JP2004107203A - Electronic component firing tool - Google Patents

Electronic component firing tool Download PDF

Info

Publication number
JP2004107203A
JP2004107203A JP2003303809A JP2003303809A JP2004107203A JP 2004107203 A JP2004107203 A JP 2004107203A JP 2003303809 A JP2003303809 A JP 2003303809A JP 2003303809 A JP2003303809 A JP 2003303809A JP 2004107203 A JP2004107203 A JP 2004107203A
Authority
JP
Japan
Prior art keywords
zirconia
electronic component
zirconia layer
jig
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003303809A
Other languages
Japanese (ja)
Other versions
JP4277950B2 (en
Inventor
Kazutomo Hoshino
星野 和友
Hitoshi Kajino
梶野 仁
Yasuhisa Izutsu
井筒 靖久
Koji Horiuchi
堀内 幸士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2003303809A priority Critical patent/JP4277950B2/en
Publication of JP2004107203A publication Critical patent/JP2004107203A/en
Application granted granted Critical
Publication of JP4277950B2 publication Critical patent/JP4277950B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Furnace Charging Or Discharging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electronic component firing tool which is obtained by an inexpensive thick-film forming method and excellent in anti-exfoliation property and wear resistance of a zirconia layer. <P>SOLUTION: In the electronic component firing tool having a base material and the coated zirconia layer on the surface of the base material, at least one kind of metal oxide forming a liquid phase is incorporated for improving the anti-exfoliation property and the wear resistance at the time of firing the zirconia layer, and after sintering, the liquid phase crystallizes. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、誘電体、積層コンデンサ、セラミックコンデンサ、圧電素子、サーミスタ等の電子部品を焼成する際に用いる、セッター、棚板、匣鉢等の電子部品焼成用治具に関する。 The present invention relates to a jig for firing electronic parts such as setters, shelf boards, and mortars, which are used when firing electronic parts such as dielectrics, multilayer capacitors, ceramic capacitors, piezoelectric elements, and thermistors.

 電子部品焼成用治具として必要な性能は耐熱性や機械的強度の他に、焼成するセラミック電子部品と反応しないことが要求される。誘電体等の電子部品ワークが焼成用治具と接触し反応すると、融着したり、ワークの組成変動によって特性低下が生ずる等の問題点がある。 The performance required as a jig for firing electronic parts is required not to react with ceramic electronic parts to be fired in addition to heat resistance and mechanical strength. When an electronic component workpiece such as a dielectric contacts and reacts with the firing jig, there are problems such as fusion or deterioration of characteristics due to variation in the composition of the workpiece.

通常これらの電子部品焼成用治具の基材として、アルミナ系材料、アルミナームライト系材料、アルミナージルコニア系材料、アルミナーマグネシア系スピネル材料、アルミナームライトーコージェライト系材料、又はこれらの組み合わせによる材料が使用されている(特許文献1、2参照)。
特開2001−213666 特開平8−253381
Usually, as a base material for jigs for firing these electronic components, alumina material, aluminalite material, alumina zirconia material, alumina magnesia spinel material, aluminalite cordierite material, or a combination thereof Materials are used (see Patent Documents 1 and 2).
JP 2001-213666 A JP-A-8-253381

 またワークとの反応を防止するために、表面層にジルコニア(酸化ジルコニウム)を被覆する方法が採用されている。ジルコニアは基材との反応性は低いが、該基材との熱膨張係数の差が大きいため繰り返し熱サイクルが生ずる使用環境下では治具の被覆に亀裂が生じたり、剥離するといった問題がある。また治具を繰り返し使用する場合、表面のジルコニア層に含まれる粒子が脱落する耐脱粒性や耐摩耗性が低いと、電子部品に微粒子が混入し著しい問題となる。 In order to prevent reaction with the workpiece, a method of covering the surface layer with zirconia (zirconium oxide) is employed. Zirconia has low reactivity with the base material, but due to the large difference in thermal expansion coefficient with the base material, there is a problem that the coating of the jig is cracked or peeled off under the usage environment in which repeated thermal cycling occurs. . Further, when the jig is used repeatedly, if the anti-granulation resistance and abrasion resistance at which particles contained in the zirconia layer on the surface drop off are low, fine particles are mixed into the electronic component, which causes a significant problem.

更にジルコニアは略1100℃近傍で単斜晶から正方晶への相変化が起こる。その結果繰り返し熱サイクルによる相変態に伴う熱膨張係数の変化により、ジルコニアの被覆層が脱離し易いという問題点がある。なお未安定化ジルコニアを使用する場合には、相変態に伴う粉化が生じやすく耐脱粒性が低下する。 Furthermore, zirconia undergoes a phase change from monoclinic to tetragonal at about 1100 ° C. As a result, there is a problem that the coating layer of zirconia is easily detached due to a change in the thermal expansion coefficient accompanying the phase transformation due to repeated thermal cycling. When unstabilized zirconia is used, pulverization associated with phase transformation is likely to occur, and the anti-degranulation property is lowered.

 電子部品焼成用治具の基材表面にジルコニア層を形成する方法として、塗布法、ディップコート法、スプレーコーティング法等がある。これらの方法は比較的安価で工業用生産に適するが、形成されたジルコニア層の耐剥離性や耐摩耗性が十分ではない場合がある。 There are a coating method, a dip coating method, a spray coating method, and the like as a method for forming a zirconia layer on the surface of a base material of an electronic component firing jig. These methods are relatively inexpensive and suitable for industrial production, but the formed zirconia layer may not have sufficient peel resistance and wear resistance.

特に、繰り返し熱サイクルが電子部品焼成用治具に対して負荷される環境では、ジルコニア層が基材から剥離したり、脱粒が生じたりする場合がある。
 本発明のジルコニア層はこのような安価な厚膜形成法を用いても、ジルコニア層の耐剥離性、耐摩耗性に優れた電子部品焼成用治具を提供することを目的とする。
In particular, in an environment in which a repeated thermal cycle is applied to the electronic component firing jig, the zirconia layer may be peeled off from the base material or degranulation may occur.
An object of the zirconia layer of the present invention is to provide a jig for firing an electronic component that is excellent in the peel resistance and wear resistance of the zirconia layer even when such an inexpensive thick film forming method is used.

 本発明は、基材表面にジルコニア層を形成した後、このジルコニア層を焼成する際に耐剥離性及び耐摩耗性を向上するために液相を形成する1種以上の金属酸化物を含むことにより、また焼結後にはこれらの液相が結晶化することにより基材表面に耐剥離性、耐摩耗性に優れたジルコニア層を形成する方法を提供するものである。 The present invention includes one or more metal oxides that form a liquid phase in order to improve peel resistance and wear resistance when a zirconia layer is formed on a substrate surface and then fired. In addition, the present invention provides a method for forming a zirconia layer having excellent peeling resistance and abrasion resistance on the surface of a substrate by crystallizing these liquid phases after sintering.

即ち,基材、該基材表面に被覆されたジルコニア層を含んで成る電子部品焼成用治具において、ジルコニア層の焼成に際して耐剥離性及び耐摩耗性を向上するために液相を形成する1種以上の金属酸化物を含んで成り、焼結後にはこれらの液相が結晶化することを特徴とする電子部品焼成用治具である。 That is, in a jig for firing an electronic component comprising a substrate and a zirconia layer coated on the surface of the substrate, a liquid phase is formed in order to improve peeling resistance and wear resistance when firing the zirconia layer. An electronic component firing jig characterized by comprising a metal oxide of at least a seed and crystallizing these liquid phases after sintering.

また、ジルコニア層に含まれる金属酸化物として、希土類酸化物、アルカリ土類酸化物、及び遷移金属酸化物から選択される1種以上の金属酸化物又は酸化アルミニウムを含んで成ることを特徴とする前記記載の電子部品焼成用治具である。 In addition, the metal oxide contained in the zirconia layer includes one or more metal oxides selected from rare earth oxides, alkaline earth oxides, and transition metal oxides, or aluminum oxide. The electronic component firing jig described above.

また、ジルコニア層に含まれる金属酸化物として、前記記載の酸化物群から選択される複合酸化物を用いることを特徴とする前記記載の電子部品焼成用治具である。 In the electronic component firing jig described above, a composite oxide selected from the oxide group described above is used as the metal oxide contained in the zirconia layer.

また、ジルコニア層に含まれる不純物が5wt%以下であることを特徴とする前記記載の電子部品焼成用治具である。 Further, in the electronic component firing jig described above, the impurity contained in the zirconia layer is 5 wt% or less.

また、ジルコニア層を形成する主成分のジルコニアが安定化、部分安定化及び未安定化ジルコニアであることを特徴とする前記記載の電子部品焼成用治具である。 In the electronic component firing jig described above, the zirconia as a main component forming the zirconia layer is stabilized, partially stabilized or unstabilized zirconia.

 以上のように、本発明のジルコニア層は安価な厚膜形成法によるものであって、ジルコニア層の耐剥離性、耐摩耗性に優れた電子部品焼成用治具を提供することができる。 As described above, the zirconia layer of the present invention is based on an inexpensive thick film forming method, and can provide a jig for firing an electronic component that is excellent in the peel resistance and wear resistance of the zirconia layer.

以下本発明を詳細に説明する。本発明は、ジルコニア層に含まれる液相を形成する金属酸化物として、酸化イットリウム、酸化ランタン等の希土類酸化物、酸化カルシウム、酸化バリウム等のアルカリ土類酸化物、及び酸化チタン、酸化ニオブ、酸化マンガン等の遷移金属酸化物から選択される1種以上の金属酸化物又は酸化アルミニウムを選択することにより、耐剥離性、耐摩耗性に優れたジルコニア層を含む電子部品焼成用治具を提供できる。   The present invention will be described in detail below. The present invention provides a metal oxide forming a liquid phase contained in the zirconia layer, rare earth oxides such as yttrium oxide and lanthanum oxide, alkaline earth oxides such as calcium oxide and barium oxide, and titanium oxide and niobium oxide. Providing a jig for firing electronic parts including a zirconia layer excellent in peeling resistance and wear resistance by selecting one or more metal oxides or aluminum oxide selected from transition metal oxides such as manganese oxide it can.

 本発明では1種類以上の金属酸化物又は酸化アルミニウムを選択することにより、これらの酸化物が主成分のジルコニア層を含む2種類以上の酸化物間で反応が起こり、一部には溶融して液相を形成し、ジルコニア粒子間の結合を強固にする。さらに液相を形成した焼結後にはこれらの反応生成物が結晶化することが望ましい。結晶化により電子部品を焼成する温度、例えば1300℃におけるジルコニア層の耐久性は良好に保たれる。 In the present invention, by selecting one or more kinds of metal oxides or aluminum oxides, a reaction occurs between two or more kinds of oxides including the zirconia layer containing the main component, and some of them are melted. Forms a liquid phase and strengthens the bond between zirconia particles. Furthermore, it is desirable that these reaction products crystallize after sintering to form a liquid phase. The durability of the zirconia layer at a temperature at which the electronic component is baked by crystallization, for example, 1300 ° C., is kept good.

 これらのジルコニア層に含まれる金属酸化物としては複合酸化物jの形で添加することができる。例えば酸化バリウムと酸化チタンの2種類の金属酸化物を添加する場合、適量のチタン酸バリウム複合酸化物として添加することができる。 The metal oxide contained in these zirconia layers can be added in the form of composite oxide j. For example, when two kinds of metal oxides of barium oxide and titanium oxide are added, they can be added as an appropriate amount of barium titanate composite oxide.

 また上記の金属酸化物以外にジルコニア層に含まれる不純物、例えば、酸化亜鉛、酸化ビスマス、酸化ナトリウム、酸化珪素等は上記の金属酸化物との反応を促進する場合にも、より好ましくは1wt%、最大でも5wt%以下にすることが好ましい。これらの不純物が5wt%を越えると、液相形成温度が低下し、電子部品の焼成温度、例えば1300℃でも液相が形成され、ジルコニア層の表面で焼成する電子部品と反応が起こったり、耐剥離性が低下する。またこのように不純物が5wt%を越えて多くなると、ジルコニア層の焼結後にガラス相が形成され易くなり、ジルコニア層が変形したり結合強度が著しく低下する原因となる。 In addition to the above metal oxides, impurities contained in the zirconia layer, such as zinc oxide, bismuth oxide, sodium oxide, silicon oxide, etc. are more preferably 1 wt% when promoting the reaction with the above metal oxides. The maximum is preferably 5 wt% or less. If these impurities exceed 5 wt%, the liquid phase formation temperature decreases, a liquid phase is formed even at the firing temperature of the electronic component, for example, 1300 ° C., and a reaction occurs with the electronic component fired on the surface of the zirconia layer. The peelability is reduced. In addition, when the amount of impurities exceeds 5 wt%, a glass phase is easily formed after the zirconia layer is sintered, which causes the zirconia layer to be deformed and the bond strength to be significantly reduced.

 ジルコニア層に添加する金属酸化物粒子の粒径は0.1μm〜100μmを選択できるが、液相を形成する成分として添加する場合には10μm以下が望ましい。ジルコニア層を形成する主成分のジルコニア粒子は未安定化、部分安定化、安定化ジルコニアを用いることができ、これらの粒径は、ジルコニア層の表面粗さや気孔径を考慮して各種選択できる。例えば平均粒径は100μmである。 The particle size of the metal oxide particles added to the zirconia layer can be selected from 0.1 μm to 100 μm, but when added as a component forming a liquid phase, it is preferably 10 μm or less. Unstabilized, partially stabilized, and stabilized zirconia can be used as the main component zirconia particles forming the zirconia layer, and these particle sizes can be variously selected in consideration of the surface roughness and pore size of the zirconia layer. For example, the average particle size is 100 μm.

 さらに主成分のジルコニア粒子として平均粒径1μmの微粒と平均粒径100μmの粗粒を組み合わせることもできる。このような場合には微粒ジルコニアと添加した金属酸化物が反応し、液相を形成してジルコニア層の結合強度を高めることができる。
 ジルコニア層に添加する金属酸化物の量は好ましくは0.1wt%から20wt%であり、これ以上添加量が増えると電子部品ワークとの反応が起こったり、ガラス相が形成されて耐剥離性が低下する等の問題が生ずる。
Further, fine particles having an average particle size of 1 μm and coarse particles having an average particle size of 100 μm can be combined as the main component zirconia particles. In such a case, the fine zirconia and the added metal oxide react to form a liquid phase to increase the bonding strength of the zirconia layer.
The amount of the metal oxide added to the zirconia layer is preferably 0.1 wt% to 20 wt%, and if the added amount is further increased, a reaction with the electronic component work occurs, or a glass phase is formed and the peeling resistance is improved. Problems such as lowering occur.

 基材表面へのジルコニア層の形成は、ジルコニウム化合物溶液の塗布及び熱分解による方法、ジルコニア化合物溶液やジルコニア粉末及び選択した金属酸化物の溶液をスプレーコーティングする方法、基材をこれらの溶液に浸漬した後、熱分解して前記化合物をジルコニアに変換する方法等の従来法に従って行えばよい。使用する基材は従来と同様で良く、例えばアルミナ系、アルミナ−ムライト系、アルミナ−マグネシア系スピネル材料、アルミナ−ムライト−コージェライト系材料、又はこれらの組み合わせによる材料が使用される。 Formation of the zirconia layer on the surface of the substrate is performed by applying a zirconium compound solution and pyrolysis, spray coating a zirconia compound solution or zirconia powder and a solution of a selected metal oxide, and immersing the substrate in these solutions. Then, it may be carried out according to a conventional method such as a method of thermally decomposing and converting the compound into zirconia. The base material to be used may be the same as the conventional one. For example, an alumina-based material, an alumina-mullite-based material, an alumina-magnesia-based spinel material, an alumina-mullite-cordierite-based material, or a combination thereof is used.

 このような基材とジルコニア層を含む電子部品焼成用治具の焼成温度は、実際に電子部品を焼成する温度より高い温度で焼成して本発明の電子部品焼成用治具が使用時に劣化しないようにすることが望ましい。従って通常の電子部品焼成温度は1200〜1400℃であるので、ジルコニア層焼成温度は1300〜1600℃程度とすることが好ましい。 The firing temperature of an electronic component firing jig including such a base material and a zirconia layer is fired at a temperature higher than the temperature at which the electronic component is actually fired, and the electronic component firing jig of the present invention does not deteriorate during use. It is desirable to do so. Accordingly, since the normal electronic component firing temperature is 1200 to 1400 ° C., the zirconia layer firing temperature is preferably about 1300 to 1600 ° C.

 このような本発明により耐剥離性、耐摩耗性が向上した電子部品焼成用治具のよりよい理解のために、ジルコニア層の微細組織の模式図を図1に示す。図1に示されたように一部にはジルコニア粒子同士が液相を介して結合し、また一部には基材とジルコニア層が液相を介して結合し、これらが結晶化することにより、耐剥離性及び耐摩耗性が著しく向上するものと考えられる。 FIG. 1 shows a schematic diagram of the microstructure of the zirconia layer in order to better understand the jig for firing electronic parts having improved peel resistance and wear resistance according to the present invention. As shown in FIG. 1, zirconia particles are partially bonded to each other via a liquid phase, and partly a base material and a zirconia layer are bonded to each other via a liquid phase. It is considered that the peel resistance and the wear resistance are remarkably improved.

 本発明の電子部品焼成用治具の製造に関する実施例を記載するが、該実施例は本発明を限定するものではない。 Examples relating to the production of the electronic component firing jig of the present invention will be described, but the examples do not limit the present invention.

 (実施例1)
 基材として、シリカ成分が約10wt%のアルミナームライト基材を使用した。ジルコニア層の主成分として、平均粒径が80μmのイットリア安定化ジルコニアを70wt%、平均粒径が3μmのイットリア安定化ジルコニアを20wt%、及びカルシア安定化ジルコニアを7wt%用い、金属酸化物として平均粒径が1μmの酸化アルミニウムを3wt%添加した混合物を準備した。
Example 1
As the substrate, an alumite substrate having a silica component of about 10 wt% was used. As the main component of the zirconia layer, yttria stabilized zirconia having an average particle size of 80 μm, 70 wt% of yttria stabilized zirconia having an average particle size of 3 μm, and 7 wt% of calcia stabilized zirconia are used as an average metal oxide. A mixture to which 3 wt% of aluminum oxide having a particle size of 1 μm was added was prepared.

また不純物として上記の粉末に対して0.5wt%のSnO2を添加した。これらをボールミルで均一に混合し、水とバインダーであるポリビニルアルコールを加えてスラリーとした。このスラリーを前記の基材表面にスプレーコートした。得られたジルコニア層の厚さは約150μmであった。このスプレーコートした基材を100℃で乾燥後、1400〜1600℃で2時間保持し、焼成したジルコニア層を作製して電子部品焼成用治具とした。 Further, 0.5 wt% SnO2 was added as an impurity to the above powder. These were uniformly mixed with a ball mill, and water and polyvinyl alcohol as a binder were added to form a slurry. This slurry was spray coated on the substrate surface. The thickness of the obtained zirconia layer was about 150 μm. The spray-coated substrate was dried at 100 ° C., held at 1400 to 1600 ° C. for 2 hours, and a baked zirconia layer was produced to obtain an electronic component firing jig.

 この電子部品焼成用治具のジルコニア層の耐剥離性及び耐摩耗性を調べるため、該電子部品焼成用治具を、3時間かけて500℃から1300℃へ急熱し、次いで3時間かけて1300℃から500℃へ急冷する熱サイクルを30回繰り返した。熱サイクル30回を繰り返したところで、剥離しなかったジルコニア層に対しては耐摩耗試験を実施した。 In order to examine the peel resistance and wear resistance of the zirconia layer of this electronic component firing jig, the electronic component firing jig was rapidly heated from 500 ° C. to 1300 ° C. over 3 hours, and then 1300 over 3 hours. The thermal cycle of rapid cooling from 500C to 500C was repeated 30 times. When the heat cycle was repeated 30 times, an abrasion resistance test was performed on the zirconia layer that did not peel.

 耐摩耗性試験はSiC研磨紙の上で、一定荷重を電子部品焼成用治具の試料に加えて、コーティング表面を研磨(一定距離で一定回数を実施)し、試料の重量減少を測定した。摩耗量は比較例2の摩耗量を1とした場合の相対値で表してある。例えば比較例2に対して摩耗量が半分であれば0.5である。これらの結果を表1に示した。 In the abrasion resistance test, a constant load was applied to a sample of an electronic component firing jig on a SiC abrasive paper, the coating surface was polished (performed a fixed number of times at a fixed distance), and the weight loss of the sample was measured. The amount of wear is expressed as a relative value when the amount of wear in Comparative Example 2 is 1. For example, when the wear amount is half that of Comparative Example 2, it is 0.5. These results are shown in Table 1.

Figure 2004107203
Figure 2004107203

(実施例2)
 ジルコニア層の主成分として、平均粒径が70μmのイットリア安定化ジルコニアを90wt%、平均粒径が3μmのカルシア安定化ジルコニアを5wt%用い、金属酸化物として平均粒径が1μmの酸化ランタンを2wt%、酸化バリウムを3wt%添加した以外は、実施例1と同様にして、混合物が得られた。これらをボールミルで均一に混合し、水とバインダーであるポリビニルアルコールを加えてスラリーとし、このスラリーを前記の基材表面にスプレーコートした。このスプレーコートした基材を100℃で乾燥後、1400〜1600℃で2時間保持し、焼成したジルコニア層を作製して電子部品焼成用治具とした。得られた電子部品焼成用治具のジルコニア層の耐剥離性及び耐摩耗性を調べた。これらの結果を表1に示した。
(Example 2)
As the main component of the zirconia layer, 90 wt% of yttria stabilized zirconia having an average particle diameter of 70 μm, 5 wt% of calcia stabilized zirconia having an average particle diameter of 3 μm, and 2 wt. Of lanthanum oxide having an average particle diameter of 1 μm as a metal oxide. %, And barium oxide was added in the same manner as in Example 1 except that 3 wt% of barium oxide was added. These were uniformly mixed with a ball mill, water and polyvinyl alcohol as a binder were added to form a slurry, and this slurry was spray-coated on the substrate surface. The spray-coated substrate was dried at 100 ° C., held at 1400 to 1600 ° C. for 2 hours, and a baked zirconia layer was produced to obtain an electronic component firing jig. The peel resistance and wear resistance of the zirconia layer of the obtained electronic component firing jig were examined. These results are shown in Table 1.

(実施例3)
 ジルコニア層の主成分として、平均粒径が100μmのイットリア安定化ジルコニアを70wt%、平均粒径が1μmのイットリア安定化ジルコニアを26wt%用い、金属酸化物として平均粒径が1μmの酸化カルシウムを1wt%、酸化チタンを3wt%添加した以外は、実施例1と同様にして、混合物が得られた。これらをボールミルで均一に混合し、水とバインダーであるポリビニルアルコールを加えてスラリーとし、このスラリーを前記の基材表面にスプレーコートした。このスプレーコートした基材を100℃で乾燥後、1400〜1600℃で2時間保持し、焼成したジルコニア層を作製して電子部品焼成用治具とした。得られた電子部品焼成用治具のジルコニア層の耐剥離性及び耐摩耗性を調べた。これらの結果を表1に示した。
(Example 3)
As main components of the zirconia layer, 70 wt% of yttria stabilized zirconia having an average particle diameter of 100 μm, 26 wt% of yttria stabilized zirconia having an average particle diameter of 1 μm, and 1 wt% of calcium oxide having an average particle diameter of 1 μm as a metal oxide. % And titanium oxide was added in the same manner as in Example 1 except that 3 wt% of titanium oxide was added. These were uniformly mixed with a ball mill, water and polyvinyl alcohol as a binder were added to form a slurry, and this slurry was spray-coated on the substrate surface. The spray-coated substrate was dried at 100 ° C., held at 1400 to 1600 ° C. for 2 hours, and a baked zirconia layer was produced to obtain an electronic component firing jig. The peel resistance and wear resistance of the zirconia layer of the obtained electronic component firing jig were examined. These results are shown in Table 1.

(実施例4)
 ジルコニア層の主成分として、平均粒径が150μmのイットリア安定化ジルコニアを80wt%、平均粒径が1μmの未安定化ジルコニアを15wt%用い、金属酸化物として平均粒径が1μmの酸化カルシウムを2wt%、酸化イットリウムを2wt%、酸化ニオブを1wt%添加した以外は、実施例1と同様にして、混合物が得られた。これらをボールミルで均一に混合し、水とバインダーであるポリビニルアルコールを加えてスラリーとした。このスラリーを前記の基材表面にスプレーコートし、このスプレーコートした基材を100℃で乾燥後、1400〜1600℃で2時間保持し、焼成したジルコニア層を作製して電子部品焼成用治具とした。得られた電子部品焼成用治具のジルコニア層の耐剥離性及び耐摩耗性を調べた。これらの結果を表1に示した。
Example 4
As main components of the zirconia layer, 80 wt% of yttria stabilized zirconia having an average particle diameter of 150 μm, 15 wt% of unstabilized zirconia having an average particle diameter of 1 μm, and 2 wt% of calcium oxide having an average particle diameter of 1 μm as a metal oxide. %, 2 wt% of yttrium oxide, and 1 wt% of niobium oxide were added in the same manner as in Example 1 to obtain a mixture. These were uniformly mixed with a ball mill, and water and polyvinyl alcohol as a binder were added to form a slurry. The slurry is spray-coated on the surface of the base material, and the spray-coated base material is dried at 100 ° C. and then held at 1400 to 1600 ° C. for 2 hours to produce a baked zirconia layer to produce an electronic component firing jig. It was. The peel resistance and wear resistance of the zirconia layer of the obtained electronic component firing jig were examined. These results are shown in Table 1.

(実施例5)
 ジルコニア層の主成分として、平均粒径が100μmのイットリア安定化ジルコニアを60wt%、平均粒径が5μmのイットリア安定化ジルコニアを35wt%用い、金属酸化物として平均粒径が1μmの酸化ストロンチウムを2wt%、チタン酸バリウムを3wt%添加した混合物に、不純物として上記の粉末に対して0.5wt%のBi2O3を添加した以外は、実施例1と同様にして、混合物が得られた。これらをボールミルで均一に混合し、水とバインダーであるポリビニルアルコールを加えてスラリーとし、このスラリーを前記の基材表面にスプレーコートした。このスプレーコートした基材を100℃で乾燥後、1400〜1600℃で2時間保持し、焼成したジルコニア層を作製して電子部品焼成用治具とした。得られた電子部品焼成用治具のジルコニア層の耐剥離性及び耐摩耗性を調べた。これらの結果を表1に示した。
(Example 5)
As main components of the zirconia layer, 60 wt% of yttria-stabilized zirconia having an average particle diameter of 100 μm, 35 wt% of yttria-stabilized zirconia having an average particle diameter of 5 μm, and 2 wt. Of strontium oxide having an average particle diameter of 1 μm as a metal oxide are used. A mixture was obtained in the same manner as in Example 1 except that 0.5 wt% Bi2O3 was added as an impurity to the mixture to which 3 wt% of barium titanate was added. These were uniformly mixed with a ball mill, water and polyvinyl alcohol as a binder were added to form a slurry, and this slurry was spray-coated on the substrate surface. The spray-coated substrate was dried at 100 ° C. and held at 1400 to 1600 ° C. for 2 hours to produce a baked zirconia layer, which was used as an electronic component firing jig. The peel resistance and wear resistance of the zirconia layer of the obtained electronic component firing jig were examined. These results are shown in Table 1.

(比較例1)
 ジルコニア層の主成分として、平均粒径が150μmのイットリア安定化ジルコニアを20wt%、平均粒径が5μmの未安定化ジルコニアを50wt%用い、金属酸化物として平均粒径が1μmの酸化バリウムを30wt%添加した以外は、実施例1と同様にして、混合物が得られた。これらをボールミルで均一に混合し、水とバインダーであるポリビニルアルコールを加えてスラリーとし、このスラリーを前記の基材表面にスプレーコートした。このスプレーコートした基材を100℃で乾燥後、1400〜1600℃で2時間保持し、焼成したジルコニア層を作製して電子部品焼成用治具とした。得られた電子部品焼成用治具のジルコニア層の耐剥離性及び耐摩耗性を調べた。これらの結果を表1に示した。
(Comparative Example 1)
As main components of the zirconia layer, 20 wt% of yttria stabilized zirconia having an average particle diameter of 150 μm, 50 wt% of unstabilized zirconia having an average particle diameter of 5 μm, and 30 wt. Of barium oxide having an average particle diameter of 1 μm as a metal oxide. A mixture was obtained in the same manner as in Example 1, except that% was added. These were uniformly mixed with a ball mill, water and polyvinyl alcohol as a binder were added to form a slurry, and this slurry was spray-coated on the substrate surface. The spray-coated substrate was dried at 100 ° C. and held at 1400 to 1600 ° C. for 2 hours to produce a baked zirconia layer, which was used as an electronic component firing jig. The peel resistance and wear resistance of the zirconia layer of the obtained electronic component firing jig were examined. These results are shown in Table 1.

(比較例2)
  ジルコニア層の主成分として、平均粒径が100μmのイットリア安定化ジルコニアを70wt%、平均粒径が1μmのイットリア安定化ジルコニアを30wt%用いた以外は、実施例1と同様にして、混合物が得られた。これらをボールミルで均一に混合し、水とバインダーであるポリビニルアルコールを加えてスラリーとし、このスラリーを前記の基材表面にスプレーコートした。このスプレーコートした基材を100℃で乾燥後、1400〜1600℃で2時間保持し、焼成したジルコニア層を作製して電子部品焼成用治具とした。得られた電子部品焼成用治具のジルコニア層の耐剥離性及び耐摩耗性を調べた。これらの結果を表1に示した。
(Comparative Example 2)
A mixture was obtained in the same manner as in Example 1 except that 70 wt% of yttria-stabilized zirconia having an average particle diameter of 100 μm and 30 wt% of yttria-stabilized zirconia having an average particle diameter of 1 μm were used as the main component of the zirconia layer. It was. These were uniformly mixed with a ball mill, water and polyvinyl alcohol as a binder were added to form a slurry, and this slurry was spray-coated on the substrate surface. The spray-coated substrate was dried at 100 ° C., held at 1400 to 1600 ° C. for 2 hours, and a baked zirconia layer was produced to obtain an electronic component firing jig. The peel resistance and wear resistance of the zirconia layer of the obtained electronic component firing jig were examined. These results are shown in Table 1.

(比較例3)
  ジルコニア層の主成分として、平均粒径が100μmのイットリア安定化ジルコニアを50wt%、平均粒径が1μmの未安定化ジルコニアを50wt%用い、不純物として,酸化ケイ素を8%添加した以外は、実施例1と同様にして、混合物が得られた。これらをボールミルで均一に混合し、水とバインダーであるポリビニルアルコールを加えてスラリーとし、このスラリーを前記の基材表面にスプレーコートした。このスプレーコートした基材を100℃で乾燥後、1400〜1600℃で2時間保持し、焼成したジルコニア層を作製して電子部品焼成用治具とした。得られた電子部品焼成用治具のジルコニア層の耐剥離性及び耐摩耗性を調べた。これらの結果を表1に示した。
(Comparative Example 3)
Implemented except that 50 wt% yttria stabilized zirconia with an average particle size of 100 μm and 50 wt% unstabilized zirconia with an average particle size of 1 μm were used as the main component of the zirconia layer, and 8% silicon oxide was added as an impurity. In the same manner as in Example 1, a mixture was obtained. These were uniformly mixed with a ball mill, water and polyvinyl alcohol as a binder were added to form a slurry, and this slurry was spray-coated on the substrate surface. The spray-coated substrate was dried at 100 ° C., held at 1400 to 1600 ° C. for 2 hours, and a baked zirconia layer was produced to obtain an electronic component firing jig. The peel resistance and wear resistance of the zirconia layer of the obtained electronic component firing jig were examined. These results are shown in Table 1.

本発明に関するジルコニア層の微細組織の模式図である。It is a schematic diagram of the fine structure of the zirconia layer regarding this invention.

Claims (5)

基材、該基材表面に被覆されたジルコニア層を含んで成る電子部品焼成用治具において、ジルコニア層の焼成に際して耐剥離性及び耐摩耗性を向上するために液相を形成する1種以上の金属酸化物を含んで成り、焼結後にはこれらの液相が結晶化することを特徴とする電子部品焼成用治具。 1 or more types which form a liquid phase in order to improve peeling resistance and abrasion resistance in the baking of a zirconia layer in the jig | tool for electronic component baking which comprises the base material and the zirconia layer coat | covered on the base-material surface A jig for firing electronic parts, characterized in that the liquid phase is crystallized after sintering. ジルコニア層に含まれる金属酸化物として、希土類酸化物、アルカリ土類酸化物、及び遷移金属酸化物から選択される1種以上の金属酸化物又は酸化アルミニウムを含んで成ることを特徴とする請求項1に記載の電子部品焼成用治具。 The metal oxide contained in the zirconia layer comprises one or more metal oxides selected from rare earth oxides, alkaline earth oxides, and transition metal oxides, or aluminum oxide. 1. A jig for firing electronic components according to 1. ジルコニア層に含まれる金属酸化物として、請求項2記載の酸化物群から選択される複合酸化物を用いることを特徴とする請求項1に記載の電子部品焼成用治具。 The electronic component firing jig according to claim 1, wherein a composite oxide selected from the oxide group according to claim 2 is used as the metal oxide contained in the zirconia layer. 請求項2以外にジルコニア層に含まれる不純物が5wt%以下であることを特徴とする請求項1記載の電子部品焼成用治具。 The electronic component firing jig according to claim 1, wherein, in addition to claim 2, impurities contained in the zirconia layer are 5 wt% or less. ジルコニア層を形成する主成分のジルコニアが安定化、部分安定化及び未安定化ジルコニアであることを特徴とする請求項1記載の電子部品焼成用治具。
 
 
 
 
 
 
 
 
 
The electronic component firing jig according to claim 1, wherein the main component zirconia forming the zirconia layer is stabilized, partially stabilized or unstabilized zirconia.








JP2003303809A 2002-08-30 2003-08-28 Electronic component firing jig Expired - Fee Related JP4277950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003303809A JP4277950B2 (en) 2002-08-30 2003-08-28 Electronic component firing jig

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002253042 2002-08-30
JP2003303809A JP4277950B2 (en) 2002-08-30 2003-08-28 Electronic component firing jig

Publications (2)

Publication Number Publication Date
JP2004107203A true JP2004107203A (en) 2004-04-08
JP4277950B2 JP4277950B2 (en) 2009-06-10

Family

ID=32301327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003303809A Expired - Fee Related JP4277950B2 (en) 2002-08-30 2003-08-28 Electronic component firing jig

Country Status (1)

Country Link
JP (1) JP4277950B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006044980A (en) * 2004-08-04 2006-02-16 Sumitomo Electric Ind Ltd Aluminum nitride sintered compact

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006044980A (en) * 2004-08-04 2006-02-16 Sumitomo Electric Ind Ltd Aluminum nitride sintered compact

Also Published As

Publication number Publication date
JP4277950B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
KR100756619B1 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and method of manufacturing aluminum nitride sintered body
JP5934069B2 (en) LAMINATED STRUCTURE, SEMICONDUCTOR MANUFACTURING DEVICE MEMBER AND METHOD FOR PRODUCING LAMINATED STRUCTURE
KR101196685B1 (en) Jig for electronic part firing
KR20200105930A (en) Firing jig
EP2017240A1 (en) Jig for calcining electronic component
JP3579155B2 (en) Tools for firing
JP4277950B2 (en) Electronic component firing jig
EP1547991A1 (en) Electronic component burning jig
JP2004115332A (en) Tool for firing electronic component
JP4255671B2 (en) Electronic component firing jig
JP2007197320A (en) Corrosion-resistant ceramic and its manufacturing method
JP3413146B2 (en) Materials for firing electronic components
JP3643022B2 (en) Electronic component firing jig
JP3549099B2 (en) Manufacturing method of electronic component firing jig
JP3819352B2 (en) Electronic component firing jig
JP2002128583A (en) Tool for calcinating electronic part
JP2004091245A (en) Tool for firing electronic parts
JP2005170729A (en) Container for firing
JP2003073183A (en) Material for electronic component firing
JP2004137114A (en) Tool for firing electronic parts
JPH05178673A (en) Jig for sintering electronic parts
JP2004115331A (en) Tool for firing electronic component
JP3663445B2 (en) Electronic component firing jig
JP2004161585A (en) Electronic component-firing tool
JP2004307338A (en) Tool material for firing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040615

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050727

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051005

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060728

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060919

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20061020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090303

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4277950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees