案されている。
特開昭52−25296号公報 特開昭53−6338号公報 特開昭54−143737号公報 特開平4−165082号公報
Further, Patent Document 4 proposes a technique of adding a non-colloidal solid having a particle diameter of 5 to 2,000 nm to a coating solution mainly containing phosphate, chromic acid, and colloidal silica having a particle diameter of 50 nm or less. Was. Apart from the technique of adding powder to the coating solution described above, JP-A-3-39484 discloses a technique using colloidal silica having a relatively small particle size and a relatively large particle size. A technique of adding colloidal silica having a particle diameter of 20 nm or less and colloidal silica having a particle diameter of 80 to 2,000 m (80 nm to 2,000 nm) to an aqueous dispersion mainly composed of silica is also proposed.
JP-A-52-25296 JP-A-53-6338 JP-A-54-143737 JP-A-4-165082

 発明者はこれらの技術を適用し、検討を重ねたところ、前述の技術をそのまま適用しただけでは歪み取り焼鈍時に起こりうる癒着現象を完全には回避できないことがわかった。一般に2相界面の癒着性はその接触面積に依存する。そのため、2相を接触させ、高温に保持した場合、接触面積を小さくすれば癒着を起こし難くなる。接触面積を低減させる方法の1つとして、表面に凹凸を付与する方法がある。但し、巻き鉄心の歪み取り焼鈍では、板間に大きな面圧がかかるため、表面に形成する凹凸は相当大きなものにしなければならない。そのためには粒径の大きな粒子を用いることが必要である。従来文献において提案されてきた粒子の粒径は、特許文献1では7〜50nm、特許文献3でも100nm以下で、主にサブミクロン領域の粒径を持つものであった。また、特許文献4で開示された粒子の粒径は比較的大きいが、それでも最大2μmのものであった。この程度の粒径をもつ粒子では、絶縁皮膜の接触面積を制御することはできない。 (4) The inventor has applied these techniques and made repeated studies. As a result, it has been found that simply applying the above-described techniques as is cannot completely prevent the adhesion phenomenon that may occur during strain relief annealing. Generally, the adhesion of a two-phase interface depends on its contact area. Therefore, when the two phases are brought into contact with each other and kept at a high temperature, adhesion is less likely to occur if the contact area is reduced. As one of the methods for reducing the contact area, there is a method of providing irregularities on the surface. However, in the strain relief annealing of the wound iron core, a large surface pressure is applied between the plates, so that the unevenness formed on the surface must be considerably large. For that purpose, it is necessary to use particles having a large particle diameter. The particle size of the particles proposed in the conventional literature is 7 to 50 nm in Patent Literature 1 and 100 nm or less in Patent Literature 3, and has a particle diameter mainly in a submicron region. Further, although the particle size of the particles disclosed in Patent Document 4 is relatively large, it is still 2 μm at the maximum. With particles having such a particle size, the contact area of the insulating film cannot be controlled.

 以上のような微小粒子で癒着が抑制できるのは、これらが凝集して粗大粒子になるからである。一般に水溶液中における粒子の凝集は様々の因子に影響を受けるが、その1つに粒子径がある。粒径の小さなものは表面エネルギーが大きいため、多数集合し、表面積を減らせるよう合体する。一旦合体が起こると、個々の粒子の数百倍から数千倍もの粒径をもつ粗大粒に成長してしまう。このようにして成長した粗大粒の粒径は数100μmに達する。数100μmもの粒径をもつ粗大粒が皮膜中に存在すると、板を積層した際、その凸部が原因で、占積率が著しく悪化する。 癒 Adhesion can be suppressed by the fine particles as described above because they aggregate to form coarse particles. Generally, aggregation of particles in an aqueous solution is affected by various factors, one of which is the particle size. Since particles having a small particle diameter have a large surface energy, many particles are aggregated and united to reduce the surface area. Once coalescence occurs, the individual particles grow into coarse particles having a particle size hundreds to thousands of times as large as the individual particles. The grain size of the coarse grains grown in this way reaches several hundred μm. If coarse particles having a particle diameter of several hundred μm are present in the coating, the space factor is remarkably deteriorated when the plates are laminated due to the projections.

 占積率とは、一方向性珪素鋼板を積層し、鉄心を製作した際、鉄心厚さ全体に占める鉄の割合である。鋼板表面の絶縁皮膜が厚過ぎたり、皮膜あるいは鋼板自体の凹凸により隙間ができると、この割合が低下してしまう。占積率が低いと変圧器内部で鉄心が電磁誘導の法則に従い電圧変換ユニットとして作動する時、磁束が通りにくくなり、熱エネルギー損失が増大してしまう。 The space factor is the ratio of iron to the entire thickness of the iron core when the iron core is manufactured by laminating unidirectional silicon steel sheets. If the insulating film on the surface of the steel sheet is too thick, or if a gap is formed due to the unevenness of the film or the steel sheet itself, this ratio decreases. If the space factor is low, when the iron core operates as a voltage conversion unit in the transformer according to the law of electromagnetic induction, it becomes difficult for magnetic flux to pass therethrough, and heat energy loss increases.

 本発明は、占積率の低下をもたらすことなく鋼板同士の癒着を抑制できる一方向性電磁鋼板の張力付与性絶縁皮膜を提供することにある。 The present invention is to provide a tension-imparting insulating film of a grain-oriented electrical steel sheet that can suppress adhesion between steel sheets without reducing the space factor.

 本発明は以下の要件よりなる。
 (1)平均粒径2μm超20μm以下の電荷を持たない無機鉱物質粒子を固形分比率で0.02質量%以上20%質量%以下含有することを特徴とする一方向性珪素鋼板の張力付与性絶縁皮膜用塗布液。
The present invention comprises the following requirements.
(1) Tensile application of a unidirectional silicon steel sheet characterized by containing uncharged inorganic mineral particles having an average particle size of more than 2 μm and not more than 20 μm in a solid content ratio of 0.02 to 20% by mass. Coating solution for conductive insulation film.

 (2)仕上げ焼鈍済みの一方向性珪素鋼板に塗布液を塗布、乾燥し、焼き付けることによって前記鋼板上に張力付与性の絶縁皮膜を形成する方法において、前記塗布液中に平均粒径2μm超20μm以下の電荷を持たない無機鉱物質粒子を上記塗布液中固形分比率で0.02質量%以上20%質量%以下含有させることを特徴とする占積率と歪み取り焼鈍癒着性に優れる一方向性珪素鋼板絶縁皮膜形成方法。 (2) A method for forming a tension-imparting insulating film on the steel sheet by applying, drying and baking a coating liquid on a finish-annealed unidirectional silicon steel sheet, wherein the coating liquid has an average particle diameter of more than 2 μm. The coating liquid contains 0.02% by mass or more and 20% by mass or less of inorganic mineral particles having no electric charge of 20 μm or less, and has excellent space factor and excellent adhesion for strain relief and annealing. A method for forming a directional silicon steel sheet insulating film.

 (3)前記塗布液の主体がリン酸塩、クロム酸およびコロイド状シリカであることを特徴とする(2)記載の占積率と歪み取り焼鈍癒着性に優れる一方向性珪素鋼板絶縁皮膜形成方法。 (3) The formation of a unidirectional silicon steel sheet insulating film excellent in space factor and strain relief annealing adhesion according to (2), wherein the main component of the coating solution is phosphate, chromic acid and colloidal silica. Method.

 絶縁皮膜形成用の塗布液中に平均粒径2μm超20μm以下の電荷を持たない無機鉱物質粒子を上記塗布液中固形分比率で0.02質量%以上20%質量%以下含有させ、絶縁皮膜表面に適度な凹凸を形成することによって高い占積率を維持したまま、歪み取り焼鈍時の耐癒着性を大幅に改善できる。 The coating liquid for forming an insulating film contains inorganic mineral particles having an average particle diameter of not less than 2 μm and not more than 20 μm having no charge in a solid content ratio of 0.02% by mass or more and 20% by mass or less. By forming moderate irregularities on the surface, adhesion resistance during strain relief annealing can be significantly improved while maintaining a high space factor.

 発明者らは先述した癒着現象を抑制する手段として、比較的大きな粒径をもつ粒子を塗布液中に添加し、鋼板上に形成される皮膜表面に凹凸をつけることに思い到り、そして、発明者らは従来技術からは想到できない粒径の大きな粒子について検討した。 The inventors came to think that as a means for suppressing the adhesion phenomenon described above, particles having a relatively large particle size were added to the coating solution, and the surface of the film formed on the steel plate was roughened, and The inventors have studied particles having a large particle size that cannot be imagined from the prior art.

 発明者らは以上のような考え方のもと、粒径が主にμm領域の粒子を塗布液中に添加し、絶縁皮膜付き試料を作製し、これらの試料について歪み取り焼鈍時の癒着性と占積率を以下のような方法で調べた。試料調製と評価は次のような方法で行った。仕上げ焼鈍を施し、二次再結晶済みの一次皮膜(フォルステライト主体の無機鉱物質で構成された皮膜)付きの鋼板を多数用意した。この鋼板に濃度50質量%のクロム酸入りリン酸アルミニウム水溶液50ml、濃度20質量%のコロイド状シリカ水分散液100mlと平均粒子径が0.6μmから23.9μmまでの11種類のアルミナ粒子をそれぞれ0.25gずつ配合したものを塗布し乾燥させた。次に、これらを835℃で30秒間、窒素雰囲気中で焼鈍し、鋼板表面に絶縁皮膜を形成した。このようにして調製した試料について以下のような方法で癒着性と占積率を評価した。 Based on the above-mentioned concept, the inventors added particles having a particle diameter of mainly μm region to the coating solution to prepare samples with an insulating film, and examined the adhesion and adhesiveness of these samples during strain relief annealing. The space factor was examined in the following manner. Sample preparation and evaluation were performed by the following methods. A number of steel sheets with a primary coating (a coating composed of a forsterite-based inorganic mineral substance) having been subjected to finish annealing and having undergone secondary recrystallization were prepared. 50 ml of an aqueous solution of aluminum phosphate containing chromic acid having a concentration of 50% by mass, 100 ml of an aqueous dispersion of colloidal silica having a concentration of 20% by mass, and 11 types of alumina particles having an average particle size of 0.6 μm to 23.9 μm were respectively added to the steel plate. The mixture of 0.25 g was applied and dried. Next, these were annealed at 835 ° C. for 30 seconds in a nitrogen atmosphere to form an insulating film on the surface of the steel sheet. The samples prepared in this manner were evaluated for adhesion and space factor by the following methods.

 癒着性の評価は次のような方法で行った。まず、絶縁皮膜を形成した一方向性珪素鋼板から短辺3cm、長辺4cmの試料を多数切り出した。次に、これらの試料の短辺と長辺とが互い違いになるように積層した。このように積層すると試料同士が丁度3cm角で接触することになる。したがって接触面積は9cm2 となる。この積層したものに60kg/cm2 の荷重をかけボルトで固定した。ついで、これに温度800℃、均熱時間2時間の焼鈍を施した。室温まで冷却した後、1枚ずつ引き剥がし、その時の剥離力を求めた。試料は15枚用意し、それらの剥離力の平均値を求めた。このような試験法で求めた剥離力は実際のコア展開における展開しやすさを反映しているものと考えられる。 The adhesion was evaluated by the following method. First, a large number of samples having a short side of 3 cm and a long side of 4 cm were cut out from a unidirectional silicon steel sheet on which an insulating film was formed. Next, these samples were stacked such that the short side and the long side were alternated. When laminated in this manner, the samples come into contact with each other at just 3 cm square. Therefore, the contact area is 9 cm 2 . A load of 60 kg / cm 2 was applied to this laminated product and fixed with bolts. Then, this was annealed at a temperature of 800 ° C. and a soaking time of 2 hours. After cooling to room temperature, the sheet was peeled off one by one, and the peeling force at that time was determined. Fifteen samples were prepared, and the average value of their peeling forces was determined. It is considered that the peel force obtained by such a test method reflects the ease of deployment in actual core deployment.

 また、占積率の評価は次のような方法で行った。まず、癒着性評価用試料と同じように絶縁皮膜を形成した一方向性珪素鋼板から短辺3cm、長辺15cmの試料を多数切り出した。これらの試料を積層し、一定の荷重を印加した後、その時にの厚さを測定する。次に、この厚さ分すべてが鉄で構成されていると仮定し、質量を算出する(算出質量)。一方でこの試料の実質量も測定しておく。この算出質量に対する実質量の比率を%で表したものが占積率である。このような試験法で求めた占積率は実際の鉄心における占積率を反映しているものと考えられる。以上のようにして評価した結果を表1に示す。 (4) The occupancy rate was evaluated by the following method. First, a large number of samples having a short side of 3 cm and a long side of 15 cm were cut out from a unidirectional silicon steel sheet on which an insulating film was formed in the same manner as the adhesion evaluation sample. After laminating these samples and applying a constant load, the thickness at that time is measured. Next, assuming that all of the thickness is made of iron, the mass is calculated (calculated mass). On the other hand, the substantial amount of this sample is also measured. The ratio of the real amount to the calculated mass expressed in% is the space factor. It is considered that the space factor obtained by such a test method reflects the actual space factor in the iron core. Table 1 shows the results of the evaluation as described above.

Figure 2004107796
Figure 2004107796

 表1から次のことがわかる。まず、歪み取り焼鈍時の癒着性を表している剥離力をみると、添加粒子の平均粒径が0.6μmから1.9μm(実験番号1)2)3))の条件では剥離力が173g以上と大きいのに対し、添加粒子の平均粒径が2.1μmから23.9μm(実験番号4)から実験番号11)の条件では剥離力が19g以下と非常に小さい。 Table 1 shows the following. First, looking at the peeling force indicating the adhesiveness during strain relief annealing, the peeling force is 173 g under the conditions where the average particle size of the added particles is 0.6 μm to 1.9 μm (Experiment No. 1) 2) 3))). On the other hand, when the average particle diameter of the added particles is 2.1 μm to 23.9 μm (Experiment No. 4) to Experiment No. 11), the peeling force is as very small as 19 g or less.

 次に、占積率をみると、添加粒子の平均粒径が0.6μmから20.0μm(実験番号1)から実験番号10))の条件では占積率が97.6%から97.8%と非常に高いのに対し、添加粒子の平均粒径が23.9μm(実験番号11))の条件では占積率が95.9%と非常に小さい。以上の結果から、剥離力が小さい、即ち、歪み取り焼鈍時の癒着性に優れることと占積率が高いこととを両立できるのは添加粒子が2.0μm超20μm以下の平均粒径を持つものであることがわかった。 Next, regarding the space factor, when the average particle size of the added particles is from 0.6 μm to 20.0 μm (Experiment No. 1 to Experiment No. 10)), the space factor is from 97.6% to 97.8. % Under the condition that the average particle size of the added particles is 23.9 μm (Experiment No. 11), the space factor is as very small as 95.9%. From the above results, the small peeling force, that is, the excellent adhesion at the time of strain relief annealing and the high space factor can be compatible with each other because the added particles have an average particle size of more than 2.0 μm and 20 μm or less. Turned out to be something.

 ついで、発明者らは添加量の影響を調べた。まず、粒径依存性を求めたのと同様に、二次再結晶済みの一次皮膜付きの鋼板を多数用意した。この鋼板に濃度50質量%のクロム酸入りリン酸アルミニウム水溶液、濃度20質量%コロイド状シリカ水分散液と平均粒子径が2.1μm、4.3μm、10.7μm、20.0μmの4種類のアルミナ粒子をそれぞれ塗布液中におけるアルミナ粒子の固形分率で0.01質量%から20質量%まで配合したものを塗布し乾燥させた。次に、これらを835℃で30秒間、窒素雰囲気中で焼鈍し、鋼板表面に絶縁皮膜を形成した。このようにして調製した試料について前述の法で癒着性と占積率を評価した。結果を表2に示す。 者 Next, the inventors examined the effect of the amount added. First, similarly to the case where the dependence on the particle size was obtained, a number of steel sheets with a secondary coating which had been subjected to secondary recrystallization were prepared. An aluminum phosphate aqueous solution containing chromic acid at a concentration of 50% by mass, an aqueous dispersion of colloidal silica at a concentration of 20% by mass, and four types having an average particle diameter of 2.1 μm, 4.3 μm, 10.7 μm, and 20.0 μm were prepared. A mixture of alumina particles in a proportion of 0.01% by mass to 20% by mass in terms of the solid content of the alumina particles in the coating solution was applied and dried. Next, these were annealed at 835 ° C. for 30 seconds in a nitrogen atmosphere to form an insulating film on the surface of the steel sheet. The samples prepared in this manner were evaluated for adhesion and space factor by the methods described above. Table 2 shows the results.

Figure 2004107796
Figure 2004107796

 表2から次のことがわかる。まず、歪み取り焼鈍時の癒着性を表している剥離力をみると、いずれの平均粒径をもつ粒子においても添加率が0.01質量%(実験番号1、7、13、19)の条件では剥離力が102g以上と大きいのに対し、添加率0.02質量%以上の条件では剥離力が18g以下と非常に小さい。 Table 2 shows the following. First, looking at the peeling force, which indicates the adhesion during strain relief annealing, the condition that the addition rate of particles having any average particle size is 0.01% by mass (Experiment Nos. 1, 7, 13, and 19). In this case, the peeling force is as large as 102 g or more, while the peeling force is as extremely small as 18 g or less under the condition of the addition rate of 0.02 mass% or more.

 次に、占積率をみると、いずれの平均粒径をもつ粒子においても添加量が0.01質量%以上20.0質量%以下の条件では占積率が97.6%以上と高いのに対し、添加率が30.0質量%の条件では95.7質量%以下と非常に低い。したがって、剥離力が小さい、即ち、歪み取り焼鈍時の癒着性に優れることと占積率が高いこととを両立できるのは添加率は0.02質量%以上20.0質量%以下であることがわかった。 Next, regarding the space factor, the space factor is as high as 97.6% or more under the condition that the addition amount is 0.01% by mass or more and 20.0% by mass or less for particles having any average particle size. On the other hand, when the addition ratio is 30.0% by mass, it is very low at 95.7% by mass or less. Therefore, the peeling force is small, that is, the excellent adhesion at the time of strain relief annealing and the high space factor can be compatible with each other because the addition rate is 0.02% by mass or more and 20.0% by mass or less. I understood.

 これら2つ実験から占積率と歪み取り焼鈍時の耐癒着性が良好な条件は塗布液中に平均粒径2μm超20μm以下の無機鉱物質粒子を上記塗布液中固形分比率で0.02質量%以上20%質量%以下含有させることであることがわかった。以下に本発明について詳細に説明する。本発明で用いる一方向性珪素鋼板は常法により製造される。すなわちSi:2〜4%とインヒビター成分を持つ鋳片を熱延し、熱延板焼鈍を行い、もしくは行わず、1回もしくは中間焼鈍を挟む2回以上の冷延を行い、脱炭焼鈍、仕上げ焼鈍を行い、その後絶縁皮膜を塗布される。 From these two experiments, the conditions of good space factor and good adhesion resistance during strain relief annealing are based on the condition that the inorganic mineral particles having an average particle size of more than 2 μm and 20 μm or less in the coating solution are 0.02% by solid content in the coating solution. It has been found that the content is not less than 20% by mass and not more than 20% by mass. Hereinafter, the present invention will be described in detail. The grain-oriented silicon steel sheet used in the present invention is manufactured by an ordinary method. That is, a cast slab having Si: 2 to 4% and an inhibitor component is hot-rolled, and hot-rolled sheet annealing is performed, or cold rolling is performed once or twice or more with intermediate annealing, and decarburization annealing is performed. Finish annealing is performed, and then an insulating film is applied.

 絶縁皮膜には幾つかの種類があるが、代表的なものとしてはリン酸塩、クロム酸およびコロイド状シリカを主成分とし、これらを水に溶解させて塗布し、乾燥焼付させる、いわゆる張力付与型絶縁皮膜がある。本発明はこの塗布液に、比較的粗大な粒径をもつ無機鉱物粒子を添加することを特徴とするものである。本発明を適用できる絶縁皮膜は特に限定されるものではなく、上記の張力付与型絶縁皮膜をはじめ、ゾルゲル法による無機鉱物皮膜や、有機樹脂皮膜などに適用できる。 There are several types of insulating films, but typical ones are phosphate, chromic acid, and colloidal silica as main components, which are dissolved in water, applied, and dried and baked. There is a mold insulating film. The present invention is characterized in that inorganic mineral particles having a relatively large particle size are added to the coating solution. The insulating film to which the present invention can be applied is not particularly limited, and can be applied to the above-mentioned tension imparting type insulating film, an inorganic mineral film formed by a sol-gel method, an organic resin film, and the like.

 粒子の種類もまた特に限定しないが、電荷を持たないもの、すなわち非コロイド状のものが、凝集による粗大化を防止する上で重要である。なおここで、電荷を持たないとは、電荷に起因する粒子同士の結合を招くほどの電荷を持たないという意味であり、微視的に見た局部的な電荷の存在を否定するものではない。主な粒子の種類としてはアルミナ、ジルコニア、チタニア、窒化チタンなどがある。粒子の平均粒径および添加量は先述の試験結果をもとに規定した。平均粒径が2μm以下では耐癒着性は小さく、一方20μm超では占積率が低下する。 種類 The type of particles is also not particularly limited, but those having no charge, that is, non-colloidal ones are important in preventing coarsening due to aggregation. Here, having no charge means not having enough charge to cause particles to be bonded to each other due to the charge, and does not deny the existence of a local charge when viewed microscopically. . The main types of particles include alumina, zirconia, titania, and titanium nitride. The average particle size and the amount of the particles were determined based on the test results described above. When the average particle size is 2 μm or less, the adhesion resistance is small, while when the average particle size is more than 20 μm, the space factor decreases.

 また、添加量が固形分比率で0.02質量%未満では耐癒着効果は得られず、一方20%質量以上では占積率が低下し、さらには皮膜張力や付着性の低下など、皮膜自体の特性を損なう場合がある。一方、本発明と従来技術とを対比すると、まず特許文献1に提案された技術は、その特許請求の範囲に記載されているように、一次粒子径が70Åから500Å(7nmから50nm)である微細な一次粒径をもち、かつ見掛け比重が100g/リットルである粒子を塗布液中に添加することを特徴としている。このような特徴をもつ粒子を使うことによって、同公報明細書本文第5頁右上欄19行から同左下欄5行に述べられているように、形成された皮膜表面の「平滑さ」を損なわないようにしている。特に、上記明細書実施例6における、凝集程度の進んだ粉末では占積率が96.0%と他の実施例(97.8%)と比べて悪く、この原因として、上記明細書第5図の実施例6の走査電子顕微鏡写真を引用し、「1μ程度の凝集物が凹凸となって表面に多数観察される」(上記明細書本文第7頁右上欄第1行から同第8行)ことを挙げている。 On the other hand, if the added amount is less than 0.02% by mass in solid content ratio, the anti-adhesion effect cannot be obtained, while if the added amount is more than 20% by mass, the space factor decreases, and furthermore, the film itself such as film tension and adhesion decreases. Characteristics may be impaired. On the other hand, comparing the present invention with the conventional technology, the technology proposed in Patent Document 1 has a primary particle diameter of 70 ° to 500 ° (7 nm to 50 nm) as described in the claims. It is characterized in that particles having a fine primary particle size and an apparent specific gravity of 100 g / liter are added to a coating solution. The use of particles having such characteristics impairs the "smoothness" of the surface of the formed film, as described in page 19, the upper right column, line 19, to the lower left column, line 5, in the same gazette. I try not to. In particular, the powder having advanced agglomeration level in Example 6 of the above specification has a space factor of 96.0%, which is worse than that of the other examples (97.8%). Referring to the scanning electron micrograph of Example 6 in the figure, "a large number of aggregates of about 1 μ are observed as irregularities on the surface" (line 1 to line 8 in the upper right column on page 7 of the specification). ).

 即ち、上記公報に開示された技術においては、皮膜表面の凹凸形成は忌避されているのである。しかしながら、これでは鋼板同士の癒着を効果的に抑制することは困難である。
 また、特許文献4に開示された技術の特徴は、塗布液中に粒子径が5〜2000nmの非コロイド状の固形物を添加することにある。その目的は、同公報明細書本文第5頁左上欄第2行から第5行において「上記固形物は皮膜表面に微細な凹凸状を形成させ、すべり性を高めるためのもの」と述べられているように、固形物にはすべり性を改善を指向したものと考えられる。
That is, in the technology disclosed in the above publication, the formation of irregularities on the film surface is avoided. However, it is difficult to effectively suppress adhesion between steel plates.
The feature of the technology disclosed in Patent Document 4 is that a non-colloidal solid having a particle size of 5 to 2,000 nm is added to the coating solution. The purpose is described in line 2 to line 5 in the upper left column of page 5 of the text of the gazette of the gazette, stating that "the solid material is to form fine irregularities on the film surface and to enhance slipperiness". As described above, it is considered that solids are intended to improve the slip property.

 また、同公報明細書本文第4頁左下欄6行から第10行において「5から100nmの範囲では絶縁皮膜溶液中で適度に凝集させる」と述べられている。即ち、上記明細書に開示された技術においては、塗布液中で積極的に粒子を粗大化させることを推奨しているのである。しかしながらこの方法では二次粒子径を制御できずに巨大化し、占積率の低下を抑制することは困難である。 に お い て Also, in the same publication, page 4, lower left column, line 6 to line 10, states that "in the range of 5 to 100 nm, moderate aggregation occurs in the insulating coating solution". That is, in the technique disclosed in the above specification, it is recommended that the particles be positively coarsened in the coating solution. However, in this method, the secondary particle diameter cannot be controlled, and the secondary particle size becomes large, and it is difficult to suppress a decrease in the space factor.

 仕上げ焼鈍を施し、二次再結晶済みの一次皮膜付きの板厚0.23mmの鋼板に、濃度50質量%のクロム酸入りリン酸アルミニウム・マグネシウム水溶液50ml、濃度20質量%のコロイド状シリカ水分散液100mlを塗布し乾燥させた。この時、塗布液中に平均粒子径2.5μmアルミナ粒子を固形分比率で0.5質量%添加したものと、アルミナ粒子を添加しないものとを用意した。次に、これらの試料を835℃で30秒間、窒素雰囲気中で焼鈍し、鋼板表面に絶縁皮膜を形成した。このようにして調製した試料を前述の方法で癒着性と占積率を評価した。結果を表3に示す。 A 50% by mass aqueous solution of chromic acid-containing aluminum / magnesium phosphate with a concentration of 50% by mass and a 20% by mass concentration of colloidal silica aqueous dispersion are applied to a 0.23mm-thick steel plate with a primary film that has been subjected to finish annealing and has been subjected to secondary recrystallization. 100 ml of the solution was applied and dried. At this time, a coating liquid was prepared in which alumina particles having an average particle size of 2.5 μm were added in an amount of 0.5% by mass in terms of a solid content ratio, and a coating liquid in which alumina particles were not added. Next, these samples were annealed at 835 ° C. for 30 seconds in a nitrogen atmosphere to form an insulating film on the surface of the steel sheet. The samples thus prepared were evaluated for adhesion and space factor by the methods described above. Table 3 shows the results.

Figure 2004107796
Figure 2004107796

 表3から占積率においては実施例、比較例いずれも97.7%と高く、良好である。ところが、剥離力を比較すると、アルミナ粒子を添加しなかった比較例2)では452gと非常に大きな値であるのに対し、アルミナ粒子を添加した実施例1)では17gと小さな値となり優れている。 か ら Table 3 shows that the space factor is as high as 97.7% in both Examples and Comparative Examples. However, when the peeling force was compared, Comparative Example 2) in which alumina particles were not added was a very large value of 452 g, whereas Example 1) in which alumina particles were added was as small as 17 g, which is excellent. .

 仕上げ焼鈍を施し、二次再結晶済みの一次皮膜付きの板厚0.30mmの鋼板に、濃度50質量%のクロム酸入りリン酸アルミニウム水溶液50ml、濃度20質量%のコロイド状シリカ水分散液100mlを塗布し乾燥させた。この時、塗布液中に平均粒子径10.2μmシリカ粒子を固形分質量比率で0.1質量%添加したものと、シリカ粒子を添加しないものとを用意した。次に、これらの試料を835℃で30秒間、窒素雰囲気中で焼鈍し、鋼板表面に絶縁皮膜を形成した。このようにして調製した試料を前述の方法で癒着性と占積率を評価した。結果を表4に示す。 On a 0.30 mm-thick steel sheet with a primary film that has been subjected to finish annealing and has been subjected to secondary recrystallization, 50 ml of a 50% by mass aqueous solution of aluminum phosphate containing chromic acid and 50 ml of a 20% by mass aqueous colloidal silica dispersion liquid 100 ml Was applied and dried. At this time, one prepared by adding 0.1% by mass of silica particles having an average particle size of 10.2 μm to the coating solution in a solid content mass ratio, and one prepared by adding no silica particles were prepared. Next, these samples were annealed at 835 ° C. for 30 seconds in a nitrogen atmosphere to form an insulating film on the surface of the steel sheet. The samples thus prepared were evaluated for adhesion and space factor by the methods described above. Table 4 shows the results.

Figure 2004107796
Figure 2004107796

 表4から占積率においては実施例1)、比較例2)いずれも97.6%と高く、良好である。ところが、剥離力を比較すると、シリカ粒子を添加しなかった比較例2)では541gと非常に大きな値であるのに対し、シリカ粒子を添加した実施例1)では15gと小さな値となり優れている。 か ら Table 4 shows that the space factor is as high as 97.6% in both Example 1) and Comparative Example 2). However, when the peeling force is compared, Comparative Example 2) in which the silica particles were not added was a very large value of 541 g, whereas Example 1) in which the silica particles were added was a small value of 15 g, which was excellent. .

 仕上げ焼鈍を施し、二次再結晶済みの一次皮膜付きの板厚0.23mmの鋼板に、濃度50質量%のクロム酸入りリン酸アルミニウム・マグネシウム水溶液50ml、濃度20質量%のコロイド状シリカ水分散液100mlを塗布し乾燥させた。この時、塗布液中に平均粒子径5.2μmホウ酸アルミニウム粒子を固形分質量比率で0.3質量%添加したものと、ホウ酸アルミニウム粒子を添加しないものとを用意した。次に、これらの試料を835℃で30秒間、窒素雰囲気中で焼鈍し、鋼板表面に絶縁皮膜を形成した。このようにして調製した試料を前述の方法で癒着性と占積率を評価した。結果を表5に示す。 A 50% by mass aqueous solution of chromic acid-containing aluminum / magnesium phosphate with a concentration of 50% by mass and a 20% by mass concentration of colloidal silica aqueous dispersion are applied to a 0.23mm-thick steel plate with a primary film that has been subjected to finish annealing and has been subjected to secondary recrystallization. 100 ml of the solution was applied and dried. At this time, there were prepared one in which aluminum borate particles having an average particle size of 5.2 μm were added to the coating liquid in an amount of 0.3% by mass in terms of a solid content mass ratio, and one in which aluminum borate particles were not added. Next, these samples were annealed at 835 ° C. for 30 seconds in a nitrogen atmosphere to form an insulating film on the surface of the steel sheet. The samples thus prepared were evaluated for adhesion and space factor by the methods described above. Table 5 shows the results.

Figure 2004107796
Figure 2004107796

 表5から占積率においては実施例1)、比較例2)いずれも97.7%と高く、良好である。ところが、剥離力を比較すると、ホウ酸アルミニウム粒子を添加しなかった比較例2)では635gと非常に大きな値であるのに対し、ホウ酸アルミニウム粒子を添加した実施例1)では16gと小さな値となり優れている。 か ら Table 5 shows that the space factor is as high as 97.7% in both Example 1) and Comparative Example 2), which is good. However, when the peeling force is compared, Comparative Example 2) in which aluminum borate particles were not added was a very large value of 635 g, whereas Example 1) in which aluminum borate particles were added was a small value of 16 g. It is excellent.

Claims (3)

 平均粒径2μm超20μm以下の電荷を持たない無機鉱物質粒子を固形分比率で0.02質量%以上20%質量%以下含有することを特徴とする耐癒着性と占積率に優れる一方向性珪素鋼板の張力付与性絶縁皮膜用塗布液。 One direction excellent in adhesion resistance and space factor, characterized by containing uncharged inorganic mineral particles having an average particle size of more than 2 μm and not more than 20 μm in a solid content ratio of not less than 0.02% by mass and not more than 20% by mass. Coating solution for tension-imparting insulating film on functional silicon steel sheet.  仕上げ焼鈍済みの一方向性珪素鋼板に塗布液を塗布、乾燥し、焼き付けることによって前記鋼板上に張力付与性の絶縁皮膜を形成する方法において、前記塗布液中に平均粒径2μm超20μm以下の電荷を持たない無機鉱物質粒子を上記塗布液中固形分比率で0.02質量%以上20%質量%以下含有させることを特徴とする耐癒着性と占積率に優れる一方向性珪素鋼板絶縁皮膜形成方法。 In a method of forming a tension-imparting insulating film on the steel sheet by applying a coating liquid to a finish-annealed unidirectional silicon steel sheet, drying and baking, the coating liquid has an average particle size of more than 2 μm and not more than 20 μm. Unidirectional silicon steel sheet insulation excellent in adhesion resistance and space factor, characterized by containing non-charged inorganic mineral particles in a solid content ratio of 0.02% by mass to 20% by mass in the coating solution. Film formation method.  前記塗布液の主体がリン酸塩、クロム酸およびコロイド状シリカであることを特徴とする請求項2記載の耐癒着性と占積率に優れる一方向性珪素鋼板絶縁皮膜形成方法。 3. The method for forming a unidirectional silicon steel sheet insulating film having excellent adhesion resistance and space factor according to claim 2, wherein the coating liquid is mainly composed of phosphate, chromic acid and colloidal silica.
JP2003357929A 2003-10-17 2003-10-17 Coating liquid for unidirectional silicon steel sheet with excellent adhesion resistance and space factor, and method for forming insulating film Expired - Lifetime JP4520720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003357929A JP4520720B2 (en) 2003-10-17 2003-10-17 Coating liquid for unidirectional silicon steel sheet with excellent adhesion resistance and space factor, and method for forming insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003357929A JP4520720B2 (en) 2003-10-17 2003-10-17 Coating liquid for unidirectional silicon steel sheet with excellent adhesion resistance and space factor, and method for forming insulating film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP19447498A Division JP3557098B2 (en) 1998-07-09 1998-07-09 Coating solution for unidirectional silicon steel sheet insulation film with excellent adhesion resistance and space factor and method for forming insulation film

Publications (2)

Publication Number Publication Date
JP2004107796A true JP2004107796A (en) 2004-04-08
JP4520720B2 JP4520720B2 (en) 2010-08-11

Family

ID=32290875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003357929A Expired - Lifetime JP4520720B2 (en) 2003-10-17 2003-10-17 Coating liquid for unidirectional silicon steel sheet with excellent adhesion resistance and space factor, and method for forming insulating film

Country Status (1)

Country Link
JP (1) JP4520720B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI393593B (en) * 2008-06-20 2013-04-21 Nippon Steel & Sumitomo Metal Corp Non - directional electrical steel sheet and manufacturing method thereof
EP2902509A1 (en) * 2014-01-30 2015-08-05 Thyssenkrupp Electrical Steel Gmbh Grain oriented electrical steel flat product comprising an insulation coating

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382772A (en) * 1989-08-28 1991-04-08 Nkk Corp Silicon steel sheet having insulation coating excellent in blankability, weldability, and heat resistance
JPH03207868A (en) * 1989-12-30 1991-09-11 Nippon Steel Corp Formation of insulating film for grain-oriented silicon steel sheet excellent in iron core workability, heat resistance, and tension-giving property and grain-oriented silicon steel sheet
JPH05202450A (en) * 1992-01-27 1993-08-10 Nippon Steel Corp Super low iron loss grain-oriented magnetic steel sheet and its manufacture
JPH05226134A (en) * 1992-02-13 1993-09-03 Nippon Steel Corp Method for formiing tension coating of electromagnetic steel plate with low iron loss directivity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382772A (en) * 1989-08-28 1991-04-08 Nkk Corp Silicon steel sheet having insulation coating excellent in blankability, weldability, and heat resistance
JPH03207868A (en) * 1989-12-30 1991-09-11 Nippon Steel Corp Formation of insulating film for grain-oriented silicon steel sheet excellent in iron core workability, heat resistance, and tension-giving property and grain-oriented silicon steel sheet
JPH05202450A (en) * 1992-01-27 1993-08-10 Nippon Steel Corp Super low iron loss grain-oriented magnetic steel sheet and its manufacture
JPH05226134A (en) * 1992-02-13 1993-09-03 Nippon Steel Corp Method for formiing tension coating of electromagnetic steel plate with low iron loss directivity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI393593B (en) * 2008-06-20 2013-04-21 Nippon Steel & Sumitomo Metal Corp Non - directional electrical steel sheet and manufacturing method thereof
EP2902509A1 (en) * 2014-01-30 2015-08-05 Thyssenkrupp Electrical Steel Gmbh Grain oriented electrical steel flat product comprising an insulation coating
WO2015114068A1 (en) * 2014-01-30 2015-08-06 Thyssenkrupp Electrical Steel Gmbh Grain oriented electrical steel flat product comprising an insulation coating

Also Published As

Publication number Publication date
JP4520720B2 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
JP6920439B2 (en) Annealing separator composition for grain-oriented electrical steel sheets and method for manufacturing grain-oriented electrical steel sheets
KR20160114577A (en) Grain oriented electrical steel flat product comprising an insulation coating
KR20140064936A (en) Oriented electromagnetic steel sheet and method for manufacturing same
JP2791812B2 (en) Method for forming insulating film of grain-oriented electrical steel sheet with excellent core workability, heat resistance and tension imparting property, and grain-oriented electrical steel sheet
JP2654861B2 (en) Method of forming insulation film on grain-oriented electrical steel sheet with excellent workability and heat resistance of iron core
JP2017061732A (en) Oriented electromagnetic steel sheet and production method thereof
JP2004107796A (en) Coating solution for insulation film of grain-oriented silicon steel sheet having excellent sticking resistance and space factor, and method for forming insulation film
JP3557098B2 (en) Coating solution for unidirectional silicon steel sheet insulation film with excellent adhesion resistance and space factor and method for forming insulation film
JP2654862B2 (en) Method for forming insulation film on grain-oriented electrical steel sheet with excellent core workability and dust resistance
JP2007056303A (en) Method for producing non-oriented silicon steel sheet excellent in magnetic characteristic
KR101467062B1 (en) Method for manufacturing non-oriented electrical steel sheet with high efficiency using aluminium foil
JP2010037602A (en) Coating liquid for insulating film used for grain-oriented electromagnetic steel sheet and method for forming the insulating film
WO2009093492A1 (en) Grain-oriented electromagnetic steel sheet excellent in magnetic characteristics
JP3098628B2 (en) Ultra high magnetic flux density unidirectional electrical steel sheet
JPH0689805A (en) Very high magnetic flux density oriented electromagnetic steel plate
JP3447697B2 (en) Oriented silicon steel sheet with insulating film that excels in space factor and seizure resistance
JP3524058B2 (en) Method for manufacturing oriented silicon steel sheet with insulating film having excellent space factor and seizure resistance
JP4839830B2 (en) Oriented electrical steel sheet with excellent magnetostrictive properties
JP4500005B2 (en) Method for producing grain-oriented electrical steel sheet having insulating coating with excellent tension imparting characteristics and grain-oriented electrical steel sheet produced by the method
JP6841296B2 (en) Processing liquid for forming an insulating film, manufacturing method of an electromagnetic steel sheet with an insulating film, and an electromagnetic steel sheet with an insulating film
JPS61124584A (en) Grain oriented electrical steel sheet having excellent magnetic characteristic
JP2005317683A (en) Grain-oriented electromagnetic steel plate for three-phase laminated iron core
JP2006265685A (en) Grain-oriented magnetic steel sheet and producing method therefor
JP2005120424A (en) Nonoriented silicon steel sheet excellent in corrosion resistance after heat treated, and high strength nonoriented silicon steel sheet excellent in corrosion resistance and magnetic property
RU2791753C1 (en) Sheet from non-oriented electrical steel and method for its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090828

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term