JP2004105994A - Welding method for tube and infusing nozzle for shielding gas for welding - Google Patents

Welding method for tube and infusing nozzle for shielding gas for welding Download PDF

Info

Publication number
JP2004105994A
JP2004105994A JP2002269358A JP2002269358A JP2004105994A JP 2004105994 A JP2004105994 A JP 2004105994A JP 2002269358 A JP2002269358 A JP 2002269358A JP 2002269358 A JP2002269358 A JP 2002269358A JP 2004105994 A JP2004105994 A JP 2004105994A
Authority
JP
Japan
Prior art keywords
welding
pipe
piping
dry ice
shielding gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002269358A
Other languages
Japanese (ja)
Other versions
JP3996825B2 (en
Inventor
Korehisa Fukuda
福田 是寿
Masayuki Ishiwatari
石渡 雅幸
Yasukazu Shiraishi
白石 八州一
Kazuhiko Mogaki
藻垣 和彦
Shunichi Sudo
須藤 俊一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering and Services Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering and Services Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering and Services Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering and Services Co Ltd
Priority to JP2002269358A priority Critical patent/JP3996825B2/en
Publication of JP2004105994A publication Critical patent/JP2004105994A/en
Application granted granted Critical
Publication of JP3996825B2 publication Critical patent/JP3996825B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for locally sealing a shielding gas for welding into a tube near a butt welding zone of piping, in a system structure in which sealing of a shielding gas is difficult at the time of welding piping or in which no water soluble film can be used. <P>SOLUTION: In butt welding of a pair of pipes in piping 12, columnar dry ice 11 having an outer diameter equal to the inner diameter of the piping is inserted into the piping, forming a wall inside the piping 12 for the purpose of a purge dam of the shielding gas for welding, thereby suppressing air flow in the air space 13 on the non-welding side inside the piping as well as in the air space 14 inside the piping near the welding back bead. A nozzle 16 for infusing the shielding gas is inserted into the piping 12 from a hole drilled in the groove abutting part in the butt welding zone of the piping 12, with the shielding gas 18 infused into space 14 inside the piping to lower the oxygen concentration, to prevent oxidation in the welding back bead on the piping inner face at the time of the welding. In addition, the outer periphery of the piping in which the dry ice is installed is wrapped with a freezing jacket 10 utilizing liquefied carbon dioxide, suppressing vaporization of the dry ice. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ステンレス製配管を含む金属製配管の溶接方法及び溶接用シールドガス注入用ノズルに関する。
【0002】
【従来の技術】
従来、ステンレス製の配管同士を突合せ溶接する際には、空気中の酸素や窒素などが溶接部裏波ビードに侵入することによる金属の機械的,化学的劣化防止の観点から、アルゴン(Ar),ヘリウム(He),炭酸ガス(CO )などの溶接用シールドガスを配管内に注入して配管内の酸素濃度を低下させている。
【0003】
その配管内の溶接用シールドガスが溶接部近傍から移動しないように溶接用シールドガスを溶接部近傍に封入する必要があるが、その封入技術として、気化時に溶接用シールドガスとなるドライアイスと、そのドライアイスを配管内に固定するための固定用の水溶性固形物を併用して、パージダム生成とシールドガス注入を同時に可能とした公知例が特許文献1に挙げられる。
【0004】
また、配管の突合せ溶接開先部分から配管内に溶接用シールドガスを注入し、注入した溶接用シールドガスが抜けないように配管内面に水溶性フィルムによる袋を配管内で膨らませて溶接用シールドガスを封入する方法が特許文献2にて公知である。
【0005】
また、配管内に溶接開先部から差し込んだ溶接用シールドガス注入用ノズルを通じて溶接用シールドガスを注入する技術が特許文献3で公知である。
【0006】
【特許文献1】
特開平6−307586号公報
【特許文献2】
特開平5−245633号公報
【特許文献3】
特開平9−295147号公報
【0007】
【発明が解決しようとする課題】
特開平6−307586号公報の技術は、配管とドライアイスの接触面でドライアイスが気化蒸発するので、溶接用シールドガスを配管内に封入するのに水溶性固形物が必要である。特開平5−245633号公報に記載の技術も配管内に水溶性フィルムによる袋が必要である。
【0008】
いずれの場合にも、水溶性材料が溶接後の配管内に残留するので、水洗にて水溶性材料を洗い流す必要がある。水洗する際には、多量の水と水の勢いとが必要であるから、配管に接続されたタンクや配管に水が残留したり排水しにくい配管系統では従来技術が利用しにくいという課題を有する。
【0009】
また、配管内に溶接用シールドガスを注入する際に従来の溶接用シールドガス注入用ノズルでは、ノズル周囲に均等にガスの流出用細孔が開いているので、溶接用シールドガスを配管の溶接開先に重点的に行き渡らせることが出来ない。
【0010】
また、ドライアイスのみで配管内を閉鎖して溶接用シールドガスを溶接開先部の局所において局部的に配管内に封じ込めることが思いつくが、この場合には、配管とドライアイスとが接する部分でドライアイスが気化蒸発して前述の封じ込めの機能が喪失されれるとともに、配管が傾斜乃至は垂直の場合には、ドライアイスが配管と接する部分で気化蒸発するので、ドライアイスが傾斜下降方向又は垂直下方へずれ動いて希望する領域での溶接用シールドガスの局部的封じ込め状態が達成できないという課題を負うことになる。
【0011】
したがって、本発明の目的は、水溶性材料による溶接用シールドガスの局部的封じ込めが利用できない場合や配管が傾斜乃至は垂直である場合にも溶接用シールドガスの局部的封じ込めを達成して配管溶接が可能な溶接方法を提供することである。
【0012】
また、本発明の他の目的は、配管の溶接開先近傍の配管内の酸素濃度を効率よく低下させることのできる溶接用シールドガス注入用ノズルを提供することにある。
【0013】
【課題を解決するための手段】
課題を解決するための手段は、ドライアイスを配管内を塞ぐように設置して、溶接用シールドガスが抜けにくい壁を配管内に作り、そのドライアイスの壁を配管の外周から配管とともに冷却し、さらには配管内に溶接用シールドガスを注入する溶接用シールドガスのバックパージ方法を採用し、このような溶接用シールドガスのバックパージ方法により溶接個所近傍の配管内の局所的な空間の雰囲気の酸素濃度を溶接用シールドガスを注入する以前よりも低下させ、その後に配管の溶接個所を溶接する溶接方法を採用している。
【0014】
また、配管内に溶接用シールドガスを注入するシールドガス注入用ノズルは、ノズルに開けたシールドガスの噴出用の孔を、シールドガス注入ノズルの径の中心を通る線上と、前記線から前記径の周方向±45度の角度の線上とに設け、これら各孔をシールドガス注入ノズルの軸心方向に千鳥配置で備えて前記孔を不均一に分布させてあることに特徴がある。
【0015】
【発明の実施の形態】
本発明の実施例は以下のとおりである。即ち、図1に示すように、互いに突合せ溶接されるステンレス製の一対の配管12の溶接取合端部17を合わせる。溶接取合端部17には配管12の端部を加工して溶接開先を形成し、図1のように配管12同士を突き合わせた状態では溶接取合端部17には外側に開かれたV字型の断面の溶接開先の部分が表れる。
【0016】
そして、その溶接開先が合わされた溶接取合端部17を配管12の外周囲側からTIG(タングステン イナート ガス)溶接によって突合せ溶接する。TIG溶接するに際しては、アルゴン(Ar),ヘリウム(He),炭酸ガス(CO)などの溶接用シールドガスを配管12の外周から溶接部に吹き付けながら行う。その突合せ溶接を行う際に、あらかじめ溶接を行う当該配管12の内径と等しい外径に成型した円柱状ドライアイス11を、突合せ溶接部を行う各々の配管12の突合せ溶接部にて溶接時の熱影響が無視できる距離を確保した溶接部近傍にそれぞれ挿入して配管12内に円柱状ドライアイス11を壁とした溶接用シールドガスのパージダムを生成する。
【0017】
このようにして、円柱状ドライアイス11の壁を境に溶接取合端部17から遠い方の配管12内部空間である非溶接側空間13と、円柱状ドライアイス11の壁を境に溶接取合端部17に近い方の空間である配管内部空間14との空気の流れを遮断する。ここで言う遮断とは、配管12とドライアイス11の接触部15は、自然に空気の流れを生ずることを遮断する程度の密着で良く、気密という意味ではない。
【0018】
溶接作業中にドライアイス11の気化蒸発を抑制するために、ドライアイス設置部の配管12外周を、液化炭酸ガスを通したフリージングジャケット10にて包み込みドライアイス11を配管12に挿入後は配管12外周をフリージングジャケット10を冷却手段に用いて常に冷却させておく。
【0019】
その後、溶接取合端部17に加工した孔よりシールドガス注入用ノズル16を配管12の内部14に挿入し、アルゴン(Ar),ヘリウム(He),炭酸ガス(CO )或いはそれらのいずれかの混合ガスによる溶接用シールドガス18を配管内部空間14へ注入することで配管内に供給し、配管内部14空間の空気を溶接用シールドガス18により置換する。この置換で配管内部14の酸素濃度を低下させつつ、溶接取合端部17の溶接開先同士を溶接し、この溶接時の配管内面溶接裏波部の酸化防止を図る。
【0020】
更に詳細に説明すれば以下のとおりである。即ち、図1におけるシールドガス注入用ノズル16の先端部であるA部の詳細を図2に示す。シールドガス注入用ノズル16は、ガス用ホース19の一端に接続され、ガス用ホース19の他端は溶接用シールドガス18が配管内部空間14よりも高圧に貯蔵してあるガスボンベに接続されている。好ましくは、ガス用ホース19と前述のガスボンベとは流量及び圧力調整機構を通じて接続され、配管内部空間14内の圧力よりも溶接用シールドガス18の圧力が高圧となるように、及び予め決められた流量の溶接用シールドガス18が配管内部空間14内に注入されるように制御することが好ましい。
【0021】
ドライアイス11の壁と配管12内面とはドライアイス設定時の若干の気化減容とドライアイスの加工精度からドライアイス11の壁と配管12内面全周囲が完全には閉鎖されず、高圧な溶接用シールドガス18が配管内部空間14内に入ると、配管内部空間14内が非溶接側空間13内よりも高圧となって、配管内部空間14内の空気が非溶接側空間13内側へドライアイス11の壁と配管12内面との不完全閉鎖部から抜けて配管内部空間14内が溶接用シールドガス18に置換される。
【0022】
配管内部空間14内と非溶接側空間13内との間で、差圧が生じていなければ、容易には配管内部空間14内と非溶接側空間13内との間で雰囲気の通り抜けは発生しない。実際には、溶接作業中は、溶接用シールドガス18を配管内部空間14内へ注入し続けて配管内部空間14内の圧力が高く非溶接側空間13内の圧力が低い状態の差圧が常に生じるようにする。
【0023】
このシールドガス注入用ノズル16の配管内部空間14内へ挿入される先端部の側面には、図2の(a),(b)で表示されているように、溶接取合端部17の溶接開先合わせ部方向と、その方向を基準にシールドガス注入用ノズル16の円周方向へ振り角45度にて6方向、且つノズル軸方向(ノズル長手方向)では千鳥配置として微細な孔加工を施し、この微細な孔20から溶接取合端部17の溶接開先合わせ部方向に集中的にシールドガスを噴射させ、効率良く図1に示す溶接取合端部17の内側の配管内部空間14を溶接用シールドガスで置換し、また溶接時の溶接裏波部への効率的な溶接用シールドガス供給の為の配管内部空間14内でのガス流を生成する機能を有する。
【0024】
このように、シールドガス注入用ノズル16の孔20は、シールドガス注入用ノズル16の軸心を示す線Cと直交する第1の断面(X−X断面)でシールドガス注入用ノズル16の径の中心を通る線A上と、前記第1の断面の位置と異なる位置におけるシールドガス注入ノズルの軸心示す線Cと直交する第2の断面(Y−Y断面)で前記線Aから前記径の周方向±45度の角度の線B上とに配置して、前記孔を不均一に分布させてある。
【0025】
この図2(a)(b)に示す本発明のシールドガス注入用ノズル16の微細な孔20の配置の効果を確認するために、図3(a)(b)に示す様にノズル側面に周方向に均等に微細な孔30を加工した従来型のシールドガス注入用ノズル
16aとの比較検証結果を図4に示す。
【0026】
図4では、長さ500mm、内径が106.3mm、外径が114.3mmの端部開放の二本の配管12を突合せたものに対して、ノズルAを図3(a)(b)に示す従来型をノズルとして、ノズルBを図2(a)(b)に示す今回発明のノズルとして、流量10L/min で不活性ガスであるアルゴン(Ar)ガスを注入して5分後のそれぞれの酸素濃度計(図中41〜43)の値を示したものである。本図から明らかなように、同じ溶接用シールドガス注入流量にて、従来型に比較して本発明のノズルでは、効率的に溶接取合端部17周辺を0.1% まで酸素濃度を低下させることが確認出来た。この際、ノズルBは図3(a)(b)に示すように線Bの向きが溶接取合端部17の溶接開先合わせ部方向に向くようにした。
【0027】
次に、図1に示す本発明の方法での適用配管口径の最大径を確定するため、実機の配管溶接を想定した図5に示す試験体にて、配管12内部の酸素濃度測定によるバックパージの状況確認を行った。図5に示す水平に設置した溶接対象と仮定した配管12に対し、中央部を溶接取合端部17の溶接開先合わせ位置に仮定し、図2(a)(b)に示すシールドガス注入用ノズル16を設定、溶接取合端部17の溶接開先合わせ部を中心に、酸素濃度計51−56を配管内部中央部に設定し、配管内部空間14の酸素濃度分布を管軸方向の分布として測定できるようにした。
【0028】
また、水平設置の配管12の両端部には、円柱状の配管12内径に外径を合わせたドライアイス11を設定した。その設定位置は、図5に示すように、溶接取合端部17の溶接開先合わせ位置から500mmにドライアイス11の壁の溶接取合端部17側の面が位置するようにされる。この配管12は配管呼び径100A(管内径106.2mm)のSUS304TPステンレス製配管である。
【0029】
このドライアイス11の設定箇所における配管12の外周面には、液化炭酸ガスを通したフリージングジャケット10を覆いかぶせて実機で必要な溶接作業時間の間、十分にパージダムとしての機能を果たせる様にドライアイス11の気化減容を抑制させた。
【0030】
表1は、図5に示す試験体にて、バックパージの経過時間と各酸素濃度測定値を示した表である。経過時間4min にて酸素濃度が低下して配管溶接が可能な状態にバックパージが達成され、以後240min の間、安定的に溶接用シールドガスによるバックシールドが確保され、実機での配管溶接に適用できることが確認された。なお、ドライアイス設定後、溶接用シールドガス噴射開始時間を0min とし、以後、溶接用シールドガスは常にシールドガス注入用ノズル16を通じて配管内部空間14内に噴射させてある。この際の溶接用シールドガスはアルゴン(Ar)ガスであり、その流量は10L/min である。
【0031】
【表1】

Figure 2004105994
【0032】
本発明を利用した、実機での配管溶接の作業手順を図6に示す。配管溶接作業場所の安全確認600を実施した後、溶接取合端部17の溶接開先合わせ位置である配管溶接部からの熱影響が無視できる距離を確保した位置に、フリージングジャケット10を設定601する。これにより、フリージングを開始602して、配管12自体を予め冷却してドライアイス11の配管12内への設定時のドライアイス11の配管接触面での滑りと気化減容を抑制する。
【0033】
次に、配管12に勾配が有るか否か判断し、配管12に勾配がある場合には、配管12内に配管12の内径に外径を合わせた円柱状の氷70を設定604し、配管12に勾配が無い場合には円柱状の氷70の配管12内への設定は行わない。この氷の設定要否は、配管勾配有り603の判定により決定し、氷を設定することで、氷70で勾配下降方向にずれ動くドライアイス11を受け止めてドライアイス11の配管12内の滑りを防止することが出来る。次に、配管12内に配管12の内径に外径を合わせた円柱状のドライアイス11を設定605する。
【0034】
図7は、配管12の勾配が90度の垂直配管へのドライアイス11と氷70の設置状態を示したものである。垂直に設置された配管12に対してドライアイス11の落下方向に配管12の内径に合わせた円柱上の氷70を設定する。その設定の際に氷との接点となる配管内面71は、予め配管外周面からフリージングジャケット10にて十分に冷却されており、空気中の水蒸気による霜が発生するため、氷70が配管12の内面に接着される。接着されにくい場合は配管内面71へ向けての霧吹きなどで、配管内面71に水分を与えて接着を達成させる。
【0035】
このようにして配管12内にドライアイス11の設定605を突合せ溶接を行う対象の一対の各々の配管12に行った後、溶接取合端部17の溶接開先合わせとしての配管組立作業606を行う。その後に、一対の配管の溶接取合端部17の溶接開先合わせ部に配管穴開作業606にて小穴を開け、その小穴にシールドガス注入用ノズル16を挿入して溶接取合端部17にセットする作業608を行う。
【0036】
また、配管溶接時の品質保証として、酸素濃度計を配管12に差し込んでセットする酸素濃度測定用ノズルセット作業609も合わせて行い、溶接時の酸素濃度の変動を確認できるようにする。その後、シールドガス注入用ノズル16から溶接用シールドガスをシールドガス注入用ノズルを通して配管内部空間14に注入すること、即ちバックパージ用ガス注入611を行い、溶接に悪影響を及ぼさない所望の酸素濃度になったことを確認する酸素濃度低下612確認が実施される。
【0037】
所望の酸素濃度になったことを確認した場合には、次に溶接取合端部17の溶接開先合わせ部に対してTIG溶接で配管12の外周側から周溶接613を行う。周溶接613を行っている間は、溶接用シールドガスは配管内部空間14内に注入し続けて酸素濃度の上昇を極力抑制する。フリージングジャケット10による配管12の冷却も溶接中においても継続して氷70の液化やドライアイス11の気化蒸発を極力抑制して配管内部空間14内の酸素濃度の上昇を少ない溶接用シールドガス流量で抑制する。
【0038】
酸素濃度低下612の判定で希望の酸素濃度に下がらなかった場合には、図6に示すフリージングジャケット設定601以降酸素濃度低下612までの各ステップを繰り返して、溶接開先合せ部周溶接613が行えるようにする。
【0039】
図7のように氷70を配管12内に設定した例の場合にも、ドライアイス11の設定時の若干の気化減容と、氷70の加工精度から配管12内全周面に対してドライアイス11と氷70が気密に密着しているわけではなく、部分部分に気密で無い部分が生じ、ドライアイス11と氷70で完全には配管12を閉鎖出来ず、したがって、シールドガス注入用ノズルから溶接用シールドガスを配管内部空間14内に注入すると、配管内部空間14とその外部との差圧で配管内部14内の空気が前述の気密で無い部分から流出し、溶接用シールドガスによる配管内部空間14内が置換できる。
【0040】
希望する酸素濃度に溶接用シールドガスによる配管内部空間14内が置換出来たか否かは、酸素濃度計で測定して知ることもできるが、予め溶接用シールドガスの注入時間と配管内部空間14内の酸素濃度との関係を表1のように知っておけば、酸素濃度計の採用を必須のものでは無くなる。
【0041】
図6で溶接開先合せ部周溶接613が進んで終了直前になったら、シールドガス注入用ノズルや酸素濃度計を配管12から抜いて撤去し、直ちにTIG溶接でシールドガス注入用ノズルや酸素濃度計を抜いた後に配管12に残った穴とシールドガス注入用ノズルの有った周辺の溶接開先部を塞ぐ。
【0042】
その後に、フリージングジャケット10を配管12から撤去して、ドライアイス11を自然に気化させ、氷70も併用してある場合には、その氷70も自然にとかして液体に戻す。その氷70を採用する場合には、ドライアイス11との併用によって氷70の量は少なくて済み、とけて生じた液体の量も配管内を水フラッシングして生じる排水に比較して極端に少なくて済む。
【0043】
以上のように、ドライアイス11又はドライアイス11と氷70とを使用して溶接用シールドガスが溶接部近傍から抜けないように配管12内に壁を作る際に、突合せ溶接される一対の各配管12全部に対してその壁を作ってもよく、溶接近傍に弁が存在して弁を閉めることで壁の役割を果たすことや配管が垂直であるとか、何らかの原因で一対の各配管12の一方の配管12に対してのみドライアイス11又はドライアイス11と氷70とを使用して壁を配管内に設定するようにしても良い。また、溶接用シールドガスを溶接取合端部17から配管内に注入するようにしても良いが、図7のように溶接用シールドガス18を配管12の端部から図7に表示した矢印方向に注入して溶接取合端部17の配管内側の雰囲気の酸素濃度を低下するようにしても良い。
【0044】
また、酸素濃度計を配管12内に差し込む位置を配管の溶接取合端部17にしても良い。この場合には、配管同士を突き合せた状態の溶接取り合い端部17に穴をあけて、その穴を通じて酸素濃度計を配管12内に差し込むことであても良い。この場合にも、溶接取合端部17の配管内側の空間における酸素濃度を酸素濃度計で計測して確認し、溶接しても溶接裏波に大きな悪影響を及ぼさない酸素濃度になった時点で溶接取合端部17を溶接する。その穴は最終的には、酸素濃度計を配管から抜き去った後に溶接で穴埋めされる。
【0045】
以上、説明してきたように、本発明の実施例では、自然に気化・蒸発するドライアイスを配管溶接時のバックパージダムの壁として使用するため、配管溶接後の水フラッシングを行う必要は無く、水フラッシングの適用出来ない配管溶接部へのバックパージ方法が可能となる。また、本発明の実施例では、局所的なバックパージ方法を提供するものであり、配管系統全体をバックパージして溶接するのに比して極少量の溶接用シールドガスにて配管溶接が可能となり、経済性も良くなる。
【0046】
【発明の効果】
以上のように、本発明によれば、自然に気化・蒸発するドライアイスを配管溶接時の溶接用シールドガスを配管内に貯留させるための壁として使用するため、配管溶接後の水洗が適用できない配管溶接部に対しても溶接用シールドガスを配管溶接部に対応した配管の局所において充填することができる。
【図面の簡単な説明】
【図1】本発明の実施例による配管突合せ溶接時のパックパージ方法を説明する配管断面図である。
【図2】本発明の実施例で用いられるシールドガス注入用ノズルの拡大断面図であり、(a)図はそのノズルの長手方向の断面図であり、(b)図は(a)図のX−X断面図であり、(c)図は(a)図のY−Y断面図である。
【図3】従来のシールドガス注入用ノズルの拡大断面図であり、(a)図はそのノズルの長手方向の断面図であり、(b)図は(a)図のX−X断面図であり、(c)図は(a)図のY−Y断面図である。
【図4】従来型と本発明のシールドガス注入ノズルを用いた配管内酸素濃度低減効果の比較説明図である。
【図5】本発明を実機適用へ模擬した試験体を示した図である。
【図6】本発明による突合せ溶接作業の流れを示した図である。
【図7】本発明を垂直配管に適用した場合の図である。
【符号の説明】
10…フリージングジャケット、11…ドライアイス、12…配管、16…シールドガス注入用ノズル、70…氷。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for welding metal piping including stainless steel piping and a nozzle for injecting a shielding gas for welding.
[0002]
[Prior art]
Conventionally, when stainless steel pipes are butt-welded to each other, argon (Ar) is used to prevent mechanical and chemical deterioration of the metal due to oxygen and nitrogen in the air penetrating into the weld backside bead. , Helium (He), carbon dioxide gas (CO 2 ), or other welding shielding gas is injected into the pipe to reduce the oxygen concentration in the pipe.
[0003]
It is necessary to seal the welding shield gas in the vicinity of the welded portion so that the welding shield gas in the pipe does not move from the vicinity of the welded portion, but as the sealing technology, dry ice that becomes the shielding gas for welding during vaporization, Patent Document 1 discloses a known example in which a water-soluble solid for fixing for fixing the dry ice in a pipe is used in combination to simultaneously generate a purge dam and inject a shield gas.
[0004]
In addition, a welding gas is injected into the pipe from the butt weld groove of the pipe, and a bag made of a water-soluble film is inflated in the pipe so that the injected welding gas does not escape. A method for encapsulating is disclosed in Patent Document 2.
[0005]
Patent Document 3 discloses a technique for injecting a welding shield gas through a welding shield gas injection nozzle inserted into a pipe from a welding groove.
[0006]
[Patent Document 1]
JP-A-6-307586 [Patent Document 2]
JP-A-5-245633 [Patent Document 3]
JP-A-9-295147
[Problems to be solved by the invention]
In the technique disclosed in JP-A-6-307586, since dry ice is vaporized and evaporated at the contact surface between the pipe and the dry ice, a water-soluble solid is required to seal the welding shielding gas into the pipe. The technique described in JP-A-5-245633 also requires a bag made of a water-soluble film in the piping.
[0008]
In any case, since the water-soluble material remains in the pipe after welding, it is necessary to wash away the water-soluble material with water. When washing with water, a large amount of water and the momentum of the water are required, so there is a problem that the conventional technology is difficult to use in a piping system in which water remains or is difficult to drain in a tank or piping connected to the piping. .
[0009]
In addition, when the welding shield gas is injected into the pipe, the conventional welding shield gas injection nozzle has a gas outflow opening evenly around the nozzle, so that the welding shield gas is used to weld the pipe. I can't focus on the bevel.
[0010]
In addition, it is conceivable that the pipe is closed only with dry ice and the shielding gas for welding is locally confined in the pipe at a local portion of the welding groove, but in this case, the pipe is in contact with dry ice. When the dry ice is vaporized and evaporated, the above-mentioned function of the containment is lost, and when the pipe is inclined or vertical, the dry ice is vaporized and evaporated at a portion in contact with the pipe, so that the dry ice is inclined downward or vertically. This poses the problem that it moves downward and cannot achieve the local containment of the welding shielding gas in the desired area.
[0011]
Therefore, an object of the present invention is to achieve the local containment of the welding shield gas even when the local containment of the welding shield gas by the water-soluble material is not available or the pipe is inclined or vertical, and to perform pipe welding. It is to provide a welding method that is possible.
[0012]
Another object of the present invention is to provide a welding shield gas injection nozzle capable of efficiently reducing the oxygen concentration in the pipe near the welding groove of the pipe.
[0013]
[Means for Solving the Problems]
The means to solve the problem is to install dry ice so as to close the inside of the pipe, create a wall in the pipe where the welding shield gas is difficult to escape, and cool the dry ice wall together with the pipe from the outer circumference of the pipe. In addition, a welding shield gas back-purge method of injecting a welding shield gas into the pipe is adopted. By such a back-purging method of the welding shield gas, a local space atmosphere in the pipe near the welding point is adopted. The welding method of lowering the oxygen concentration of the pipe than before injecting the shielding gas for welding, and then welding the welding portion of the pipe is adopted.
[0014]
Further, the shield gas injection nozzle for injecting the shield gas for welding into the pipe is provided with a hole for ejecting the shield gas opened in the nozzle on a line passing through the center of the diameter of the shield gas injection nozzle and the diameter from the line. The holes are provided on a line having an angle of ± 45 degrees in the circumferential direction, and the holes are provided in a staggered arrangement in the axial direction of the shield gas injection nozzle so that the holes are unevenly distributed.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Examples of the present invention are as follows. That is, as shown in FIG. 1, the welded end portions 17 of a pair of stainless steel pipes 12 to be butt-welded to each other are joined. The end of the pipe 12 was machined at the welded end 17 to form a weld groove, and the pipe 12 was opened outward at the welded end 17 when the pipes 12 were butted together as shown in FIG. The welding groove portion of the V-shaped cross section appears.
[0016]
Then, the welded joint portion 17 with the weld groove joined is butt-welded from the outer peripheral side of the pipe 12 by TIG (tungsten inert gas) welding. TIG welding is performed while spraying a welding shielding gas such as argon (Ar), helium (He), or carbon dioxide (CO 2 ) from the outer periphery of the pipe 12 to the welding portion. When performing the butt welding, the cylindrical dry ice 11 molded in advance to the outer diameter equal to the inner diameter of the pipe 12 to be welded is heated by the butt welding portion of each pipe 12 for performing the butt welding. A purge dam of a shield gas for welding is formed in the pipe 12 by inserting the dry ice 11 as a wall in the pipe 12 by inserting the same in the vicinity of the welded portion where the influence is negligible.
[0017]
Thus, the non-welding side space 13 which is the internal space of the pipe 12 far from the welding end portion 17 at the boundary of the wall of the cylindrical dry ice 11, and the welding at the boundary of the wall of the cylindrical dry ice 11. The flow of air to the pipe inner space 14 which is a space closer to the joint end 17 is blocked. Here, the term “blocking” means that the contact portion 15 between the pipe 12 and the dry ice 11 only needs to be close enough to block the flow of air naturally, and does not mean airtight.
[0018]
In order to suppress the vaporization and evaporation of the dry ice 11 during the welding operation, the outer periphery of the pipe 12 of the dry ice installation part is wrapped in a freezing jacket 10 through which liquefied carbon dioxide gas is passed, and after the dry ice 11 is inserted into the pipe 12, the pipe 12 The outer circumference is always cooled by using the freezing jacket 10 as a cooling means.
[0019]
Thereafter, a shielding gas injection nozzle 16 is inserted into the inside 14 of the pipe 12 through a hole formed in the welding joint end portion 17, and argon (Ar), helium (He), carbon dioxide (CO 2 ), or one of them is used. Is supplied into the pipe by injecting the welding shield gas 18 into the pipe interior space 14 with the mixed gas of the above, and the air in the pipe interior 14 space is replaced by the welding shield gas 18. This replacement lowers the oxygen concentration in the pipe interior 14 and welds the welding grooves of the welded end portions 17 to prevent oxidation of the weld fins on the inner surface of the pipe during this welding.
[0020]
This will be described in more detail below. That is, FIG. 2 shows the details of the portion A which is the tip of the shielding gas injection nozzle 16 in FIG. The shield gas injection nozzle 16 is connected to one end of a gas hose 19, and the other end of the gas hose 19 is connected to a gas cylinder in which the welding shield gas 18 is stored at a higher pressure than the piping internal space 14. . Preferably, the gas hose 19 and the above-mentioned gas cylinder are connected through a flow rate and pressure adjusting mechanism, and the pressure of the welding shielding gas 18 is higher than the pressure in the pipe internal space 14 and is predetermined. It is preferable to control so that the welding shield gas 18 at a flow rate is injected into the pipe internal space 14.
[0021]
The wall of the dry ice 11 and the inner surface of the pipe 12 are not completely closed due to a slight volume reduction in dry ice setting and the processing accuracy of the dry ice, and the entire periphery of the wall of the dry ice 11 and the inner surface of the pipe 12 are not completely closed. When the shielding gas 18 enters the pipe interior space 14, the interior of the pipe interior space 14 has a higher pressure than the interior of the non-welding side space 13, and the air in the piping interior space 14 flows into the non-welding side space 13 to dry ice. Through the imperfectly closed portion between the wall of the pipe 11 and the inner surface of the pipe 12, the inside of the pipe internal space 14 is replaced with the shielding gas 18 for welding.
[0022]
If there is no pressure difference between the inside of the pipe interior space 14 and the inside of the non-weld side space 13, the atmosphere does not easily pass through between the inside of the pipe interior space 14 and the inside of the non-weld side space 13. . Actually, during the welding operation, the welding shield gas 18 is continuously injected into the pipe internal space 14 so that the pressure difference in the state where the pressure in the pipe internal space 14 is high and the pressure in the non-weld side space 13 is low is always maintained. To occur.
[0023]
As shown in FIGS. 2 (a) and 2 (b), the side of the tip of the shield gas injection nozzle 16 which is inserted into the pipe interior space 14 has the welded end 17 welded. In the groove alignment direction and the circumferential direction of the shield gas injection nozzle 16 based on the groove alignment direction, there are six directions at a swing angle of 45 degrees, and fine hole processing is performed in a staggered arrangement in the nozzle axis direction (nozzle longitudinal direction). The shielding gas is intensively injected from the fine hole 20 in the direction of the welding groove at the welding end portion 17 so that the pipe internal space 14 inside the welding end portion 17 shown in FIG. Is replaced with a shielding gas for welding, and a function of generating a gas flow in the pipe interior space 14 for efficient supply of the shielding gas for welding to the welding back seam portion at the time of welding.
[0024]
As described above, the hole 20 of the shield gas injection nozzle 16 has the diameter of the shield gas injection nozzle 16 in the first section (XX section) orthogonal to the line C indicating the axis of the shield gas injection nozzle 16. And a second cross section (Y-Y cross section) orthogonal to a line C indicating the axis of the shield gas injection nozzle at a position different from the position of the first cross section at a position different from the position of the first cross section. The holes are arranged unevenly on the line B at an angle of ± 45 degrees in the circumferential direction.
[0025]
In order to confirm the effect of the arrangement of the fine holes 20 of the shield gas injection nozzle 16 of the present invention shown in FIGS. 2 (a) and 2 (b), as shown in FIGS. FIG. 4 shows the results of comparison and verification with a conventional shield gas injection nozzle 16a in which fine holes 30 are uniformly processed in the circumferential direction.
[0026]
In FIG. 4, the nozzle A is shown in FIGS. 3 (a) and 3 (b) with two pipes 12 having a length of 500 mm, an inner diameter of 106.3 mm, and an outer diameter of 114.3 mm open at the end. The conventional type shown in FIG. 2 is used as a nozzle, the nozzle B is used as a nozzle of the present invention shown in FIGS. 2A and 2B, and argon (Ar) gas, which is an inert gas, is injected at a flow rate of 10 L / min. Of the oxygen concentration meter (41-43 in the figure). As is apparent from this figure, at the same welding shield gas injection flow rate, the nozzle of the present invention efficiently reduces the oxygen concentration around the welding end portion 17 to 0.1% as compared with the conventional type. It was confirmed that it was done. At this time, as shown in FIGS. 3A and 3B, the direction of the line B of the nozzle B was directed to the direction of the welding groove alignment portion of the welding end portion 17.
[0027]
Next, in order to determine the maximum diameter of the applicable pipe diameter in the method of the present invention shown in FIG. 1, a back purge by measuring the oxygen concentration inside the pipe 12 was performed using a test body shown in FIG. Was confirmed. With respect to the pipe 12 supposed to be a horizontally installed welding target shown in FIG. 5, the center is assumed to be a welding groove alignment position of the welding joint end portion 17, and the shielding gas injection shown in FIGS. The nozzle 16 is set, the oxygen concentration meter 51-56 is set at the center of the pipe centering on the welding groove at the welding end portion 17, and the oxygen concentration distribution in the pipe inner space 14 is measured in the pipe axis direction. It can be measured as a distribution.
[0028]
Further, dry ice 11 whose outer diameter was adjusted to the inner diameter of the cylindrical pipe 12 was set at both ends of the horizontally installed pipe 12. As shown in FIG. 5, the set position is such that the surface of the wall of the dry ice 11 on the side of the welding end 17 is located 500 mm from the position of the welding groove at the welding end 17. The pipe 12 is a SUS304TP stainless steel pipe having a nominal pipe diameter of 100A (inner diameter of 106.2 mm).
[0029]
The outer peripheral surface of the pipe 12 at the set point of the dry ice 11 is covered with a freezing jacket 10 through which liquefied carbon dioxide gas is passed, so that the dry ice 11 can sufficiently function as a purge dam during the welding operation time required by the actual machine. The evaporation and volume reduction of the ice 11 were suppressed.
[0030]
Table 1 is a table showing the elapsed time of the back purge and the measured value of each oxygen concentration in the test specimen shown in FIG. Back purge was achieved in a state where oxygen concentration was reduced and pipe welding was possible at an elapsed time of 4 min, and a back shield with a welding shield gas was secured stably for 240 min thereafter, and applied to pipe welding in actual equipment It was confirmed that it was possible. After setting the dry ice, the welding shield gas injection start time was set to 0 min. Thereafter, the welding shield gas was always injected into the pipe interior space 14 through the shielding gas injection nozzle 16. The shielding gas for welding at this time is argon (Ar) gas, and the flow rate is 10 L / min.
[0031]
[Table 1]
Figure 2004105994
[0032]
FIG. 6 shows an operation procedure of pipe welding in an actual machine using the present invention. After the safety check 600 of the pipe welding work place is performed, the freezing jacket 10 is set 601 at a position where the heat influence from the pipe welded portion, which is the welding groove alignment position of the welding end portion 17, is negligible. I do. Thus, the freezing is started 602, and the pipe 12 itself is cooled in advance to suppress the slipping of the dry ice 11 on the pipe contact surface and the vaporization volume reduction when the dry ice 11 is set in the pipe 12.
[0033]
Next, it is determined whether or not the pipe 12 has a gradient. If the pipe 12 has a gradient, a columnar ice 70 having an outer diameter equal to the inner diameter of the pipe 12 is set 604 in the pipe 12, and If there is no gradient in 12, the setting of the columnar ice 70 in the pipe 12 is not performed. The necessity of setting the ice is determined by the determination that the pipe slope is present 603, and by setting the ice, the ice 70 receives the dry ice 11 which is displaced in the gradient descending direction and slides in the pipe 12 of the dry ice 11. Can be prevented. Next, a cylindrical dry ice 11 whose outer diameter is adjusted to the inner diameter of the pipe 12 is set 605 in the pipe 12.
[0034]
FIG. 7 shows a state where the dry ice 11 and the ice 70 are installed in a vertical pipe having a pipe 12 having a gradient of 90 degrees. An ice 70 on a cylinder is set in the vertical direction of the pipe 12 in the direction in which the dry ice 11 falls so as to match the inner diameter of the pipe 12. The inner surface 71 of the pipe, which serves as a contact point with ice at the time of the setting, is sufficiently cooled in advance by the freezing jacket 10 from the outer peripheral surface of the pipe, and frost is generated by water vapor in the air. Glued to the inner surface. When it is difficult to adhere, moisture is given to the inner surface 71 of the pipe by spraying or the like toward the inner surface 71 of the pipe to achieve the adhesion.
[0035]
After the setting 605 of the dry ice 11 in the pipe 12 is performed on each of the pair of pipes 12 to be subjected to the butt welding in this manner, the pipe assembling work 606 as the welding groove alignment of the welding joint end 17 is performed. Do. After that, a small hole is made in a welding groove fitting portion of the welding joint end portion 17 of the pair of pipes by a pipe hole opening work 606, and a shield gas injection nozzle 16 is inserted into the small hole to form a welding joint end portion 17. 608 is performed.
[0036]
Further, as a quality assurance at the time of pipe welding, an oxygen concentration measurement nozzle setting work 609 for inserting and setting an oxygen concentration meter into the pipe 12 is also performed so that a change in the oxygen concentration at the time of welding can be confirmed. Thereafter, the welding shield gas is injected from the shielding gas injection nozzle 16 into the pipe interior space 14 through the shielding gas injection nozzle, that is, the back purge gas injection 611 is performed to achieve a desired oxygen concentration that does not adversely affect welding. An oxygen concentration drop 612 confirmation is performed to confirm that it has become no longer.
[0037]
When it is confirmed that the desired oxygen concentration has been obtained, next, circumferential welding 613 is performed from the outer circumferential side of the pipe 12 by TIG welding to the welding groove alignment portion of the welding end portion 17. While the girth welding 613 is performed, the welding shielding gas is continuously injected into the pipe internal space 14 to suppress the increase in the oxygen concentration as much as possible. The cooling of the pipe 12 by the freezing jacket 10 is continued even during welding, and the liquefaction of the ice 70 and the vaporization and evaporation of the dry ice 11 are suppressed as much as possible, so that the increase in the oxygen concentration in the pipe internal space 14 is reduced with a small shielding gas flow rate for welding. Suppress.
[0038]
If the oxygen concentration does not drop to the desired oxygen concentration in the determination of the oxygen concentration decrease 612, the steps from the freezing jacket setting 601 to the oxygen concentration decrease 612 shown in FIG. To do.
[0039]
In the case where the ice 70 is set in the pipe 12 as shown in FIG. 7, even when the dry ice 11 is set, a small amount of vaporization occurs and the processing accuracy of the ice 70 causes The ice 11 and the ice 70 are not in close contact with each other in an airtight manner, and a non-hermetic portion is generated in the portion, and the pipe 12 cannot be completely closed by the dry ice 11 and the ice 70. When the welding shielding gas is injected into the piping interior space 14 from above, the air in the piping interior 14 flows out of the above-mentioned non-airtight portion due to the pressure difference between the piping interior space 14 and the outside, and the piping by the welding shielding gas is used. The inside of the internal space 14 can be replaced.
[0040]
Whether or not the inside of the pipe inner space 14 can be replaced with the desired oxygen concentration by the welding shield gas can be known by measuring with an oxygen concentration meter. If the relationship between the oxygen concentration and the oxygen concentration is known as shown in Table 1, the use of an oxygen concentration meter is not essential.
[0041]
In FIG. 6, when the welding groove circumferential welding 613 proceeds and immediately before the end, the shield gas injection nozzle and the oxygen concentration meter are pulled out from the pipe 12 and removed, and immediately the shield gas injection nozzle and the oxygen concentration are removed by TIG welding. After removing the gauge, the welding groove around the hole remaining in the pipe 12 and the shield gas injection nozzle is closed.
[0042]
Thereafter, the freezing jacket 10 is removed from the pipe 12, and the dry ice 11 is naturally vaporized. If the ice 70 is also used, the ice 70 is naturally melted and returned to the liquid. When the ice 70 is used, the amount of the ice 70 can be reduced by using the ice 70 together with the dry ice 11, and the amount of the melted liquid is extremely small as compared with the drainage generated by flushing the piping. Do it.
[0043]
As described above, when a wall is formed in the pipe 12 using the dry ice 11 or the dry ice 11 and the ice 70 so that the welding shield gas does not escape from the vicinity of the welded portion, a pair of butt-welded parts is formed. A wall may be formed for the entire pipe 12, and a valve may be present near the weld to serve as a wall by closing the valve, the pipe may be vertical, or for some reason, a pair of pipes 12 may be formed. The wall may be set in the pipe by using dry ice 11 or dry ice 11 and ice 70 only for one pipe 12. Further, the welding shield gas may be injected into the pipe from the welding end 17, but the welding shield gas 18 may be injected from the end of the pipe 12 in the direction of the arrow shown in FIG. To lower the oxygen concentration of the atmosphere inside the pipe at the welding connection end portion 17.
[0044]
Further, the position where the oxygen concentration meter is inserted into the pipe 12 may be the welded end 17 of the pipe. In this case, a hole may be made in the welding joint end portion 17 where the pipes are butted with each other, and the oxygen concentration meter may be inserted into the pipe 12 through the hole. Also in this case, the oxygen concentration in the space inside the pipe at the welding end portion 17 is measured and confirmed with an oxygen concentration meter, and when the oxygen concentration does not significantly affect the welding backwash even when welding is performed, The welded end 17 is welded. The hole is finally filled by welding after removing the oximeter from the pipe.
[0045]
As described above, in the embodiment of the present invention, since dry ice that evaporates and evaporates naturally is used as the wall of the back purge dam at the time of pipe welding, there is no need to perform water flushing after pipe welding. A back-purging method for piping welds to which water flushing cannot be applied becomes possible. Further, in the embodiment of the present invention, a local back-purge method is provided, and pipe welding can be performed with a very small amount of welding shielding gas as compared with back-purging and welding the entire pipe system. And the economy is improved.
[0046]
【The invention's effect】
As described above, according to the present invention, since dry ice that evaporates and evaporates naturally is used as a wall for storing the welding shielding gas in the pipe during pipe welding, water washing after pipe welding cannot be applied. The welding shield gas can also be filled into the pipe weld at the local portion of the pipe corresponding to the pipe weld.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a pipe for explaining a pack purging method at the time of pipe butt welding according to an embodiment of the present invention.
FIGS. 2A and 2B are enlarged sectional views of a shielding gas injection nozzle used in an embodiment of the present invention, FIG. 2A is a longitudinal sectional view of the nozzle, and FIG. 2B is a sectional view of FIG. It is XX sectional drawing, (c) drawing is YY sectional drawing of (a) drawing.
3A and 3B are enlarged cross-sectional views of a conventional shielding gas injection nozzle, in which FIG. 3A is a cross-sectional view in the longitudinal direction of the nozzle, and FIG. 3B is a cross-sectional view taken along line XX of FIG. FIG. 3C is a sectional view taken along line YY of FIG.
FIG. 4 is a comparative explanatory view of the effect of reducing the oxygen concentration in a pipe using the conventional type and the shield gas injection nozzle of the present invention.
FIG. 5 is a diagram showing a test body simulating the present invention for application to an actual machine.
FIG. 6 is a diagram showing a flow of a butt welding operation according to the present invention.
FIG. 7 is a diagram when the present invention is applied to a vertical pipe.
[Explanation of symbols]
10: Freezing jacket, 11: Dry ice, 12: Piping, 16: Shield gas injection nozzle, 70: Ice.

Claims (4)

互いに溶接される二つの配管の少なくとも一つの配管の内部に溶接個所から離してドライアイスを設置し、また前記ドライアイスを取り囲む前記配管部位を配管の外周から冷却しつつ前記配管内に溶接用シールドガスを供給し、前記溶接個所内側の配管内の空気を前記溶接用シールドガスに置換し、前記置換した状態で前記溶接個所を溶接する溶接方法。Dry ice is installed inside at least one of the two pipes that are welded to each other, away from a welding point, and the pipe part surrounding the dry ice is cooled from the outer circumference of the pipe while a welding shield is provided in the pipe. A welding method of supplying a gas, replacing air in a pipe inside the welding location with the shielding gas for welding, and welding the welding location in the replaced state. 二つの配管の突合せ溶接を行うに先立って、円柱状ドライアイスを前記配管内部に設置し、前記ドライアイスを取り囲む前記配管部位を前記配管の外周から冷却し、前記配管内に溶接用シールドガスを前記配管の溶接取り合い端部から前記配管内に挿入したシールドガス注入用ノズルを経由して供給し、前記配管の溶接取り合い端部内側の配管内の空気を前記溶接用シールドガスに置換し、前記置換した状態で前記配管の溶接取り合い端部を溶接する溶接方法。Prior to performing butt welding of two pipes, a cylindrical dry ice is installed inside the pipe, the pipe portion surrounding the dry ice is cooled from the outer circumference of the pipe, and a shielding gas for welding is provided in the pipe. It is supplied from a welding joint end of the pipe via a shielding gas injection nozzle inserted into the pipe, and replaces air in the pipe inside the welding joint end of the pipe with the welding shield gas, A welding method for welding a welding joint end of the pipe in a replaced state. 請求項1又は請求項2において、前記配管内面に接着した氷で前記ドライアイスのずれ動きを止めることを特徴とする溶接方法。The welding method according to claim 1 or 2, wherein the dry ice is stopped by the ice adhered to the inner surface of the pipe. 配管内に溶接用シールドガスを供給する複数の孔を備えたシールドガス注入用ノズルにおいて、
前記孔を、シールドガス注入ノズルの軸心と直交する第1の断面でシールドガス注入ノズルの径の中心を通る線上と、前記第1の断面の位置と異なる位置におけるシールドガス注入ノズルの軸心と直交する第2の断面で前記線から前記径の周方向±45度の角度の線上とに配置して、前記孔を不均一に分布させてあるシールドガス注入用ノズル。
In a shielding gas injection nozzle having a plurality of holes for supplying a welding shielding gas in a pipe,
The hole is formed on a line passing through the center of the diameter of the shield gas injection nozzle in a first cross section orthogonal to the axis of the shield gas injection nozzle, and the axis of the shield gas injection nozzle at a position different from the position of the first cross section. A shield gas injection nozzle in which the holes are non-uniformly arranged at a second cross section orthogonal to the above and on a line at an angle of ± 45 degrees in the circumferential direction of the diameter from the line.
JP2002269358A 2002-09-17 2002-09-17 Pipe welding method Expired - Fee Related JP3996825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002269358A JP3996825B2 (en) 2002-09-17 2002-09-17 Pipe welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002269358A JP3996825B2 (en) 2002-09-17 2002-09-17 Pipe welding method

Publications (2)

Publication Number Publication Date
JP2004105994A true JP2004105994A (en) 2004-04-08
JP3996825B2 JP3996825B2 (en) 2007-10-24

Family

ID=32267302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002269358A Expired - Fee Related JP3996825B2 (en) 2002-09-17 2002-09-17 Pipe welding method

Country Status (1)

Country Link
JP (1) JP3996825B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004344936A (en) * 2003-05-22 2004-12-09 Takata Corp Method for welding metal tube
WO2012128310A1 (en) * 2011-03-23 2012-09-27 三菱重工業株式会社 Turbine rotor and method for producing turbine rotor
JP2012220157A (en) * 2011-04-13 2012-11-12 Shinichi Nakayama Frosting preventive sheet, and method of constructing the sheet
WO2013030364A1 (en) * 2011-08-31 2013-03-07 Hitachi Power Europe Gmbh Forming body for sealing an object to be welded, more particularly a pipe, having a water solubility greater than or equal to 90%
JP2013252545A (en) * 2012-06-07 2013-12-19 Komatsu Ltd Method for manufacturing oil storage tank and oil storage tank manufacturing apparatus
US8616432B1 (en) * 2012-07-31 2013-12-31 Michael Hacikyan Welding purge dam for high air flow environment
JP2014180674A (en) * 2013-03-18 2014-09-29 Takada Corp Welding method of metal pipe by ice plug
US20170225258A1 (en) * 2016-02-05 2017-08-10 Michael Hacikyan Gas Diffusing Water Degradable Welding Purge Dam
KR20180000941U (en) * 2016-09-27 2018-04-05 한전케이피에스 주식회사 Argon spray nozzle structure for welding
CN109128561A (en) * 2018-10-30 2019-01-04 广船国际有限公司 A kind of installation method of steamer pipeline
CN109277696A (en) * 2018-10-29 2019-01-29 北京航天新风机械设备有限责任公司 A kind of midget tube pipe docking laser welding point protective device
CN113523516A (en) * 2021-06-28 2021-10-22 中核检修有限公司 Pipeline welding protection air chamber device
WO2022082982A1 (en) * 2020-10-23 2022-04-28 中铁山桥集团有限公司 Butt-welding method for u-shaped stainless steel rib with drainage function

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5979859B2 (en) 2011-12-08 2016-08-31 三菱日立パワーシステムズ株式会社 Back shield welding method
CN111230270B (en) * 2020-01-13 2021-07-20 海洋石油工程股份有限公司 Pipe test piece 2G circumferential weld argon arc welds inside shielding gas device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004344936A (en) * 2003-05-22 2004-12-09 Takata Corp Method for welding metal tube
KR101539876B1 (en) * 2011-03-23 2015-07-27 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Turbine rotor and method for producing turbine rotor
WO2012128310A1 (en) * 2011-03-23 2012-09-27 三菱重工業株式会社 Turbine rotor and method for producing turbine rotor
JP2012202225A (en) * 2011-03-23 2012-10-22 Mitsubishi Heavy Ind Ltd Turbine rotor, and method for producing the same
JP2012220157A (en) * 2011-04-13 2012-11-12 Shinichi Nakayama Frosting preventive sheet, and method of constructing the sheet
WO2013030364A1 (en) * 2011-08-31 2013-03-07 Hitachi Power Europe Gmbh Forming body for sealing an object to be welded, more particularly a pipe, having a water solubility greater than or equal to 90%
US9233437B2 (en) 2011-08-31 2016-01-12 Mitsubishi Hitachi Power Systems Europe Gmbh Forming body for sealing an object to be welded, more particularly a pipe
JP2013252545A (en) * 2012-06-07 2013-12-19 Komatsu Ltd Method for manufacturing oil storage tank and oil storage tank manufacturing apparatus
US8616432B1 (en) * 2012-07-31 2013-12-31 Michael Hacikyan Welding purge dam for high air flow environment
JP2014180674A (en) * 2013-03-18 2014-09-29 Takada Corp Welding method of metal pipe by ice plug
US20170225258A1 (en) * 2016-02-05 2017-08-10 Michael Hacikyan Gas Diffusing Water Degradable Welding Purge Dam
US10654122B2 (en) * 2016-02-05 2020-05-19 Michael Hacikyan Gas diffusing water degradable welding purge dam
KR20180000941U (en) * 2016-09-27 2018-04-05 한전케이피에스 주식회사 Argon spray nozzle structure for welding
KR200486190Y1 (en) * 2016-09-27 2018-04-17 한전케이피에스 주식회사 Argon spray nozzle structure for welding
CN109277696A (en) * 2018-10-29 2019-01-29 北京航天新风机械设备有限责任公司 A kind of midget tube pipe docking laser welding point protective device
CN109128561A (en) * 2018-10-30 2019-01-04 广船国际有限公司 A kind of installation method of steamer pipeline
WO2022082982A1 (en) * 2020-10-23 2022-04-28 中铁山桥集团有限公司 Butt-welding method for u-shaped stainless steel rib with drainage function
CN113523516A (en) * 2021-06-28 2021-10-22 中核检修有限公司 Pipeline welding protection air chamber device

Also Published As

Publication number Publication date
JP3996825B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
JP2004105994A (en) Welding method for tube and infusing nozzle for shielding gas for welding
KR101058137B1 (en) Preservation device and maintenance method of welded joint
JP5468619B2 (en) How to repair a metal workpiece
US5484973A (en) Underbead weld shield method and apparatus
KR100504296B1 (en) Method of welding
TW200529965A (en) Process for welding
US20040009042A1 (en) Method and apparatus for welding pipes together
US5864111A (en) Method and device for controlling pipe welding
KR101767988B1 (en) Method for purging welding pipe
US3614378A (en) Fluxless high-frequency aluminum tube welding without inserts
JP6558920B2 (en) Welding apparatus and welding method
US20220152729A1 (en) Sealing Hollow Structures
US10160054B2 (en) Instantaneous gas purge apparatus
JPH05245633A (en) Shielding gas welding method for pipes
JP4632428B2 (en) High frequency induction heating pipe making method of steel pipe
CN106514069A (en) Device inhibiting welding defects of small-diameter aluminum alloy guiding pipe
JPH09295147A (en) Method for back gas protection at the time of welding of piping
US11016000B2 (en) Purging for welding
KR101586050B1 (en) Purge jig for flexible tube welding
JPH08243739A (en) Continuous welding method of boiler tube
US7992760B2 (en) Conduit purging device and method
JPH0976062A (en) First layer welding method
US20080217378A1 (en) Device for Centering and Clamping Tubular Parts, Comprising Means for the Real-Time Mesurement and Regulation of the Moisture Content
KR200488827Y1 (en) Jig for argon gas purge and earth
JP6016450B2 (en) Welding method and welding apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040929

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3996825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees