JP2004107672A - Thermoplastic resin composition - Google Patents

Thermoplastic resin composition Download PDF

Info

Publication number
JP2004107672A
JP2004107672A JP2003336764A JP2003336764A JP2004107672A JP 2004107672 A JP2004107672 A JP 2004107672A JP 2003336764 A JP2003336764 A JP 2003336764A JP 2003336764 A JP2003336764 A JP 2003336764A JP 2004107672 A JP2004107672 A JP 2004107672A
Authority
JP
Japan
Prior art keywords
fiber
resin
frp
fibers
fiber length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003336764A
Other languages
Japanese (ja)
Other versions
JP3799344B2 (en
Inventor
Yasuyuki Tokui
徳井 康之
Sadaki Mori
森 貞樹
Takuro Morimoto
森本 琢郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asics Corp
Original Assignee
Asics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asics Corp filed Critical Asics Corp
Priority to JP2003336764A priority Critical patent/JP3799344B2/en
Publication of JP2004107672A publication Critical patent/JP2004107672A/en
Application granted granted Critical
Publication of JP3799344B2 publication Critical patent/JP3799344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoplastic resin composition containing carbon fiber staple, having an optional uniform length as required in wide range i.e. having a desired fiber length distribution, or containing the carbon fiber and glass fiber, wherein waste materials by-produced in FRP production and waste FRP products can be used to provide the composition and so the composition is excellent in environmental preservation. <P>SOLUTION: The thermoplastic composition is obtained by pulverizing carbon fiber bonded by a resin or carbon fiber and glass fiber bonded by a resin into a fibrous material of 100 μm to 3 mm, classifying the obtained to arrange their length and incorporating one or two kinds of the classified products. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は炭素短繊維又はこれとガラス短繊維を含有する熱可塑性樹脂組成物に関するものである。更に詳しくは本発明は樹脂で結着された繊維強化プラスチック(FRP)から得られる成形材の補強材、充填材等として有用な所望の繊維長を有する炭素短繊維又はこれとガラス短繊維を含有する熱可塑性樹脂組成物に関するものである。 The present invention relates to a short carbon fiber or a thermoplastic resin composition containing the short carbon fiber and the short glass fiber. More specifically, the present invention contains a carbon short fiber having a desired fiber length or a glass short fiber useful as a reinforcing material, a filler, etc. of a molding obtained from a fiber-reinforced plastic (FRP) bound with a resin. The present invention relates to a thermoplastic resin composition.

 FRPは比強度、非弾性率に優れ、設計の自由度も大きいことから、近年金属代替材料として様々な工業分野に使用されている。特に繊維を一方向に引き揃え、樹脂を含浸したプリプレグシートは繊維方向に高い強度と剛性を有することから、構造物の必要物性に応じた材料設計が可能であるため、多用途に用いられている。また、長繊維を平織りや朱子織り等の形態に加工し、積層することにより表面性を向上させたり、破壊に対する靭性を高めたりすることも行われている。 FRP has been used in various industrial fields as a metal substitute material in recent years, since it has excellent specific strength and inelastic modulus, and has a large degree of freedom in design. In particular, prepreg sheets in which fibers are aligned in one direction and impregnated with resin have high strength and rigidity in the fiber direction, so it is possible to design materials according to the required physical properties of the structure, so it is used for many purposes. I have. Further, it is also practiced to process the long fiber into a form of plain weave or satin weave, and to improve the surface properties by laminating, or to increase the toughness against fracture.

 また、コスト面や性能面を考慮し、単一繊維材料だけでなく、2種類以上、例えば炭素繊維とガラス繊維等を複合することにより、単一繊維材料だけでは得られない性能を付与したハイブリッド積層板なども数多く使用されている。一方、繊維をミクロンオーダーから数ミリ程度の短繊維状に切断することにより、インジェクション用樹脂組成物の強化材、充填材としても使用されている。特に炭素短繊維は高強度化、軽量化のみならず、繊維自体が導電特性を有することから、樹脂中に混入した導電性樹脂組成物としても注目されている。 In addition, in consideration of cost and performance, not only a single fiber material, but also a hybrid that has a performance that cannot be obtained only by a single fiber material by combining two or more types, for example, carbon fiber and glass fiber, etc. Many laminates are also used. On the other hand, by cutting fibers into short fibers of the order of microns to several millimeters, they are also used as reinforcing materials and fillers for resin compositions for injection. In particular, short carbon fibers have attracted attention as a conductive resin composition mixed in a resin because not only the strength and weight are reduced, but also the fibers themselves have conductive properties.

 このようにFRP材料は用途により様々な強化形態や繊維長が用いられ、しかも樹脂も数多くの種類が使用される。一方、FRPは不燃性、不腐食性であるため、廃棄方法も現状では埋め立てによる処分に頼っているのが現状である。FRP材料は高機能を有し、しかも決して安価な材料ではないため、これらの材料の安易な廃棄処理はエネルギーロスになり、環境問題的にも好ましいとは言えない。 よ う Thus, various reinforcing forms and fiber lengths are used for the FRP material depending on the application, and many types of resins are used. On the other hand, FRP is non-flammable and non-corrosive, and the disposal method currently depends on landfill disposal. Since FRP materials have high functions and are not inexpensive materials, easy disposal of these materials results in energy loss and is not preferable in terms of environmental issues.

 上記の問題点に対し、FRP廃材を利用した研究がなされ、廃棄された繊維強化プラスチックを微粉末状乃至微粒状の粉末にして充填材とした再利用がされている(例えば、特許文献1参照)。しかし、平均粒径44〜74μmの微粉末状態であるために、プラスチック中に混入しても炭酸カルシウム等の代替充填材と使用されており、それほどの強化効果がなく、効率的な再利用とは言えない。 In order to solve the above-mentioned problems, researches using FRP waste materials have been conducted, and the discarded fiber reinforced plastic has been reused as a filler by converting the discarded fiber-reinforced plastics into fine powder or fine powder (for example, see Patent Document 1). ). However, because it is in the form of fine powder having an average particle diameter of 44 to 74 μm, it is used as an alternative filler such as calcium carbonate even when mixed into plastics, and does not have such a strong reinforcing effect, and is efficiently recycled. I can't say.

 またFRPをマトリックス樹脂の分解点以上、炭素繊維の分解点以下の温度で処理して、マトリックス樹脂の分解物で一体化(結着)された炭素繊維塊を得ている(例えば、特許文献2参照)。しかし、この炭素繊維塊はマトリックス樹脂の分解物、即ち炭化物を含んでいるため、樹脂と複合した場合、繊維と樹脂が直接ぬれないため、繊維と樹脂との接着強度が低かったり、分散性が低下したりして満足した複合材が得られず、また切断などにより単繊維に分解できるとはあるが、上記100μm〜3mmの範囲で且つ要求性能に応じた任意の繊維長の整ったものに切断できるものではない。 In addition, FRP is treated at a temperature equal to or higher than the decomposition point of the matrix resin and equal to or lower than the decomposition point of the carbon fiber to obtain a carbon fiber mass integrated (bound) with a decomposition product of the matrix resin (for example, Patent Document 2). reference). However, since this carbon fiber mass contains a decomposition product of a matrix resin, that is, a carbide, when combined with a resin, the fiber and the resin do not directly wet, so that the adhesive strength between the fiber and the resin is low or the dispersibility is low. Although it is not possible to obtain a satisfactory composite material by lowering or decomposing it into single fibers by cutting, etc., it is necessary to adjust the fiber length in the range of 100 μm to 3 mm and any fiber length according to the required performance. It cannot be cut.

 破砕したFRPを、3〜18体積%の酸素濃度で、300〜600℃で燃焼させないで処理し、マトリックスのプラスチックを熱分解して炭素繊維を回収する方法が記載されている(例えば、特許文献3参照)。しかし破砕の目的は雰囲気ガスとの良好な接触のためであり、その破砕の程度も3〜50cmとあり、上記100μm〜3mmの範囲で且つ要求性能に応じた任意の繊維長分布を有する炭素繊維を回収するものではない。また、この方法では反応の進行により酸素濃度が下がるので、絶えず酸素を導入して酸素濃度を制御するとある。 A method is described in which crushed FRP is treated at an oxygen concentration of 3 to 18% by volume without burning at 300 to 600 ° C., and a plastic of a matrix is thermally decomposed to recover carbon fibers (for example, Patent Document 1). 3). However, the purpose of the crushing is to achieve good contact with the atmosphere gas, the degree of crushing is also 3 to 50 cm, and the carbon fibers having the above-mentioned range of 100 μm to 3 mm and having an arbitrary fiber length distribution according to required performance. It does not collect. Further, in this method, since the oxygen concentration is reduced by the progress of the reaction, oxygen is constantly introduced to control the oxygen concentration.

 FRPを乾留してプラスチックを炭化物とした後、0.1〜25体積%の酸素濃度で、300〜1000℃で燃焼させないで加熱し、炭化物を酸化分解して炭素繊維を得ることも記載されている(例えば、特許文献4参照)。この方法でもFRPを予め破砕するのが良いとあるが、それは酸化反応でFRP中の炭素繊維の損耗を防ぐためであり、またその破砕の程度も3〜10cm程度であり、上記100μm〜3mmの範囲で且つ要求性能に応じた任意の繊維長分布を有する炭素繊維を回収するものではない。また、この方法でも反応の進行により酸素濃度が下がるので、絶えず酸素を導入して酸素濃度を制御するとある。 It is also described that after carbonizing FRP to convert the plastic into a carbide, heating at 300 to 1000 ° C. at an oxygen concentration of 0.1 to 25% by volume without burning to oxidatively decompose the carbide to obtain carbon fibers. (For example, see Patent Document 4). According to this method, it is preferable to crush the FRP in advance, but this is to prevent the carbon fiber in the FRP from being worn out by the oxidation reaction, and the crushing degree is about 3 to 10 cm. It does not recover carbon fibers having an arbitrary fiber length distribution within a range and according to required performance. Also, in this method, since the oxygen concentration is lowered by the progress of the reaction, oxygen is constantly introduced to control the oxygen concentration.

 FRPを鱗片状に破砕した後、実質的に非酸化性雰囲気下に300〜1000℃で乾留して得られたマトリックス樹脂の熱分解物により一体に結着された炭素繊維塊について記載されている(例えば、特許文献5参照)。ここでも破砕は乾留の効率が良いためとあり、10mm程度である。しかし、この炭素繊維塊も上記特許文献2と同様、マトリックス樹脂の分解物、即ち炭化物を含んでおり、また切断などにより単繊維に分解できるとはあるが、上記100μm〜3mmの範囲で且つ要求性能に応じた任意の繊維長の整ったものに切断できるものではない。また、この方法では得られた炭素繊維間に点接触(結合点)として炭化物が残存して結合物を作っているため、外部応力を加えて解繊させるときに点接触に応力がかかり、繊維は折れやすい。
特公平6−102364号 特開平4−323009号 特開平6−99160号 特開平7−33904号 特開平7−118440号
It describes a carbon fiber mass integrally bound by a thermal decomposition product of a matrix resin obtained by crushing FRP into flakes and subsequently dry-drying at 300 to 1000 ° C. in a substantially non-oxidizing atmosphere. (For example, see Patent Document 5). Here too, the crushing is due to the high carbonization efficiency, and is about 10 mm. However, this carbon fiber lump also contains a decomposed product of a matrix resin, that is, a carbide, as in the case of Patent Document 2, and may be decomposed into single fibers by cutting or the like. It is not possible to cut into fibers having an arbitrary fiber length according to the performance. In addition, in this method, the carbide remains as a point contact (bonding point) between the obtained carbon fibers to form a bond, so that stress is applied to the point contact when fibrillating by applying an external stress, Is easy to break.
Tokuhei 6-102364 JP-A-4-323909 JP-A-6-99160 JP-A-7-33904 JP-A-7-118440

 本発明の課題は広い範囲にわたって、要求性能に応じた任意の繊維長の整った、即ち所望の繊維長分布の炭素短繊維又はこれとガラス繊維を含有する熱可塑性樹脂組成物を提供することにあり、しかも原料としてFRP製造時に生じる廃材や廃FRP製品を用いることができ、環境保全にも優れた炭素繊維又はこれとガラス繊維を含有する熱可塑性樹脂組成物を提供することにある。 An object of the present invention is to provide a thermoplastic resin composition containing a short carbon fiber having an arbitrary fiber length according to required performance, that is, a desired fiber length distribution, or a glass fiber and the same, in a wide range. An object of the present invention is to provide a carbon fiber or a thermoplastic resin composition containing the carbon fiber and the glass fiber, which can be used as a raw material, and can be used as a raw material, a waste material or a waste FRP product during the production of FRP, and is excellent in environmental protection.

 本発明は、樹脂で結合された炭素繊維又は樹脂で結合された炭素繊維とガラス繊維を100μm〜3mmの範囲の繊維状に粉砕後、分級して繊維長を整え、各分級品の1種又は2種以上を含有したことを特徴とする熱可塑性樹脂組成物に係る。 The present invention, the carbon fiber bonded with the resin or the carbon fiber and the glass fiber bonded with the resin are crushed into a fiber shape in the range of 100 μm to 3 mm, and then classified to adjust the fiber length. The present invention relates to a thermoplastic resin composition containing two or more kinds.

 本発明によれば、100μm〜3mmの範囲内で且つその範囲内で要求性能に応じた任意の繊維長の整った、所望の繊維長分布を有する炭素繊維又はこれとガラス繊維を含有する熱可塑性樹脂組成物を製造することができる。また本発明によれば、力学的特性や導電特性の制御が可能な熱可塑性樹脂組成物を製造することができる。 According to the present invention, a carbon fiber having a desired fiber length distribution within a range of 100 μm to 3 mm and an arbitrary fiber length according to the required performance within the range, or a thermoplastic resin containing the same and a glass fiber A resin composition can be manufactured. Further, according to the present invention, a thermoplastic resin composition capable of controlling mechanical properties and conductive properties can be produced.

 本発明はFRP製品の廃棄物や工場から排出されるFRP廃材を利用して効率よく再利用できることから、原材料は安価で、製造にかかるエネルギーは低減され、しかも環境保全面でも優れた発明であり、産業上の利用価値は高い。また、本発明は様々な用途から排出され、しかも単一材料だけでなく、概ね炭素繊維とガラス繊維が混ざり合ったFRP廃材から繊維長の整った繊維を抽出し熱可塑性樹脂に含有させることにより、物性に最も影響を与える繊維長が整った繊維を含有する熱可塑性樹脂組成物を提供するので、組成物自体の物性のバラツキが小さい。また、本発明はFRP廃棄物を粉砕、分級した後に、繊維長のみならず、繊維の種類、比率を調整して熱可塑性樹脂中に含有させることにより、強度や弾性率といった力学的特性及び導電特性を調整し、要求特性に応じた設計も可能である。 The present invention is an invention excellent in terms of environmental preservation because the raw materials are inexpensive, the energy required for production is reduced because the FRP product waste and the FRP waste material discharged from the factory can be efficiently reused. , Its industrial value is high. In addition, the present invention is not limited to a single material, and is not limited to a single material. In general, a fiber having a uniform fiber length is extracted from FRP waste material in which carbon fibers and glass fibers are mixed and contained in a thermoplastic resin. In addition, the present invention provides a thermoplastic resin composition containing a fiber having a uniform fiber length that most affects the physical properties, so that the physical properties of the composition itself are small. In addition, the present invention crushes and classifies FRP waste, and then adjusts not only the fiber length, but also the type and ratio of the fibers and incorporates them into the thermoplastic resin, so that mechanical properties such as strength and elastic modulus and conductivity can be improved. It is also possible to adjust the characteristics and design according to the required characteristics.

 本発明では原料として例えば樹脂で結合された炭素繊維あるいは炭素繊維とガラス繊維を用いる。この結合剤の樹脂としては例えばエポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂等の熱硬化性樹脂、ナイロン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂、アクリル樹脂等の熱可塑性樹脂を挙げることができる。一例を挙げれば、パイプ状あるいは平板状のエポキシ樹脂をマトリックスとするFRPの廃材を堅型粉砕機を用いて粗粉砕した後、再度粉砕機にかけ、スクリーン径1〜5mmを通すことにより粉砕物を得る。 で は In the present invention, for example, carbon fiber or carbon fiber and glass fiber bonded by resin is used as a raw material. Examples of the resin of the binder include thermosetting resins such as epoxy resin, unsaturated polyester resin, and phenol resin, and thermoplastic resins such as nylon resin, polyethylene resin, polypropylene resin, polyester resin, and acrylic resin. For example, a waste material of FRP having a matrix of a pipe-like or flat epoxy resin is roughly pulverized using a rigid pulverizer, then re-pulverized, and passed through a screen diameter of 1 to 5 mm to obtain a pulverized material. obtain.

 本発明では上記粉砕物をスクリーンメッシュを変えることによって、ある程度繊維長の整ったものとする。本発明では粉砕物の繊維長は100μm〜3mmの範囲内であって、平均繊維長の±50%の変動幅以内のものが得られる。更に分級精度を挙げることは可能であるが、分級操作が複雑になり、前記繊維長分布で充分に実用化に耐えることができる。また、本発明では樹脂で結着された状態で繊維長を分級することから、従来のような繊維が綿状に凝集することがなく、安定した品質の繊維が得られる。 で は In the present invention, the above-mentioned pulverized material is adjusted to have a certain fiber length by changing the screen mesh. In the present invention, the fiber length of the pulverized product is in the range of 100 μm to 3 mm, and the fiber length is within ± 50% of the average fiber length. Although it is possible to further improve the classification accuracy, the classification operation becomes complicated, and the fiber length distribution can sufficiently withstand practical use. Further, in the present invention, since the fiber length is classified in a state of being bound with the resin, the fiber of the conventional quality can be obtained without flocculation of the conventional fiber.

 ここで、繊維長とは重量平均繊維長(lw)であり、以下の式により求められる。
lw=ΣWi・li/Wi
lw=Σα・Ni・li/Σα・Ni・li
lw=ΣNi・li/ΣNi・li
αはπr2ρ(2r=繊維の直径、ρ=密度)、Niは長さliの繊維の数である。本発明では、FRPのリサイクル品、FRP製造時に排出される廃材を粉砕することにより100μm〜3mmの範囲内で且つその範囲内で要求性能に応じた任意の繊維長の整った、所望の繊維長分布を有する粉砕物を得ることができる。
Here, the fiber length is a weight average fiber length (lw), which is obtained by the following equation.
lw = ΣWi · li / Wi
lw = Σα ・ Ni ・ li 2 / Σα ・ Ni ・ li
lw = ΣNi · li 2 / ΣNi · li
α is πr2ρ (2r = diameter of fiber, ρ = density), and Ni is the number of fibers of length li. In the present invention, a desired fiber length within a range of 100 μm to 3 mm and an arbitrary fiber length according to the required performance within the range is prepared by crushing a recycled product of FRP and waste material discharged during FRP production. A ground product having a distribution can be obtained.

 本発明では粉砕物を分級することにより、繊維長の整ったものが容易に得られ、一般に言われる数平均繊維長lm/lwが1.05〜1.50で1に近く単分散性を有する優れたものである。一方、従来は連続した炭素繊維に収束剤により表面処理を施し、短繊維化しているが、一般に3mm以下の繊維長にすることは困難であり、熟練を要し、かつ繊維長の制御が困難であった。また表面処理を施さないで粉砕するミルドファイバーはその製造コストが高い上に、繊維が綿状に凝集し、さらに1mm以下の細かいものが得られるが、繊維長が不揃いである。またウィスカーと呼ばれるものは一般にその繊維径が100μm未満のものである。 In the present invention, by classifying the pulverized product, a fiber having a uniform fiber length can be easily obtained, and the generally-known number average fiber length lm / lw is from 1.05 to 1.50, and has a monodispersity close to 1. It is excellent. On the other hand, conventionally, continuous carbon fibers are subjected to a surface treatment with a sizing agent to shorten the fibers, but it is generally difficult to reduce the fiber length to 3 mm or less, requiring skill and difficult to control the fiber length. Met. In addition, milled fibers that are pulverized without surface treatment are expensive to produce, and the fibers are flocculated to give a fine fiber of 1 mm or less, but the fiber length is not uniform. What is called a whisker generally has a fiber diameter of less than 100 μm.

 このように従来は特に100μm〜3mmの範囲で且つ要求性能に応じた任意の繊維長の整ったものの入手が極めて困難であった。本発明は上記のようにFRPの廃材を粉砕し、分級することによりこの問題点を一挙に解決し、この繊維長の整ったものを熱可塑性樹脂へ含有させることにより、物性の安定した熱可塑性樹脂組成物が得られる。熱可塑性樹脂としては、例えばポリエチレン樹脂、ポリプロピレン樹脂、塩化ビニル樹脂等の汎用熱可塑性樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ポリエーテルイミド樹脂、ポリエーテルエーテルケトン樹脂等のエンジニアプラスチックなどを挙げることができる。 As described above, it has been extremely difficult to obtain a fiber having a fiber length within a range of 100 μm to 3 mm and an arbitrary fiber length in accordance with required performance. The present invention solves this problem at once by crushing and classifying the waste material of FRP as described above, and by incorporating a fiber with a uniform fiber length into a thermoplastic resin, a thermoplastic resin having stable physical properties is obtained. A resin composition is obtained. Examples of the thermoplastic resin include general-purpose thermoplastic resins such as polyethylene resin, polypropylene resin, and vinyl chloride resin, and engineered plastics such as polyamide resin, polycarbonate resin, polyacetal resin, polyetherimide resin, and polyetheretherketone resin. Can be.

 また、FRP廃材を粉砕し、分級し、各分級品の1種又は2種以上を粉砕物の分解ガス充満下、350〜500℃で加熱分解させることにより、樹脂の付着していない所望の短繊維のみを得ることができる。粉砕物の分解ガスの充満下に加熱するとは、例えば粉砕物を密閉状態で加熱する方法、粉砕物を容器に高充填率で充填し、加熱する方法を挙げることができる。容器としては坩堝等を挙げることができ、高充填率とは例えば50〜100容積%、好ましくは80〜99容積%程度の充填率を挙げることができる。 Further, the FRP waste material is pulverized and classified, and one or two or more of the classified products are heated and decomposed at 350 to 500 ° C. under the filling of the decomposed gas of the pulverized material to obtain a desired short-circuit without resin. Only fibers can be obtained. The heating under the filling of the pulverized material with the decomposition gas includes, for example, a method of heating the pulverized material in a closed state, and a method of filling the pulverized material into a container at a high filling rate and heating. Examples of the container include a crucible and the like, and the high filling rate includes, for example, a filling rate of about 50 to 100% by volume, preferably about 80 to 99% by volume.

 上記においては粉砕物の分解ガスの充填下に加熱分解させるため、何ら酸素ガス、空気、窒素ガス等を準備する必要がなく、酸素ガス濃度を絶えず制御する必要も無い。上記の加熱分解は350〜500℃の範囲で行うことが好ましい。350℃未満ではマトリックス樹脂の分解が遅く、また樹脂が残存する。500℃を超えると炭素繊維等の損耗が起こる。加熱分解時間は温度にも依存するが、通常は1〜8時間、好ましくは2〜5時間程度である。 に お い て In the above, since the heat decomposition is performed while the pulverized material is filled with the decomposition gas, there is no need to prepare oxygen gas, air, nitrogen gas or the like, and it is not necessary to constantly control the oxygen gas concentration. The above thermal decomposition is preferably performed at a temperature in the range of 350 to 500 ° C. If the temperature is lower than 350 ° C., decomposition of the matrix resin is slow, and the resin remains. If the temperature exceeds 500 ° C., wear of carbon fibers and the like occurs. The thermal decomposition time depends on the temperature, but is usually about 1 to 8 hours, preferably about 2 to 5 hours.

 本発明で得られる短繊維は、繊維長100μm〜3mmの範囲内で且つ任意の繊維長に整っていることから、粉砕後、分級し、マトリックス樹脂が付着した状態で熱可塑性樹脂中に含有してもよく、更に350〜500℃の範囲内で樹脂を加熱分解させた後に、熱可塑性樹脂に含有させることにより、より物性の優れた、品質の安定した熱可塑性樹脂組成物が得られる。また、本発明は一般の産業部材から排出されるFRP廃材を用いることから、単一材料でなく、部材中には炭素繊維、ガラス繊維等が混在している場合が有る。 The short fiber obtained in the present invention is in the range of 100 μm to 3 mm in fiber length and is adjusted to an arbitrary fiber length. Therefore, after crushing, it is classified and contained in a thermoplastic resin in a state where a matrix resin is adhered. Alternatively, the resin may be thermally decomposed within the range of 350 to 500 ° C. and then added to the thermoplastic resin to obtain a thermoplastic resin composition having more excellent physical properties and stable quality. Further, since the present invention uses waste FRP discharged from general industrial members, carbon fibers, glass fibers, and the like may be mixed in the member instead of a single material.

 炭素繊維は軽量、高剛性でしかも導電性を有するが、ガラス繊維は比較的比重が高く、剛性も低く、非導電性である。従って、これらが混在している場合には、それらの混在比率を安定しておかなければ、熱可塑性樹脂組成物の要求特性にあった、安定した品質のものが得られない。そこで、これらのFRP廃材に関しては、粉砕し、分級した後、蛍光X線分析等により、予めガラス繊維混入量を判断し、熱可塑性樹脂組成物の用途に応じて予め分別することができる。例えば、ガラス繊維/炭素繊維の重量比率が0〜0.3の場合は、熱可塑性樹脂組成物の強度向上に加えて、高導電化を示す用途に用いられ、一方ガラス繊維/炭素繊維の重量比率が0.3以上の場合は高強度部材で、しかも絶縁部材として使用できる。 While carbon fibers are lightweight, highly rigid, and electrically conductive, glass fibers have relatively high specific gravity, low rigidity, and are non-conductive. Therefore, in the case where these are mixed, unless the mixing ratio is stabilized, a product having a stable quality that meets the required characteristics of the thermoplastic resin composition cannot be obtained. Therefore, these FRP waste materials can be pulverized and classified, and the amount of glass fiber mixed therein can be determined in advance by fluorescent X-ray analysis or the like, and can be classified in advance according to the use of the thermoplastic resin composition. For example, when the weight ratio of glass fiber / carbon fiber is 0 to 0.3, in addition to improving the strength of the thermoplastic resin composition, the glass fiber / carbon fiber is used for applications showing high conductivity. When the ratio is 0.3 or more, it is a high-strength member and can be used as an insulating member.

 以下に実施例を挙げて本発明を更に詳しく説明する。
実施例1
 エポキシ樹脂をマトリックスに使用したFRP製ゴルフシャフトを堅型粉砕機により粗粉砕し、スクリーン径12mmを通した後、再度粉砕機にかけスクリーン径1mmを通すことにより、エポキシ樹脂が付着した状態の炭素繊維を主成分とする繊維が得られた。この粉砕物を250〜3000μmのメッシュサイズの異なるふるい機で分級して繊維長の整った、エポキシ樹脂が付着した炭素繊維及びガラス繊維の各分級品を得た。なお、粉砕品を蛍光X線分析で分析した結果、ガラス繊維/炭素繊維の重量比率は0.048であった。次にこの各分級品ごとに坩堝に充填率80容積%で充填し、電気炉を用い、400℃、5時間で粉砕物の分解ガス充満下に加熱分解させ、250μm〜3mm範囲内の所望の繊維長分布を有する繊維を得た。得られた繊維のふるいサイズによる平均繊維長と市販のミルド繊維の繊維長分布を表1に示す。
Hereinafter, the present invention will be described in more detail with reference to Examples.
Example 1
An FRP golf shaft using an epoxy resin as a matrix is roughly pulverized by a hard pulverizer, passed through a screen diameter of 12 mm, and then passed through a pulverizer again and passed through a screen diameter of 1 mm. Was obtained. This pulverized product was classified by a sieve having a mesh size of 250 to 3000 μm with different mesh sizes to obtain each classified product of carbon fibers and glass fibers to which the epoxy resin was adhered and the fiber length was adjusted. In addition, as a result of analyzing the pulverized product by X-ray fluorescence analysis, the weight ratio of glass fiber / carbon fiber was 0.048. Next, each of the classified products is filled into a crucible at a filling rate of 80% by volume, and is heated and decomposed in an electric furnace at 400 ° C. for 5 hours under a decomposition gas full state of the pulverized material. A fiber having a fiber length distribution was obtained. Table 1 shows the average fiber length according to the sieve size of the obtained fibers and the fiber length distribution of commercially available milled fibers.

Figure 2004107672
Figure 2004107672

 上記の結果から、本発明によりFRP廃材から再生された繊維は、エポキシ樹脂が付着した状態で粉砕、分級することから市販のミルド繊維と比較して繊維長分布にバラツキが少なく、しかも容易に所望の長さの繊維を得ることができる。熱可塑性樹脂組成物の引張り強度及び曲げ強度を表2に示す。本発明の場合、物性に最も影響を与える繊維長が整っていることから、この繊維を強化材としてPP(ポリプロピレン)に20wt%充填した熱可塑性樹脂組成物は、物性値のバラツキが非常に少なかった。一方、市販ミルド繊維は繊維にサイジング処理等を施しているために、試験後のSEMによる破面観察から樹脂中での分散状態が悪く凝集している部分があった。しかし、本発明品は自燃により樹脂を分解させているために、繊維間の凝集もなく、成形品に用いた時にも良好な分散状態であった。 From the above results, the fiber regenerated from the FRP waste material according to the present invention is pulverized and classified in a state in which the epoxy resin is adhered. Length of fiber can be obtained. Table 2 shows the tensile strength and the bending strength of the thermoplastic resin composition. In the case of the present invention, since the fiber length that most affects the physical properties is adjusted, the thermoplastic resin composition in which this fiber is used as a reinforcing material and filled with 20% by weight of PP (polypropylene) has very little variation in the physical property values. Was. On the other hand, since the commercially available milled fiber has been subjected to sizing treatment and the like, there was a portion where the state of dispersion in the resin was poor and agglomeration was observed from observation of the fracture surface by SEM after the test. However, since the resin of the present invention decomposed the resin by self-combustion, there was no aggregation between fibers, and the resin was in a good dispersion state when used for a molded product.

Figure 2004107672
Figure 2004107672

実施例2
 実施例1と同様にして250〜3000μmのメッシュサイズの異なるふるい機で分級して繊維長の整った、エポキシ樹脂が付着した炭素繊維の各分級品を得た。この分級品のうち平均繊維長140μmのサイズのものをエポキシ樹脂が付着した状態でナイロン66(PA66)樹脂中に10wt%及び20wt%充填したものをインジェクション成形して150mm×100mm×2mmの平板を作成した。また上記の分級品を実施例1と同様の条件で加熱分解処理した繊維を、PA66樹脂中に10wt%及び20wt%充填したものをインジェクション成形して同サイズの平板を作成した。なお比較のためPA66樹脂単体をインジェクション成形して同サイズの平板を作成した。得られた平板から、短冊状の試験片を切り出し3点曲げ試験を行った。結果を表3に示す。
Example 2
In the same manner as in Example 1, classification was performed using a sieve having a mesh size of 250 to 3000 μm with different mesh sizes to obtain each classified carbon fiber to which the epoxy resin had adhered and the fiber length was adjusted. Of the classified products, those having an average fiber length of 140 μm and filled with 10 wt% and 20 wt% of nylon 66 (PA66) resin with an epoxy resin adhered thereto were injection molded to form a 150 mm × 100 mm × 2 mm flat plate. Created. Further, a fiber obtained by subjecting the above classified product to thermal decomposition under the same conditions as in Example 1 was filled with PA66 resin at 10 wt% and 20 wt%, and injection-molded to produce a flat plate of the same size. For comparison, a flat plate of the same size was prepared by injection molding of PA66 resin alone. From the obtained flat plate, a strip-shaped test piece was cut out and subjected to a three-point bending test. Table 3 shows the results.

Figure 2004107672
Figure 2004107672

 上記の結果から、本発明により得られるFRP廃材から再生した繊維は、樹脂に含有することにより強度、弾性率が大幅に向上していることから、十分な強化効果がある。 か ら From the above results, the fiber regenerated from the FRP waste material obtained by the present invention has a sufficient strengthening effect because the strength and the elastic modulus are greatly improved by being contained in the resin.

参考例1
 FRP廃材中に炭素繊維のみでなく、ガラス繊維とのハイブリッド積層板を粉砕、分級したのち、380℃、5時間で熱処理を行った繊維を用いた、ナイロン66インジェクションペレットを作成した。本実験は実施例2と同様に、インジェクションにより平板を作成し、3点曲げ試験を実施した。なお、廃材中に含まれるガラス繊維と炭素繊維の重量比率は分級後に、蛍光X線分析を用いて、ガラス繊維の量を算出した。
Reference Example 1
After crushing and classifying not only the carbon fiber but also the hybrid laminate with the glass fiber in the FRP waste material, a nylon 66 injection pellet was prepared using the fiber that was heat-treated at 380 ° C. for 5 hours. In this experiment, as in Example 2, a flat plate was prepared by injection, and a three-point bending test was performed. In addition, the weight ratio of the glass fiber and the carbon fiber contained in the waste material was classified, and then the amount of the glass fiber was calculated using X-ray fluorescence analysis.

Figure 2004107672
Figure 2004107672

 実験結果から、ガラス繊維の繊維量が多くなると、強度、弾性率とも低下する傾向を示す。しかし、ガラス繊維と炭素繊維の含有比が0.98であっても、ナイロン66樹脂単体よりも高い強度や弾性率を示す。従って、本発明により得られる熱可塑性樹脂組成物は、実際のFRP廃棄物から効率よく繊維を回収し、しかも効果的に再生利用される。 (4) From the experimental results, when the fiber content of the glass fiber increases, both the strength and the elastic modulus tend to decrease. However, even if the content ratio of the glass fiber to the carbon fiber is 0.98, it shows higher strength and elastic modulus than the nylon 66 resin alone. Therefore, the thermoplastic resin composition obtained according to the present invention efficiently collects fibers from actual FRP waste, and is effectively recycled.

参考例2
 参考例1で用いたインジェクション成形品を用いて、体積抵抗率の計測を実施した。ナイロン66樹脂単体の体積抵抗率は1.0E+16(1.0×1016)であった。
Reference Example 2
The volume resistivity was measured using the injection molded product used in Reference Example 1. The volume resistivity of the nylon 66 resin alone was 1.0E + 16 (1.0 × 10 16 ).

Figure 2004107672
Figure 2004107672

 結果からG/C=0.294までは、強化材をナイロン66樹脂中に30wt%含有すると炭素繊維の影響により体積抵抗率の低下が見られる。しかし、G/C=0.294を越え、絶縁体であるガラス繊維の強化材中に占める割合が増加すると、強化材を30wt%含有しても体積抵抗率がそれほど低下しない結果となった。この結果から、FRP廃材を粉砕、分級した段階で廃材中に占めるガラス繊維の量を計測することにより、ガラス繊維が炭素繊維に重量比率で30%までは、導電性を有する部材への熱可塑性樹脂組成物の使用が可能であり、一方ガラス繊維の重量分率が30%を超える場合には、参考例1のように強度、弾性率の向上を目的とした高強度部材としての適用が可能である。 か ら From the results, when G / C = 0.294, when the reinforcing material is contained in the nylon 66 resin at 30 wt%, the volume resistivity is reduced due to the influence of the carbon fiber. However, when G / C exceeds 0.294 and the proportion of glass fiber as an insulator in the reinforcing material increases, the volume resistivity does not decrease so much even if the reinforcing material is contained at 30 wt%. From this result, by measuring the amount of glass fiber in the waste material at the stage where the FRP waste material was pulverized and classified, the thermoplastic resin was converted into a conductive member until the weight ratio of the glass fiber to the carbon fiber was up to 30%. When the resin composition can be used and the weight fraction of the glass fiber exceeds 30%, it can be used as a high-strength member for improving the strength and elastic modulus as in Reference Example 1. It is.

比較例1
 比較のため特公平06−102364号の実施例1を示す。即ち廃棄されたポリバスを粉砕して、不飽和ポリエステル樹脂で結着されたガラス繊維を得た。このガラス繊維の平均繊維長は表6に示すように44〜74μmが主成分で、約74%を占めていた。
Comparative Example 1
For comparison, Example 1 of Japanese Patent Publication No. 06-102364 is shown. That is, the discarded polybass was pulverized to obtain a glass fiber bound with an unsaturated polyester resin. As shown in Table 6, the average fiber length of this glass fiber was 44 to 74 μm, which accounted for about 74%.

Figure 2004107672
 下記表7は本粉砕物を不飽和ポリエステル樹脂中に含有した時の物性強度を示している。
Figure 2004107672
Table 7 below shows the physical strength when the pulverized product is contained in the unsaturated polyester resin.

Figure 2004107672
Figure 2004107672

 この結果から、FRP廃材を使用し、新たな樹脂に充填材として配合することにより、樹脂単体の強度よりも低下し、しかも配合割合が増加するほど、強度低下が大きくなっている。従って、FRP廃材を利用した充填材は強化効果がなく、効率的な再生利用としての効果が低いものとなっている。
 
From these results, it can be seen that by using FRP waste material and blending it into a new resin as a filler, the strength is lower than the strength of the resin alone, and the greater the blending ratio, the greater the decrease in strength. Therefore, the filler using the FRP waste material has no reinforcing effect, and has a low effect as an efficient recycling.

Claims (3)

樹脂で結合された炭素繊維を100μm〜3mmの範囲の繊維状に粉砕後、分級して繊維長を整え、各分級品の1種又は2種以上を含有したことを特徴とする熱可塑性樹脂組成物。 A thermoplastic resin composition characterized in that carbon fibers bonded with a resin are pulverized into fibers in the range of 100 μm to 3 mm, and then classified to adjust the fiber length, and one or more of each classified product is contained. object. 樹脂で結合された炭素繊維およびガラス繊維を100μm〜3mmの範囲の繊維状に粉砕後、分級して繊維長を整え、各分級品の1種又は2種以上を含有したことを特徴とする熱可塑性樹脂組成物。 The heat is characterized in that the carbon fibers and glass fibers bonded by the resin are crushed into fibers in the range of 100 μm to 3 mm and then classified to adjust the fiber length, and one or more of each classified product is contained. Plastic resin composition. 組成物におけるガラス繊維/炭素繊維の重量比率を調整して力学的特性や導電特性を調整した請求項2記載の熱可塑性樹脂組成物。
 
3. The thermoplastic resin composition according to claim 2, wherein the mechanical properties and the conductive properties are adjusted by adjusting the weight ratio of glass fiber / carbon fiber in the composition.
JP2003336764A 2003-09-29 2003-09-29 Thermoplastic resin composition Expired - Fee Related JP3799344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003336764A JP3799344B2 (en) 2003-09-29 2003-09-29 Thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003336764A JP3799344B2 (en) 2003-09-29 2003-09-29 Thermoplastic resin composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3049998A Division JP3580689B2 (en) 1998-01-27 1998-01-27 Thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JP2004107672A true JP2004107672A (en) 2004-04-08
JP3799344B2 JP3799344B2 (en) 2006-07-19

Family

ID=32290786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003336764A Expired - Fee Related JP3799344B2 (en) 2003-09-29 2003-09-29 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JP3799344B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072651A1 (en) * 2007-12-07 2009-06-11 Toyota Jidosha Kabushiki Kaisha Method of recycling fiber-reinforced plastic
DE102013219960A1 (en) * 2013-10-01 2015-04-02 Bayerische Motoren Werke Aktiengesellschaft Co-extrusion, pultrusion of profiles with carbon waste
JP2017189772A (en) * 2017-05-24 2017-10-19 株式会社クレハ Screening method of carbon short fiber, and carbon short fiber
JP2020146961A (en) * 2019-03-14 2020-09-17 太平洋セメント株式会社 Method and apparatus for separating and recovering carbon fiber from carbon fiber-reinforced plastic-containing material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06503768A (en) * 1991-09-18 1994-04-28 フェニックス ファイバーグラス インコーポレーティッド Separation of fibers from composite materials
JPH06298993A (en) * 1993-04-15 1994-10-25 Kobe Steel Ltd Method for carrying out thermal decomposition treatment of carbon fiber reinforced composite material
JPH0781992A (en) * 1993-06-25 1995-03-28 Agency Of Ind Science & Technol Concrete products using glass-reinforced thermosetting resin as reinforcing material and production thereof
JPH1150338A (en) * 1997-07-29 1999-02-23 Asics Corp Production of carbon short fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06503768A (en) * 1991-09-18 1994-04-28 フェニックス ファイバーグラス インコーポレーティッド Separation of fibers from composite materials
JPH06298993A (en) * 1993-04-15 1994-10-25 Kobe Steel Ltd Method for carrying out thermal decomposition treatment of carbon fiber reinforced composite material
JPH0781992A (en) * 1993-06-25 1995-03-28 Agency Of Ind Science & Technol Concrete products using glass-reinforced thermosetting resin as reinforcing material and production thereof
JPH1150338A (en) * 1997-07-29 1999-02-23 Asics Corp Production of carbon short fiber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072651A1 (en) * 2007-12-07 2009-06-11 Toyota Jidosha Kabushiki Kaisha Method of recycling fiber-reinforced plastic
JP2009138143A (en) * 2007-12-07 2009-06-25 Toyota Motor Corp Method for recycling fiber-reinforced plastic
DE102013219960A1 (en) * 2013-10-01 2015-04-02 Bayerische Motoren Werke Aktiengesellschaft Co-extrusion, pultrusion of profiles with carbon waste
JP2017189772A (en) * 2017-05-24 2017-10-19 株式会社クレハ Screening method of carbon short fiber, and carbon short fiber
JP2020146961A (en) * 2019-03-14 2020-09-17 太平洋セメント株式会社 Method and apparatus for separating and recovering carbon fiber from carbon fiber-reinforced plastic-containing material
JP7122988B2 (en) 2019-03-14 2022-08-22 太平洋セメント株式会社 Separation recovery method and separation recovery apparatus for carbon fiber from carbon fiber reinforced plastic content

Also Published As

Publication number Publication date
JP3799344B2 (en) 2006-07-19

Similar Documents

Publication Publication Date Title
CN102762318B (en) Use the method that the carbon fiber of recycling prepares moulded parts from material with carbon element
Rosamah et al. Properties enhancement using oil palm shell nanoparticles of fibers reinforced polyester hybrid composites
TWI810162B (en) In situ bonding of carbon fibers and nanotubes to polymer matrices
JP3212543B2 (en) Method for producing short carbon fiber
Anbusagar et al. Preparation and properties of nanopolymer advanced composites: A review
Syamimi et al. Mechanical and thermal properties of snail shell particles-reinforced bisphenol-A bio-composites
Gohatre et al. Study on thermal, mechanical and morphological properties of recycled poly (vinyl chloride)/fly ash composites
Bajpai Update on carbon fibre
JP3468690B2 (en) Carbon fiber production method
US11059945B2 (en) In situ bonding of carbon fibers and nanotubes to polymer matrices
Kumar Panda et al. Exploration on mechanical behaviours of hyacinth fibre particles reinforced polymer matrix-based hybrid composites for electronic applications
JP3535972B2 (en) Highly conductive carbon fiber and method for producing the same
Girimurugan et al. Effect of nano alumina powder and water hyacinth stem powder addition on tensile properties of polypropylene matrix hybrid composites–An experimental study
JP3580689B2 (en) Thermoplastic resin composition
Adeniyi et al. Prospects and problems in the development of biochar-filled plastic composites: a review
JP2017002125A (en) Recycled carbon fiber bundle
Ismail et al. Effect of oil palm ash on the properties of polypropylene/recycled natural rubber gloves/oil palm ash composites
JP3799344B2 (en) Thermoplastic resin composition
Abdul Khalil et al. Preparation of activated carbon filled epoxy nanocomposites: morphological and thermal properties
JP5809019B2 (en) Short carbon fiber, method for producing short carbon fiber, short carbon fiber reinforced resin composition, and short carbon fiber reinforced cement composition
Suraya et al. Synergistic effect of oil palm based pozzolanic materials/oil palm waste on polyester hybrid composite
US20240018315A1 (en) In situ bonding of carbon fibers and nanotubes to polymer matrices
Rizal et al. Utilization of agrowaste-derived nanoparticles as reinforcement in microfilled epoxy composites
JP2022517022A (en) Ultra-fine carbon powder and its manufacturing method and application
Phung et al. Acrylonitrile butadiene styrene/wood sawdust particles composites: Mechanical and morphological properties

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R314533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R314533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S804 Written request for registration of cancellation of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees