JP2004107193A - Alumina sintered compact for firing ceramic - Google Patents

Alumina sintered compact for firing ceramic Download PDF

Info

Publication number
JP2004107193A
JP2004107193A JP2002307655A JP2002307655A JP2004107193A JP 2004107193 A JP2004107193 A JP 2004107193A JP 2002307655 A JP2002307655 A JP 2002307655A JP 2002307655 A JP2002307655 A JP 2002307655A JP 2004107193 A JP2004107193 A JP 2004107193A
Authority
JP
Japan
Prior art keywords
alumina
weight
zirconia
magnesia
calcia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002307655A
Other languages
Japanese (ja)
Inventor
Koji Hayashi
林 晃司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA YOGYO FIRE BRICK
Yotai Refractories Co Ltd
Original Assignee
OSAKA YOGYO FIRE BRICK
Yotai Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA YOGYO FIRE BRICK, Yotai Refractories Co Ltd filed Critical OSAKA YOGYO FIRE BRICK
Priority to JP2002307655A priority Critical patent/JP2004107193A/en
Publication of JP2004107193A publication Critical patent/JP2004107193A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alumina sintered compact for firing a ceramic which contains crystal grains having small diameters even when they are obtained by high temperature sintering, and which exhibits excellent thermal shock resistance and durability at the time of rapid heating and rapid cooling, or the like. <P>SOLUTION: After mixing raw materials comprising ≥90 wt.% alumina and 0.05-10 wt.% of any of zirconia, magnesia and calcia or 0.05-10 wt.% in total of two or more components, the resulting mixture is subjected to cast forming or press forming. The maximum crystal grain size of the sintered compact is controlled to be ≤30 μm. Even when the formed body is sintered at a high temperature, the crystal grain sizes of the sintered compact are controlled to be small and uniform. Thereby, the zirconia, magnesia, calcia-compounded alumina sintered compact excellent in thermal shock resistance and durability at the time of rapid heating and rapid cooling, or the like can be obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【001】
【産業上の利用分野】
本発明は、蛍光体、電池材料の原料、通信用電子部品原料等のセラミック粉末、および圧電素子等の小型電子部品を焼成するために用いられるルツボ、匣鉢等のセラミックス焼成用アルミナ焼結体に関する。
【002】
【従来の技術】
アルミナ焼結体は、耐久性、耐熱性等にすぐれ、古くからセラミックス焼成用道具材として幅広い分野で使用されている。しかしながら、従来のアルミナ焼結体は高温で焼結させるため、結晶成長が著しく進行し結晶粒径が30μm以上になり、さらに不純物の影響などで結晶粒径が均一に成り難くいため、高温使用時での耐熱衝撃性が低いという問題点を有している。
【003】
特に、最近の電子材料等においては、製品特性の向上から相転移や組成のバラツキを少なくするため、または、生産性の向上のために急熱急冷での温度処理が行われる傾向にある。このため、高温域でのアルミナ焼結体と被焼成品の反応などから膨張収縮が起こり、さらに耐用が低下する事が懸念される。この様な使用条件では、耐熱衝撃性に優れ、かつ耐久性の高いアルミナ焼結体が要求される。
【004】
これらの問題点を解決するために、アルミナにジルコニアを添加することが検討されている。例えば、特公平4−48749号公報には蛍光体材料の熱処理用アルミナ磁器の製造法において、MgOとZrOとが重量比で2:8〜7:3である混合物をアルミナに対して0.1〜0.65重量%含有させる技術が開示されている。しかしながら、特公平4−48749に記載されているアルミナ磁器は耐熱衝撃性については十分満足されるものではなく、加熱・冷却による添加したZrOの変態による強度劣化の危険性がある。
【005】
【発明が解決しようとする課題】
したってが、本発明が解決しようとする課題は、高温焼成においても焼結体の結晶粒径を小さく均一にする事でクラックの発生や割れに対する抵抗性、すなわち急熱急冷などにおける耐熱衝撃、耐久性に優れたジルコニア、マグネシア、カルシア複合アルミナ焼結体を提供することである。
【006】
【課題を解決するための手段】
上記目的を達成するために、本発明は、アルミナ粉末にジルコニア、マグネシア、カルシアを単味もしくはそれぞれを複合させた含有量が0.05重量%以上10重量%以下含有させ、アルミナ中に均一に分散させた後、鋳込み成形またはプレス成形し、焼成することにより、最大結晶粒径を30μm以下に抑えることにより、耐熱衝撃性や耐久性に優れたジルコニア、マグネシア、カルシア複合アルミナ焼結体を作製することを要旨とする。
【007】
本発明においてはジルコニア、マグネシア、カルシア単味もしくはそれぞれを複合させた含有量が0.05以上10重量%以下であることが必要である。ジルコニア、マグネシア、カルシアはアルミナ焼結体の焼結性を向上させ、結晶粒径分布の少ない微構造にするために重要である。
【008】
ジルコニア、マグネシア、カルシア単味もしくはそれぞれを複合させた含有量が0.05重量%未満の場合は、添加の効果が少なく結晶粒径が不均一である。一方、ジルコニア、マグネシア、カルシア単味もしくはそれぞれを複合させた含有量が10重量%を越える場合には、アルミナ結晶粒界にジルコニア、マグネシア、カルシアが結晶粒子として多く存在するため、焼結体の加熱・冷却によりアルミナとの熱膨張差に起因する微小クラックが発生して、さらなる加熱・冷却により微小クラックが進展し、割れにつながるので好ましくない。
【009】
次にジルコニア、マグネシア、カルシア複合アルミナ焼結体の製造方法について説明する。アルミナ粉にジルコニア粉、マグネシア粉、カルシア粉を単味もしくはそれぞれを複合させ混合した後、水と分散剤、有機バインダーを加えて混合しスラリーとし後、石膏型に鋳込んで成形することが多いが、スラリーをスプレードライヤーにて造粒することによって、プレス成形することも可能である。
【010】
鋳込み成形を行う場合は、中心粒径が3μm以下、最大粒径が10μm以下であるアルミナ粉末(Al99.5%以上)に中心粒径が3μm以下、最大粒径10μm以下であるジルコニア、マグネシア、カルシア粉末を単味もしくはそれぞれを複合させた重量が0.05重量%以上10重量%以下になるように混合し、水と分散剤、有機バインダーを加えてスラリーとした後、石膏型で鋳込み成形し、得られた成形体を1600〜1750℃で焼成することによって最大結晶粒径が30μm以下となるアルミナ焼結体を得る。
【011】
プレス成形を行う場合は、中心粒径が3μm以下、最大粒径が10μm以下であるアルミナ粉末(Al99.5%以上)に中心粒径が3μm以下、最大粒径10μm以下であるジルコニア、マグネシア、カルシア粉末を単味もしくはそれぞれを複合させた重量が0.05重量%以上10重量%以下になるように混合し、水と分散剤、有機バインダーを加えてスラリーとした後、スプレードライヤーで約100μmの造粒粉にする。その造粒粉を金型に入れてプレスすることによって得られた成形体を1600〜1750℃で焼成することによって最大結晶粒径が30μm以下となるアルミナ焼結体を得る。
【012】
【作用】
本発明では、中心粒径が3μm以下のアルミナ粉末に中心粒径が3μm以下のジルコニア、マグネシア、カルシア粉末を単味もしくはそれぞれを複合させた重量が0.05重量%以上10重量%以下になるように混合し、アルミナ中にジルコニア、マグネシア、カルシアが単味もしくはそれぞれを複合させた成分を均一に分散させた後、成形し、その成形体を1600〜1750℃で焼成することにより焼結体の最大結晶粒径が30μm以下に抑えられたジルコニア、マグネシア、カルシア複合アルミナ焼結体を製造する。
【013】
【実施例】
以下に本発明の実施例を示し、本発明の特徴とするところをより一層明確にする。
【014】
アルミナ原料粉末とジルコニア、マグネシア、カルシア粉末を単味もしくはそれぞれを複合させた原料を表1に示す割合で配合し、溶媒として水を用いポットミル中において混合・粉砕・分散し、スラリーを作製した。得られたスラリーを石膏型により鋳込成形し、1500〜1750℃で焼成してアルミナ焼結体を得た。得られたアルミナ焼結体の特性を表1に示す。実施例No.1〜4は本発明の範囲内のアルミナ焼結体であり、比較例No.1〜2は本発明の要件を少なくとも一つ以上満足していないアルミナ焼結体である。
【015】
(実施例1)
純度が99.8%、中心粒径が3.0μmからなるアルミナ原料粉末と、中心粒径が5.0μmからなるジルコニア原料粉末を配合し、上記記載の方法でアルミナ焼結体を得た。この時のAl2O3は90.05重量%、ZrO2は9.32重量%、その他は0.63重量%である。
【016】
(実施例2)
純度が99.8%、中心粒径が3.0μmからなるアルミナ原料粉末と、中心粒径が5.0μmからなるジルコニア原料粉末と中心粒径が5.0μmからなるマグネシア原料粉末を配合し、上記記載の方法でアルミナ焼結体を得た。この時のAl2O3は94.90重量%、ZrO2は4.72重量%、MgOは0.03重量%、その他は0.35重量%である。
【017】
(実施例3)
純度が99.8%、中心粒径が3.0μmからなるアルミナ原料粉末と、中心粒径が5.0μmからなるマグネシア原料粉末と中心粒径が5.0μmからなるカルシア原料粉末を配合し、上記記載の方法でアルミナ焼結体を得た。この時のAl2O3は99.72重量%、MgOは0.03重量%、CaOは0.03重量%、その他は0.22重量%である。
【018】
(実施例4)
純度が99.8%、中心粒径が3.0μmからなるアルミナ原料粉末と、中心粒径が5.0μmからなるマグネシア原料粉末を配合し、上記記載の方法でアルミナ焼結体を得た。この時のAl2O3は99.72重量%、MgOは0.08重量%、その他は0.23重量%である。
【019】
耐熱衝撃性は得られた90×90×50H匣鉢のサンプルを、室内温度から所定の温度に過熱された炉の中に入れ15分保持したのち水中に落下させるテストを行い、テスト後のサンプルは蛍光探傷によりクラックの有無を確認した。クラックが発生しなかった時の所定温度と水温の差をΔTとして評価した。
【020】
加熱・冷却の繰り返しによる耐久性については100×100×5のサンプルを用いてテスト前後の曲げ強度の差(劣化率)について評価した。テスト方法は、室内温度から所定の温度に過熱された炉の中に入れ15分保持したのち再び室内に取り出し、自然冷却させるテストを10回繰り返した。テスト前後の曲げ強度をJIS R2213−1995により測定した。
【021】
(比較例1)
比較のため実施例1と同様の方法でAl2O3は99.82重量%、その他は0.18重量%である。
(比較例2)
比較のため実施例1と同様の方法でAl2O3は99.75重量%、MgOは0.03重量%、
その他は0.22重量%である。
【022】
本発明の焼結体は、表1から明らかなように、耐熱衝撃性、耐久性もすぐれたものとなっている。これは、アルミナ結晶粒内にジルコニア、マグネシア、カルシアなどの結晶粒子が存在することにより、アルミナとの熱膨張の差から、アルミナ結晶粒内を進展するクラックがもつエネルギーを低減させ、クラックを分岐させる効果があり、耐熱衝撃性が高くなるためである。
【023】
しかし、本発明の要件を少なくとも一つ以上を満足していない焼結体は耐熱衝撃性、耐久性に劣るものであった。これは、不純物の含有量が多くなると結晶粒界にガラス相が多く形成され、耐食性の低下だけでなく、機械的特性、特に高温下での強度及び靭性の低下をきたし、その結果、耐熱衝撃性が低下するためである。また、アルミナ原料単味の場合は結晶粒径が大きく且つ不均一になりやすく、急熱急冷による熱衝撃に弱くなる。
【024】
以上の説明のように、アルミナ粉末にジルコニア、マグネシア、カルシアを単味もしくはそれぞれを複合させた含有量が0.05重量%以上10重量%以下含有させ、アルミナ中に均一に分散させた後、鋳込み成形またはプレス成形し、焼成することにより、最大結晶粒径が30μm以下に抑え、熱衝撃や耐久性に優れたジルコニア、マグネシア、カルシア複合アルミナ焼結体を作製することができる。
【025】
【表1】

Figure 2004107193
[0101]
[Industrial applications]
The present invention relates to a ceramic powder such as a phosphor, a raw material of a battery material, a raw material for electronic parts for communication, and an alumina sintered body for firing ceramics such as a crucible and a sagger used for firing small electronic parts such as piezoelectric elements. About.
[0092]
[Prior art]
Alumina sintered bodies have excellent durability, heat resistance, and the like, and have been used in a wide range of fields as ceramic firing tools since ancient times. However, since the conventional alumina sintered body is sintered at a high temperature, the crystal growth remarkably progresses, and the crystal grain size becomes 30 μm or more. Further, the crystal grain size is hard to be uniform due to the influence of impurities. Has a problem that the thermal shock resistance is low.
[0093]
In particular, in recent electronic materials and the like, there is a tendency that rapid heat quenching is performed in order to reduce phase transition and composition variation from the viewpoint of improving product characteristics or to improve productivity. For this reason, there is a concern that expansion and shrinkage may occur due to a reaction between the alumina sintered body and the article to be fired in a high temperature range, and the service life may be further reduced. Under such use conditions, an alumina sintered body having excellent thermal shock resistance and high durability is required.
[0093]
In order to solve these problems, addition of zirconia to alumina has been studied. For example, Japanese Patent Publication No. 4-48749 discloses a method for producing alumina porcelain for heat treatment of a phosphor material, in which a mixture of MgO and ZrO 2 in a weight ratio of 2: 8 to 7: 3 is added to alumina in a ratio of 0: 8 to 7: 3. There is disclosed a technique for containing 1 to 0.65% by weight. However, the alumina porcelain described in Japanese Patent Publication No. 4-48749 is not sufficiently satisfactory in thermal shock resistance, and there is a risk of strength deterioration due to transformation of ZrO 2 added by heating and cooling.
[0056]
[Problems to be solved by the invention]
However, the problem to be solved by the present invention is the resistance to cracking and cracking by making the crystal grain size of the sintered body small and uniform even at high-temperature sintering, that is, heat shock during rapid heating and quenching, An object of the present invention is to provide a zirconia, magnesia, and calcia composite alumina sintered body having excellent durability.
[0086]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an alumina powder containing zirconia, magnesia, and calcia in a simple or composite content of 0.05% by weight or more and 10% by weight or less. After dispersing, cast or press molded and fired to produce a zirconia, magnesia, calcia composite alumina sintered body with excellent thermal shock resistance and durability by suppressing the maximum crystal grain size to 30 μm or less. The point is to do.
007
In the present invention, it is necessary that the content of zirconia, magnesia, calcia, or a combination thereof is 0.05 to 10% by weight. Zirconia, magnesia, and calcia are important for improving the sinterability of the alumina sintered body and forming a microstructure with a small crystal grain size distribution.
[0098]
When the content of zirconia, magnesia, calcia, or a combination thereof is less than 0.05% by weight, the effect of addition is small and the crystal grain size is not uniform. On the other hand, when the content of zirconia, magnesia, calcia alone or a combination thereof is more than 10% by weight, zirconia, magnesia, and calcia are present as a large number of crystal particles at the alumina crystal grain boundary. Heating / cooling causes minute cracks due to the difference in thermal expansion from alumina, and further heating / cooling causes the minute cracks to develop, leading to cracking.
[0099]
Next, a method for producing a zirconia, magnesia, and calcia composite alumina sintered body will be described. Zirconia powder, magnesia powder, and calcia powder are mixed with alumina powder alone or in combination, and then mixed with water, a dispersant, and an organic binder to form a slurry, which is often cast into a gypsum mold and molded. However, it is also possible to press-mold the slurry by granulating it with a spray dryer.
[0102]
In the case of casting, the center particle size is 3 μm or less and the maximum particle size is 10 μm or less for alumina powder (Al 2 O 3 99.5% or more) having a center particle size of 3 μm or less and a maximum particle size of 10 μm or less. Zirconia, magnesia, and calcia powders are mixed alone or mixed so that the combined weight thereof is 0.05% by weight or more and 10% by weight or less, and water, a dispersant, and an organic binder are added to form a slurry. The obtained sintered body is cast at 1600 to 1750 ° C., and an alumina sintered body having a maximum crystal grain size of 30 μm or less is obtained.
[0111]
When performing press molding, the center particle diameter is 3 μm or less and the maximum particle diameter is 10 μm or less for alumina powder (Al 2 O 3 99.5% or more) having a center particle diameter of 3 μm or less and a maximum particle diameter of 10 μm or less. Zirconia, magnesia, and calcia powders are mixed alone or mixed so that the combined weight thereof is 0.05% by weight or more and 10% by weight or less, and after adding water, a dispersant, and an organic binder to form a slurry, spraying is performed. It is made into a granulated powder of about 100 μm with a dryer. A compact obtained by placing the granulated powder in a mold and pressing is fired at 1600 to 1750 ° C. to obtain an alumina sintered body having a maximum crystal grain size of 30 μm or less.
[0122]
[Action]
In the present invention, the weight of zirconia, magnesia, and calcia powder having a center particle diameter of 3 μm or less alone or in combination with alumina powder having a center particle diameter of 3 μm or less is 0.05% by weight or more and 10% by weight or less. Zirconia, magnesia, calcia, or a component in which each is mixed in alumina, is uniformly dispersed, and then molded, and the molded body is fired at 1600 to 1750 ° C. to obtain a sintered body. To produce a zirconia, magnesia, and calcia composite alumina sintered body having a maximum crystal grain size of 30 μm or less.
[0113]
【Example】
Hereinafter, examples of the present invention will be described to further clarify features of the present invention.
[0141]
A raw material obtained by mixing alumina raw material powder and zirconia, magnesia, and calcia powder alone or in combination with each other was mixed at a ratio shown in Table 1, and mixed, crushed, and dispersed in a pot mill using water as a solvent to prepare a slurry. The resulting slurry was cast in a gypsum mold and fired at 1500 to 1750 ° C. to obtain an alumina sintered body. Table 1 shows the properties of the obtained alumina sintered body. Example No. Nos. 1 to 4 are alumina sintered bodies within the scope of the present invention. 1 and 2 are alumina sintered bodies that do not satisfy at least one of the requirements of the present invention.
[0151]
(Example 1)
Alumina raw material powder having a purity of 99.8% and a central particle diameter of 3.0 μm was mixed with zirconia raw material powder having a central particle diameter of 5.0 μm, and an alumina sintered body was obtained by the method described above. At this time, Al2O3 was 90.05% by weight, ZrO2 was 9.32% by weight, and the others were 0.63% by weight.
[0162]
(Example 2)
A raw material powder having a purity of 99.8% and a central particle diameter of 3.0 μm, a zirconia raw material powder having a central particle diameter of 5.0 μm, and a magnesia raw material powder having a central particle diameter of 5.0 μm are blended. An alumina sintered body was obtained by the method described above. At this time, Al2O3 was 94.90% by weight, ZrO2 was 4.72% by weight, MgO was 0.03% by weight, and others were 0.35% by weight.
[0173]
(Example 3)
A raw material powder having a purity of 99.8% and a central particle size of 3.0 μm, a magnesia raw material powder having a central particle size of 5.0 μm, and a calcia raw material powder having a central particle size of 5.0 μm are blended. An alumina sintered body was obtained by the method described above. At this time, Al2O3 was 99.72% by weight, MgO was 0.03% by weight, CaO was 0.03% by weight, and others were 0.22% by weight.
[0182]
(Example 4)
Alumina raw material powder having a purity of 99.8% and a central particle size of 3.0 μm and magnesia raw material powder having a central particle size of 5.0 μm were blended to obtain an alumina sintered body by the method described above. At this time, Al2O3 is 99.72% by weight, MgO is 0.08% by weight, and others are 0.23% by weight.
[0119]
A sample of the obtained 90 × 90 × 50H sagger was placed in a furnace superheated from a room temperature to a predetermined temperature, held for 15 minutes, and then dropped into water. Was checked for cracks by fluorescent flaw detection. The difference between the predetermined temperature and the water temperature when no crack occurred was evaluated as ΔT.
[0202]
With respect to the durability due to repeated heating and cooling, the difference (deterioration rate) of the bending strength before and after the test was evaluated using a 100 × 100 × 5 sample. The test was repeated 10 times in a furnace heated to a predetermined temperature from the room temperature, kept in the furnace for 15 minutes, taken out of the room again, and allowed to cool naturally. The bending strength before and after the test was measured according to JIS R2213-1995.
[0219]
(Comparative Example 1)
For comparison, Al2O3 was 99.82% by weight and the others were 0.18% by weight in the same manner as in Example 1.
(Comparative Example 2)
For comparison, in the same manner as in Example 1, 99.75% by weight of Al2O3, 0.03% by weight of MgO,
The others are 0.22% by weight.
[0222]
As is clear from Table 1, the sintered body of the present invention has excellent thermal shock resistance and durability. This is because the presence of crystal particles such as zirconia, magnesia, and calcia in the alumina crystal grains reduces the energy of the cracks that propagate in the alumina crystal grains due to the difference in thermal expansion with alumina, and branches the cracks. This has the effect of increasing the thermal shock resistance.
[0230]
However, a sintered body that does not satisfy at least one of the requirements of the present invention was inferior in thermal shock resistance and durability. This is because if the content of impurities increases, many glass phases are formed at the crystal grain boundaries, and not only the corrosion resistance decreases, but also the mechanical properties, particularly the strength and toughness at high temperatures, decrease. This is because the property is reduced. In addition, in the case of the raw material of alumina alone, the crystal grain size tends to be large and non-uniform, and is susceptible to thermal shock due to rapid thermal quenching.
[0242]
As described above, zirconia, magnesia, and calcia are contained in the alumina powder in a content of 0.05% by weight or more and 10% by weight or less in a combination of each, and after uniformly dispersed in alumina, By casting or press molding and firing, a zirconia, magnesia, and calcia composite alumina sintered body having a maximum crystal grain size of 30 μm or less and excellent in thermal shock and durability can be produced.
[0252]
[Table 1]
Figure 2004107193

Claims (2)

アルミナ質原料を主要成分とし、ジルコニア、マグネシア、カルシアの内のいずれか、もしくは複数の成分の含有量が0.05重量%以上10重量%以下であることを特徴とするセラミックス焼成用アルミナ焼結体。Alumina sintering for ceramic sintering, characterized in that an alumina raw material is a main component, and the content of one or more of zirconia, magnesia and calcia is 0.05% by weight or more and 10% by weight or less. body. 最大結晶粒径が30μm以下であることを特徴とする請求項1に記載のセラミックス焼成用アルミナ焼結体。The alumina sintered body for firing ceramics according to claim 1, wherein a maximum crystal grain size is 30 µm or less.
JP2002307655A 2002-09-16 2002-09-16 Alumina sintered compact for firing ceramic Pending JP2004107193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002307655A JP2004107193A (en) 2002-09-16 2002-09-16 Alumina sintered compact for firing ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002307655A JP2004107193A (en) 2002-09-16 2002-09-16 Alumina sintered compact for firing ceramic

Publications (1)

Publication Number Publication Date
JP2004107193A true JP2004107193A (en) 2004-04-08

Family

ID=32289403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002307655A Pending JP2004107193A (en) 2002-09-16 2002-09-16 Alumina sintered compact for firing ceramic

Country Status (1)

Country Link
JP (1) JP2004107193A (en)

Similar Documents

Publication Publication Date Title
CN108367993B (en) Sintered refractory zircon composite material, method for the production thereof and use thereof
Abyzov Lightweight refractory concrete based on aluminum-magnesium-phosphate binder
KR101719284B1 (en) Sialon bonded silicon carbide material
Zawrah et al. Synthesis and characterization of calcium aluminate nanoceramics for new applications
CN108137412B (en) Fused zirconia-spinel particles and refractory products obtained from said particles
Ertugrul et al. Influence of zircon particle size on conventional and microwave assisted reaction sintering of in-situ mullite–zirconia composites
Khattab et al. Alumina–zircon refractory materials for lining of the basin of glass furnaces: effect of processing technique and TiO2 addition
JP4836348B2 (en) Heat-treating member made of an alumina sintered body with excellent durability
Kumar et al. Thermo-mechanical properties of mullite—zirconia composites derived from reaction sintering of zircon and sillimanite beach sand: Effect of CaO
JP4560199B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JPH07109175A (en) Composite ceramic material used in industrial application under high temperature and severe thermal shock condition and production thereof
CN114538921B (en) Glass-combined large-size zirconia compact sintered product
JP4546609B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP5036110B2 (en) Lightweight ceramic sintered body
KR102650353B1 (en) Refractory batch, method for producing irregular refractory ceramic product from said batch and irregular refractory ceramic product obtained by said method
JP4993812B2 (en) Heat treatment member made of zirconia sintered body
JP2004107193A (en) Alumina sintered compact for firing ceramic
CN107805071B (en) Preparation method of titanium-trialuminum-carbon-mullite composite ceramic with low glass wettability
Majidian et al. Effect of short milling time and microwave heating on phase evolution, microstructure and mechanical properties of alumina–mullite–zirconia composites
Kumar et al. Study on preformed and in situ spinel containing alumina castable for steel ladle: Effect of fume silica content
JP3737917B2 (en) Thermal shock-resistant alumina sintered body and heat treatment member comprising the same
WO1999032417A1 (en) Dense refractories with improved thermal shock resistance
JP2005104752A (en) Silicon ceramic composite and manufacturing method thereof
JPH08198664A (en) Alumina-base sintered body and its production
KR20040049586A (en) A burned magnesia-chrome firebrick using broken Mg-Cr brick

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080212