JP2004107704A - Method for manufacturing boron-containing ferritic stainless steel strip - Google Patents

Method for manufacturing boron-containing ferritic stainless steel strip Download PDF

Info

Publication number
JP2004107704A
JP2004107704A JP2002269540A JP2002269540A JP2004107704A JP 2004107704 A JP2004107704 A JP 2004107704A JP 2002269540 A JP2002269540 A JP 2002269540A JP 2002269540 A JP2002269540 A JP 2002269540A JP 2004107704 A JP2004107704 A JP 2004107704A
Authority
JP
Japan
Prior art keywords
hot
temperature
steel
stainless steel
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002269540A
Other languages
Japanese (ja)
Inventor
Shinji Tsuge
柘植 信二
Takeo Yazawa
矢澤 武男
Yoshio Taruya
樽谷 芳男
Akira Seki
関 彰
Masafumi Hanao
花尾 方史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002269540A priority Critical patent/JP2004107704A/en
Publication of JP2004107704A publication Critical patent/JP2004107704A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a boron-containing hot-rolled ferritic stainless steel strip suitable for a stock of a polymer electrolyte fuel cell separator component. <P>SOLUTION: Ferritic stainless steel containing, by mass, ≥ 0.1% B and 15-32% Cr is heated to the temperature of ≤ 1,230°C, hot rolling is completed with the finish thickness t to satisfy the relationship (1) t ≤ 5-2B (%), and at the finish temperature TF to satisfy the relationshipes (2) TF ≥ 750 if B content is 0.1-0.25%, and (3) TF ≥ 280 × B(%) + 680, the unit of the finish thickness t is mm, and the finish temperature of hot rolling is °C. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、含硼素フェライト系ステンレス鋼帯の製造方法に関し、より詳しくは、固体高分子型燃料電池セパレータ部品の素材として好適な含硼素フェライト系ステンレス熱延鋼帯の製造方法に関するものである。
【0002】
【従来の技術】
通常の鉄鋼材料は室温以上の温度で延性的であり、鋼板を製造する上で脆性破壊を心配する必要がない。しかし、ステンレス鋼のうちでフェライト系ステンレス鋼、特にCrを多量に含有するフェライト系ステンレス鋼は脆性的な特性を示す場合があり、そのなかでも、導電性を有する金属介在物としてMB 型硼化物を含有する含硼素フェライト系ステンレス鋼は鉄鋼材料の中で最も脆性的な材料であると言っても過言ではない。
【0003】
なお、上記の導電性を有する金属介在物としてMB 型硼化物を含有する含硼素フェライト系ステンレス鋼は、本発明者らが特許文献1において、接触電気抵抗が小さく、且つ、電池環境内で経時変化の小さい固体高分子型燃料電池セパレータ部品の素材の1つとして提案した材料である。
【0004】
上記含硼素フェライト系ステンレス鋼を燃料電池セパレータ部品の素材として用いるには、そのステンレス鋼の冷延薄鋼板を安定して安価に提供することが必要で、したがって、含硼素フェライト系ステンレス鋼のスラブや熱延コイルにおける脆性破断に対して配慮することが極めて重要となる。
【0005】
脆性的な鉄鋼材料でも肉厚(板厚)を薄くして行けば延性−脆性遷移温度が必然的に低下し、室温において脆性破壊を示さなくなることが知られている。換言すれば、一般に脆性的な鉄鋼材料はその肉厚が大きい場合に脆性破壊を生じやすい。冷間圧延工程に供される最も肉厚の大きい鋼材は熱延鋼帯であるため、フェライト系ステンレス鋼の脆性破壊を防止する有効な対策の1つとして、肉厚を薄くする方法が考えられ、事実、熱間加工性が良好なフェライト系ステンレス鋼の場合には肉厚を薄くすることが容易であるため、脆性破壊に対する十分な対策となっている。
【0006】
延性−脆性遷移温度を低下させて脆性破壊を防止する技術として、「低温巻き取り」技術もよく知られている。例えば、高Crフェライト系ステンレス鋼の熱延鋼帯の靱性改善のために熱延鋼帯を仕上げ圧延後に水冷し、巻き取り温度を450℃以下に制御することが行われている。この「低温巻き取り」は、4〜9mm程度の肉厚であっても鋼材の内質を制御することでいわゆる「475℃脆性」を回避し、脆性材料でなくするものである。特許文献2には、上記技術の改良技術として、熱延鋼帯の板厚tに応じて巻き取り温度Tを「t×T≦3600」とすることで、20℃における衝撃値を50J/cm 以上に高靱化する技術が開示されている。
【0007】
含硼素フェライト系ステンレス鋼は通常のフェライト系ステンレス鋼とは異なって熱間加工性が良好とは言えず、熱間圧延を行うと耳割れが発生することがある。一旦耳割れが生じると、脆性破断に対する切り欠きを与えることになり、その熱延鋼板を焼鈍、酸洗や冷間圧延して行くことが困難となる。特に熱延材の耳割れが5mmを超えると冷間圧延の際に脆性破断が生じやすい。したがって、単に含硼素フェライト系ステンレス鋼の熱延鋼帯の肉厚を薄くするだけでは脆性破断に対する対策とはなり得ない。
【0008】
すなわち、熱間圧延工程で耳割れを発生しやすい鋼材の場合、肉厚を薄くすることは耳割れ、表面割れといった欠陥の発生を助長し、その程度によって次工程である冷延工程での製造が困難になることがある。これは、耳割れや表面割れといった欠陥が脆性破壊に対する切り欠きとして作用するためである。実際に熱延鋼帯に対して、リーダー材と呼ばれる鋼板の溶接、疵の検査、巻き直し、連続焼鈍・酸洗、スリット、トリム、冷間圧延の工程を進めるに当たり、何らかの欠陥を起点として鋼帯の破断が発生したり、トリムくずが脆性破断するために連続して巻き取りすることができず、連続製造ラインを止めて作業者の手介入によってトリムくずの巻き取りを継続するといった事態が生じることがある。
【0009】
更に、含硼素フェライト系ステンレス鋼は通常のフェライト系ステンレス鋼とは異なって加工性が良好とは言えないため、単に巻き取り温度を450℃以下に制御するだけでは破断する場合がある。このため、単なる「低温巻き取り」技術によって脆性破断を防止することも困難である。
【0010】
【特許文献1】
特開2001−32056号公報
【特許文献2】
特開平8−199237号公報
【0011】
【発明が解決しようとする課題】
本発明は、上記現状に鑑みてなされたもので、その目的は、固体高分子型燃料電池セパレータ部品の素材として好適な含硼素フェライト系ステンレス冷延鋼帯を安定且つ安価に供給するために、熱延後に施される種々の工程で脆性的な破断を生じることの少ない熱延鋼帯の製造方法を提供することである。
【0012】
【課題を解決するための手段】
本発明の要旨は、下記に示す含硼素フェライト系ステンレス鋼帯の製造方法にある。
【0013】
すなわち、「質量%で、0.1%以上のB及び15〜32%のCrを含有するフェライト系ステンレス鋼を、1230℃以下の温度に加熱した後、下記の式▲1▼を満たす仕上げ板厚t、且つ、下記の式▲2▼又は式▲3▼を満たす仕上げ温度TFで熱間圧延を終了し、その後コイルとして巻き取ることを特徴とする含硼素フェライト系ステンレス熱延鋼帯の製造方法。t≦5−2B(%)・・・▲1▼、B含有量が0.1〜0.25%の場合:TF≧750・・・▲2▼、B含有量が0.25%以上の場合:TF≧280×B(%)+680・・・▲3▼。」である。
【0014】
なお、仕上げ板厚tの単位はmm、熱間圧延の仕上げ温度TFの単位は℃である。
【0015】
本発明者らが、前記した目的を達成するために種々検討を行ったところ、熱延鋼帯の肉厚を薄くする方法の採用を前提とすれば、たとえ脆性的な鋼種であっても、本発明の方法によって熱間加工性の悪さを克服できて量産設備での製造が可能になるとの結論に達した。
【0016】
すなわち、本発明者らは、先ず実験室規模で含硼素フェライト系ステンレス鋼を厚さが50〜100mmに鋳造し、この鋼塊について熱間圧延試験及び高温引張試験による熱間加工性評価を繰り返した。更に、熱延鋼板の次工程での通板性を評価するために繰り返し曲げ試験を実施した。
【0017】
最初に、熱間加工性評価に関して行った検討内容について述べる。
【0018】
質量%で(以下、各元素の含有量の「%」表示は「質量%」を意味する)、17.22〜25.23%のCr、0〜2.96%のMo及び0.0002〜1.49%のBを含有するフェライト系ステンレス鋼について、2〜5mmの板厚、650〜1080℃の仕上げ温度での熱間圧延試験を実施し、この時に発生した最大耳割れ長さを評価した。
【0019】
表1に、供試鋼の化学組成を示す。なお、鋼1〜21が実験室規模での鋳造材である。鋼塊厚さが50mmの鋼1〜18は小型鋼塊、厚さが100mmの鋼19〜21は実験室規模の連続鋳造設備により鋳造した連続鋳造鋳片である。なお、鋼22は後述する実機規模の連続鋳造鋳片である。
【0020】
【表1】

Figure 2004107704
【0021】
各鋼塊から、50mm厚さ×140mm幅×85mm長さの熱間圧延用素材を加工し、3スタンドの熱間圧延機が約1mの間隔で配置されたタンデム圧延が模擬できる実験用設備を用いて熱間圧延を行った。
【0022】
なお、熱間圧延試験においては、ロールの回転数とパス間の待ち時間の調整によって仕上げ温度TFを変化させた。
【0023】
図1に、一例として、22%Cr−2%Mo系でB量がそれぞれ0.10%、0.63%及び1.04%の鋼9、鋼13及び鋼19の熱間圧延試験結果を示す。
【0024】
図1から、B量が多いほど、又、仕上げ温度TFが低いほど熱間圧延で生じる最大耳割れ長さが増加することが明らかになった。
【0025】
図2に、各鋼塊から採取した試験片を高温引張試験して絞りを測定した結果の一例を示す。なお、この図は、20%Cr−2%Mo系でB量がそれぞれ0.12%と1.49%の鋼2と鋼6及び22%Cr−2%Mo系でB量が0.60%の鋼20についてのものである。
【0026】
図2から、引張試験温度が1150℃よりも高い温度域では温度上昇にともない或る温度で絞りが低下しはじめ、1230℃になるといずれの鋼種も絞りが零となることが明らかである。この絞りが零となる温度はB量によらずほぼ一定であった。したがって、本発明が対象とする含硼素フェライト系ステンレス鋼の鋼塊の加熱温度は、B含有量にかかわらず1230℃以下とする必要があることが判明した。
【0027】
上記の熱間圧延試験から、熱間圧延の加熱温度を1230℃以下とし、B量に応じて前記式▲2▼又は式▲3▼を満たす仕上げ温度TF(℃)以上で熱間圧延を仕上げることによって、含硼素フェライト系ステンレス鋼熱延鋼板の耳割れ長さを5mm以下にするという所期の目標が達成できることが明らかになった。
更に、耳割れの発生をなくするには仕上げ圧延温度を、B含有量が0.1〜0.25%の場合には800℃以上、又、B含有量が0.25%以上の場合には「280×B(%)+730」℃以上とすることが好ましいことが判明した。
【0028】
次いで、熱延鋼板の通板性の評価に関して行った検討内容について述べる。
【0029】
熱延鋼板の冷間での通板を模擬するため、熱延ままの耳部を付けた25mm幅×200mm長さの短冊試験片をシャーリングにより採取し、通板中に破断が生じるか否かを曲げ試験によって評価した。
【0030】
すなわち、シャーリングにより採取した25mm幅×200mm長さの各種板厚の短冊試験片を用いて下記の曲げ試験を実施した。なお、熱延鋼板の板厚は2.6mmを基本条件とし、4.0mm、3.2mm、2.0mmについての試験も一部の鋼種について実施した。ここで、上記「熱延ままの耳部」には鋼のB含有量と熱間圧延仕上げ温度TFの大小によって長さ0〜15mmの耳割れが発生していた。なお、耳割れ長さが0mmとは耳割れが生じていなかったことを意味する。
【0031】
上記の長さ0〜15mmの耳割れを有する25mm幅×200mm長さの短冊試験片に対して、「50mmRの90度曲げを実施→元のフラット状態に伸ばす→逆方向に50mmRの90度曲げを実施→再度元のフラット状態に伸ばす」というサイクルでの繰り返し曲げを10回繰り返し、曲げ割れによる試験片の破断有無を評価した。
【0032】
繰返し曲げ試験の結果、熱延ままの耳部又はシャーリング端面から曲げ割れが発生し、B含有量が多く且つ板厚が厚いもので破断が生じた。
【0033】
上記の曲げ試験から、熱延鋼板の曲げ性確保、つまり冷間での通板性確保のためには、熱間圧延仕上げ板厚tが前記▲1▼式を満たす必要のあることが明らかとなった。
【0034】
表2に、熱間圧延仕上げ板厚t(mm)とB含有量が熱延鋼板の曲げ性に及ぼす影響の一例として、鋼1〜5について調査した場合の結果を整理して示す。なお、表中の「○」及び「×」印はそれぞれ、前記繰返し曲げを10回行った後に破断がなかったもの及び破断したものを示している。
【0035】
【表2】
Figure 2004107704
【0036】
又、図3に、熱間圧延仕上げ温度TF(℃)とB含有量が熱延鋼板の曲げ性に及ぼす影響の一例として、鋼6、鋼9、鋼10、鋼13及び鋼20において圧延長さが約1.5mで板厚が2.6mmの熱延鋼板の圧延定常部から採取した曲げ試験片を用いた場合の結果を整理して示す。なお図中の「○」及び「×」印はそれぞれ、前記繰返し曲げを10回行った後に破断がなかったもの及び破断したものを示している。
【0037】
以上述べた熱間圧延試験、高温引張試験及び繰り返し曲げ試験の結果から、熱間圧延での耳割れ長さを5mm以下に抑制できる仕上げ温度TF(℃)とB含有量の領域に加えて、熱延鋼板の仕上げ板厚を規定することで曲げ性、つまり冷間での通板性が確保できる含硼素フェライト系ステンレス鋼の熱延鋼帯を得ることができ、その熱延鋼帯は冷延工程で脆性破断するおそれが少なく、冷延鋼板製造用素材として適切な特性を有するので、量産設備での製造が可能であるとの結論に達した。
【0038】
本発明は、上記の検討内容に基づいて完成されたものである。
【0039】
【発明の実施の形態】
以下、本発明の各要件について詳しく説明する。なお、既に述べたように各元素の含有量の「%」表示は「質量%」を意味する。
(A)化学組成
本発明においては、対象とする含硼素フェライト系ステンレス鋼帯に対する固体高分子型燃料電池セパレータ部品の素材としての特性付与という意味合いを重視し、そのステンレス鋼の化学成分としてB量、Cr量のみを下記の範囲に限定する。
【0040】
B:0.1%以上
導電性を有する金属介在物としてのMB 型硼化物の体積率はB量に依存し、通電部品としての特性を確保するには最低0.1%のB含有が必要である。Bの含有量は多ければ多いほど上記特性にとって好ましいので、その上限値は特に限定するものではない。しかし、加熱温度の上限が1230℃であることから、熱間圧延の仕上げ温度TFの上限も1230℃となり、したがって、計算上のB含有量の上限は約1.96%となる。但し、現状の熱延技術では、B含有量の上限として1.5%程度が製造可能な範囲と思われる。以上の理由から、Bの含有量を0.1%以上とした。
【0041】
Cr:15〜32%
Crはステンレス鋼の耐食性を確保するための基本元素であり、燃料電池環境での耐食性を付与するためには最低限15%の含有量が必要である。耐食性を十分なものとするには、「Cr(%)−2.5B(%)」(Moを含有する場合には「Cr(%)+3Mo(%)−2.5B(%)」)で計算される値が18%以上になるようにCrを含有させることが好ましい。Crは含有量が多いほど耐食性を向上させるものの、その一方で脆化を促進する元素であるし、鋼のコストの上昇も招く。特に32%を超えて含有させるとコスト上昇が著しくなる。したがって、Crの含有量を15〜32%とした。
【0042】
本発明が対象とする含硼素フェライト系ステンレス鋼のB及びCr以外の他の化学成分の組成に関しては特別な限定を加える必要はない。固体高分子型燃料電池セパレータ部品の素材として要求される特性の付与が可能であるような成分範囲でありさえすれば良い。
【0043】
具体的には、例えば、BとCr以外の元素として、C:0.15%以下、Si:0〜1.5%、Mn:0〜1.5%、P:0.04%以下、S:0.01%以下、Al:0〜6%、N:0.10%以下、Ni:0〜5%、Mo:0〜7%、Cu:0〜1%、Ti:0〜25×{C(%)+N(%)}、Nb:0〜25×{C(%)+N(%)}、V:0〜2%、Ca:0〜0.01%、Mg:0〜0.01%、O(酸素):0.01%以下を含有し、残部はFeと不純物からなるものであればよい。
【0044】
なお、BとCr以外の上記した元素については、C:0.015%以下、Si:0〜0.6%、Mn:0〜1.0%、P:0.04%以下、S:0.01%以下、Al:0.02〜0.2%、N:0.015%以下、Ni:0〜4%、Mo:0〜4%、Cu:0〜1%、Ti:0〜0.3%、Nb:0〜0.5%、V:0〜0.5%、Ca:0〜0.003%、Mg:0〜0.003%、O(酸素):0.006%以下の含有量とすることが好ましく、C:0.015%以下、Si:0.01〜0.6%、Mn:0.01〜1.0%、P:0.04%以下、S:0.01%以下、Al:0.02〜0.2%、N:0.015%以下、Ni:0.01〜4%、Mo:0.01〜4%、Cu:0.01〜1%、Ti:0.001〜0.3%、Nb:0.001〜0.5%、V:0.01〜0.5%、Ca:0.0001〜0.003%、Mg:0.0001〜0.003%、O(酸素):0.006%以下の含有量とすることが一層好ましい。
【0045】
ここで、Mo、Cu、Ni及びVはステンレス鋼の耐食性を高める作用を有するので耐食性を一層高めたい場合に添加してもよい。
【0046】
NbはCとNを固定して耐食性を改善するため、耐食性を一層高めたい場合に添加してもよい。
【0047】
Si、Mn及びAlは脱酸作用を有するため、脱酸のために添加しても良い。
【0048】
Tiは凝固組織を微細化する作用を有し熱間加工性を改善するため、熱間加工性を一層高めたい場合に添加してもよい。
【0049】
Ca及びMgは凝固組織を改善する作用を有するので、凝固組織を一層改善したい場合に添加してもよい。
【0050】
なお、C、N、P及びO(酸素)は鋼の靱性を低下させ、Sは熱間加工性を低下させるので、これらの元素は不純物としてその含有量をできるだけ低くするのがよい。
【0051】
本発明が対象とする含硼素フェライト系ステンレス鋼は、通常の方法で溶製して鋳造し、鋼塊にすればよい。なお、インゴット造塊による鋳造も可能であるが、製造コストの観点から連続鋳造するのがよい。
【0052】
含硼素フェライト系ステンレス鋼は固相線温度が低く、凝固割れ感受性の高い鋼種であるため、連続鋳造にするに際しては、ブレークアウトが起こらないよう溶鋼加熱温度ΔTを小さくして鋳造するのがよい。
【0053】
鋳造後の鋼塊は表面欠陥を含む場合もあるためグラインダ−による手入れを行うことが望ましい。但し、鋼塊の衝撃による延性−脆性遷移温度が250℃前後にあるため手入れ中の温度低下により200℃以下に鋼塊温度が低下すると熱応力により鋼塊折損のおそれがある。このためグラインダーによる手入れ中に温度低下して200℃以下に冷えるおそれがある場合は手入れを省略もしくは中断し、加熱炉に装入するのがよい。
(B)熱間圧延
(B−1)加熱温度
得られた鋼塊は熱間圧延を行うために加熱するが、この際の加熱温度は1230℃以下にする必要がある。
【0054】
すなわち、1230℃を超えて加熱するとMB 型硼化物が分解し、低融点の液相を形成して液膜脆性が生じるため熱間加工性が劣化し、熱間圧延時に表面割れ及び耳割れが発生する。したがって、熱間圧延の加熱温度を1230℃以下とした。なお、液膜脆性をより確実に回避するためには熱間圧延の加熱温度を1210℃以下とするのがよい。
【0055】
上記熱間圧延の加熱温度は1000℃以上とするのがよい。加熱温度が1000℃に満たないと圧延荷重が高くなりすぎ、所望の板厚まで圧延できない場合があるからである。
【0056】
(B−2)仕上げ温度TF(℃)
本発明が対象とする含硼素フェライト系ステンレス鋼は、既に述べたように、仕上げ温度TFの低下及びB含有量の増加とともに単調に熱間加工性が低下する。このため耳割れを小さくするために高温で仕上げることが必要である。
【0057】
耳割れの大きさはB含有量及び、仕上げ温度TFによって決まるが、上記のように熱間圧延の加熱温度を1230℃以下とし、前記式▲2▼又は式▲3▼を満たす仕上げ温度TFで熱間圧延を終了すれば、耳割れの長さを目標とする5mm以下にすることができる。したがって、熱間圧延の仕上げ圧延温度TFを、B含有量に応じて式▲2▼又は式▲3▼を満たすように、つまり、B含有量が0.1〜0.25%の場合には750℃以上、又、B含有量が0.25%以上の場合には「280×B(%)+680」℃以上と規定した。
【0058】
なお、熱間圧延の仕上げ圧延温度TFは、B含有量が0.1〜0.25%の場合には800℃以上、又、B含有量が0.25%以上の場合には「280×B(%)+730」℃以上とすることが好ましい。
【0059】
(B−3)仕上げ板厚t(mm)
本発明が対象とする含硼素フェライト系ステンレス鋼は、上記した加熱温度と仕上げ温度で熱間圧延されるが、その際仕上げ板厚t(mm)は前記式▲1▼を満たす必要がある。すなわち、仕上げ板厚tが「5−2B(%)」mmを超えると、熱延鋼板に十分な曲げ性、つまり冷間での通板性が確保されず、その熱延鋼板をコイル状に巻いた鋼帯は冷延工程で脆性破断する場合がある。したがって、熱間圧延による仕上げ板厚tが式▲1▼を満たすように規定した。
【0060】
なお、仕上げ板厚tは小さいほど好ましいが、薄肉熱延では仕上げ温度が低下しやすく前記(B−2)項で規定した仕上げ温度TFを確保することが困難となり、例えば、保熱のための設備が必要になるし、エネルギーコストも嵩む。このため、通常は仕上げ板厚tを1.5mmを超えるようにするのがよい。
【0061】
熱間圧延を施された鋼板は、コイル状に巻き取られて鋼帯となる。この巻き取り温度は特に規定しなくてもよい。しかし、前記(B−1)〜(B−3)項の熱間圧延条件と低温巻き取りを組み合わせることが一層の脆性破断対策となるので、巻き取り温度は低くする方がよく、ホットラン水冷の能力が十分にあれば450℃以下で巻き取りを行ってもよい。
【0062】
冷延鋼帯は上記のようにして得た熱延鋼帯からに製造されるが、その製造方法は特に規定しなくてもよい。
【0063】
なお、板厚が1mmを下回ると脆性破壊はほとんど問題にならないので、冷延と焼鈍を繰り返すことで、いわゆる「箔」の板厚まで冷間圧延することが可能であるが、熱延鋼帯からの最初に冷間圧延する際の冷延率を過度に高く採ると破断の危険性が高くなるので、前記の冷延率は50%以下とするのがよい。2回目以降の冷間圧延ではより高い冷延率の採用が可能である。
【0064】
なお、冷延率とは被加工材の冷延前の厚さをt、冷延後の厚さをtとした場合、{(t−t)/t }×100(%)で表される値をいう。
【0065】
本発明に係る熱延鋼帯を厚さ0.2mm以下にまで冷延すれば、固体高分子型燃料電池セパレーター部品用として軽量、且つ機能的な素材が得られる。
【0066】
【実施例】
前記表1に示す化学組成を有する鋼22について、量産ステンレス鋼板製造設備を用いて製造実験を行った。
【0067】
すなわち、22%Cr−2%Mo−0.6%B系の含硼素フェライト系ステンレス鋼である鋼22の溶鋼70トンをAODとVOD設備を用いて脱炭・脱窒精錬し、200mm厚さ×800mm幅の鋳型で連続鋳造した。
【0068】
得られた約6m長さの連続鋳造鋳片8本を保温カバー台車内で徐冷し、その表面温度が250℃にまで低下する前に均熱温度を1190℃に設定した加熱炉に装入した。装入温度を250℃以上とした理由はスラブの脆性割れを防止するためである。なお、加熱炉へ装入するまでの間に鋳片の熱間での表面手入れは実施しなかった。
【0069】
上記のようにして加熱した8本の鋳片をそれぞれ3.6mm、2.8mm及び2.0mmの厚さで、300〜600mの長さに熱間圧延し、ホットラン水冷した後、650〜550℃の温度で巻き取りを行った。なお、仕上げスタンド出側及びコイル幅中央で測定する熱間圧延の仕上げ温度TFはコイル長手方向及びコイル毎の変動値として、930〜980℃の範囲にあった。
【0070】
上記のようにして巻き取った一部の熱延コイルについては、いわゆる「475℃脆性」による脆化を抑制するために、巻き取り後30分以内に水槽中に浸漬して冷却した。他の熱延コイルでは水槽浸漬を省略した。
【0071】
このようにして得た熱延鋼板の通板性を確認するために、コイル展開ラインで外周から内周にかけて通板した。なお、通板試験は先後端の非定常部1〜5巻き程度を切り下げ、その後、定常部の片面当たり15mmのトリム処理を実施し、トリム部の割れを調査した。
【0072】
破断に到るような割れ等は一切発生せず、問題なく通板が行え、本発明方法の効果が実証できた。
【0073】
【発明の効果】
本発明の方法によれば、熱延後に施される種々の工程で脆性的な破断を生じることの少ない耳割れ長さが5mm以下となる熱延鋼帯が得られ、これによって固体高分子型燃料電池セパレータ部品の素材として好適な含硼素フェライト系ステンレス冷延鋼帯を安定且つ安価に供給することができるので、産業上の効果は極めて大きい。
【図面の簡単な説明】
【図1】22%Cr−2%Mo系でB量がそれぞれ0.10%、0.63%及び1.04%の鋼9、13及び20についての熱間圧延試験結果を示す図である。
【図2】20%Cr−2%Mo系でB量がそれぞれ0.12%と1.49%の鋼2と鋼6及び22%Cr−2%(1.8%?)Mo系でB量が0.60%の鋼20の各鋼塊から採取した試験片を高温引張試験して絞りを測定した結果を示す図である。
【図3】鋼6、鋼9、鋼10、鋼13及び鋼20において圧延長さが約1.5mで板厚が2.6mmの熱延鋼板の圧延定常部から採取した曲げ試験片を用いた場合の、熱間圧延仕上げ温度TF(℃)とB含有量が熱延鋼板の曲げ性に及ぼす影響を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a boron-containing ferritic stainless steel strip, and more particularly to a method for producing a boron-containing ferrite stainless steel hot-rolled steel strip suitable as a material for a polymer electrolyte fuel cell separator component.
[0002]
[Prior art]
Normal steel materials are ductile at temperatures above room temperature, and there is no need to worry about brittle fracture in producing steel sheets. However, among stainless steels, ferritic stainless steels, particularly ferritic stainless steels containing a large amount of Cr, may exhibit brittle properties, and among them, M 2 B type as a conductive metal inclusion. It is no exaggeration to say that boron-containing ferritic stainless steel containing boride is the most brittle material among steel materials.
[0003]
Note that the boron-containing ferritic stainless steel containing M 2 B-type boride as the metal inclusion having conductivity described in Patent Document 1 by the present inventors has a low contact electric resistance and a low battery electric environment. This is a material proposed as one of the raw materials for a polymer electrolyte fuel cell separator component having a small change with time.
[0004]
In order to use the above boron-containing ferritic stainless steel as a material for fuel cell separator parts, it is necessary to provide a cold-rolled thin steel sheet of the stainless steel stably and inexpensively. It is extremely important to consider brittle fracture in hot-rolled coils.
[0005]
It is known that even in brittle steel materials, if the thickness (plate thickness) is reduced, the ductile-brittle transition temperature necessarily decreases and brittle fracture does not occur at room temperature. In other words, brittle steel materials are generally susceptible to brittle fracture when their thickness is large. Since the thickest steel material used in the cold rolling process is a hot-rolled steel strip, as an effective measure to prevent brittle fracture of ferritic stainless steel, a method of reducing the thickness is considered. In fact, in the case of ferritic stainless steel having good hot workability, it is easy to reduce the wall thickness, which is a sufficient measure against brittle fracture.
[0006]
As a technique for lowering the ductile-brittle transition temperature to prevent brittle fracture, a “low-temperature winding” technique is also well known. For example, in order to improve the toughness of the hot-rolled steel strip of high Cr ferritic stainless steel, the hot-rolled steel strip is water-cooled after finish rolling, and the winding temperature is controlled to 450 ° C. or lower. This “low temperature winding” is to avoid the so-called “475 ° C. brittleness” by controlling the internal quality of the steel material even if the thickness is about 4 to 9 mm, and to make the material not brittle. Patent Literature 2 discloses, as an improved technique of the above technique, an impact value at 20 ° C. of 50 J / cm by setting the winding temperature T to “t × T ≦ 3600” according to the thickness t of the hot-rolled steel strip. A technique for increasing the toughness to two or more is disclosed.
[0007]
Boron-containing ferritic stainless steel, unlike ordinary ferritic stainless steel, cannot be said to have good hot workability, and ear cracks may occur when hot rolling is performed. Once the edge crack occurs, a notch for brittle fracture is given, and it becomes difficult to perform annealing, pickling and cold rolling of the hot-rolled steel sheet. In particular, when the edge crack of the hot-rolled material exceeds 5 mm, brittle fracture is likely to occur during cold rolling. Therefore, simply reducing the thickness of the hot-rolled steel strip of boron-containing ferritic stainless steel cannot be a measure against brittle fracture.
[0008]
In other words, in the case of a steel material that tends to have ear cracks in the hot rolling process, reducing the wall thickness promotes the generation of defects such as ear cracks and surface cracks, and depending on the degree, the production in the next step, the cold rolling process Can be difficult. This is because defects such as edge cracks and surface cracks act as notches for brittle fracture. In the process of welding, inspecting, rewinding, continuous annealing and pickling, slitting, trimming, and cold rolling the steel sheet called the leader material to the hot-rolled steel strip, the steel starting from some defects Strip breakage occurs, and trim scraps are brittle and cannot be wound continuously.Therefore, the continuous production line is stopped, and trim scraps are continued to be wound up by manual operator intervention. May occur.
[0009]
Furthermore, since boron-containing ferritic stainless steel cannot be said to have good workability unlike ordinary ferritic stainless steel, simply controlling the winding temperature to 450 ° C. or lower may cause breakage. For this reason, it is also difficult to prevent brittle fracture by a simple “low temperature winding” technique.
[0010]
[Patent Document 1]
JP 2001-32056 A [Patent Document 2]
JP-A-8-199237
[Problems to be solved by the invention]
The present invention has been made in view of the above situation, and its purpose is to supply a boron-containing ferrite-based stainless steel cold-rolled steel strip suitable as a material for polymer electrolyte fuel cell separator parts in a stable and inexpensive manner. An object of the present invention is to provide a method for producing a hot-rolled steel strip which is less likely to cause brittle fracture in various steps performed after hot-rolling.
[0012]
[Means for Solving the Problems]
The gist of the present invention resides in a method for producing a boron-containing ferrite stainless steel strip described below.
[0013]
That is, "After heating a ferritic stainless steel containing 0.1% or more of B and 15 to 32% of Cr by mass% to a temperature of 1230 ° C. or less, a finished plate satisfying the following formula (1): Production of a boron-containing ferritic stainless steel hot rolled steel strip characterized in that hot rolling is completed at a thickness t and a finishing temperature TF satisfying the following equation (2) or (3) and then wound as a coil. Method: t ≦ 5-2B (%) (1), when B content is 0.1 to 0.25%: TF ≧ 750 (2), B content is 0.25% In the above case: TF ≧ 280 × B (%) + 680... (3) ”.
[0014]
The unit of the finished plate thickness t is mm, and the unit of the hot rolling finishing temperature TF is ° C.
[0015]
The present inventors have conducted various studies in order to achieve the above-described object, and assuming that a method of reducing the thickness of the hot-rolled steel strip is adopted, even if it is a brittle steel type, It has been concluded that the method of the present invention can overcome poor hot workability and can be manufactured in mass production equipment.
[0016]
That is, the present inventors first cast a boron-containing ferritic stainless steel to a thickness of 50 to 100 mm on a laboratory scale, and repeatedly performed hot rolling test and hot workability evaluation on the ingot by a hot rolling test and a high temperature tensile test. Was. Further, a repeated bending test was performed to evaluate the passability of the hot-rolled steel sheet in the next step.
[0017]
First, the contents of the study conducted on the evaluation of hot workability will be described.
[0018]
In terms of mass% (hereinafter, “%” of the content of each element means “mass%”), 17.22 to 25.23% of Cr, 0 to 2.96% of Mo, and 0.0002 to For a ferritic stainless steel containing 1.49% B, a hot rolling test was performed at a plate thickness of 2 to 5 mm and a finishing temperature of 650 to 1080 ° C., and the maximum edge crack length generated at this time was evaluated. did.
[0019]
Table 1 shows the chemical composition of the test steel. Note that steels 1 to 21 are cast materials on a laboratory scale. Steels 1 to 18 having an ingot thickness of 50 mm are small ingots, and steels 19 to 21 having a thickness of 100 mm are continuous cast slabs cast by a continuous casting facility on a laboratory scale. The steel 22 is a continuous cast slab of an actual machine scale to be described later.
[0020]
[Table 1]
Figure 2004107704
[0021]
From each steel ingot, a 50 mm thickness x 140 mm width x 85 mm length hot rolling material is processed, and an experimental facility capable of simulating tandem rolling in which three hot rolling mills are arranged at intervals of about 1 m. And hot-rolled.
[0022]
In the hot rolling test, the finishing temperature TF was changed by adjusting the number of roll rotations and the waiting time between passes.
[0023]
FIG. 1 shows, as an example, the results of a hot rolling test of Steel 9, Steel 13 and Steel 19 with a B content of 0.10%, 0.63% and 1.04% in a 22% Cr-2% Mo system, respectively. Show.
[0024]
From FIG. 1, it was found that the larger the B content and the lower the finishing temperature TF, the longer the maximum edge crack length generated by hot rolling.
[0025]
FIG. 2 shows an example of a result obtained by subjecting a test piece taken from each steel ingot to a high-temperature tensile test and measuring the drawing. In addition, this figure shows that the B content is 0.12% and 1.49% for steel 2 and steel 6, respectively, and the B content is 0.60 for 22% Cr-2% Mo based on 20% Cr-2% Mo system. % Steel 20.
[0026]
From FIG. 2, it is clear that in a temperature range where the tensile test temperature is higher than 1150 ° C., the drawing starts to decrease at a certain temperature with a rise in temperature, and when the temperature reaches 1230 ° C., the drawing becomes zero for all steel types. The temperature at which the throttle became zero was almost constant regardless of the B amount. Therefore, it was found that the heating temperature of the ingot of the boron-containing ferrite stainless steel targeted by the present invention needs to be 1230 ° C. or less regardless of the B content.
[0027]
From the above hot rolling test, the heating temperature of the hot rolling is set to 1230 ° C. or less, and the hot rolling is finished at a finishing temperature TF (° C.) or more that satisfies the above formula (2) or (3) depending on the amount of B. As a result, it became clear that the intended target of reducing the edge crack length of the hot-rolled boron-containing ferritic stainless steel sheet to 5 mm or less can be achieved.
Furthermore, to eliminate the occurrence of edge cracks, the finish rolling temperature is set to 800 ° C. or more when the B content is 0.1 to 0.25%, and to the finish rolling temperature when the B content is 0.25% or more. Has been found to be preferably at least “280 × B (%) + 730” ° C.
[0028]
Next, the contents of the study on the evaluation of the hot-rolled steel sheet's threadability will be described.
[0029]
In order to simulate the cold rolling of hot-rolled steel sheets, strip specimens of 25 mm width x 200 mm length with hot-rolled ears were sampled by shearing, and whether or not breakage occurred during the rolling. Was evaluated by a bending test.
[0030]
That is, the following bending test was carried out using strip test pieces of various plate thicknesses of 25 mm width × 200 mm length collected by shearing. In addition, the test | inspection about 4.0 mm, 3.2 mm, and 2.0 mm was implemented about some steel grades about the board thickness of a hot-rolled steel sheet as a basic condition of 2.6 mm. Here, in the above "hot-rolled ears", ear cracks having a length of 0 to 15 mm were generated due to the B content of the steel and the magnitude of the hot-rolling finishing temperature TF. In addition, the ear crack length of 0 mm means that the ear crack did not occur.
[0031]
For the strip test specimen of 25 mm width x 200 mm length having the above-mentioned ear cracks of 0 to 15 mm length, perform "90-degree bending of 50 mmR → stretch to the original flat state → 90-degree bending of 50 mmR in the opposite direction. The test was repeated 10 times in a cycle of “Perform the above-mentioned process and stretch again to the original flat state” ten times, and the presence or absence of breakage of the test piece due to bending cracks was evaluated.
[0032]
As a result of the repeated bending test, bending cracks were generated from the as-heated ears or the sheared end faces, and breakage occurred due to the large B content and the large thickness.
[0033]
From the above bending test, it is clear that in order to ensure the bendability of the hot-rolled steel sheet, that is, to ensure the cold-passing property, the hot-rolled finished sheet thickness t needs to satisfy the above formula (1). became.
[0034]
Table 2 summarizes the results of investigations on steels 1 to 5 as an example of the effects of the hot-rolled finished sheet thickness t (mm) and the B content on the bendability of a hot-rolled steel sheet. In the table, “O” and “X” indicate the case where there was no break and the case where there was no break after the above-mentioned repeated bending was performed 10 times, respectively.
[0035]
[Table 2]
Figure 2004107704
[0036]
FIG. 3 shows an example of the effects of the hot-rolling finishing temperature TF (° C.) and the B content on the bendability of a hot-rolled steel sheet, in which the steel sheet 6, steel 9, steel 10, steel 13 and steel 20 are rolled. The results of using a bending test piece taken from a steady portion of a hot-rolled steel sheet having a thickness of about 1.5 m and a sheet thickness of 2.6 mm are summarized and shown. In the figures, “O” and “X” indicate the case where there was no break and the case where the break occurred after the above-mentioned repeated bending was performed 10 times.
[0037]
From the results of the hot rolling test, the high-temperature tensile test, and the repeated bending test described above, in addition to the finishing temperature TF (° C.) and the B content region in which the edge crack length in hot rolling can be suppressed to 5 mm or less, By defining the finish thickness of the hot-rolled steel sheet, it is possible to obtain a hot-rolled steel strip of boron-containing ferritic stainless steel capable of securing the bending property, that is, the passability in a cold state, and the hot-rolled steel strip has a It has been concluded that there is little risk of brittle rupture in the rolling process and that it has suitable properties as a material for manufacturing cold-rolled steel sheets, so that it can be manufactured with mass production equipment.
[0038]
The present invention has been completed based on the above examination contents.
[0039]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, each requirement of the present invention will be described in detail. As described above, “%” of the content of each element means “% by mass”.
(A) Chemical Composition In the present invention, emphasis is placed on the property of imparting properties as a material of a polymer electrolyte fuel cell separator component to a target boron-containing ferritic stainless steel strip, and B content is defined as a chemical component of the stainless steel. , Cr amount is limited to the following range.
[0040]
B: The volume fraction of M 2 B-type boride as a metal inclusion having a conductivity of 0.1% or more depends on the amount of B, and at least 0.1% of B is contained in order to secure the characteristics as a current-carrying part. is necessary. Since the higher the B content, the better the above properties, the upper limit is not particularly limited. However, since the upper limit of the heating temperature is 1230 ° C., the upper limit of the finishing temperature TF of the hot rolling is also 1230 ° C., and therefore, the calculated upper limit of the B content is about 1.96%. However, with the current hot rolling technology, it is considered that the upper limit of the B content is about 1.5%, which is a range that can be manufactured. For the above reasons, the content of B is set to 0.1% or more.
[0041]
Cr: 15 to 32%
Cr is a basic element for ensuring the corrosion resistance of stainless steel, and a minimum content of 15% is required to impart corrosion resistance in a fuel cell environment. In order to ensure sufficient corrosion resistance, “Cr (%) − 2.5 B (%)” (or “Cr (%) + 3 Mo (%) − 2.5 B (%)” when Mo is contained) is used. It is preferable to include Cr so that the calculated value is 18% or more. The higher the content of Cr, the higher the corrosion resistance, but on the other hand, it is an element that promotes embrittlement and causes an increase in steel cost. In particular, when the content exceeds 32%, the cost increases significantly. Therefore, the content of Cr is set to 15 to 32%.
[0042]
There is no need to add a special limitation on the composition of chemical components other than B and Cr of the boron-containing ferritic stainless steel targeted by the present invention. The component range only needs to be such that the characteristics required as a material of the polymer electrolyte fuel cell separator component can be imparted.
[0043]
Specifically, for example, as elements other than B and Cr, C: 0.15% or less, Si: 0 to 1.5%, Mn: 0 to 1.5%, P: 0.04% or less, S: : 0.01% or less, Al: 0 to 6%, N: 0.10% or less, Ni: 0 to 5%, Mo: 0 to 7%, Cu: 0 to 1%, Ti: 0 to 25 × { C (%) + N (%)}, Nb: 0 to 25 × {C (%) + N (%)}, V: 0 to 2%, Ca: 0 to 0.01%, Mg: 0 to 0.01 %, O (oxygen): 0.01% or less, with the balance being Fe and impurities.
[0044]
For the above elements other than B and Cr, C: 0.015% or less, Si: 0 to 0.6%, Mn: 0 to 1.0%, P: 0.04% or less, S: 0 0.01% or less, Al: 0.02 to 0.2%, N: 0.015% or less, Ni: 0 to 4%, Mo: 0 to 4%, Cu: 0 to 1%, Ti: 0 to 0% 0.3%, Nb: 0 to 0.5%, V: 0 to 0.5%, Ca: 0 to 0.003%, Mg: 0 to 0.003%, O (oxygen): 0.006% or less , C: 0.015% or less, Si: 0.01 to 0.6%, Mn: 0.01 to 1.0%, P: 0.04% or less, S: 0 0.01% or less, Al: 0.02 to 0.2%, N: 0.015% or less, Ni: 0.01 to 4%, Mo: 0.01 to 4%, Cu: 0.01 to 1% , Ti: 0.001-0.3%, Nb 0.001 to 0.5%, V: 0.01 to 0.5%, Ca: 0.0001 to 0.003%, Mg: 0.0001 to 0.003%, O (oxygen): 0.006 % Is more preferable.
[0045]
Here, Mo, Cu, Ni and V have an effect of improving the corrosion resistance of stainless steel, and may be added when it is desired to further increase the corrosion resistance.
[0046]
Nb fixes C and N to improve corrosion resistance, and may be added when it is desired to further increase the corrosion resistance.
[0047]
Since Si, Mn and Al have a deoxidizing effect, they may be added for deoxidizing.
[0048]
Ti has a function of refining a solidified structure and improves hot workability, and may be added when it is desired to further enhance hot workability.
[0049]
Since Ca and Mg have an effect of improving the solidified structure, they may be added when it is desired to further improve the solidified structure.
[0050]
Since C, N, P and O (oxygen) reduce the toughness of steel and S lowers the hot workability, the content of these elements as impurities should be as low as possible.
[0051]
The boron-containing ferritic stainless steel targeted by the present invention may be melted and cast by a usual method to form a steel ingot. Although casting by ingot ingot is possible, continuous casting is preferable from the viewpoint of manufacturing cost.
[0052]
Since boron-containing ferritic stainless steel is a steel type having a low solidus temperature and a high susceptibility to solidification cracking, it is preferable to cast the molten steel at a low heating temperature ΔT so that breakout does not occur during continuous casting. .
[0053]
Since the ingot after casting may include surface defects, it is desirable to perform maintenance using a grinder. However, since the ductile-brittle transition temperature due to the impact of the steel ingot is about 250 ° C., if the temperature of the steel ingot falls to 200 ° C. or less due to the temperature drop during maintenance, there is a possibility that the steel ingot may break due to thermal stress. For this reason, when there is a possibility that the temperature may drop to 200 ° C. or less during the maintenance by the grinder, the maintenance may be omitted or interrupted, and then the heating furnace may be charged.
(B) Hot rolling (B-1) Heating temperature The obtained steel ingot is heated to perform hot rolling, and the heating temperature at this time needs to be 1230 ° C or lower.
[0054]
That is, when heated above 1230 ° C., the M 2 B-type boride is decomposed, a liquid phase having a low melting point is formed, and liquid film embrittlement occurs, thereby deteriorating hot workability. Cracks occur. Therefore, the heating temperature of the hot rolling was set to 1230 ° C. or less. In order to more reliably avoid liquid film brittleness, the heating temperature of hot rolling is preferably set to 1210 ° C. or less.
[0055]
The heating temperature of the hot rolling is preferably 1000 ° C. or higher. If the heating temperature is lower than 1000 ° C., the rolling load becomes too high, and it may not be possible to roll to a desired thickness.
[0056]
(B-2) Finishing temperature TF (° C)
As described above, the hot workability of the boron-containing ferritic stainless steel to which the present invention is applied monotonously decreases as the finishing temperature TF decreases and the B content increases. Therefore, it is necessary to finish at a high temperature in order to reduce ear cracks.
[0057]
The size of the edge crack is determined by the B content and the finishing temperature TF. As described above, the heating temperature of the hot rolling is set to 1230 ° C. or less, and the finishing temperature TF satisfying the above formula (2) or (3) is obtained. When the hot rolling is completed, the length of the edge crack can be reduced to the target value of 5 mm or less. Therefore, the finishing rolling temperature TF of the hot rolling is adjusted so as to satisfy the formula (2) or the formula (3) according to the B content, that is, when the B content is 0.1 to 0.25%, When the B content was 750 ° C. or more and the B content was 0.25% or more, it was defined as “280 × B (%) + 680” ° C. or more.
[0058]
The finish rolling temperature TF of the hot rolling is 800 ° C. or more when the B content is 0.1 to 0.25%, and “280 × when the B content is 0.25% or more. B (%) + 730 ”° C. or higher.
[0059]
(B-3) Finished plate thickness t (mm)
The boron-containing ferritic stainless steel to which the present invention is applied is hot-rolled at the above-mentioned heating temperature and finishing temperature, and at that time, the finished plate thickness t (mm) needs to satisfy the above formula (1). That is, if the finished sheet thickness t exceeds “5-2B (%)” mm, sufficient bendability of the hot-rolled steel sheet, that is, cold sheet passing property is not ensured, and the hot-rolled steel sheet is formed into a coil shape. The wound steel strip may break brittlely in the cold rolling process. Therefore, the thickness t of the finished plate by hot rolling is defined to satisfy the formula (1).
[0060]
Although the finished plate thickness t is preferably as small as possible, the finishing temperature tends to decrease in thin hot rolling, and it becomes difficult to secure the finishing temperature TF defined in the above section (B-2). Equipment is required and energy costs increase. For this reason, it is usually good to make the finished plate thickness t exceed 1.5 mm.
[0061]
The hot-rolled steel sheet is wound into a coil to form a steel strip. This winding temperature need not be specified. However, the combination of the hot rolling conditions and the low temperature winding described in the above items (B-1) to (B-3) is a further measure against brittle fracture. The winding may be performed at 450 ° C. or lower if the capacity is sufficient.
[0062]
The cold-rolled steel strip is manufactured from the hot-rolled steel strip obtained as described above, but the manufacturing method is not particularly limited.
[0063]
When the thickness is less than 1 mm, the brittle fracture is hardly a problem. Therefore, it is possible to cold-roll to a so-called “foil” thickness by repeating cold rolling and annealing. If the cold rolling reduction during the first cold rolling is excessively high, the risk of breakage increases. Therefore, the above cold rolling reduction is preferably 50% or less. In the second and subsequent cold rolling, a higher cold rolling reduction can be employed.
[0064]
The cold rolling ratio is defined as {(t 0 −t 1 ) / t 0 } × 100 (%, where t 0 is the thickness of the workpiece before cold rolling and t 1 is the thickness after cold rolling. ).
[0065]
When the hot-rolled steel strip according to the present invention is cold-rolled to a thickness of 0.2 mm or less, a lightweight and functional material for a polymer electrolyte fuel cell separator component can be obtained.
[0066]
【Example】
A production experiment was conducted on steel 22 having the chemical composition shown in Table 1 using mass production stainless steel sheet production equipment.
[0067]
That is, 70 tons of molten steel of steel 22, which is a boron-containing ferritic stainless steel of 22% Cr-2% Mo-0.6% B system, is decarburized and denitrified using AOD and VOD equipment, and has a thickness of 200 mm. Continuous casting was performed using a mold having a width of 800 mm.
[0068]
Eight continuous cast slabs having a length of about 6 m obtained were gradually cooled in a heat insulating cover cart, and charged into a heating furnace having a soaking temperature set at 1190 ° C before the surface temperature decreased to 250 ° C. did. The reason for setting the charging temperature to 250 ° C. or higher is to prevent brittle cracking of the slab. In addition, hot surface maintenance of the slab was not performed until it was charged into the heating furnace.
[0069]
The eight slabs heated as described above are hot-rolled to a length of 300 to 600 m with a thickness of 3.6 mm, 2.8 mm and 2.0 mm, respectively, and after hot-run water cooling, 650 to 550 Winding was performed at a temperature of ° C. In addition, the finishing temperature TF of hot rolling measured on the exit side of the finishing stand and the center of the coil width was in a range of 930 to 980 ° C. as a variation value in the coil longitudinal direction and for each coil.
[0070]
Some of the hot rolled coils wound as described above were immersed in a water bath and cooled within 30 minutes after winding in order to suppress embrittlement due to so-called “475 ° C. embrittlement”. In other hot-rolled coils, immersion in the water tank was omitted.
[0071]
In order to confirm the passing property of the hot-rolled steel sheet thus obtained, the hot-rolled steel sheet was passed from the outer periphery to the inner periphery on a coil deployment line. In the passing test, about 1 to 5 turns of the unsteady portion at the front and rear ends were cut down, and thereafter, a trim treatment of 15 mm was performed on one side of the steady portion to check for cracks in the trim portion.
[0072]
No cracking or the like that would lead to breakage occurred at all, the threading could be performed without any problem, and the effect of the method of the present invention was proved.
[0073]
【The invention's effect】
According to the method of the present invention, a hot-rolled steel strip having an edge crack length of 5 mm or less, which does not cause brittle breakage in various steps performed after hot rolling, is obtained. Since a boron-containing ferritic stainless steel cold-rolled steel strip suitable as a material for a fuel cell separator component can be supplied stably and inexpensively, the industrial effect is extremely large.
[Brief description of the drawings]
FIG. 1 is a view showing the results of hot rolling tests on steels 9, 13 and 20 with a B content of 0.10%, 0.63% and 1.04% in a 22% Cr-2% Mo system, respectively. .
FIG. 2 shows steels 2 and 6 having a B content of 0.12% and 1.49% in a 20% Cr-2% Mo system, respectively, and B in a 22% Cr-2% (1.8%?) Mo system. It is a figure which shows the result of having measured the drawing by performing the high temperature tensile test of the test piece extract | collected from each steel ingot of the steel 20 of 0.60%.
FIG. 3 is a drawing of a bending test piece taken from a steady portion of a hot-rolled steel sheet having a rolling extension of about 1.5 m and a thickness of 2.6 mm in steel 6, steel 9, steel 10, steel 13 and steel 20. It is a figure which shows the influence which the hot-rolling finishing temperature TF (degreeC) and B content give to the bending property of a hot-rolled steel plate in case it was.

Claims (1)

質量%で、0.1%以上のB及び15〜32%のCrを含有するフェライト系ステンレス鋼を、1230℃以下の温度に加熱した後、下記の式▲1▼を満たす仕上げ板厚t、且つ、下記の式▲2▼又は式▲3▼を満たす仕上げ温度TFで熱間圧延を終了し、その後コイルとして巻き取ることを特徴とする含硼素フェライト系ステンレス熱延鋼帯の製造方法。
t≦5−2B(%)・・・▲1▼
B含有量が0.1〜0.25%の場合:TF≧750・・・▲2▼
B含有量が0.25%以上の場合:TF≧280×B(%)+680・・・▲3▼
ここで、仕上げ板厚tの単位はmm、熱間圧延の仕上げ温度TFの単位は℃である。
After heating a ferritic stainless steel containing 0.1% or more of B and 15 to 32% of Cr by mass% to a temperature of 1230 ° C. or less, a finished plate thickness t satisfying the following formula (1): A method for producing a hot rolled boron-containing ferritic stainless steel strip, comprising finishing hot rolling at a finishing temperature TF satisfying the following formula (2) or formula (3), and then winding as a coil.
t ≦ 5-2B (%) (1)
When the B content is 0.1 to 0.25%: TF ≧ 750 (2)
When the B content is 0.25% or more: TF ≧ 280 × B (%) + 680 (3)
Here, the unit of the finished plate thickness t is mm, and the unit of the finished temperature TF of hot rolling is ° C.
JP2002269540A 2002-09-17 2002-09-17 Method for manufacturing boron-containing ferritic stainless steel strip Pending JP2004107704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002269540A JP2004107704A (en) 2002-09-17 2002-09-17 Method for manufacturing boron-containing ferritic stainless steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002269540A JP2004107704A (en) 2002-09-17 2002-09-17 Method for manufacturing boron-containing ferritic stainless steel strip

Publications (1)

Publication Number Publication Date
JP2004107704A true JP2004107704A (en) 2004-04-08

Family

ID=32267444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002269540A Pending JP2004107704A (en) 2002-09-17 2002-09-17 Method for manufacturing boron-containing ferritic stainless steel strip

Country Status (1)

Country Link
JP (1) JP2004107704A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7807281B2 (en) 2005-06-22 2010-10-05 Nippon Steel Corporation Stainless steel, titanium, or titanium alloy solid polymer fuel cell separator and its method of production and method of evaluation of warp and twist of separator
US8182961B2 (en) 2006-02-27 2012-05-22 Nippon Steel Corporation Solid polymer type fuel cell separator and method of production of same
JP2012162795A (en) * 2011-02-09 2012-08-30 Nippon Steel & Sumikin Stainless Steel Corp Hot rolled ferritic stainless steel sheet excellent in cold cracking nature and method of manufacturing the same
JP2013151733A (en) * 2011-12-26 2013-08-08 Jfe Steel Corp Ferrite-based stainless steel excellent in corrosion resistance of welded part with austenite-based stainless steel
KR101409423B1 (en) * 2012-12-21 2014-07-02 주식회사 포스코 Fabrication method of bipolar plate for PEMFC
US9065081B2 (en) 2009-08-03 2015-06-23 Nippon Steel & Sumitomo Metal Corporation Titanium material for solid polymer fuel cell separator use and method of production of same
WO2016052622A1 (en) * 2014-10-01 2016-04-07 新日鐵住金株式会社 Ferritic stainless steel material, separator for solid polymer fuel cells which uses same, and solid polymer fuel cell
US9399809B2 (en) 2011-02-08 2016-07-26 Nippon Steel & Sumikin Stainless Steel Corporation Hot rolled ferritic stainless steel sheet, method for producing same, and method for producing ferritic stainless steel sheet
EP3266895A4 (en) * 2015-03-03 2018-07-25 Nippon Steel & Sumitomo Metal Corporation Thin stainless steel sheet for solid polymer fuel cell separator

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7807281B2 (en) 2005-06-22 2010-10-05 Nippon Steel Corporation Stainless steel, titanium, or titanium alloy solid polymer fuel cell separator and its method of production and method of evaluation of warp and twist of separator
US8304141B2 (en) 2005-06-22 2012-11-06 Sintokogio Ltd. Stainless steel, titanium, or titanium alloy solid polymer fuel cell separator and its method of production and method of evaluation of warp and twist of separator
US8182961B2 (en) 2006-02-27 2012-05-22 Nippon Steel Corporation Solid polymer type fuel cell separator and method of production of same
US8361676B2 (en) 2006-02-27 2013-01-29 Nippon Steel Corporation Solid polymer type fuel cell separator and method of production of same
US9065081B2 (en) 2009-08-03 2015-06-23 Nippon Steel & Sumitomo Metal Corporation Titanium material for solid polymer fuel cell separator use and method of production of same
US9399809B2 (en) 2011-02-08 2016-07-26 Nippon Steel & Sumikin Stainless Steel Corporation Hot rolled ferritic stainless steel sheet, method for producing same, and method for producing ferritic stainless steel sheet
US10072323B2 (en) 2011-02-08 2018-09-11 Nippon Steel & Sumikin Stainless Steel Corporation Hot rolled ferritic stainless steel sheet, method for producing same, and method for producing ferritic stainless steel sheet
JP2012162795A (en) * 2011-02-09 2012-08-30 Nippon Steel & Sumikin Stainless Steel Corp Hot rolled ferritic stainless steel sheet excellent in cold cracking nature and method of manufacturing the same
JP2013151733A (en) * 2011-12-26 2013-08-08 Jfe Steel Corp Ferrite-based stainless steel excellent in corrosion resistance of welded part with austenite-based stainless steel
KR101409423B1 (en) * 2012-12-21 2014-07-02 주식회사 포스코 Fabrication method of bipolar plate for PEMFC
WO2016052622A1 (en) * 2014-10-01 2016-04-07 新日鐵住金株式会社 Ferritic stainless steel material, separator for solid polymer fuel cells which uses same, and solid polymer fuel cell
JP5971446B1 (en) * 2014-10-01 2016-08-17 新日鐵住金株式会社 Ferritic stainless steel material, polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the same
CN106795604A (en) * 2014-10-01 2017-05-31 新日铁住金株式会社 Ferritic stainless steel with excellent formability material, use in solid polymer fuel cell separator and polymer electrolyte fuel cell using it
EP3266895A4 (en) * 2015-03-03 2018-07-25 Nippon Steel & Sumitomo Metal Corporation Thin stainless steel sheet for solid polymer fuel cell separator

Similar Documents

Publication Publication Date Title
RU2696887C1 (en) Sheet from non-textured electrical steel and method of manufacturing thereof
KR101699194B1 (en) Hot-rolled steel sheet for producing non-oriented electrical steel sheet and method of producing same
WO2016068139A1 (en) Ferrite-based stainless steel plate, steel pipe, and production method therefor
JP5263363B2 (en) Method for producing non-oriented electrical steel sheet
JP5907320B1 (en) Material for stainless cold-rolled steel sheet and manufacturing method thereof
KR102244171B1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
WO2008075444A1 (en) Cold-rolled steel sheet and process for producing the same
JP5119710B2 (en) High strength non-oriented electrical steel sheet and manufacturing method thereof
JP2016211016A (en) Hot rolled sheet for nonoriented magnetic steel sheet and production method therefor, and nonoriented magnetic steel sheet excellent in magnetic property and production method therefor
WO2012108479A1 (en) Hot rolled ferritic stainless steel sheet, method for producing same, and method for producing ferritic stainless steel sheet
JP2004107704A (en) Method for manufacturing boron-containing ferritic stainless steel strip
KR20210003908A (en) Non-oriented electrical steel sheet and its manufacturing method
JP5670064B2 (en) Ferrite single-phase stainless steel slab manufacturing method
JP4049697B2 (en) Highly workable Mo-containing ferritic stainless steel sheet with excellent manufacturability and method for producing the same
JP4542306B2 (en) Method for producing non-oriented electrical steel sheet
JP2018111847A (en) Nonoriented electromagnetic steel sheet
JP6569745B2 (en) Hot rolled steel sheet for coiled tubing and method for producing the same
KR102668145B1 (en) Non-oriented electrical steel sheet
CN117716060A (en) High-strength steel sheet, high-strength plated steel sheet, method for producing same, and member
JP7166878B2 (en) Ferritic stainless steel plate, manufacturing method thereof, and ferritic stainless steel member
JP2011189394A (en) Method for manufacturing hot rolled steel sheet having excellent surface property
KR102669809B1 (en) Non-oriented electrical steel sheet
JP2020169367A (en) Method for manufacturing grain oriented electrical steel sheet
JP2808452B2 (en) Manufacturing method of cold rolled steel sheet with excellent brazing crack resistance
JP3950384B2 (en) High-strength steel pipe with excellent workability and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040921

RD02 Notification of acceptance of power of attorney

Effective date: 20041227

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050706

A131 Notification of reasons for refusal

Effective date: 20060725

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20061128

Free format text: JAPANESE INTERMEDIATE CODE: A02