JPH0781992A - Concrete products using glass-reinforced thermosetting resin as reinforcing material and production thereof - Google Patents

Concrete products using glass-reinforced thermosetting resin as reinforcing material and production thereof

Info

Publication number
JPH0781992A
JPH0781992A JP18092793A JP18092793A JPH0781992A JP H0781992 A JPH0781992 A JP H0781992A JP 18092793 A JP18092793 A JP 18092793A JP 18092793 A JP18092793 A JP 18092793A JP H0781992 A JPH0781992 A JP H0781992A
Authority
JP
Japan
Prior art keywords
thermosetting resin
concrete
glass fiber
reinforced thermosetting
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18092793A
Other languages
Japanese (ja)
Other versions
JP2540477B2 (en
Inventor
Yoshio Kobayashi
良生 小林
Hiroshi Ueshima
洋 上嶋
Takao Kitamura
孝雄 北村
Kazuhide Hamada
和秀 浜田
Toshio Kono
敏夫 河野
Masamichi Fujiwara
正道 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Kochi Prefecture
Original Assignee
Agency of Industrial Science and Technology
Kochi Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Kochi Prefecture filed Critical Agency of Industrial Science and Technology
Priority to JP18092793A priority Critical patent/JP2540477B2/en
Publication of JPH0781992A publication Critical patent/JPH0781992A/en
Application granted granted Critical
Publication of JP2540477B2 publication Critical patent/JP2540477B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PURPOSE:To improve the characteristics of various kinds of concrete products and promote the effective discarding disposal of ERP by using the crushed matter of glass-reinforced thermosetting resin (ERP) as a reinforcing material. CONSTITUTION:The FRP crushed matter is made to the filament having the size of order of passing a 5mm sieve or under beated to crush and open the filament to a short fiber. These are incorporated and kneaded to a mortar or a concrete by 5-30% as the reinforcing material and formed and solidified to the concrete products. In this way, bulk density, bending strength and compression strength are improved. Strength is improved, heat conductivity is reduced in accordance with the increase of a mixing ratio and heat insulating effect is improved in the case of the mortar, etc., added with a light weight aggregate. Moreover, when the FRP crushed matter which is made into the filament is mixed to the mortar, etc., added with an inorg. powder, the bulk density, the bending strength, the rate of change of length and the heat conductivity are improved, and final fracture strength and toughness are improved even when used as the rein forcing material by sandwiching the FRP plate between the layers of the mortar, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はガラス繊維強化熱硬化性
樹脂(以下FRPと略称する)を補強材としてモルタル
又はコンクリート中に混入して成形固化することによ
り、各種コンクリート製品の引張強度,耐衝撃性,靭性
等の諸特性を向上させ、かつ、FRPの有効な廃棄処分
を促進するようにしたコンクリート製品及びその製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mixes glass fiber reinforced thermosetting resin (hereinafter abbreviated as FRP) into a mortar or concrete as a reinforcing material and molds and solidifies it to obtain tensile strength and resistance to various concrete products. The present invention relates to a concrete product which is improved in various properties such as impact resistance and toughness and promotes effective disposal of FRP, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】FRPとは、主材としての熱硬化性樹脂
にガラス繊維を強化材として加えた材料であり、軽量で
耐蝕性,成形性に優れているため、各種工業用材料とし
て用いられている外、船体とか浴槽その他の民生用製品
に広い分野で使用されている。
2. Description of the Related Art FRP is a material in which glass fiber is added as a reinforcing material to a thermosetting resin as a main material and is used as various industrial materials because of its light weight, excellent corrosion resistance and moldability. Besides, it is widely used for hulls, bathtubs and other consumer products.

【0003】このようなFRPを用いた各種製品が耐用
年数を経過すると廃棄物として処理しなければならない
が、これら廃棄物の処理方法としては、ほとんど焼却と
か埋立手段が用いられているのが実状である。
Although various products using such FRP must be treated as wastes after the end of their useful life, most of the methods of treating these wastes are incineration or landfill. Is.

【0004】他方において、従来からモルタル又はコン
クリート中に金属もしくは合成樹脂を原料とした短繊維
を一様に分散させて、引張強度とか耐衝撃性、靭性を改
良した複合材料が知られている。代表的なものとして鋼
繊維補強コンクリートがある。この場合の短繊維は直径
が0.3〜0.9mm,長さが25〜60mm程度のも
のが用いられ、コンクリートへの分散は主としてミキサ
ーによる混合によって行われている。
On the other hand, conventionally, there has been known a composite material in which short fibers made of a metal or a synthetic resin are uniformly dispersed in mortar or concrete to improve tensile strength, impact resistance and toughness. A typical example is steel fiber reinforced concrete. In this case, short fibers having a diameter of 0.3 to 0.9 mm and a length of about 25 to 60 mm are used, and dispersion into concrete is mainly performed by mixing with a mixer.

【0005】更に合成樹脂としてポリエチレンとかポリ
プロピレン等の合成繊維を混合したコンクリートも実用
化されている。これらの繊維補強コンクリートにおける
繊維混入率は、1〜2容積%程度となっている。
Further, concrete in which synthetic fibers such as polyethylene and polypropylene are mixed as a synthetic resin has been put into practical use. The fiber mixing ratio in these fiber reinforced concretes is about 1 to 2% by volume.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記F
RP廃棄物の焼却手段は、媒煙とか炭酸ガス等が多量に
発生して公害源となる惧れがあり、他方の埋立手段は埋
立場所の確保が問題になっている現状にある。特にFR
Pの持つ特有の強靭性と耐腐食性によって他の廃棄物と
同様に処理することが困難であり、不法廃棄などの問題
も発生している。
However, the above-mentioned F
The incineration means of RP waste is likely to become a pollution source by generating a large amount of smoke and carbon dioxide gas, and the other landfill means is currently in the problem of securing a landfill site. Especially FR
Due to the peculiar toughness and corrosion resistance of P, it is difficult to treat it like other wastes, and problems such as illegal disposal have occurred.

【0007】また、前記のコンクリート中に金属もしく
は合成樹脂を原料とした短繊維を一様に分散させる手段
は、特殊なミキサーを必要とする上、均一混合が困難で
あってコストも高くなるという問題がある。更に上記金
属もしくは合成樹脂に代えてFRPを微粉末状としてコ
ンクリートに混合する手段も一部試みられたが、この場
合には軽量化は可能であるが、一般的にFRP微粉末の
添加量が増加するにつれてコンクリートの強度が低下し
てしまうという問題が生じる。
Further, the means for uniformly dispersing the short fibers made of metal or synthetic resin in the concrete requires a special mixer, and it is difficult to uniformly mix and the cost becomes high. There's a problem. Further, some attempts have been made to mix FRP in the form of fine powder into concrete instead of the above metal or synthetic resin. In this case, it is possible to reduce the weight, but generally the amount of FRP fine powder added is There is a problem that the strength of concrete decreases as the amount increases.

【0008】そこでFRP廃棄物をコンクリートの強度
を高めるための補強材として再利用することができれ
ば、FRP廃棄物処理という面からのみならず、資源の
有効利用という観点からも望ましいものと考えられる。
本発明は上記に鑑みて、FRP廃棄物を破砕して、その
破砕物を補強材とするコンクリート製品及びその製造方
法を提供することを目的とするものである。
Therefore, if the FRP waste can be reused as a reinforcing material for increasing the strength of concrete, it is considered desirable not only from the viewpoint of FRP waste treatment but also from the viewpoint of effective use of resources.
In view of the above, it is an object of the present invention to provide a concrete product in which FRP waste is crushed and the crushed product is used as a reinforcing material, and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】本発明は上記目的を達成
するために、FRPを補強材とするコンクリート製品と
して、モルタル又はコンクリート中に混入する補強材と
してFRPの破砕物を用いた構成、該破砕物を繊維状と
した構成、該破砕物を5ミリふるいを通過する程度の繊
維状とした構成、該破砕物を更に叩解して単繊維に破砕
・解繊した構成、及びその混入率を5〜30%とした構
成を提供する。
In order to achieve the above object, the present invention provides a concrete product using FRP as a reinforcing material, wherein crushed material of FRP is used as a reinforcing material mixed in mortar or concrete, The composition of the crushed material in a fibrous shape, the composition of the crushed material in a fibrous shape that passes through a 5 mm sieve, the composition of further crushing the crushed material into crushed and fibrillated single fibers, and the mixing ratio thereof 5 to 30% is provided.

【0010】更に製造方法として、FRPの繊維状破砕
物をモルタル又はコンクリートと混練した後、成形固化
する構成、該繊維状破砕物を混練して加圧脱水した後、
成形固化する構成、該繊維状破砕物を更に叩解して単繊
維に破砕・解繊する構成、モルタル又はコンクリート中
に軽量骨材を混入してなる構成、モルタル又はコンクリ
ート中に無機質粉末を混入してなる構成、及びモルタル
又はコンクリートを型枠に複数層に分けて詰め、その層
間に板状のFRPを挟んで成形固化した構成を提供す
る。
Further, as a manufacturing method, the fibrous crushed material of FRP is kneaded with mortar or concrete, and then molded and solidified. After the fibrous crushed material is kneaded and pressure dehydrated,
Molded and solidified structure, structure in which the fibrous crushed material is further beaten to crush and disintegrate into single fibers, structure in which lightweight aggregate is mixed in mortar or concrete, and inorganic powder is mixed in mortar or concrete And a configuration in which mortar or concrete is packed into a mold in a plurality of layers, and a plate-shaped FRP is sandwiched between the layers to be solidified.

【0011】[0011]

【作用】上記構成の本発明によれば、FRPの破砕物を
単繊維に破砕・解繊したものを普通のセメント及びモル
タルに混合した場合には、嵩比重、曲げ強さ、圧縮強度
が高められ、特に曲げ強さは破砕物の混合率の増加とと
もに大きくなる。また、軽量骨材を加えたモルタル又は
コンクリートに混合した場合には、普通モルタルの場合
よりも強度が高められ、特に軽量骨材を加えた場合の曲
げ強さは通常のモルタルの2倍〜4倍となる。また、熱
伝導率もFRPの繊維状破砕物の混合率の増加とともに
小さくなり、断熱効果が高められる。
According to the present invention having the above-mentioned constitution, when the crushed material of FRP is crushed and defibrated into single fibers and mixed with ordinary cement and mortar, the bulk specific gravity, bending strength and compressive strength are increased. In particular, the bending strength increases as the mixing ratio of the crushed material increases. In addition, when mixed with mortar or concrete containing lightweight aggregate, the strength is increased as compared with the case of ordinary mortar, and especially the bending strength in the case of adding lightweight aggregate is 2 to 4 times that of normal mortar. Doubled. In addition, the thermal conductivity also decreases as the mixing ratio of the fibrous crushed material of FRP increases, and the heat insulating effect is enhanced.

【0012】更に繊維状としたFRPの破砕物を無機質
粉末を加えたモルタル又はコンクリートに混合したもの
は、嵩比重、曲げ強さ、長さ変化率及び熱伝導率が高め
られ、モルタル又はコンクリートの層間にFRP板を挟
んで補強材として使用した場合にも、最終破壊強度が大
きく、靭性が著しく改善される。
Further, the crushed product of fibrous FRP is mixed with mortar or concrete to which inorganic powder is added, and the bulk specific gravity, bending strength, length change rate and thermal conductivity are increased, and mortar or concrete Even when an FRP plate is sandwiched between layers and used as a reinforcing material, the final breaking strength is large and the toughness is remarkably improved.

【0013】[0013]

【実施例】以下本発明にかかるFRPを補強材とするコ
ンクリート製品及びその製造方法の具体的な実施例を説
明する。
EXAMPLES Concrete examples of concrete products using FRP as a reinforcing material and a method for producing the same according to the present invention will be described below.

【0014】本発明者はFRP廃棄物の有効活用をはか
るという技術手段に関して鋭意研究を重ねた結果、この
FRPの破砕物をコンクリートの補強材として利用する
ことにより、コンクリートの曲げ強度を向上させ、軽量
化を可能とするとともに熱伝導率を小さくすることがで
きるという知見に基づいてなされたものである。
As a result of earnest studies on the technical means for effective utilization of FRP waste, the present inventor improved the bending strength of concrete by using the crushed material of FRP as a reinforcing material for concrete, This was made based on the finding that the weight can be reduced and the thermal conductivity can be reduced.

【0015】一般にFRPの破砕物をセメント・コンク
リートに混合すると、ガラス繊維とセメント中のアルカ
リとの反応によりアルカリシリケートゲルが生成し、更
に吸水膨潤してその膨張圧によりコンクリートの耐久性
が低下する懸念があるため、先ず予備実験として、FR
P破砕物のアルカリ・シリカ反応性について、JIS.
A.5308.付属書7(化学法)、付属書8(モルタ
ルバー法)に基づいて検討した。
In general, when a crushed product of FRP is mixed with cement / concrete, an alkali silicate gel is produced by the reaction between glass fiber and alkali in the cement, and further swelling by water absorption causes the expansion pressure to reduce the durability of concrete. Because of concern, first of all, as a preliminary experiment, FR
Regarding alkali-silica reactivity of P crushed product, JIS.
A. 5308. It was examined based on Appendix 7 (Chemical method) and Appendix 8 (Mortar bar method).

【0016】化学法の結果、FRP破砕物のアルカリ消
費量がガラス繊維単味の値よりも大きくなったが、これ
はポリエステル樹脂の加水分解にアルカリが消費された
ためであり、更に樹脂によりガラス繊維表面が覆われて
いるためにシリカの溶出が抑えられて溶解シリカ量の値
は小さくなっていることが判明した。また、モルタルバ
ー法の結果は、所定のセメント、細骨材の配合におい
て、細骨材の占める体積の全量をFRP破砕物で置換し
た配合の場合でも6ケ月後の膨張率は0.051%(判
定基準0.1%以下)であり、何れも無害であることが
判明した。
As a result of the chemical method, the alkali consumption of the FRP crushed product became larger than the value of the glass fiber alone, because the alkali was consumed for the hydrolysis of the polyester resin. It was found that since the surface is covered, the elution of silica is suppressed and the amount of dissolved silica is reduced. In addition, the result of the mortar bar method is that the expansion coefficient after 6 months is 0.051% even in the case of the composition in which the total volume of the volume occupied by the fine aggregate is replaced with the FRP crushed product in the prescribed cement and fine aggregate composition. (Judgment criteria: 0.1% or less), and all were found to be harmless.

【0017】更に破断面の電子顕微鏡観察による微組織
の分析評価を行ったところ、FRPの引き抜きによりで
きたと思われる穴が観察されるのみで、懸念されたFR
P破砕物周辺でのケイ酸ナトリウム等の生成は認められ
なかった。
Further, when the microstructure was analyzed and evaluated by observing the fracture surface by an electron microscope, only the holes which were considered to have been formed by the FRP extraction were observed, and the concerned FR was concerned.
No formation of sodium silicate or the like was observed around the P crushed material.

【0018】そこで、本発明にかかるFRPを補強材と
するコンクリート製品及びその製造方法として、先ず前
処理としてFRPを5ミリふるいを通過する程度の繊維
状に破砕した破砕物を叩解機で叩解し、樹脂部分と2〜
3mm以下の単繊維に破砕・解繊したものを用意した。
供試体(4×4×16cm)は多くの場合振動成形手段
によって成形し、初期養生は40℃×RH100%での
加熱養生とした。また、FRP繊維の混合量は、セメン
ト重量の5〜50%とした。以下に具体的な各種実施例
を説明する。
Therefore, as a concrete product using the FRP as a reinforcing material and a method for producing the same according to the present invention, first, as a pretreatment, a crushed material obtained by crushing the FRP into fibrous materials that pass through a 5 mm sieve is beaten with a beater. , The resin part and 2
A crushed and disentangled single fiber of 3 mm or less was prepared.
In many cases, the specimen (4 × 4 × 16 cm) was formed by a vibration forming means, and the initial curing was performed by heating at 40 ° C. × 100% RH. Further, the mixing amount of the FRP fiber was set to 5 to 50% of the cement weight. Various specific examples will be described below.

【0019】〔実施例1〕材料としてセメント500
g、豊浦標準砂1000g、水300g及びFRP繊維
状破砕物(セメントに対して5〜30%)を用意し、J
IS.R.5201に準じる混練機で混練して成形し
た。養生は成形後4時間は20℃×RH100%、20
時間は40℃×RH100%、12日間は20℃×RH
100%、その後40℃で24時間乾燥して試験に供し
た。この様にして得られたモルタル供試体のFRPの混
合量と物性を表1に示す。
Example 1 Cement 500 as a material
g, Toyoura standard sand 1000 g, water 300 g, and FRP fibrous crushed material (5 to 30% of cement) are prepared.
IS. R. It was kneaded and molded by a kneader according to 5201. Curing is 20 ° C x RH100%, 20 hours for 4 hours after molding
Time is 40 ° C × RH 100%, 12 days is 20 ° C × RH
The sample was dried at 100% and then at 40 ° C. for 24 hours and subjected to the test. The mixing amount of FRP and the physical properties of the mortar specimen thus obtained are shown in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】〔実施例2〕材料としてセメント500
g、豊浦標準砂1000g、水300g及びFRP繊維
状破砕物(セメントに対して10〜50%)及び減水分
散剤10ccを実施例1と同様に混練機で混練して成形
し、養生して得たモルタル供試体のFRPの混合量と物
性を表2に示す。
[Example 2] Cement 500 as a material
g, Toyoura standard sand 1000 g, water 300 g, FRP fibrous crushed material (10 to 50% with respect to cement), and 10 cc of water-reducing dispersant were kneaded in a kneading machine in the same manner as in Example 1 to obtain and cure. Table 2 shows the FRP mixing amount and physical properties of the mortar specimens.

【0022】[0022]

【表2】 [Table 2]

【0023】〔実施例3〕材料としてセメント500
g、軽量骨材としてパーライト190g、水300g及
びFRP破砕物(セメントに対して10〜30%)を実
施例1と同様に混練機で混練して成形し、養生して得た
モルタル供試体のFRPの混合量と物性を表3に示す。
[Embodiment 3] Cement 500 as a material
g, 190 g of pearlite as a lightweight aggregate, 300 g of water and FRP crushed material (10 to 30% with respect to cement) were kneaded and molded by a kneading machine in the same manner as in Example 1, and cured to obtain a mortar specimen. Table 3 shows the mixing amount and physical properties of FRP.

【0024】[0024]

【表3】 [Table 3]

【0025】〔実施例4〕材料としてセメント、無機質
粉末として蛇紋岩粉末、FRP繊維状破砕物を水中に分
散させ、脱水成形し、これを20℃×RH100%で6
日養生し、その後40℃で乾燥して板状製品を得た。各
材料の混合割合と得られた板状製品の物性を表4に示
す。尚、これらの板状品の鋸による切断、釘打ち等の施
工性は良好であった。
[Example 4] Cement as a material, serpentine powder as an inorganic powder, and FRP fibrous crushed material were dispersed in water and dehydrated and molded, and this was subjected to 6 at 20 ° C x 100% RH.
It was aged and then dried at 40 ° C. to obtain a plate-shaped product. Table 4 shows the mixing ratio of each material and the physical properties of the obtained plate-shaped product. The workability of cutting these plate-shaped products with a saw and nailing was good.

【0026】[0026]

【表4】 [Table 4]

【0027】〔実施例5〕JIS.A.5402に準じ
て、セメント:細骨材=1:2のモルタルに、FRP繊
維状破砕物を混合し、油圧機で加圧脱水成形し、初期養
生300度時、二次養生2500度時によって、厚形ス
レート(和形49判)を得た。得られた厚形スレートの
FRPの混合量と物性を表5に示す。
[Embodiment 5] JIS. A. According to 5402, mortar of cement: fine aggregate = 1: 2 is mixed with FRP fibrous crushed material, and pressure dehydration molding is performed by a hydraulic machine. Initial curing at 300 ° C. and secondary curing at 2500 ° C. A thick slate (Japanese type 49) was obtained. Table 5 shows the mixing amount of FRP and the physical properties of the obtained thick slate.

【0028】[0028]

【表5】 [Table 5]

【0029】〔実施例6〕セメント350g、豊浦標準
砂700g、水116g及び減水分散剤7ccを実施例
1と同様に混練機で混練してから型枠(8×18×4.
5cm)に2層に分けて詰め、そのほぼ中心部に、φ1
0mmの穴を開けたFRP板(6×16×0.5cm)
を挟み、振動加圧成形した。養生は実施例1と同条件と
した。得られた供試体のFRP板に開けた穴の面積と物
性を表6に示す。
Example 6 350 g of cement, 700 g of Toyoura standard sand, 116 g of water and 7 cc of a water reducing dispersant were kneaded in a kneader in the same manner as in Example 1 and then the form (8 × 18 × 4.
5cm) divided into 2 layers and packed into the center, φ1
FRP plate with a 0 mm hole (6 x 16 x 0.5 cm)
And sandwiched between them to perform vibration pressure molding. The curing was performed under the same conditions as in Example 1. Table 6 shows the area and physical properties of the holes formed in the FRP plate of the obtained specimen.

【0030】[0030]

【表6】 [Table 6]

【0031】以上の各実施例の結果から、実施例1に示
したようにFRP破砕物を普通モルタルに混合した場合
には、嵩比重が約1.8〜2.1g/cm3、曲げ強さ
は約40〜78kg/cm2、圧縮強度は310〜41
1kg/cm2の値が得られ、FRP破砕物の混合効果
は嵩比重に対しては混合率の増加とともに直線的に小さ
くなり、30%の混合率(50kg/m3)で約13%
軽量化された。曲げ強さはFRP破砕物の混合率の増加
とともに大きくなり、30%の混合で約2倍となった。
圧縮強さはFRP破砕物の混合率の増加とともに小さく
なる傾向が見られた。また、実施例2に示したように、
減水分散剤を添加したワーカブルなモルタルでは更にF
RPの繊維状破砕物を多く混合でき、強度をあまり低下
させることなく軽量化が可能となる。
From the results of the above examples, when the crushed FRP was mixed with ordinary mortar as shown in Example 1, the bulk specific gravity was about 1.8 to 2.1 g / cm 3 , and the bending strength was high. Approximately 40-78 kg / cm 2 , compressive strength is 310-41
A value of 1 kg / cm 2 was obtained, and the mixing effect of the FRP crushed product decreased linearly with the increase of the mixing ratio with respect to the bulk specific gravity, and at a mixing ratio of 30% (50 kg / m 3 ) it was about 13%.
It was made lighter. The flexural strength increased as the mixing ratio of the FRP crushed product increased, and doubled at 30% mixing.
The compressive strength tended to decrease as the mixing ratio of the FRP crushed product increased. In addition, as shown in Example 2,
In a workable mortar with a water reducing dispersant, F
A large amount of RP fibrous crushed materials can be mixed, and the weight can be reduced without significantly lowering the strength.

【0032】実施例3に示したように、軽量骨材として
パーライトを使用した軽量モルタルにFRPの繊維状破
砕物を混合した場合には、軽量化という点に対しては各
々の比重が同程度のために嵩比重が1.0〜1.1g/
cm3と影響が少ないが、強度に関しては普通モルタル
の場合よりも効果的となり、曲げ強さは約13〜32k
g/cm2と2倍〜4倍となり、圧縮強さも僅かに大き
くなった。
As shown in Example 3, when the FRP fibrous crushed product was mixed with the lightweight mortar using perlite as the lightweight aggregate, the specific gravities of the FRP and the crushed products were about the same. Has a bulk specific gravity of 1.0 to 1.1 g /
cm 3 has little effect, but the strength is more effective than ordinary mortar, and the bending strength is about 13 to 32k.
The g / cm 2 was 2 to 4 times, and the compressive strength was slightly increased.

【0033】更に実施例4に示したように、材料として
セメント、無機質粉末として蛇紋岩粉末、FRP繊維状
破砕物各30〜50%からなる脱水成形固化体は、嵩比
重が約1.1〜1.2g/cm3、曲げ強さは約45〜
69kg/cm2、長さ変化率0.16前後、熱伝導率
0.277のものを得た。
Further, as shown in Example 4, the dehydrated and solidified product comprising cement as a material, serpentine powder as an inorganic powder, and 30 to 50% of each FRP fibrous crushed material has a bulk specific gravity of about 1.1 to. 1.2 g / cm 3 , bending strength is about 45 ~
A product with a weight change of about 69 kg / cm 2 , a length change rate of about 0.16 and a thermal conductivity of 0.277 was obtained.

【0034】実施例5に示すように厚形スレートに混合
使用した場合、嵩比重、吸水率には影響は少ないが曲げ
強度を著しく改善させることができた。また、実施例6
に示したように板状のFRPを挟んで補強材として使用
することも効果的であり、最終破壊強度は補強しない場
合の1.7〜2.9倍(約81〜142kg/cm2
となり靭性が著しく改善された。
When the thick slate was mixed and used as shown in Example 5, the bending strength could be remarkably improved although the bulk specific gravity and the water absorption were little affected. In addition, Example 6
It is also effective to sandwich a plate-shaped FRP as a reinforcing material as shown in Fig. 7, and the final breaking strength is 1.7 to 2.9 times that of the case without reinforcement (about 81 to 142 kg / cm 2 ).
The toughness was remarkably improved.

【0035】以上の結果から、FRPの繊維状破砕物を
セメント重量の5〜30%程度混合することで軽量化と
曲げ強度及び熱伝導率が改善されるので、各種のコンク
リート製品への使用が可能であり、又脱水成形による板
状製品は、強度的にはやや小さいものの塗壁の下地材等
には充分使用が可能であることが確認された。
From the above results, it is possible to reduce the weight and improve the bending strength and the thermal conductivity by mixing the fibrous crushed material of FRP in an amount of about 5 to 30% of the weight of the cement, so that it can be used for various concrete products. It was confirmed that it is possible, and that the plate-shaped product obtained by dehydration molding is a little small in strength, but it can be sufficiently used as a base material for a coating wall.

【0036】[0036]

【発明の効果】以上詳細に説明したように、本発明にか
かるFRPを補強材とするコンクリート製品及びその製
造方法によれば、FRPを単に焼却する従来の手段にお
いて発生する媒煙及び炭酸ガス等の公害源としての問題
点がなくなり、しかも埋立場所を確保する必要性をなく
して、FRPの持つ特有の強靭性と耐腐食性に基づく廃
棄処理上の問題点を解決することができる。
As described in detail above, according to the concrete product using FRP as a reinforcing material and the method for producing the same according to the present invention, smoke and carbon dioxide gas generated in the conventional means of simply incinerating FRP, etc. As a pollution source, the problem of disposal processing based on the unique toughness and corrosion resistance of FRP can be solved without the need to secure a landfill site.

【0037】また、コンクリートに混合使用した場合に
は、特にコンクリートの曲げ強度が向上するとともに、
軽量化と断熱性の改善が顕著となる効果がある。更に補
強材として鋼繊維もしくは合成樹脂繊維等を用いる場合
に比してコストが低廉化されるという効果が得られる。
When mixed and used in concrete, the bending strength of the concrete is particularly improved, and
It has the effect of significantly reducing the weight and improving the heat insulation. Further, the cost can be reduced as compared with the case where steel fiber or synthetic resin fiber is used as the reinforcing material.

【0038】本発明は、従来は単に廃棄処理しているF
RP廃棄物の再利用をはかることが最大の特徴となって
おり、従って資源の有効活用という観点からも望まし
く、環境保全、自然保護上の問題となっているFRP廃
棄物の処理の問題をも解決できるという大きな効果を発
揮する。
In the present invention, the conventional method of simply discarding the F
The most important feature is the reuse of RP wastes, which is desirable from the viewpoint of effective use of resources, and also the problem of disposal of FRP wastes, which is a problem in environmental conservation and nature protection. It has a great effect of being able to solve it.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B09B 3/00 ZAB (72)発明者 上嶋 洋 香川県高松市花ノ宮町2丁目3番3号 工 業技術院四国工業技術試験所内 (72)発明者 北村 孝雄 香川県高松市花ノ宮町2丁目3番3号 工 業技術院四国工業技術試験所内 (72)発明者 浜田 和秀 高知県高知市布師田3992番地3 高知県工 業技術センター内 (72)発明者 河野 敏夫 高知県高知市布師田3992番地3 高知県工 業技術センター内 (72)発明者 藤原 正道 高知県高知市布師田3992番地3 高知県工 業技術センター内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI technical display location // B09B 3/00 ZAB (72) Inventor Hiroshi Uejima 2-3-3 Hananomiyacho, Takamatsu City, Kagawa Prefecture No. 2 Shikoku Institute of Industrial Technology, Institute of Industrial Technology (72) Inventor Takao Kitamura 2-3-3 Hananomiyacho, Takamatsu City, Kagawa Prefecture Inside Shikoku Institute of Industrial Technology, Institute of Industrial Technology (72) Inventor Kazuhide Hamada Kochi, Kochi Prefecture 3942 Fushida 3 Kochi Prefecture Industrial Technology Center (72) Inventor Toshio Kono 3992 Fushida Kochi City, Kochi Prefecture Kochi Prefecture Industrial Technology Center (72) Inventor Masamichi Fujiwara 3992 3 Fushida Kochi City, Kochi Prefecture Kochi Prefecture Industrial Technology Center

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 モルタル又はコンクリート中に混入する
補強材としてガラス繊維強化熱硬化性樹脂の破砕物を用
いたことを特徴とするガラス繊維強化熱硬化性樹脂を補
強材とするコンクリート製品。
1. A concrete product using a glass fiber reinforced thermosetting resin as a reinforcing material, wherein a crushed material of glass fiber reinforced thermosetting resin is used as a reinforcing material mixed in mortar or concrete.
【請求項2】 ガラス繊維強化熱硬化性樹脂の破砕物を
繊維状とした請求項1記載のガラス繊維強化熱硬化性樹
脂を補強材とするコンクリート製品。
2. A concrete product using the glass fiber reinforced thermosetting resin as a reinforcing material according to claim 1, wherein a crushed material of the glass fiber reinforced thermosetting resin is in a fibrous form.
【請求項3】 ガラス繊維強化熱硬化性樹脂の破砕物を
5ミリふるいを通過する程度の繊維状とした請求項1記
載のガラス繊維強化熱硬化性樹脂を補強材とするコンク
リート製品。
3. A concrete product using the glass fiber reinforced thermosetting resin as a reinforcing material according to claim 1, wherein the crushed material of the glass fiber reinforced thermosetting resin is made into a fibrous material that passes through a 5 mm sieve.
【請求項4】 繊維状としたガラス繊維強化熱硬化性樹
脂の破砕物を更に叩解して単繊維に破砕・解繊した請求
項2,3記載のガラス繊維強化熱硬化性樹脂を補強材と
するコンクリート製品。
4. The glass fiber reinforced thermosetting resin according to claim 2, wherein the crushed material of the fibrous glass fiber reinforced thermosetting resin is further beaten to crush and disintegrate into single fibers. Concrete products to do.
【請求項5】 混入率を5〜30%とした請求項1,
2,3,4記載のガラス繊維強化熱硬化性樹脂を補強材
とするコンクリート製品。
5. A mixture ratio of 5 to 30%
Concrete products using the glass fiber reinforced thermosetting resin described in 2, 3, 4 as a reinforcing material.
【請求項6】 ガラス繊維強化熱硬化性樹脂の繊維状破
砕物をモルタル又はコンクリートと混練した後、成形固
化したことを特徴とするガラス繊維強化熱硬化性樹脂を
補強材とするコンクリート製品の製造方法。
6. A method for producing a concrete product comprising a glass fiber reinforced thermosetting resin as a reinforcing material, which is obtained by kneading a fibrous crushed material of a glass fiber reinforced thermosetting resin with mortar or concrete and then molding and solidifying. Method.
【請求項7】 ガラス繊維強化熱硬化性樹脂の繊維状破
砕物をモルタル又はコンクリートに混練して加圧脱水し
た後、成形固化したことを特徴とするガラス繊維強化熱
硬化性樹脂を補強材とするコンクリート製品の製造方
法。
7. A glass fiber reinforced thermosetting resin as a reinforcing material, which is obtained by kneading a fibrous crushed product of a glass fiber reinforced thermosetting resin into mortar or concrete, pressurizing and dehydrating, and then molding and solidifying. Method for manufacturing concrete products.
【請求項8】 ガラス繊維強化熱硬化性樹脂の繊維状破
砕物を更に叩解して単繊維に破砕・解繊した請求項6,
7記載のガラス繊維強化熱硬化性樹脂を補強材とするコ
ンクリート製品の製造方法。
8. The glass fiber reinforced thermosetting resin fibrous crushed material is further beaten to crush and disintegrate into single fibers.
7. A method for producing a concrete product using the glass fiber reinforced thermosetting resin according to 7 as a reinforcing material.
【請求項9】 前記モルタル又はコンクリート中に軽量
骨材を混入してなる請求項6,7,8記載のガラス繊維
強化熱硬化性樹脂を補強材とするコンクリート製品の製
造方法。
9. The method for producing a concrete product using a glass fiber reinforced thermosetting resin as a reinforcing material according to claim 6, 7 or 8, wherein a lightweight aggregate is mixed into the mortar or concrete.
【請求項10】 前記モルタル又はコンクリート中に無
機質粉末を混入してなる請求項6,7,8記載のガラス
繊維強化熱硬化性樹脂を補強材とするコンクリート製品
の製造方法。
10. The method for producing a concrete product using a glass fiber reinforced thermosetting resin as a reinforcing material according to claim 6, wherein inorganic powder is mixed in the mortar or concrete.
【請求項11】 モルタル又はコンクリートを型枠に複
数層に分けて詰め、その層間に板状のガラス繊維強化熱
硬化性樹脂を挟んで成形固化したことを特徴とするガラ
ス繊維強化熱硬化性樹脂を補強材とするコンクリート製
品の製造方法。
11. A glass fiber reinforced thermosetting resin characterized in that mortar or concrete is packed into a mold in a plurality of layers, and plate-shaped glass fiber reinforced thermosetting resin is sandwiched between the layers to be molded and solidified. A method for producing a concrete product using as a reinforcing material.
JP18092793A 1993-06-25 1993-06-25 Concrete product using glass fiber reinforced thermosetting resin as a reinforcing material and method for producing the same Expired - Lifetime JP2540477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18092793A JP2540477B2 (en) 1993-06-25 1993-06-25 Concrete product using glass fiber reinforced thermosetting resin as a reinforcing material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18092793A JP2540477B2 (en) 1993-06-25 1993-06-25 Concrete product using glass fiber reinforced thermosetting resin as a reinforcing material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0781992A true JPH0781992A (en) 1995-03-28
JP2540477B2 JP2540477B2 (en) 1996-10-02

Family

ID=16091718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18092793A Expired - Lifetime JP2540477B2 (en) 1993-06-25 1993-06-25 Concrete product using glass fiber reinforced thermosetting resin as a reinforcing material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2540477B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209634A (en) * 1998-01-27 1999-08-03 Asics Corp Thermoplastic resin composition
US6009755A (en) * 1996-11-08 2000-01-04 Mitsubishi Denki Kabushiki Kaisha Ultrasonic transceiver displaying modified B scope
JP2000254919A (en) * 1999-03-10 2000-09-19 Toray Ind Inc Discarded frp crushed material and cement material, concrete member or resin member containing the crushed material
JP2002194330A (en) * 2000-12-26 2002-07-10 Ask Technica Corp Composition for forming joint sheet
JP2002356360A (en) * 2001-05-31 2002-12-13 Natsuki Kitao Recycle system utilizing concrete secondary product
JP2004107672A (en) * 2003-09-29 2004-04-08 Asics Corp Thermoplastic resin composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275548A (en) * 1990-03-14 1991-12-06 Asaoka Kk Cement-based composite material containing organic polymer made of waste fiber reinforced plastic powder as aggregate and hardened body thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275548A (en) * 1990-03-14 1991-12-06 Asaoka Kk Cement-based composite material containing organic polymer made of waste fiber reinforced plastic powder as aggregate and hardened body thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6009755A (en) * 1996-11-08 2000-01-04 Mitsubishi Denki Kabushiki Kaisha Ultrasonic transceiver displaying modified B scope
JPH11209634A (en) * 1998-01-27 1999-08-03 Asics Corp Thermoplastic resin composition
JP2000254919A (en) * 1999-03-10 2000-09-19 Toray Ind Inc Discarded frp crushed material and cement material, concrete member or resin member containing the crushed material
JP2002194330A (en) * 2000-12-26 2002-07-10 Ask Technica Corp Composition for forming joint sheet
JP2002356360A (en) * 2001-05-31 2002-12-13 Natsuki Kitao Recycle system utilizing concrete secondary product
JP2004107672A (en) * 2003-09-29 2004-04-08 Asics Corp Thermoplastic resin composition

Also Published As

Publication number Publication date
JP2540477B2 (en) 1996-10-02

Similar Documents

Publication Publication Date Title
Siddika et al. State-of-the-art-review on rice husk ash: A supplementary cementitious material in concrete
Adesina et al. Overview of trends in the application of waste materials in self-compacting concrete production
Amran et al. Performance investigation of high-proportion Saudi-fly-ash-based concrete
Gao et al. Mechanical properties of steel fiber-reinforced, high-strength, lightweight concrete
Mostafa et al. Investigation the properties of sustainable ultra-high-performance basalt fibre self-compacting concrete incorporating nano agricultural waste under normal and elevated temperatures
Hosen et al. Investigation of structural characteristics of palm oil clinker based high-strength lightweight concrete comprising steel fibers
CN113816696A (en) Recycled fine aggregate internal curing-based ultrahigh-performance concrete and preparation method thereof
Mohammadhosseini et al. Production of sustainable fibre-reinforced concrete incorporating waste chopped metallic film fibres and palm oil fuel ash
Raza et al. Mechanical properties, flexural behavior, and chloride permeability of high-performance steel fiber-reinforced concrete (SFRC) modified with rice husk ash and micro-silica
Bei-Xing et al. The mechanical properties of polypropylene fiber reinforced concrete
Althoey et al. Effect of fly ash and waste glass powder as a fractional substitute on the performance of natural fibers reinforced concrete
Qaidi Behavior of Concrete Made of Recycled PET Waste and Confined with CFRP Fabrics
Wu et al. Effect of fibre type and content on performance of bio-based concrete containing heat-treated apricot shell
Gradinaru et al. Investigations on the mechanical properties of concrete with sheep wool fibers and fly ash
Chin et al. Predictive models for mechanical properties of hybrid fibres reinforced concrete containing bamboo and basalt fibres
CN115340329A (en) Recycled fine aggregate-magnesium oxide base expanding agent ultrahigh-performance concrete and preparation method thereof
Hussain et al. Some properties of reactive powder concrete contain recycled glass powder
Ghone et al. Toughness improvement of low strength ceramsite lightweight concrete by polypropylene fiber and recycled rubber particle
JP2540477B2 (en) Concrete product using glass fiber reinforced thermosetting resin as a reinforcing material and method for producing the same
Zhu et al. Mechanical properties, durability and environmental assessment of low-carbon cementitious composite with natural fibrous wollastonite
Revathi et al. Behaviour of concrete with PET bottles as fibers & silica fume as partial replacement of cement
Farooq et al. Influence of hybrid coir-steel fibres on the mechanical behaviour of high-performance concrete: Step towards a novel and eco-friendly hybrid-fibre reinforced concrete
Demircan et al. The effect of animal and synthetic fibers on the physico-mechanical durability and microstructure properties of natural hydraulic lime-based mortars
Qasim et al. The Effect of Different Curing Temperatures on Properties of Reactive Powder Concrete Reinforced by Micro Steel Fibers
Tariq et al. Physio-Mechanical and Thermal Properties of Concrete Produced by Partial Replacement of Sand with Plastic Fines: Mechanical & Thermal performance of plastic waste concrete

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term