JP3996825B2 - Pipe welding method - Google Patents

Pipe welding method Download PDF

Info

Publication number
JP3996825B2
JP3996825B2 JP2002269358A JP2002269358A JP3996825B2 JP 3996825 B2 JP3996825 B2 JP 3996825B2 JP 2002269358 A JP2002269358 A JP 2002269358A JP 2002269358 A JP2002269358 A JP 2002269358A JP 3996825 B2 JP3996825 B2 JP 3996825B2
Authority
JP
Japan
Prior art keywords
pipe
welding
shield gas
dry ice
weld
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002269358A
Other languages
Japanese (ja)
Other versions
JP2004105994A (en
Inventor
是寿 福田
雅幸 石渡
八州一 白石
和彦 藻垣
俊一 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering and Services Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering and Services Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering and Services Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering and Services Co Ltd
Priority to JP2002269358A priority Critical patent/JP3996825B2/en
Publication of JP2004105994A publication Critical patent/JP2004105994A/en
Application granted granted Critical
Publication of JP3996825B2 publication Critical patent/JP3996825B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ステンレス製配管を含む金属製配管の溶接方法に関する。
【0002】
【従来の技術】
従来、ステンレス製の配管同士を突合せ溶接する際には、空気中の酸素や窒素などが溶接部裏波ビードに侵入することによる金属の機械的,化学的劣化防止の観点から、アルゴン(Ar),ヘリウム(He),炭酸ガス(CO2 )などの溶接用シールドガスを配管内に注入して配管内の酸素濃度を低下させている。
【0003】
その配管内の溶接用シールドガスが溶接部近傍から移動しないように溶接用シールドガスを溶接部近傍に封入する必要があるが、その封入技術として、気化時に溶接用シールドガスとなるドライアイスと、そのドライアイスを配管内に固定するための固定用の水溶性固形物を併用して、パージダム生成とシールドガス注入を同時に可能とした公知例が特許文献1に挙げられる。
【0004】
また、配管の突合せ溶接開先部分から配管内に溶接用シールドガスを注入し、注入した溶接用シールドガスが抜けないように配管内面に水溶性フィルムによる袋を配管内で膨らませて溶接用シールドガスを封入する方法が特許文献2にて公知である。
【0005】
また、配管内に溶接開先部から差し込んだ溶接用シールドガス注入用ノズルを通じて溶接用シールドガスを注入する技術が特許文献3で公知である。
【0006】
【特許文献1】
特開平6−307586号公報
【特許文献2】
特開平5−245633号公報
【特許文献3】
特開平9−295147号公報
【0007】
【発明が解決しようとする課題】
特開平6−307586号公報の技術は、配管とドライアイスの接触面でドライアイスが気化蒸発するので、溶接用シールドガスを配管内に封入するのに水溶性固形物が必要である。特開平5−245633号公報に記載の技術も配管内に水溶性フィルムによる袋が必要である。
【0008】
いずれの場合にも、水溶性材料が溶接後の配管内に残留するので、水洗にて水溶性材料を洗い流す必要がある。水洗する際には、多量の水と水の勢いとが必要であるから、配管に接続されたタンクや配管に水が残留したり排水しにくい配管系統では従来技術が利用しにくいという課題を有する。
【0009】
また、配管内に溶接用シールドガスを注入する際に従来の溶接用シールドガス注入用ノズルでは、ノズル周囲に均等にガスの流出用細孔が開いているので、溶接用シールドガスを配管の溶接開先に重点的に行き渡らせることが出来ない。
【0010】
また、ドライアイスのみで配管内を閉鎖して溶接用シールドガスを溶接開先部の局所において局部的に配管内に封じ込めることが思いつくが、この場合には、配管とドライアイスとが接する部分でドライアイスが気化蒸発して前述の封じ込めの機能が喪失されれるとともに、配管が傾斜乃至は垂直の場合には、ドライアイスが配管と接する部分で気化蒸発するので、ドライアイスが傾斜下降方向又は垂直下方へずれ動いて希望する領域での溶接用シールドガスの局部的封じ込め状態が達成できないという課題を負うことになる。
【0011】
したがって、本発明の目的は、水溶性材料による溶接用シールドガスの局部的封じ込めが利用できない場合や配管が傾斜乃至は垂直である場合にも溶接用シールドガスの局部的封じ込めを達成して配管溶接が可能な溶接方法を提供することである。
【0012】
また、本発明の他の目的は、配管の溶接開先近傍の配管内の酸素濃度を効率よく低下させることのできる溶接用シールドガス注入用ノズルを提供することにある。
【0013】
【課題を解決するための手段】
課題を解決するための手段は、二つの配管の突合せ溶接を行うに先立って、円柱状ドライアイスを前記配管内部に設置し、前記ドライアイスを取り囲む前記配管部位を前記配管の外周から冷却し、前記配管の溶接取り合い端部から前記配管内にシールドガス注入用ノズルを挿入し、前記溶接取合端部の溶接開先合わせ部方向の2方向の孔と、その方向を基準に前記シールドガス注入用ノズルの円周方向へ振り角45度の4方向の孔とが前記シールドガス注入用ノズルのノズル軸方向で互い違いに前記シールドガス注入用ノズルに配置された前記各孔から前記溶接開先合わせ部方向に集中的に溶接用シールドガスを噴射させて前記溶接用シールドガスを前記配管内に供給し、前記配管の溶接取り合い端部内側の配管内の空気を前記溶接用シールドガスに置換し、前記置換した状態で前記配管の溶接取り合い端部を前記供給を継続しながら溶接する溶接方法を採用している。
【0015】
【発明の実施の形態】
本発明の実施例は以下のとおりである。即ち、図1に示すように、互いに突合せ溶接されるステンレス製の一対の配管12の溶接取合端部17を合わせる。溶接取合端部17には配管12の端部を加工して溶接開先を形成し、図1のように配管12同士を突き合わせた状態では溶接取合端部17には外側に開かれたV字型の断面の溶接開先の部分が表れる。
【0016】
そして、その溶接開先が合わされた溶接取合端部17を配管12の外周囲側からTIG(タングステン イナート ガス)溶接によって突合せ溶接する。TIG溶接するに際しては、アルゴン(Ar),ヘリウム(He),炭酸ガス(CO2)などの溶接用シールドガスを配管12の外周から溶接部に吹き付けながら行う。その突合せ溶接を行う際に、あらかじめ溶接を行う当該配管12の内径と等しい外径に成型した円柱状ドライアイス11を、突合せ溶接部を行う各々の配管12の突合せ溶接部にて溶接時の熱影響が無視できる距離を確保した溶接部近傍にそれぞれ挿入して配管12内に円柱状ドライアイス11を壁とした溶接用シールドガスのパージダムを生成する。
【0017】
このようにして、円柱状ドライアイス11の壁を境に溶接取合端部17から遠い方の配管12内部空間である非溶接側空間13と、円柱状ドライアイス11の壁を境に溶接取合端部17に近い方の空間である配管内部空間14との空気の流れを遮断する。ここで言う遮断とは、配管12とドライアイス11の接触部15は、自然に空気の流れを生ずることを遮断する程度の密着で良く、気密という意味ではない。
【0018】
溶接作業中にドライアイス11の気化蒸発を抑制するために、ドライアイス設置部の配管12外周を、液化炭酸ガスを通したフリージングジャケット10にて包み込みドライアイス11を配管12に挿入後は配管12外周をフリージングジャケット10を冷却手段に用いて常に冷却させておく。
【0019】
その後、溶接取合端部17に加工した孔よりシールドガス注入用ノズル16を配管12の内部14に挿入し、アルゴン(Ar),ヘリウム(He),炭酸ガス(CO2 )或いはそれらのいずれかの混合ガスによる溶接用シールドガス18を配管内部空間14へ注入することで配管内に供給し、配管内部14空間の空気を溶接用シールドガス18により置換する。この置換で配管内部14の酸素濃度を低下させつつ、溶接取合端部17の溶接開先同士を溶接し、この溶接時の配管内面溶接裏波部の酸化防止を図る。
【0020】
更に詳細に説明すれば以下のとおりである。即ち、図1におけるシールドガス注入用ノズル16の先端部であるA部の詳細を図2に示す。シールドガス注入用ノズル16は、ガス用ホース19の一端に接続され、ガス用ホース19の他端は溶接用シールドガス18が配管内部空間14よりも高圧に貯蔵してあるガスボンベに接続されている。好ましくは、ガス用ホース19と前述のガスボンベとは流量及び圧力調整機構を通じて接続され、配管内部空間14内の圧力よりも溶接用シールドガス18の圧力が高圧となるように、及び予め決められた流量の溶接用シールドガス18が配管内部空間14内に注入されるように制御することが好ましい。
【0021】
ドライアイス11の壁と配管12内面とはドライアイス設定時の若干の気化減容とドライアイスの加工精度からドライアイス11の壁と配管12内面全周囲が完全には閉鎖されず、高圧な溶接用シールドガス18が配管内部空間14内に入ると、配管内部空間14内が非溶接側空間13内よりも高圧となって、配管内部空間14内の空気が非溶接側空間13内側へドライアイス11の壁と配管12内面との不完全閉鎖部から抜けて配管内部空間14内が溶接用シールドガス18に置換される。
【0022】
配管内部空間14内と非溶接側空間13内との間で、差圧が生じていなければ、容易には配管内部空間14内と非溶接側空間13内との間で雰囲気の通り抜けは発生しない。実際には、溶接作業中は、溶接用シールドガス18を配管内部空間14内へ注入し続けて配管内部空間14内の圧力が高く非溶接側空間13内の圧力が低い状態の差圧が常に生じるようにする。
【0023】
このシールドガス注入用ノズル16の配管内部空間14内へ挿入される先端部の側面には、図2の(a),(b)で表示されているように、溶接取合端部17の溶接開先合わせ部方向と、その方向を基準にシールドガス注入用ノズル16の円周方向へ振り角45度にて6方向、且つノズル軸方向(ノズル長手方向)では千鳥配置として微細な孔加工を施し、この微細な孔20から溶接取合端部17の溶接開先合わせ部方向に集中的にシールドガスを噴射させ、効率良く図1に示す溶接取合端部17の内側の配管内部空間14を溶接用シールドガスで置換し、また溶接時の溶接裏波部への効率的な溶接用シールドガス供給の為の配管内部空間14内でのガス流を生成する機能を有する。
【0024】
このように、シールドガス注入用ノズル16の孔20は、シールドガス注入用ノズル16の軸心を示す線Cと直交する第1の断面(X−X断面)でシールドガス注入用ノズル16の径の中心を通る線A上と、前記第1の断面の位置と異なる位置におけるシールドガス注入ノズルの軸心示す線Cと直交する第2の断面(Y−Y断面)で前記線Aから前記径の周方向±45度の角度の線B上とに配置して、前記孔を不均一に分布させてある。
【0025】
この図2(a)(b)に示す本発明のシールドガス注入用ノズル16の微細な孔20の配置の効果を確認するために、図3(a)(b)に示す様にノズル側面に周方向に均等に微細な孔30を加工した従来型のシールドガス注入用ノズル
16aとの比較検証結果を図4に示す。
【0026】
図4では、長さ500mm、内径が106.3mm、外径が114.3mmの端部開放の二本の配管12を突合せたものに対して、ノズルAを図3(a)(b)に示す従来型をノズルとして、ノズルBを図2(a)(b)に示す今回発明のノズルとして、流量10L/min で不活性ガスであるアルゴン(Ar)ガスを注入して5分後のそれぞれの酸素濃度計(図中41〜43)の値を示したものである。本図から明らかなように、同じ溶接用シールドガス注入流量にて、従来型に比較して本発明のノズルでは、効率的に溶接取合端部17周辺を0.1% まで酸素濃度を低下させることが確認出来た。この際、ノズルBは図3(a)(b)に示すように線Bの向きが溶接取合端部17の溶接開先合わせ部方向に向くようにした。
【0027】
次に、図1に示す本発明の方法での適用配管口径の最大径を確定するため、実機の配管溶接を想定した図5に示す試験体にて、配管12内部の酸素濃度測定によるバックパージの状況確認を行った。図5に示す水平に設置した溶接対象と仮定した配管12に対し、中央部を溶接取合端部17の溶接開先合わせ位置に仮定し、図2(a)(b)に示すシールドガス注入用ノズル16を設定、溶接取合端部17の溶接開先合わせ部を中心に、酸素濃度計51−56を配管内部中央部に設定し、配管内部空間14の酸素濃度分布を管軸方向の分布として測定できるようにした。
【0028】
また、水平設置の配管12の両端部には、円柱状の配管12内径に外径を合わせたドライアイス11を設定した。その設定位置は、図5に示すように、溶接取合端部17の溶接開先合わせ位置から500mmにドライアイス11の壁の溶接取合端部17側の面が位置するようにされる。この配管12は配管呼び径100A(管内径106.2mm)のSUS304TPステンレス製配管である。
【0029】
このドライアイス11の設定箇所における配管12の外周面には、液化炭酸ガスを通したフリージングジャケット10を覆いかぶせて実機で必要な溶接作業時間の間、十分にパージダムとしての機能を果たせる様にドライアイス11の気化減容を抑制させた。
【0030】
表1は、図5に示す試験体にて、バックパージの経過時間と各酸素濃度測定値を示した表である。経過時間4min にて酸素濃度が低下して配管溶接が可能な状態にバックパージが達成され、以後240min の間、安定的に溶接用シールドガスによるバックシールドが確保され、実機での配管溶接に適用できることが確認された。なお、ドライアイス設定後、溶接用シールドガス噴射開始時間を0min とし、以後、溶接用シールドガスは常にシールドガス注入用ノズル16を通じて配管内部空間14内に噴射させてある。この際の溶接用シールドガスはアルゴン(Ar)ガスであり、その流量は10L/min である。
【0031】
【表1】

Figure 0003996825
【0032】
本発明を利用した、実機での配管溶接の作業手順を図6に示す。配管溶接作業場所の安全確認600を実施した後、溶接取合端部17の溶接開先合わせ位置である配管溶接部からの熱影響が無視できる距離を確保した位置に、フリージングジャケット10を設定601する。これにより、フリージングを開始602して、配管12自体を予め冷却してドライアイス11の配管12内への設定時のドライアイス11の配管接触面での滑りと気化減容を抑制する。
【0033】
次に、配管12に勾配が有るか否か判断し、配管12に勾配がある場合には、配管12内に配管12の内径に外径を合わせた円柱状の氷70を設定604し、配管12に勾配が無い場合には円柱状の氷70の配管12内への設定は行わない。この氷の設定要否は、配管勾配有り603の判定により決定し、氷を設定することで、氷70で勾配下降方向にずれ動くドライアイス11を受け止めてドライアイス11の配管12内の滑りを防止することが出来る。次に、配管12内に配管12の内径に外径を合わせた円柱状のドライアイス11を設定605する。
【0034】
図7は、配管12の勾配が90度の垂直配管へのドライアイス11と氷70の設置状態を示したものである。垂直に設置された配管12に対してドライアイス11の落下方向に配管12の内径に合わせた円柱上の氷70を設定する。その設定の際に氷との接点となる配管内面71は、予め配管外周面からフリージングジャケット10にて十分に冷却されており、空気中の水蒸気による霜が発生するため、氷70が配管12の内面に接着される。接着されにくい場合は配管内面71へ向けての霧吹きなどで、配管内面71に水分を与えて接着を達成させる。
【0035】
このようにして配管12内にドライアイス11の設定605を突合せ溶接を行う対象の一対の各々の配管12に行った後、溶接取合端部17の溶接開先合わせとしての配管組立作業606を行う。その後に、一対の配管の溶接取合端部17の溶接開先合わせ部に配管穴開作業606にて小穴を開け、その小穴にシールドガス注入用ノズル16を挿入して溶接取合端部17にセットする作業608を行う。
【0036】
また、配管溶接時の品質保証として、酸素濃度計を配管12に差し込んでセットする酸素濃度測定用ノズルセット作業609も合わせて行い、溶接時の酸素濃度の変動を確認できるようにする。その後、シールドガス注入用ノズル16から溶接用シールドガスをシールドガス注入用ノズルを通して配管内部空間14に注入すること、即ちバックパージ用ガス注入611を行い、溶接に悪影響を及ぼさない所望の酸素濃度になったことを確認する酸素濃度低下612確認が実施される。
【0037】
所望の酸素濃度になったことを確認した場合には、次に溶接取合端部17の溶接開先合わせ部に対してTIG溶接で配管12の外周側から周溶接613を行う。周溶接613を行っている間は、溶接用シールドガスは配管内部空間14内に注入し続けて酸素濃度の上昇を極力抑制する。フリージングジャケット10による配管12の冷却も溶接中においても継続して氷70の液化やドライアイス11の気化蒸発を極力抑制して配管内部空間14内の酸素濃度の上昇を少ない溶接用シールドガス流量で抑制する。
【0038】
酸素濃度低下612の判定で希望の酸素濃度に下がらなかった場合には、図6に示すフリージングジャケット設定601以降酸素濃度低下612までの各ステップを繰り返して、溶接開先合せ部周溶接613が行えるようにする。
【0039】
図7のように氷70を配管12内に設定した例の場合にも、ドライアイス11の設定時の若干の気化減容と、氷70の加工精度から配管12内全周面に対してドライアイス11と氷70が気密に密着しているわけではなく、部分部分に気密で無い部分が生じ、ドライアイス11と氷70で完全には配管12を閉鎖出来ず、したがって、シールドガス注入用ノズルから溶接用シールドガスを配管内部空間14内に注入すると、配管内部空間14とその外部との差圧で配管内部14内の空気が前述の気密で無い部分から流出し、溶接用シールドガスによる配管内部空間14内が置換できる。
【0040】
希望する酸素濃度に溶接用シールドガスによる配管内部空間14内が置換出来たか否かは、酸素濃度計で測定して知ることもできるが、予め溶接用シールドガスの注入時間と配管内部空間14内の酸素濃度との関係を表1のように知っておけば、酸素濃度計の採用を必須のものでは無くなる。
【0041】
図6で溶接開先合せ部周溶接613が進んで終了直前になったら、シールドガス注入用ノズルや酸素濃度計を配管12から抜いて撤去し、直ちにTIG溶接でシールドガス注入用ノズルや酸素濃度計を抜いた後に配管12に残った穴とシールドガス注入用ノズルの有った周辺の溶接開先部を塞ぐ。
【0042】
その後に、フリージングジャケット10を配管12から撤去して、ドライアイス11を自然に気化させ、氷70も併用してある場合には、その氷70も自然にとかして液体に戻す。その氷70を採用する場合には、ドライアイス11との併用によって氷70の量は少なくて済み、とけて生じた液体の量も配管内を水フラッシングして生じる排水に比較して極端に少なくて済む。
【0043】
以上のように、ドライアイス11又はドライアイス11と氷70とを使用して溶接用シールドガスが溶接部近傍から抜けないように配管12内に壁を作る際に、突合せ溶接される一対の各配管12全部に対してその壁を作ってもよく、溶接近傍に弁が存在して弁を閉めることで壁の役割を果たすことや配管が垂直であるとか、何らかの原因で一対の各配管12の一方の配管12に対してのみドライアイス11又はドライアイス11と氷70とを使用して壁を配管内に設定するようにしても良い。また、溶接用シールドガスを溶接取合端部17から配管内に注入するようにしても良いが、図7のように溶接用シールドガス18を配管12の端部から図7に表示した矢印方向に注入して溶接取合端部17の配管内側の雰囲気の酸素濃度を低下するようにしても良い。
【0044】
また、酸素濃度計を配管12内に差し込む位置を配管の溶接取合端部17にしても良い。この場合には、配管同士を突き合せた状態の溶接取り合い端部17に穴をあけて、その穴を通じて酸素濃度計を配管12内に差し込むことであても良い。この場合にも、溶接取合端部17の配管内側の空間における酸素濃度を酸素濃度計で計測して確認し、溶接しても溶接裏波に大きな悪影響を及ぼさない酸素濃度になった時点で溶接取合端部17を溶接する。その穴は最終的には、酸素濃度計を配管から抜き去った後に溶接で穴埋めされる。
【0045】
以上、説明してきたように、本発明の実施例では、自然に気化・蒸発するドライアイスを配管溶接時のバックパージダムの壁として使用するため、配管溶接後の水フラッシングを行う必要は無く、水フラッシングの適用出来ない配管溶接部へのバックパージ方法が可能となる。また、本発明の実施例では、局所的なバックパージ方法を提供するものであり、配管系統全体をバックパージして溶接するのに比して極少量の溶接用シールドガスにて配管溶接が可能となり、経済性も良くなる。
【0046】
【発明の効果】
以上のように、本発明によれば、自然に気化・蒸発するドライアイスを配管溶接時の溶接用シールドガスを配管内に貯留させるための壁として使用するため、配管溶接後の水洗が適用できない配管溶接部に対しても溶接用シールドガスを配管溶接部に対応した配管の局所において充填することができる。
【図面の簡単な説明】
【図1】本発明の実施例による配管突合せ溶接時のパックパージ方法を説明する配管断面図である。
【図2】本発明の実施例で用いられるシールドガス注入用ノズルの拡大断面図であり、(a)図はそのノズルの長手方向の断面図であり、(b)図は(a)図のX−X断面図であり、(c)図は(a)図のY−Y断面図である。
【図3】従来のシールドガス注入用ノズルの拡大断面図であり、(a)図はそのノズルの長手方向の断面図であり、(b)図は(a)図のX−X断面図であり、(c)図は(a)図のY−Y断面図である。
【図4】従来型と本発明のシールドガス注入ノズルを用いた配管内酸素濃度低減効果の比較説明図である。
【図5】本発明を実機適用へ模擬した試験体を示した図である。
【図6】本発明による突合せ溶接作業の流れを示した図である。
【図7】本発明を垂直配管に適用した場合の図である。
【符号の説明】
10…フリージングジャケット、11…ドライアイス、12…配管、16…シールドガス注入用ノズル、70…氷。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of welding metal pipe comprising a stainless steel pipe.
[0002]
[Prior art]
Conventionally, when butt welding stainless steel pipes together, argon (Ar) is used from the viewpoint of preventing mechanical and chemical deterioration of the metal due to oxygen and nitrogen in the air entering the weld back bead. , Helium (He), carbon dioxide gas (CO 2 ) or the like is injected into the pipe to reduce the oxygen concentration in the pipe.
[0003]
It is necessary to seal the welding shield gas in the vicinity of the welded portion so that the welding shield gas in the pipe does not move from the vicinity of the welded portion, but as the sealing technique, dry ice that becomes the welding shield gas at the time of vaporization, Patent Document 1 discloses a publicly known example that can simultaneously generate a purge dam and inject a shield gas by using a fixing water-soluble solid for fixing the dry ice in a pipe.
[0004]
Also, welding shield gas is injected into the pipe from the butt weld groove portion of the pipe, and a bag made of a water-soluble film is inflated on the inner surface of the pipe so that the injected welding shield gas does not escape. Patent Document 2 discloses a method for encapsulating.
[0005]
Patent Document 3 discloses a technique for injecting welding shield gas through a welding shield gas injection nozzle inserted into a pipe from a welding groove.
[0006]
[Patent Document 1]
JP-A-6-307586 [Patent Document 2]
JP-A-5-245633 [Patent Document 3]
Japanese Patent Laid-Open No. 9-295147
[Problems to be solved by the invention]
In the technique disclosed in Japanese Patent Laid-Open No. 6-307586, dry ice evaporates and evaporates on the contact surface between the pipe and the dry ice, so that a water-soluble solid is required to enclose the welding shield gas in the pipe. The technique described in JP-A-5-245633 also requires a water-soluble film bag in the pipe.
[0008]
In either case, since the water-soluble material remains in the pipe after welding, it is necessary to wash away the water-soluble material by washing with water. When washing with water, a large amount of water and the momentum of the water are required, so there is a problem that the conventional technology is difficult to use in a piping system in which water remains in the piping connected to the piping or piping is difficult to drain. .
[0009]
In addition, when injecting welding shield gas into the pipe, conventional welding shield gas injection nozzles have gas outflow holes evenly around the nozzle. It is not possible to focus on the groove.
[0010]
In addition, it is conceivable to close the pipe with dry ice and contain the shielding gas for welding locally in the pipe at the weld groove part. In this case, the pipe and dry ice are in contact with each other. When dry ice is vaporized and evaporated, the above-mentioned containment function is lost, and when the pipe is inclined or vertical, the dry ice vaporizes and evaporates at the part in contact with the pipe. The problem is that the local containment state of the shielding gas for welding cannot be achieved in the desired region by shifting downward.
[0011]
Accordingly, it is an object of the present invention to achieve local containment of the welding shield gas even when local containment of the welding shield gas by the water-soluble material is not available or when the pipe is inclined or vertical. It is to provide a welding method capable of.
[0012]
Another object of the present invention is to provide a welding shield gas injection nozzle capable of efficiently reducing the oxygen concentration in the pipe in the vicinity of the welding groove of the pipe.
[0013]
[Means for Solving the Problems]
Prior to performing butt welding of two pipes , the means for solving the problem is to install cylindrical dry ice inside the pipe, cool the pipe part surrounding the dry ice from the outer periphery of the pipe, A nozzle for injecting shield gas is inserted into the pipe from the weld joint end of the pipe, and the shield gas is injected based on the two directions of the weld joint end direction of the weld joint end and the direction. The four holes having a swing angle of 45 degrees in the circumferential direction of the nozzle for welding are alternately aligned in the nozzle axis direction of the nozzle for shielding gas injection from the holes arranged in the nozzle for shielding gas injection. The welding shield gas is sprayed intensively in the direction of the section to supply the welding shield gas into the pipe, and the air in the pipe inside the weld joint end of the pipe is sealed with the welding seal It is replaced with a gas, the weld scramble end of the said pipe substituted state adopts the welding method of welding while continuing the supply.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the present invention are as follows. That is, as shown in FIG. 1, the weld joint end portions 17 of a pair of stainless steel pipes 12 that are butt welded to each other are matched. A weld groove is formed by processing the end portion of the pipe 12 at the weld joint end portion 17, and the weld joint end portion 17 is opened to the outside in a state where the pipes 12 are abutted with each other as shown in FIG. The weld groove portion of the V-shaped cross section appears.
[0016]
And the welding joint end part 17 with which the welding groove | channel was match | combined is butt-welded from the outer peripheral side of the piping 12 by TIG (tungsten inert gas) welding. TIG welding is performed while spraying a welding shield gas such as argon (Ar), helium (He), carbon dioxide (CO 2 ) from the outer periphery of the pipe 12 to the welded portion. When performing the butt welding, the cylindrical dry ice 11 molded to an outer diameter equal to the inner diameter of the pipe 12 to be welded in advance is heated at the butt welding portion of each pipe 12 performing the butt welding portion. A purge dam of a welding shield gas having a cylindrical dry ice 11 as a wall is generated in the pipe 12 by being inserted in the vicinity of a welded portion that secures a distance at which the influence can be ignored.
[0017]
In this way, welding is performed with the non-weld side space 13 that is the internal space of the pipe 12 far from the weld joint end 17 from the wall of the cylindrical dry ice 11 and the wall of the cylindrical dry ice 11 as a boundary. The flow of air with the pipe internal space 14 which is the space closer to the end portion 17 is blocked. The term “blocking” as used herein means that the contact portion 15 between the pipe 12 and the dry ice 11 may be close enough to block the flow of air naturally and does not mean airtightness.
[0018]
In order to suppress vaporization and evaporation of the dry ice 11 during the welding operation, the outer periphery of the pipe 12 of the dry ice installation part is wrapped with a freezing jacket 10 through which liquefied carbon dioxide gas is passed, and after the dry ice 11 is inserted into the pipe 12, the pipe 12 The outer periphery is always cooled by using the freezing jacket 10 as a cooling means.
[0019]
Thereafter, a shield gas injection nozzle 16 is inserted into the inside 14 of the pipe 12 through the hole machined in the weld joint end portion 17, and argon (Ar), helium (He), carbon dioxide (CO 2 ), or any one of them. The welding shield gas 18 by the mixed gas is injected into the pipe internal space 14 to be supplied into the pipe, and the air in the pipe internal 14 space is replaced by the welding shield gas 18. While this replacement reduces the oxygen concentration in the pipe interior 14, the weld grooves of the weld joint end portions 17 are welded together to prevent oxidation of the pipe inner surface weld back-up part during this welding.
[0020]
This will be described in detail below. That is, FIG. 2 shows details of the A portion that is the tip of the shielding gas injection nozzle 16 in FIG. The shield gas injection nozzle 16 is connected to one end of a gas hose 19, and the other end of the gas hose 19 is connected to a gas cylinder in which a welding shield gas 18 is stored at a higher pressure than the pipe internal space 14. . Preferably, the gas hose 19 and the gas cylinder are connected through a flow rate and pressure adjustment mechanism, and the pressure of the welding shield gas 18 is higher than the pressure in the pipe internal space 14 and is determined in advance. It is preferable to control so that the welding shield gas 18 having a flow rate is injected into the pipe internal space 14.
[0021]
The wall of the dry ice 11 and the inner surface of the pipe 12 are slightly closed when dry ice is set and the processing accuracy of the dry ice is not completely closed. When the shielding gas 18 enters the pipe internal space 14, the pressure in the pipe internal space 14 becomes higher than that in the non-weld side space 13, and the air in the pipe internal space 14 is dry iced into the non-weld side space 13. The inside of the pipe internal space 14 is replaced with the welding shield gas 18 through the incompletely closed portion between the wall 11 and the inner surface of the pipe 12.
[0022]
If no differential pressure is generated between the pipe internal space 14 and the non-weld side space 13, there is no easy passage of atmosphere between the pipe internal space 14 and the non-weld side space 13. . Actually, during the welding operation, the welding shield gas 18 is continuously injected into the pipe internal space 14, and the pressure difference in the state where the pressure in the pipe internal space 14 is high and the pressure in the non-weld side space 13 is low is always maintained. Make it happen.
[0023]
As indicated by (a) and (b) in FIG. 2, welding of the welding joint end portion 17 is performed on the side surface of the tip portion inserted into the pipe internal space 14 of the shield gas injection nozzle 16. With respect to the groove alignment direction and the direction of the groove gas as a reference, the circumferential direction of the shield gas injection nozzle 16 is swung at 45 degrees in six directions, and the nozzle axis direction (nozzle longitudinal direction) is a staggered arrangement of fine holes. Then, a shielding gas is intensively injected from the fine holes 20 toward the weld groove matching portion 17 of the weld joint end portion 17 so that the pipe inner space 14 inside the weld joint end portion 17 shown in FIG. Is replaced with a welding shield gas, and a gas flow is generated in the pipe internal space 14 for efficient supply of the welding shield gas to the weld back-wall portion during welding.
[0024]
Thus, the hole 20 of the shield gas injection nozzle 16 has a diameter of the shield gas injection nozzle 16 in a first cross section (XX cross section) orthogonal to the line C indicating the axis of the shield gas injection nozzle 16. The diameter from the line A in a second cross section (Y-Y cross section) perpendicular to the line C indicating the axis of the shield gas injection nozzle at a position different from the position of the first cross section on the line A passing through the center of Are arranged on the line B having an angle of ± 45 degrees in the circumferential direction, and the holes are unevenly distributed.
[0025]
In order to confirm the effect of the arrangement of the minute holes 20 of the shield gas injection nozzle 16 of the present invention shown in FIGS. 2 (a) and 2 (b), as shown in FIGS. FIG. 4 shows a comparison verification result with a conventional shield gas injection nozzle 16a in which fine holes 30 are uniformly processed in the circumferential direction.
[0026]
In FIG. 4, the nozzle A is shown in FIGS. 3 (a) and 3 (b) for two pipes 12 having a length of 500 mm, an inner diameter of 106.3 mm, and an outer diameter of 114.3 mm but having an open end. The conventional type shown is a nozzle, and the nozzle B is a nozzle of the present invention shown in FIGS. 2 (a) and 2 (b). An argon (Ar) gas that is an inert gas is injected at a flow rate of 10 L / min, and after 5 minutes. The values of oxygen concentration meters (41 to 43 in the figure) are shown. As is clear from this figure, at the same welding shield gas injection flow rate, the nozzle of the present invention efficiently reduces the oxygen concentration around the weld joint end 17 to 0.1% compared to the conventional type. I was able to confirm. At this time, as shown in FIGS. 3A and 3B, the nozzle B was arranged such that the direction of the line B was directed toward the weld groove alignment portion of the weld joint end portion 17.
[0027]
Next, in order to determine the maximum diameter of the applicable pipe diameter in the method of the present invention shown in FIG. 1, a back purge by measuring the oxygen concentration inside the pipe 12 is performed with the test body shown in FIG. The situation was confirmed. For the pipe 12 that is assumed to be welded horizontally shown in FIG. 5, the center portion is assumed to be the weld groove alignment position of the weld joint end portion 17, and the shield gas injection shown in FIGS. 2 (a) and 2 (b). The nozzle 16 is set, and the oxygen concentration meter 51-56 is set at the center of the inside of the pipe centering on the weld groove matching portion of the weld joint end portion 17, and the oxygen concentration distribution in the pipe internal space 14 is set in the pipe axis direction. Measured as a distribution.
[0028]
Moreover, the dry ice 11 which match | combined the outer diameter with the cylindrical piping 12 internal diameter was set to the both ends of the piping 12 of horizontal installation. As shown in FIG. 5, the setting position is set so that the surface of the wall of the dry ice 11 on the side of the welding joint end 17 is located 500 mm from the welding groove alignment position of the welding joint end 17. This pipe 12 is a SUS304TP stainless steel pipe having a nominal pipe diameter of 100 A (pipe inner diameter: 106.2 mm).
[0029]
The outer peripheral surface of the pipe 12 at the set place of the dry ice 11 is covered with a freezing jacket 10 through which liquefied carbon dioxide gas is passed so that the dry dam can be sufficiently functioned as a purge dam during the required welding operation time. The vaporization volume reduction of the ice 11 was suppressed.
[0030]
Table 1 is a table showing the elapsed time of back purge and measured values of each oxygen concentration in the specimen shown in FIG. Back purge is achieved in a state where the oxygen concentration decreases and pipe welding is possible after an elapse time of 4 min. After that, the back shield is secured with a shielding gas for welding for 240 min. It was confirmed that it was possible. After the dry ice is set, the welding shield gas injection start time is set to 0 min. Thereafter, the welding shield gas is always injected into the pipe internal space 14 through the shield gas injection nozzle 16. The welding shield gas at this time is argon (Ar) gas, and its flow rate is 10 L / min.
[0031]
[Table 1]
Figure 0003996825
[0032]
FIG. 6 shows a work procedure of pipe welding in an actual machine using the present invention. After performing the safety confirmation 600 of the pipe welding work place, the freezing jacket 10 is set 601 at a position that secures a distance at which the heat influence from the pipe welded portion, which is the welding groove alignment position of the welding joint end portion 17, can be ignored. To do. As a result, freezing is started 602, the pipe 12 itself is cooled in advance, and slippage and vaporization volume reduction of the dry ice 11 on the pipe contact surface when the dry ice 11 is set in the pipe 12 are suppressed.
[0033]
Next, it is determined whether or not the pipe 12 has a gradient. If the pipe 12 has a gradient, a cylindrical ice 70 having an outer diameter equal to the inner diameter of the pipe 12 is set 604 in the pipe 12, When there is no gradient in 12, the columnar ice 70 is not set in the pipe 12. Whether or not this ice is required is determined based on the determination that the pipe slope is 603. By setting the ice, the ice 70 receives the dry ice 11 that moves in the downward direction of the slope, and the dry ice 11 slips in the pipe 12. Can be prevented. Next, a cylindrical dry ice 11 having an outer diameter equal to the inner diameter of the pipe 12 is set 605 in the pipe 12.
[0034]
FIG. 7 shows a state where the dry ice 11 and the ice 70 are installed in a vertical pipe having a slope of the pipe 12 of 90 degrees. The ice 70 on the cylinder which matches the inner diameter of the pipe 12 is set in the falling direction of the dry ice 11 with respect to the pipe 12 installed vertically. The pipe inner surface 71 that becomes a contact point with ice at the time of setting is sufficiently cooled in advance by the freezing jacket 10 from the outer peripheral surface of the pipe, and frost due to water vapor in the air is generated. Bonded to the inner surface. If it is difficult to bond, water is applied to the pipe inner surface 71 by spraying toward the pipe inner surface 71 to achieve bonding.
[0035]
In this way, after setting the setting 605 of the dry ice 11 in the pipe 12 to each of the pair of pipes 12 to be butt welded, the pipe assembly operation 606 as the welding groove alignment of the weld joint end portion 17 is performed. Do. Thereafter, a small hole is formed in the welding groove alignment portion of the weld coupling end portion 17 of the pair of pipes by the piping hole opening operation 606, and the shield gas injection nozzle 16 is inserted into the small hole to weld the coupling end portion 17. The operation 608 is set.
[0036]
In addition, as a quality assurance at the time of pipe welding, an oxygen concentration measurement nozzle setting operation 609 for inserting and setting an oxygen concentration meter into the pipe 12 is also performed so that fluctuations in oxygen concentration at the time of welding can be confirmed. Thereafter, a shielding gas for welding is injected from the shielding gas injection nozzle 16 through the shielding gas injection nozzle into the pipe internal space 14, that is, a back purge gas injection 611 is performed to obtain a desired oxygen concentration that does not adversely affect welding. A check 612 for confirming the decrease in oxygen concentration is performed.
[0037]
When it is confirmed that the desired oxygen concentration is obtained, next, circumferential welding 613 is performed from the outer peripheral side of the pipe 12 by TIG welding on the weld groove matching portion of the weld joint end portion 17. While the circumferential welding 613 is being performed, the welding shielding gas is continuously injected into the pipe internal space 14 to suppress the increase in oxygen concentration as much as possible. The cooling of the pipe 12 by the freezing jacket 10 and the welding are continued during welding, and the liquefaction of the ice 70 and the vaporization and evaporation of the dry ice 11 are suppressed as much as possible so that the increase in the oxygen concentration in the pipe internal space 14 is reduced with a welding shield gas flow rate. Suppress.
[0038]
If the desired oxygen concentration is not lowered in the determination of the oxygen concentration decrease 612, the steps from the freezing jacket setting 601 to the oxygen concentration decrease 612 shown in FIG. Like that.
[0039]
In the case of the example in which the ice 70 is set in the pipe 12 as shown in FIG. 7, it is possible to dry the entire circumferential surface in the pipe 12 due to a slight evaporation volume when the dry ice 11 is set and the processing accuracy of the ice 70. The ice 11 and the ice 70 are not tightly adhered to each other, and a non-hermetic portion is generated in the portion, and the pipe 12 cannot be completely closed with the dry ice 11 and the ice 70. Therefore, the nozzle for shielding gas injection When the shielding gas for welding is injected into the pipe internal space 14 from the air, the air inside the pipe 14 flows out from the above-mentioned non-hermetic portion due to the differential pressure between the pipe internal space 14 and the outside thereof, and the piping with the welding shield gas is used. The interior space 14 can be replaced.
[0040]
Whether or not the inside of the pipe internal space 14 with the welding shield gas can be replaced with the desired oxygen concentration can be determined by measuring with an oximeter, but the welding shield gas injection time and the inside of the pipe internal space 14 can be determined in advance. If we know the relationship between the oxygen concentration and the oxygen concentration as shown in Table 1, the use of an oxygen concentration meter is not essential.
[0041]
In FIG. 6, when the welding groove alignment circumferential welding 613 proceeds and is just before the end, the shield gas injection nozzle and the oxygen concentration meter are removed from the pipe 12 and removed, and the shield gas injection nozzle and oxygen concentration are immediately removed by TIG welding. After removing the gauge, the hole remaining in the pipe 12 and the weld groove portion around the shield gas injection nozzle are closed.
[0042]
Thereafter, the freezing jacket 10 is removed from the pipe 12, and the dry ice 11 is naturally vaporized. When the ice 70 is also used, the ice 70 is naturally melted and returned to the liquid. When the ice 70 is used, the amount of the ice 70 can be reduced by the combined use with the dry ice 11, and the amount of the generated liquid is extremely small as compared with the drainage generated by flushing the inside of the pipe. I'll do it.
[0043]
As described above, when making a wall in the pipe 12 using the dry ice 11 or the dry ice 11 and the ice 70 so that the welding shield gas does not escape from the vicinity of the welded portion, a pair of butt welds are made. A wall may be formed for all the pipes 12, and there is a valve in the vicinity of the weld and the valve is closed so that it plays the role of a wall, the pipe is vertical, or for some reason, The wall may be set in the pipe using the dry ice 11 or the dry ice 11 and the ice 70 only for the one pipe 12. Further, the welding shield gas may be injected into the pipe from the weld joint end portion 17, but as shown in FIG. 7, the welding shield gas 18 is sent from the end of the pipe 12 to the direction indicated by the arrow in FIG. The oxygen concentration in the atmosphere inside the pipe of the weld joint end portion 17 may be lowered.
[0044]
Further, the position where the oxygen concentration meter is inserted into the pipe 12 may be the weld joint end 17 of the pipe. In this case, a hole may be formed in the weld joint end 17 in a state where the pipes are butted together, and the oximeter may be inserted into the pipe 12 through the hole. Also in this case, the oxygen concentration in the space inside the pipe of the weld joint end portion 17 is measured and confirmed by an oximeter, and when the oxygen concentration does not have a great adverse effect on the welding back wave even if welding is performed. The weld joint end 17 is welded. The hole is finally filled by welding after the oximeter is removed from the pipe.
[0045]
As described above, in the embodiment of the present invention, since dry ice that naturally vaporizes and evaporates is used as a wall of the back purge dam during pipe welding, it is not necessary to perform water flushing after pipe welding, A back purge method is possible for pipe welds where water flushing cannot be applied. In addition, the embodiment of the present invention provides a local back purge method, and pipe welding can be performed with a very small amount of shield gas for welding as compared to back purging and welding the entire piping system. The economy is also improved.
[0046]
【The invention's effect】
As described above, according to the present invention, dry ice that naturally vaporizes and evaporates is used as a wall for storing the shielding gas for welding during pipe welding in the pipe, so that water washing after pipe welding cannot be applied. The welding shield gas can be filled in the local area of the pipe corresponding to the pipe welded portion even in the pipe welded portion.
[Brief description of the drawings]
FIG. 1 is a pipe cross-sectional view illustrating a pack purging method during pipe butt welding according to an embodiment of the present invention.
2 is an enlarged cross-sectional view of a shielding gas injection nozzle used in an embodiment of the present invention, FIG. 2A is a longitudinal cross-sectional view of the nozzle, and FIG. 2B is a cross-sectional view of FIG. It is XX sectional drawing, (c) A figure is YY sectional drawing of (a) figure.
FIG. 3 is an enlarged cross-sectional view of a conventional shield gas injection nozzle, (a) is a cross-sectional view in the longitudinal direction of the nozzle, and (b) is an XX cross-sectional view of (a). FIG. 4C is a cross-sectional view taken along line YY of FIG.
FIG. 4 is a comparative explanatory view of the effect of reducing the oxygen concentration in a pipe using the conventional type and the shield gas injection nozzle of the present invention.
FIG. 5 is a view showing a test body simulating the present invention applied to an actual machine.
FIG. 6 is a view showing a flow of butt welding work according to the present invention.
FIG. 7 is a diagram when the present invention is applied to a vertical pipe.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Freezing jacket, 11 ... Dry ice, 12 ... Piping, 16 ... Nozzle for shielding gas injection, 70 ... Ice.

Claims (2)

二つの配管の突合せ溶接を行うに先立って、円柱状ドライアイスを前記配管内部に設置し、前記ドライアイスを取り囲む前記配管部位を前記配管の外周から冷却し、前記配管の溶接取り合い端部から前記配管内にシールドガス注入用ノズルを挿入し、前記溶接取合端部の溶接開先合わせ部方向の2方向の孔と、その方向を基準に前記シールドガス注入用ノズルの円周方向へ振り角45度の4方向の孔とが前記シールドガス注入用ノズルのノズル軸方向で互い違いに前記シールドガス注入用ノズルに配置された前記各孔から前記溶接開先合わせ部方向に集中的に溶接用シールドガスを噴射させて前記溶接用シールドガスを前記配管内に供給し、前記配管の溶接取り合い端部内側の配管内の空気を前記溶接用シールドガスに置換し、前記置換した状態で前記配管の溶接取り合い端部を前記供給を継続しながら溶接する溶接方法。  Prior to performing butt welding of two pipes, a cylindrical dry ice is installed inside the pipe, the pipe portion surrounding the dry ice is cooled from the outer periphery of the pipe, and the weld joint end of the pipe is used to A shield gas injection nozzle is inserted into the pipe, and the holes in the two directions in the weld groove alignment direction of the weld joint end portion are swung in the circumferential direction of the shield gas injection nozzle based on the direction. 45-degree four-direction holes are alternately arranged in the nozzle axis direction of the shield gas injection nozzle, and the shields for welding are concentrated in the direction of the weld groove alignment portion from the holes arranged in the shield gas injection nozzle. Injecting gas to supply the welding shield gas into the pipe, replacing the air in the pipe inside the weld joint end of the pipe with the welding shield gas, the replacement Welding method to weld scramble end of the pipe welding while continuing the supply in state. 請求項1において、前記ドライアイスよりも前記配管の溶接取り合い端部から離れた位置にて前記配管内面に接着した氷で前記ドライアイスのずれ動きを止めることを特徴とする溶接方法。  2. The welding method according to claim 1, wherein the movement of the dry ice is stopped by the ice adhered to the inner surface of the pipe at a position farther from the welding joint end of the pipe than the dry ice.
JP2002269358A 2002-09-17 2002-09-17 Pipe welding method Expired - Fee Related JP3996825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002269358A JP3996825B2 (en) 2002-09-17 2002-09-17 Pipe welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002269358A JP3996825B2 (en) 2002-09-17 2002-09-17 Pipe welding method

Publications (2)

Publication Number Publication Date
JP2004105994A JP2004105994A (en) 2004-04-08
JP3996825B2 true JP3996825B2 (en) 2007-10-24

Family

ID=32267302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002269358A Expired - Fee Related JP3996825B2 (en) 2002-09-17 2002-09-17 Pipe welding method

Country Status (1)

Country Link
JP (1) JP3996825B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9186753B2 (en) 2011-12-08 2015-11-17 Mitsubishi Hitachi Power Systems, Ltd. Back-shielded welding method and welded structure using the same
CN111230270A (en) * 2020-01-13 2020-06-05 海洋石油工程股份有限公司 Pipe test piece 2G circumferential weld argon arc welds inside shielding gas device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4146282B2 (en) * 2003-05-22 2008-09-10 株式会社高田工業所 Welding method of metal pipe
JP5822496B2 (en) * 2011-03-23 2015-11-24 三菱日立パワーシステムズ株式会社 Turbine rotor and method of manufacturing turbine rotor
JP5731263B2 (en) * 2011-04-13 2015-06-10 慎一 中山 Frost prevention sheet and construction method of the sheet
DE102011053171A1 (en) * 2011-08-31 2013-02-28 Hitachi Power Europe Gmbh Forming body for sealing an object to be welded, in particular a pipe
JP5638029B2 (en) * 2012-06-07 2014-12-10 株式会社小松製作所 Oil tank manufacturing method and oil tank manufacturing apparatus
US8616432B1 (en) * 2012-07-31 2013-12-31 Michael Hacikyan Welding purge dam for high air flow environment
JP5965856B2 (en) * 2013-03-18 2016-08-10 株式会社高田工業所 Welding method of metal pipe with ice plug
US10654122B2 (en) * 2016-02-05 2020-05-19 Michael Hacikyan Gas diffusing water degradable welding purge dam
KR200486190Y1 (en) * 2016-09-27 2018-04-17 한전케이피에스 주식회사 Argon spray nozzle structure for welding
CN109277696A (en) * 2018-10-29 2019-01-29 北京航天新风机械设备有限责任公司 A kind of midget tube pipe docking laser welding point protective device
CN109128561A (en) * 2018-10-30 2019-01-04 广船国际有限公司 A kind of installation method of steamer pipeline
CN112276303B (en) * 2020-10-23 2022-06-24 中铁山桥集团有限公司 Stainless steel U-shaped rib butt welding method with water drainage function
CN113523516B (en) * 2021-06-28 2022-08-26 中核检修有限公司 Pipeline welding protection air chamber device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9186753B2 (en) 2011-12-08 2015-11-17 Mitsubishi Hitachi Power Systems, Ltd. Back-shielded welding method and welded structure using the same
CN111230270A (en) * 2020-01-13 2020-06-05 海洋石油工程股份有限公司 Pipe test piece 2G circumferential weld argon arc welds inside shielding gas device
CN111230270B (en) * 2020-01-13 2021-07-20 海洋石油工程股份有限公司 Pipe test piece 2G circumferential weld argon arc welds inside shielding gas device

Also Published As

Publication number Publication date
JP2004105994A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
JP3996825B2 (en) Pipe welding method
KR101058137B1 (en) Preservation device and maintenance method of welded joint
JP5468619B2 (en) How to repair a metal workpiece
US8127443B2 (en) Method of fabricating a rocket engine nozzle using pressure brazing
CA2290951C (en) Method and device for controlling pipe welding
US3614378A (en) Fluxless high-frequency aluminum tube welding without inserts
KR101767988B1 (en) Method for purging welding pipe
JP2007237228A (en) Arc welding equipment and arc welding method
KR20180074966A (en) Welding method and equipment of water tank for water purifier to prevent oxidation inside the weld zone
US5494539A (en) Metal member quality improving method by spot welding
JP4632428B2 (en) High frequency induction heating pipe making method of steel pipe
JPH09295147A (en) Method for back gas protection at the time of welding of piping
CN113953783B (en) Clean dismantling and installing method for pipeline in cold box
JPH1073197A (en) Piping refrigeration construction method
JPS58212890A (en) Cooling method of weld zone of pipe under welding
JPH06307586A (en) Pipe butt welding method
JP2001170787A (en) Method of monitoring welding condition of laser beam welding
JP4146282B2 (en) Welding method of metal pipe
JPH0871779A (en) Laser welding equipment for tube and its method
KR970010881B1 (en) Welding process for super high purity gas feeding system piping
JPH0972813A (en) Inspection apparatus at flange welded part of pipe
JP6016450B2 (en) Welding method and welding apparatus
CN109108441A (en) Auxiliary device for austenitic stainless steel welding
JPH03264171A (en) Welding method for resistance welded steel tube
CN103048055A (en) Sleeve seat structure with outer surface being provided with semi-U-shaped temperature measuring point and welding process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040929

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3996825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees