JP2004104719A - Electrode structure for piezoelectric vibrator - Google Patents

Electrode structure for piezoelectric vibrator Download PDF

Info

Publication number
JP2004104719A
JP2004104719A JP2002267448A JP2002267448A JP2004104719A JP 2004104719 A JP2004104719 A JP 2004104719A JP 2002267448 A JP2002267448 A JP 2002267448A JP 2002267448 A JP2002267448 A JP 2002267448A JP 2004104719 A JP2004104719 A JP 2004104719A
Authority
JP
Japan
Prior art keywords
electrode
film
pad electrode
pad
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002267448A
Other languages
Japanese (ja)
Inventor
Ryoichi Yasuike
安池 亮一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2002267448A priority Critical patent/JP2004104719A/en
Publication of JP2004104719A publication Critical patent/JP2004104719A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode structure for a piezoelectric vibrator in which electrical and mechanical strengths are improved in the case of bonding a piezoelectric vibrating element to a ceramic package. <P>SOLUTION: A full electrode 11 is formed all over a principal surface of a crystal substrate 9 on the side of a recess by a means of deposition, and a main electrode 12 having a predetermined size as well as a lead electrode 13 extending from the main electrode 12 are similarly formed approximately in the middle of a thin portion formed with the recess on the principal surface of the crystal substrate 9 on the side of the recess by the means of deposition. Next, a pad electrode 17a is formed by sputtering to be thick in comparison with the other main electrode 12 and lead electrode 13, and conducted through the lead electrode 13. The pad electrode 17a secures the strength of the electrodes in the case of flip chip packaging using a bump 15a stuck on the pad electrode 17a and a Cr film is formed as a base when forming the pad electrode 17a to improve the bonding strength of the pad electrode and the crystal substrate. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は圧電振動子の電極構造に関し、特にセラミックパッケージ内に水晶振動素子等の圧電振動素子を気密封止した構造の圧電振動子であって、圧電振動素子をセラミックパッケージの内部パッド電極にバンプ等を用いて接続固定する手法を備えた圧電振動子の電極構造に関する。
【0002】
【従来の技術】
携帯電話機等の移動体通信機器の普及に伴う低価格化及び小型化の急激な進展や、OA機器の高速処理化、高性能化により、これらの通信機器やOA機器に使用される水晶振動子等の圧電デバイスに対しても高周波化、小型化、高信頼性化及び低価格化等の要請が高まっている。
通常、小型化された圧電振動子としては、表面実装型(以降、SMDと称す)圧電振動子が主流であり、所定のセラミックパッケージ内に圧電振動素子を収納した上で、セラミックパッケージを蓋にて気密封止した構造を有する。
【0003】
図5は、従来のSMD型水晶振動子の構造例を示す断面図である。図5に示すように、SMD型水晶振動子1は、セラミックパッケージ2の内側底面に設けた内部パッド電極3に、バンプ4を用いて水晶振動素子5を接続固定しており、内部パッド電極3は、所定の外部接続端子6とセラミックパッケージ2の壁を気密貫通する配線導体を介して導通している。一方、セラミックパッケージ2は、セラミックパッケージ2の開口部上端に、環状に固定されたシームリング7を用いて蓋8をシーム溶接することにより気密封止される。
【0004】
水晶振動素子は、通常、ATカット水晶基板の基本波厚みすべり振動波を利用したものが使用され、その共振周波数は、水晶基板の厚みに反比例することから、水晶振動子を、例えば、60MHzから200MHzのような高周波に対応させるためには薄肉の水晶基板が必要である。そこで、水晶基板が薄肉となり機械的強度が劣化することを防ぐため、例えば、80μm程度の肉厚の水晶基板の一部にエッチングにより凹部を形成し、該凹部の十数μm程度の薄肉部を振動部として振動させ、高周波の共振周波数を得る方法が知られている。
【0005】
図6に、従来の水晶振動素子の外観構造例を示す。図6(a)は、凹部側主面の斜視図を示し、水晶基板9の所定の位置にエッチングにより凹部10を形成した後、凹部側主面の全面に全面電極11を蒸着等の手段により形成している。一方、図6(b)は、平坦部側主面の斜視図を示し、水晶基板9の凹部側主面の凹部が形成されている薄肉部のほぼ中央に所定の面積を有する主電極12を形成し、該主電極12から延出するリード電極13とパッド電極14aと、前記全面電極11から延出したパッド電極14bとを蒸着等の手段により形成する。又、パッド電極14a、14bには、水晶振動素子をセラミックパッケージに接続固定する際に使用されるバンプ15a、15bが付着される。
【0006】
図7は、図6において示した水晶振動素子の断面図である。図7は、主電極から延出したパッド電極14aにおける断面図を示し、80μm程度の肉厚の水晶基板9の所定の位置に凹部10を形成して、該凹部10の十数μmの薄肉部を振動部とし、凹部側主面には、電極膜厚を約0.1μmとした全面電極11を形成している。一方、平坦側主面には、同じく電極厚を約0.1μmとした主電極12、リード電極13及びパッド電極14aを形成し、パッド電極14aの所定の位置には、バンプ15aを付着している。
【0007】
【発明が解決しようとする課題】
水晶振動子の高周波化に伴い凹部に設けた振動部の板厚を薄くすると、所望の共振周波数を得るためには、電極膜厚もこれに伴い薄くする必要があり、上述したように電極膜厚は、約0.1μm程度としているが、水晶振動素子をセラミックパッケージに接続固定する際にパッド電極に形成したバンプを用いてフリップチップ方式の実装を行う場合、パッド電極の膜厚が薄いため水晶振動素子とセラミックパッケージの接合強度が低下し、水晶振動素子が剥離しやすいという欠点を有していた。
そこで、そのような欠点を排除するため、パッド電極のみに追加的に電極を厚膜加工するという手法が用いられる。
【0008】
図8に、従来の水晶振動素子において、パッド電極に厚膜加工を追加した様子を示す。図8は、主電極から延出したパッド電極14aにおける断面図を示し、水晶基板9に設けたパッド電極14aの上部に、パッド電極14aの厚膜部16aを追加形成した。
ここで、電極の形成方法を説明すると、先ず、水晶基板にはNi膜を成膜した後、成膜したNi膜を下地として、次に、Au膜を成膜し電極とする。これは、Ni膜を下地とすると、水晶振動子の組み立ての際、後工程において行われるハンダ付け等の加熱時においても、電極膜の変質を防ぐことが出来、電極の材質として優れていることによる。
【0009】
しかしながら、電極を形成する際にNiを下地とすると、Auを水晶基板に直接成膜するよりは剥離しにくいものの、水晶振動素子をセラミックパッケージに設けた内部パッド電極にバンプを用いてフリップチップ実装する場合は、内部パッド電極から水晶振動素子が、しばしば剥離するという問題点が生じていた。従って、水晶振動子の製造歩留まりが低下すると共に、コスト高をまねき、更には水晶振動子の信頼性が乏しいという欠点を有していた。
【0010】
そこで本発明は、上述したような問題を解決するためになされたものであって、水晶振動素子をセラミックパッケージに設けた内部パッド電極に、バンプを用いてフリップチップ実装する際に、水晶振動素子とセラミックパッケージ間の電気的、機械的強度を強化した圧電振動子の電極構造を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するために本発明に係わる圧電振動子の電極構造は、以下の構成をとる。
請求項1記載の圧電振動子の電極構造は、パッケージ内に圧電振動素子を気密封止した構造の圧電振動子であって、前記圧電振動素子に形成したパッド電極と前記パッケージに形成した内部パッド電極とを電気的、機械的に接続した構造の圧電振動子において、前記圧電振動子に形成したパッド電極が、圧電基板に所定の膜厚のCrを下地とし、該Cr膜の表面に所定の膜厚のAuを成膜するよう構成する。
【0012】
請求項2記載の圧電振動子の電極構造は、前記パッド電極を構成するCr膜、及びAu膜が、スパッタ方式により成膜するよう構成する。
【0013】
請求項3記載の圧電振動子の電極構造は、前記圧電振動素子を構成する前記パッド電極以外の電極が、圧電基板の所定の位置に形成した所定の膜厚のNi膜を下地とし、該Ni膜の表面に所定の膜厚のAuを成膜するよう構成する。
【0014】
請求項4記載の圧電振動子の電極構造は、前記パッド電極以外の電極を構成するNi膜、及びAu膜が、蒸着方式により成膜するよう構成する。
【0015】
請求項5記載の圧電振動子の電極構造は、前記パッド電極の形成を、それ以外の電極を形成した後に行うよう構成する。
【0016】
請求項6記載の圧電振動子の電極構造は、前記圧電振動素子を構成する圧電基板は、片面の所定の位置にエッチングにより形成した凹部を備えており、該凹部が薄肉の振動部として機能するよう構成する。
【0017】
請求項7記載の圧電振動子の電極構造は、圧電振動素子の励振用主電極に導通したパッド電極とパッケージ内部のパッド電極とをバンプを介して接続するよう構成する。
【0018】
【発明の実施の形態】
以下、図示した実施例に基づいて本発明を詳細に説明する。
本発明においては、水晶振動素子とセラミックパッケージとの電気的、機械的接合を強化するため、水晶振動素子にパッド電極を形成する際、パッド電極の下地に、接合強度の強固なCrを用い、更に成膜したCr膜を下地にAu膜を厚膜加工したことが特徴である。Crを電極膜の下地として使用した際には、電極膜が加熱された場合、電極膜が変質するという現象を有しているため、水晶振動子の特性の劣化に繋がる励振用の電極膜の下地として使用するには不向きであるが、パッド電極のように、水晶振動素子をセラミックパッケージに電気的、機械的に接合させる目的の電極であれば、下地に使用したCr膜が過熱により変質したとしても水晶振動子の特性に影響を与えることもなく、水晶振動素子をセラミックパッケージに接続固定した際の電気的、機械的強度が向上する。
【0019】
図1は、本発明に係る水晶振動素子の一実施例を示す外観構造の断面図であり、主電極から延出したパッド電極17aにおける断面図を示す。図1は、水晶基板9の所定の位置に、エッチングにより凹部底面の振動用基板の厚みが所望の厚さとなるよう凹部10を形成した後、凹部側主面の全面に全面電極11を蒸着の手段により形成している。一方、水晶基板9の他面である平坦部側主面には、水晶基板9の凹部側主面において凹部が形成されている薄肉部のほぼ中央に、所定のサイズを有する励振用の主電極12と、該主電極12から延出するリード電極13とを蒸着の手段により一体的に形成している。
【0020】
次に、水晶振動素子をセラミックパッケージの内側底面に設けた内部パッド電極へ、電気的、機械的に接続させるためのパッド電極17aが形成され、リード電極13に導通している。該パッド電極17aは、他の励振用の主電極12、及びリード電極13と比較して厚膜加工がなされており、水晶振動素子をセラミックパッケージに接続固定する際に、パッド電極17aに付着したバンプ15aを用いてフリップチップ方式の実装を行う場合の電極の強度を確保する。又、パッド電極17aを成膜する際には下地としてCr膜を成膜しており、パッド電極と水晶基板との接合強度を強化している。又、上述したように、パッド電極17aには、水晶振動素子をセラミックパッケージに接続固定する際に使用されるバンプ15aが付着される。
【0021】
図2は、本発明に係る水晶振動素子の一実施例を示す外観構造の断面図において、図1に示した円Aで囲んだ部分の拡大図であり、全面電極、主電極、リード電極、及びパッド電極について、水晶基板に各電極を成膜した際の詳細を示すものである。図2を説明すると、水晶振動素子は、水晶基板9の所定の位置に、エッチングにより凹部底面の振動用基板の厚みが所望の厚さとなるよう凹部10を形成した後、凹部側主面の全面に全面電極を蒸着の手段により形成する。全面電極は、下地として全面電極Ni膜18を成膜し、該全面電極Ni膜18の表面に全面電極Au膜19を蒸着の手段を用いて成膜している。
【0022】
又、主電極、及びリード電極においても同じく、主電極の下地として主電極Ni膜20を成膜して、該主電極Ni膜20の表面に主電極Au膜21を蒸着の手段を用いて成膜し、リード電極の下地としてリード電極Ni膜22を成膜して、該リード電極Ni膜22の表面にリード電極Au膜23を蒸着の手段を用いて成膜している。
【0023】
一方、パッド電極においては、主電極とリード電極の形成が完成後、水晶振動素子をセラミックパッケージに接続固定した際の機械的強度の向上を図るため、パッド電極の下地としてパッド電極Cr膜24aを成膜し、該パッド電極Cr膜24aの表面にパッド電極Au膜25aをスパッタ方式の手段を用いて厚膜加工している。パッド電極の成膜に使用したスパッタ方式の加工方法は、蒸着法に比べて水晶基板へのCr膜の付着力が大きく、水晶振動素子をセラミックパッケージに接続固定した際の機械的強度を向上させる。Crを下地にすると水晶振動素子を加熱した際に、パッド電極が変質する可能性があるが、水晶振動子としての特性に影響を与えることは無く、機械的強度のみが強化される。又、パッド電極には、水晶振動素子をセラミックパッケージに接続固定する際に使用されるバンプ15aが付着される。
【0024】
図3は、本発明に係る水晶振動素子の一実施例を示す外観構造の断面図であり、全面電極から延出したパッド電極17bにおける断面図を示す。図3は、水晶基板9の凹部側主面に形成された全面電極11から延出し、側面電極26を介して、水晶基板9の平坦部側主面にパッド電極17bを形成している。
パッド電極17bは、パッド電極17aと同様に、他の励振用の主電極12、及びリード電極13と比較して厚膜加工がなされており、水晶振動素子をセラミックパッケージに接続固定する際に、パッド電極17bに付着したバンプ15bを用いてフリップチップ方式の実装を行う場合の電極の強度を確保する。又、パッド電極17bを成膜する際には下地としてCr膜を成膜しており、パッド電極と水晶基板との接合強度を強化している。
【0025】
図4は、本発明に係る水晶振動素子の一実施例を示す外観構造の断面図において、図3に示した円Bで囲んだ部分の拡大図であり、全面電極、パッド電極について、水晶基板に各電極を成膜した際の詳細を示すものである。図4を説明すると、全面電極は、下地として全面電極Ni膜18を成膜し、該全面電極Ni膜18の表面に全面電極Au膜19を蒸着の手段を用いて成膜している。又、側面電極は、下地として側面電極Ni膜27を成膜し、該側面電極Ni膜27の表面に側面電極Au膜28を蒸着の手段を用いて成膜している。一方、パッド電極においては、主電極とリード電極の形成が完成後、水晶振動素子をセラミックパッケージに接続固定した際の機械的強度の向上を図るため、パッド電極の下地としてパッド電極Cr膜24bを成膜し、該パッド電極Cr膜24bの表面にパッド電極Au膜25bをスパッタ方式の手段を用いて厚膜加工している。
又、パッド電極には、水晶振動素子をセラミックパッケージに接続固定する際に使用されるバンプ15bが付着される。
【0026】
励振用の主電極の成膜方法については、主電極を成膜する位置の水晶基板の厚さが薄いため、スパッタ方式による成膜を行うと水晶基板が歪み、水晶振動子の特性、特に経年変動が劣化する可能性があり、上述したように蒸着法を用いて成膜する。
【0027】
次に、上述した各電極膜の厚みについて一例を説明すると、各電極を形成する際に成膜する下地については、前面電極Ni膜18、主電極Ni膜20、リード電極Ni膜22、側面電極Ni膜27、及びパッド電極Cr膜24a、24bともに70Å程度であり、各下地の表面に成膜する金属層は、前面電極Au膜19、主電極Au膜21、リード電極Au膜23、及び側面電極Au膜28共に0.1μm程度であり、又、厚膜加工したパッド電極Au膜25a、25bは、0.2〜0.4μm程度で成膜される。
【0028】
又、本実施例によれば、パッド電極は励振用の主電極を形成した後に、最後に形成する。そこで、パッド電極の表面が、他の主電極等の別工程による成膜工程中に汚染され、パッド電極に付着させるバンプが付着しにくくなるという現象を防止することが出来る。バンプは、パッド電極を形成後、すみやかにパッド電極に付着させることが望ましい。
【0029】
更に、本実施例では、パッド電極を、バンプを介して導通固定したものを例示したが、他の導通接続部材、例えば導電性接着剤であっても接合強度が強化できる。
【0030】
又、本実施例では、一方の電極を全面電極としたが、他方の電極と圧電基板を介して対向配置された電極であれば良い。
【0031】
【発明の効果】
以上説明したように、本発明によれば以下のような優れた効果が得られる。
請求項1記載の発明は、圧電振動素子のパッド電極を所定の膜厚のCrを下地とし、該Cr膜表面に所定の膜厚のAuを成膜したので、パッケージと圧電振動素子との機械的接合強度を極めて向上することが出来るという優れた効果を奏する。
【0032】
請求項2記載の発明は、パッド電極を構成するCr膜、及びAu膜をスパッタ方式により成膜したので、圧電基板とCr膜との界面、及びCr膜とAu膜との界面での密着性を極めて向上させることが出来るという優れた効果を奏する。
【0033】
請求項3記載の発明は、圧電基板のパッド以外の電極を、所定の膜厚のNi膜を下地とし、該Ni膜の表面に所定の膜厚のAuを成膜したので、後工程における加熱処理においても、電極膜の変質を防ぐことが出来るという優れた効果を奏する。
【0034】
請求項4記載の発明は、圧電基板のパッド以外の電極を、所定の膜厚のNi膜を下地とし、該Ni膜の表面に所定の膜厚のAuを蒸着方式により成膜したので、圧電基板の歪みが生じることを防ぎ、更に電気的特性の経年変化による劣化を防止することが出来るという優れた効果を奏する。
【0035】
請求項5記載の発明は、パッド電極の形成を、それ以外の電極を形成した後に行うので、パッド電極の厚膜加工を最適な条件で行うことが出来るという優れた効果を奏する。
【0036】
請求項6記載の発明は、圧電基板を、薄肉の振動部を有する凹陥型圧電基板としたので、高周波を実現する超薄板圧電振動子を提供出来るという優れた効果を奏する。
【0037】
請求項7記載の発明は、圧電振動素子をパッケージにバンプを介して接合したので、機械的接合強度の向上したフリップチップ実装型圧電振動子を提供出来るという優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明に係る水晶振動素子の一実施例を示す外観構造の断面図であり、主電極から延出したパッド電極17aにおける断面図を示す。
【図2】本発明に係る水晶振動素子の一実施例を示す外観構造の断面図において、図1に示した円Aで囲んだ部分の拡大図である。
【図3】本発明に係る水晶振動素子の一実施例を示す外観構造の断面図であり、全面電極から延出したパッド電極17bにおける断面図を示す。
【図4】本発明に係る水晶振動素子の一実施例を示す外観構造の断面図において、図3に示した円Bで囲んだ部分の拡大図である。
【図5】従来のSMD型水晶振動子の構造例を示す断面図である。
【図6】従来の水晶振動素子の外観構造例を示す。
【図7】図6において示した水晶振動素子の断面図である。
【図8】従来の水晶振動素子において、パッド電極に厚膜加工を追加した様子を示す。
【符号の説明】
1・・水晶振動子、        2・・セラミックパッケージ、
3・・内部パッド電極、      4・・バンプ、
5・・水晶振動素子、       6・・外部接続端子、
7・・シームリング、       8・・蓋、
9・・水晶基板、        10・・凹部、
11・・全面電極、        12・・主電極、
13・・リード電極、       14a、14b・・パッド電極、
15a、15b・・バンプ、    16・・厚膜部、
17a、17b・・パッド電極、  18・・全面電極Ni膜、
19・・全面電極Au膜、     20・・主電極Ni膜、
21・・主電極Au膜、      22・・リード電極Ni膜、
23・・リード電極Au膜、    24a、24b・・パッド電極Cr膜、
25a、25b・・パッド電極Au膜
26・・側面電極、        27・・側面電極Ni膜、
28・・側面電極Au膜
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrode structure of a piezoelectric vibrator, and more particularly to a piezoelectric vibrator having a structure in which a piezoelectric vibrating element such as a quartz vibrating element is hermetically sealed in a ceramic package, wherein the piezoelectric vibrating element is bumped on internal pad electrodes of the ceramic package. The present invention relates to an electrode structure of a piezoelectric vibrator provided with a method of connecting and fixing using such methods.
[0002]
[Prior art]
Due to the rapid progress of cost reduction and miniaturization accompanying the spread of mobile communication devices such as mobile phones, high-speed processing and high performance of OA devices, crystal units used in these communication devices and OA devices For piezoelectric devices such as these, there is a growing demand for higher frequency, smaller size, higher reliability, lower cost, and the like.
In general, as a miniaturized piezoelectric vibrator, a surface mount type (hereinafter, referred to as SMD) piezoelectric vibrator is the mainstream. A piezoelectric vibrating element is housed in a predetermined ceramic package, and the ceramic package is placed on a lid. And hermetically sealed.
[0003]
FIG. 5 is a cross-sectional view showing a structural example of a conventional SMD type crystal resonator. As shown in FIG. 5, the SMD type crystal resonator 1 has a crystal resonator element 5 connected and fixed to an internal pad electrode 3 provided on the inner bottom surface of a ceramic package 2 using a bump 4. Are electrically connected to a predetermined external connection terminal 6 via a wiring conductor that penetrates the wall of the ceramic package 2 in an airtight manner. On the other hand, the ceramic package 2 is hermetically sealed by seam welding the lid 8 to the upper end of the opening of the ceramic package 2 using a ring-shaped seam ring 7.
[0004]
As the crystal resonator element, one utilizing the fundamental wave thickness shear vibration wave of an AT-cut crystal substrate is usually used, and its resonance frequency is inversely proportional to the thickness of the crystal substrate. In order to cope with a high frequency such as 200 MHz, a thin quartz substrate is required. Therefore, in order to prevent the quartz substrate from becoming thin and mechanical strength from deteriorating, for example, a recess is formed by etching a part of the quartz substrate having a thickness of about 80 μm, and the thin portion of the recess having a thickness of about several ten μm is formed. There is known a method of obtaining a high-frequency resonance frequency by vibrating a vibrating part.
[0005]
FIG. 6 shows an example of the external structure of a conventional quartz vibrating element. FIG. 6A is a perspective view of the concave side main surface. After forming a concave portion 10 at a predetermined position of the quartz substrate 9 by etching, an entire surface electrode 11 is formed on the entire concave side main surface by means such as vapor deposition. Has formed. On the other hand, FIG. 6B is a perspective view of the flat portion-side main surface, and the main electrode 12 having a predetermined area is provided substantially at the center of the thin portion where the concave portion of the concave side main surface of the quartz substrate 9 is formed. The lead electrode 13 and the pad electrode 14a extending from the main electrode 12 and the pad electrode 14b extending from the entire surface electrode 11 are formed by means such as vapor deposition. Also, bumps 15a and 15b used for connecting and fixing the crystal resonator element to the ceramic package are attached to the pad electrodes 14a and 14b.
[0006]
FIG. 7 is a cross-sectional view of the crystal resonator shown in FIG. FIG. 7 is a cross-sectional view of the pad electrode 14a extending from the main electrode. A concave portion 10 is formed at a predetermined position on a quartz substrate 9 having a thickness of about 80 μm. Is a vibrating portion, and a full-surface electrode 11 having an electrode film thickness of about 0.1 μm is formed on the concave-side main surface. On the other hand, a main electrode 12, a lead electrode 13, and a pad electrode 14a having the same electrode thickness of about 0.1 μm are formed on the flat main surface, and a bump 15a is attached to a predetermined position of the pad electrode 14a. I have.
[0007]
[Problems to be solved by the invention]
When the thickness of the vibrating portion provided in the concave portion is reduced with the increase in the frequency of the crystal resonator, the electrode film thickness also needs to be reduced in order to obtain a desired resonance frequency. The thickness is about 0.1 μm, but when the flip-chip mounting is performed using the bump formed on the pad electrode when connecting and fixing the crystal resonator element to the ceramic package, the thickness of the pad electrode is small. There is a disadvantage that the bonding strength between the crystal resonator and the ceramic package is reduced, and the crystal resonator is easily peeled off.
Therefore, in order to eliminate such a defect, a method is used in which the electrode is processed to be a thick film in addition to only the pad electrode.
[0008]
FIG. 8 shows a state in which a thick film processing is added to a pad electrode in a conventional crystal resonator. FIG. 8 is a cross-sectional view of the pad electrode 14 a extending from the main electrode. A thick film portion 16 a of the pad electrode 14 a is additionally formed on the pad electrode 14 a provided on the quartz substrate 9.
Here, a method of forming an electrode will be described. First, a Ni film is formed on a quartz substrate, and then the formed Ni film is used as a base, and then an Au film is formed as an electrode. This is because, when the Ni film is used as a base, it is possible to prevent the electrode film from being deteriorated even during heating such as soldering performed in a later step when assembling the crystal oscillator, and it is excellent as a material of the electrode. by.
[0009]
However, if Ni is used as a base when forming the electrodes, it is less likely to be peeled off than if Au is directly formed on a quartz substrate, but flip-chip mounting is performed by using bumps on internal pad electrodes provided on the ceramic package of the quartz vibrating element. In such a case, there has been a problem that the quartz vibrating element often peels off from the internal pad electrode. Therefore, the manufacturing yield of the crystal unit is reduced, the cost is increased, and the reliability of the crystal unit is poor.
[0010]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problem, and has been made in consideration of the fact that a quartz vibrating element is mounted on an internal pad electrode provided in a ceramic package by flip-chip mounting using a bump. It is an object of the present invention to provide an electrode structure of a piezoelectric vibrator in which electric and mechanical strength between a ceramic package and a ceramic package is enhanced.
[0011]
[Means for Solving the Problems]
To achieve the above object, the electrode structure of the piezoelectric vibrator according to the present invention has the following configuration.
The electrode structure of a piezoelectric vibrator according to claim 1, wherein the piezoelectric vibrator has a structure in which a piezoelectric vibrating element is hermetically sealed in a package, and a pad electrode formed on the piezoelectric vibrating element and an internal pad formed on the package. In a piezoelectric vibrator having a structure in which electrodes are electrically and mechanically connected, a pad electrode formed on the piezoelectric vibrator has a predetermined thickness of Cr as a base on a piezoelectric substrate and a predetermined thickness on the surface of the Cr film. It is configured to deposit Au with a film thickness.
[0012]
The electrode structure of the piezoelectric vibrator according to claim 2 is configured such that the Cr film and the Au film constituting the pad electrode are formed by a sputtering method.
[0013]
4. The electrode structure of a piezoelectric vibrator according to claim 3, wherein the electrodes other than the pad electrodes constituting the piezoelectric vibrating element are based on a Ni film having a predetermined thickness formed at a predetermined position on a piezoelectric substrate, and It is configured so that Au of a predetermined thickness is formed on the surface of the film.
[0014]
According to a fourth aspect of the present invention, the electrode structure of the piezoelectric vibrator is configured such that the Ni film and the Au film constituting electrodes other than the pad electrode are formed by a vapor deposition method.
[0015]
The electrode structure of the piezoelectric vibrator according to the fifth aspect is configured such that the pad electrode is formed after the other electrodes are formed.
[0016]
In the electrode structure of a piezoelectric vibrator according to claim 6, the piezoelectric substrate constituting the piezoelectric vibrating element has a concave portion formed by etching at a predetermined position on one surface, and the concave portion functions as a thin vibrating portion. The configuration is as follows.
[0017]
According to a seventh aspect of the present invention, the electrode structure of the piezoelectric vibrator is configured such that a pad electrode connected to the main excitation electrode of the piezoelectric vibrating element and a pad electrode inside the package are connected via a bump.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.
In the present invention, in order to strengthen the electrical and mechanical bonding between the crystal vibrating element and the ceramic package, when forming a pad electrode on the crystal vibrating element, the base of the pad electrode is made of Cr with strong bonding strength, Further, a feature is that the Au film is processed to be a thick film on the basis of the formed Cr film. When Cr is used as the base of the electrode film, the electrode film is deteriorated when the electrode film is heated, so that the excitation electrode film leads to the deterioration of the characteristics of the crystal unit. It is not suitable for use as a base, but if it is an electrode intended to electrically and mechanically join a crystal resonator element to a ceramic package, such as a pad electrode, the Cr film used as the base has been altered by overheating. However, the electrical and mechanical strength when the crystal resonator is connected and fixed to the ceramic package is improved without affecting the characteristics of the crystal resonator.
[0019]
FIG. 1 is a cross-sectional view of an external structure showing an embodiment of a crystal resonator element according to the present invention, and shows a cross-sectional view of a pad electrode 17a extending from a main electrode. FIG. 1 shows that after a concave portion 10 is formed at a predetermined position of a quartz substrate 9 by etching so that the thickness of the vibration substrate on the bottom surface of the concave portion becomes a desired thickness, an entire surface electrode 11 is vapor-deposited on the entire main surface on the concave side. It is formed by means. On the other hand, on the flat portion side main surface which is the other surface of the quartz substrate 9, an excitation main electrode having a predetermined size is provided substantially at the center of the thin portion where the concave portion is formed on the concave portion side main surface of the quartz substrate 9. The lead electrode 12 and the lead electrode 13 extending from the main electrode 12 are integrally formed by means of vapor deposition.
[0020]
Next, a pad electrode 17 a for electrically and mechanically connecting the crystal resonator element to an internal pad electrode provided on the inner bottom surface of the ceramic package is formed, and is electrically connected to the lead electrode 13. The pad electrode 17a is thicker than the other main electrodes 12 for excitation and the lead electrode 13, and is attached to the pad electrode 17a when the crystal resonator element is connected and fixed to the ceramic package. When the flip-chip mounting is performed using the bumps 15a, the strength of the electrodes is ensured. When the pad electrode 17a is formed, a Cr film is formed as a base to enhance the bonding strength between the pad electrode and the quartz substrate. Further, as described above, the bumps 15a used for connecting and fixing the crystal resonator to the ceramic package are attached to the pad electrodes 17a.
[0021]
FIG. 2 is an enlarged view of a portion surrounded by a circle A shown in FIG. 1 in a cross-sectional view of an external structure showing an embodiment of a crystal resonator element according to the present invention. 3 shows details of a pad electrode formed on a quartz substrate. Referring to FIG. 2, the quartz vibrating element is formed by forming a concave portion 10 at a predetermined position of a quartz substrate 9 by etching so that the thickness of the vibration substrate on the bottom surface of the concave portion becomes a desired thickness. Next, an entire surface electrode is formed by means of vapor deposition. For the full-surface electrode, a full-surface electrode Ni film 18 is formed as a base, and a full-surface electrode Au film 19 is formed on the surface of the full-surface electrode Ni film 18 by means of vapor deposition.
[0022]
Similarly, in the main electrode and the lead electrode, a main electrode Ni film 20 is formed as a base of the main electrode, and a main electrode Au film 21 is formed on the surface of the main electrode Ni film 20 by means of vapor deposition. A lead electrode Ni film 22 is formed as a base of the lead electrode, and a lead electrode Au film 23 is formed on the surface of the lead electrode Ni film 22 by means of vapor deposition.
[0023]
On the other hand, in the pad electrode, after the formation of the main electrode and the lead electrode is completed, the pad electrode Cr film 24a is formed as a base of the pad electrode in order to improve the mechanical strength when the crystal resonator is connected and fixed to the ceramic package. The pad electrode Au film 25a is formed into a thick film on the surface of the pad electrode Cr film 24a by sputtering. The sputtering method used for forming the pad electrode has a larger adhesion of the Cr film to the quartz substrate than the vapor deposition method, and improves the mechanical strength when the quartz vibrating element is connected and fixed to the ceramic package. . When Cr is used as a base, the pad electrode may be degraded when the crystal resonator is heated, but it does not affect the characteristics of the crystal resonator, and only the mechanical strength is enhanced. Also, bumps 15a used for connecting and fixing the crystal resonator element to the ceramic package are attached to the pad electrodes.
[0024]
FIG. 3 is a cross-sectional view of the external structure showing one embodiment of the crystal resonator element according to the present invention, and shows a cross-sectional view of the pad electrode 17b extending from the entire surface electrode. In FIG. 3, a pad electrode 17b is formed on the flat portion-side main surface of the quartz substrate 9 so as to extend from the entire surface electrode 11 formed on the concave-side main surface of the quartz substrate 9 and to interpose the side electrode 26 therebetween.
Like the pad electrode 17a, the pad electrode 17b is processed to be thicker than the other main electrodes 12 for excitation and the lead electrode 13, and when connecting and fixing the crystal resonator element to the ceramic package, When the flip-chip mounting is performed using the bump 15b attached to the pad electrode 17b, the strength of the electrode is ensured. When the pad electrode 17b is formed, a Cr film is formed as a base to enhance the bonding strength between the pad electrode and the quartz substrate.
[0025]
FIG. 4 is an enlarged view of a portion surrounded by a circle B shown in FIG. 3 in a cross-sectional view of an external structure showing an embodiment of a crystal resonator element according to the present invention. 3 shows details when each electrode is formed. Referring to FIG. 4, the full-surface electrode is formed by forming a full-surface electrode Ni film 18 as a base, and forming a full-surface electrode Au film 19 on the surface of the full-surface electrode Ni film 18 by means of vapor deposition. As the side electrode, a side electrode Ni film 27 is formed as a base, and a side electrode Au film 28 is formed on the surface of the side electrode Ni film 27 by means of vapor deposition. On the other hand, in the case of the pad electrode, after the formation of the main electrode and the lead electrode is completed, the pad electrode Cr film 24b is used as a base of the pad electrode in order to improve the mechanical strength when the crystal resonator is connected and fixed to the ceramic package. A pad electrode Au film 25b is formed into a thick film on the surface of the pad electrode Cr film 24b by means of a sputtering method.
Also, bumps 15b used for connecting and fixing the crystal resonator element to the ceramic package are attached to the pad electrodes.
[0026]
Regarding the method of forming the main electrode for excitation, since the thickness of the quartz substrate at the position where the main electrode is formed is thin, the quartz substrate is distorted when the film is formed by the sputtering method, and the characteristics of the quartz oscillator, especially over time The fluctuation may be deteriorated, and the film is formed by using the evaporation method as described above.
[0027]
Next, an example of the thickness of each of the above-described electrode films will be described. The underlayers formed when forming each of the electrodes include a front electrode Ni film 18, a main electrode Ni film 20, a lead electrode Ni film 22, and a side electrode. The Ni film 27 and the pad electrode Cr films 24a and 24b are both about 70 °, and the metal layers formed on the surface of each underlayer are a front electrode Au film 19, a main electrode Au film 21, a lead electrode Au film 23, and a side surface. The thickness of each of the electrode Au films 28 is about 0.1 μm, and the pad electrode Au films 25a and 25b processed to be thick are formed to be about 0.2 to 0.4 μm.
[0028]
Further, according to this embodiment, the pad electrode is formed last after the main electrode for excitation is formed. Therefore, it is possible to prevent a phenomenon in which the surface of the pad electrode is contaminated during a film forming process of another process such as another main electrode, so that it is difficult for a bump to be attached to the pad electrode to adhere. The bumps are desirably attached to the pad electrode immediately after the pad electrode is formed.
[0029]
Further, in the present embodiment, the pad electrode is electrically conductively fixed via the bump. However, the bonding strength can be enhanced even with another conductive connection member, for example, a conductive adhesive.
[0030]
Further, in this embodiment, one electrode is used as the whole surface electrode, but any electrode may be used as long as it is disposed opposite to the other electrode via the piezoelectric substrate.
[0031]
【The invention's effect】
As described above, according to the present invention, the following excellent effects can be obtained.
According to the first aspect of the present invention, the pad electrode of the piezoelectric vibrating element is made of Cr of a predetermined thickness as a base and Au of a predetermined thickness is formed on the surface of the Cr film. This has an excellent effect that the mechanical bonding strength can be extremely improved.
[0032]
According to the second aspect of the present invention, the Cr film and the Au film constituting the pad electrode are formed by the sputtering method, so that the adhesion at the interface between the piezoelectric substrate and the Cr film and the interface between the Cr film and the Au film. Is extremely improved.
[0033]
According to the third aspect of the present invention, the electrodes other than the pads of the piezoelectric substrate are formed on the surface of the Ni film with the Au film having the predetermined thickness on the basis of the Ni film having the predetermined thickness. In the treatment, there is an excellent effect that deterioration of the electrode film can be prevented.
[0034]
According to the fourth aspect of the present invention, the electrodes other than the pads of the piezoelectric substrate are formed by depositing Au of a predetermined thickness on the surface of the Ni film by a vapor deposition method on the basis of a Ni film of a predetermined thickness. An excellent effect is obtained in that distortion of the substrate is prevented from occurring, and furthermore, deterioration due to aging of the electrical characteristics can be prevented.
[0035]
Since the pad electrode is formed after the other electrodes are formed, the invention described in claim 5 has an excellent effect that the thick film processing of the pad electrode can be performed under optimum conditions.
[0036]
According to the sixth aspect of the present invention, since the piezoelectric substrate is a depressed type piezoelectric substrate having a thin vibrating portion, an excellent effect that an ultra-thin piezoelectric vibrator realizing a high frequency can be provided.
[0037]
According to the seventh aspect of the present invention, since the piezoelectric vibration element is bonded to the package via the bump, an excellent effect of being able to provide a flip-chip mounted piezoelectric vibrator having improved mechanical bonding strength is provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an external structure showing a crystal vibrating element according to an embodiment of the present invention, showing a cross-sectional view of a pad electrode 17a extending from a main electrode.
FIG. 2 is an enlarged view of a portion surrounded by a circle A shown in FIG. 1 in a cross-sectional view of an external structure showing one embodiment of a crystal resonator element according to the present invention.
FIG. 3 is a cross-sectional view of an external structure showing an embodiment of a crystal resonator element according to the present invention, and shows a cross-sectional view of a pad electrode 17b extending from an entire surface electrode.
FIG. 4 is an enlarged view of a portion surrounded by a circle B shown in FIG. 3 in a cross-sectional view of an external structure showing one embodiment of a crystal resonator element according to the present invention.
FIG. 5 is a cross-sectional view illustrating a structural example of a conventional SMD type crystal resonator.
FIG. 6 shows an example of an external structure of a conventional crystal resonator element.
7 is a cross-sectional view of the quartz-crystal vibrating element shown in FIG.
FIG. 8 shows a state in which a thick film processing is added to a pad electrode in a conventional crystal resonator element.
[Explanation of symbols]
1. Crystal oscillator, 2. Ceramic package,
3. Internal pad electrode, 4. Bump,
5. Crystal oscillator, 6. External connection terminal,
7. Seam ring, 8. Lid,
9 ··· quartz substrate, 10 ··· recess
11 ・ ・ Overall electrode 、 12 ・ ・ Main electrode 、
13. Lead electrode, 14a, 14b Pad electrode,
15a, 15b, bump, 16, thick film part,
17a, 17b ··· pad electrode, 18 · · · full surface electrode Ni film,
19 ・ ・ Full-surface electrode Au film, 20 ・ ・ Main electrode Ni film,
21 ·· Main electrode Au film, 22 ·· Lead electrode Ni film,
23 ··· Lead electrode Au film, 24a, 24b · · Pad electrode Cr film,
25a, 25b ··· Pad electrode Au film 26 ··· Side electrode 27 ··· Side electrode Ni film
28 ・ ・ Side electrode Au film

Claims (7)

パッケージ内に圧電振動素子を気密封止した構造の圧電振動子であって、前記圧電振動素子に形成したパッド電極と前記パッケージに形成した内部パッド電極とを電気的、機械的に接続した構造の圧電振動子において、
前記圧電振動素子に形成したパッド電極が、圧電基板に所定の膜厚のCrを下地とし、該Cr膜の表面に所定の膜厚のAuを成膜したものであることを特徴とする圧電振動子の電極構造。
A piezoelectric vibrator having a structure in which a piezoelectric vibrating element is hermetically sealed in a package, wherein a pad electrode formed on the piezoelectric vibrating element and an internal pad electrode formed on the package are electrically and mechanically connected. In the piezoelectric vibrator,
A pad electrode formed on the piezoelectric vibrating element is formed by depositing a predetermined thickness of Au on a surface of the Cr film with a predetermined thickness of Cr as a base on a piezoelectric substrate. Child electrode structure.
前記パッド電極を構成するCr膜、及びAu膜が、スパッタ方式により成膜されたものであることを特徴とする請求項1記載の圧電振動子の電極構造。2. The electrode structure of a piezoelectric vibrator according to claim 1, wherein the Cr film and the Au film constituting the pad electrode are formed by a sputtering method. 前記圧電振動素子を構成する前記パッド電極以外の電極は、圧電基板の所定の位置に形成した所定の膜厚のNi膜を下地とし、該Ni膜の表面に所定の膜厚のAuを成膜したものであることを特徴とする請求項1又は2記載の圧電振動子の電極構造。Electrodes other than the pad electrodes constituting the piezoelectric vibrating element are based on a Ni film having a predetermined thickness formed at a predetermined position on a piezoelectric substrate, and a Au film having a predetermined thickness is formed on the surface of the Ni film. The electrode structure of a piezoelectric vibrator according to claim 1, wherein: 前記パッド電極以外の電極を構成するNi膜、及びAu膜が、蒸着方式により成膜されたものであることを特徴とする請求項3記載の圧電振動子の電極構造。4. The electrode structure of a piezoelectric vibrator according to claim 3, wherein the Ni film and the Au film constituting electrodes other than the pad electrode are formed by a vapor deposition method. 前記パッド電極の形成を、それ以外の電極を形成した後に行ったことを特徴とする請求項1乃至4のいずれかに記載の圧電振動子の電極構造。5. The electrode structure for a piezoelectric vibrator according to claim 1, wherein the pad electrode is formed after other electrodes are formed. 前記圧電振動素子を構成する圧電基板は、片面の所定の位置にエッチングにより形成した凹部を備えており、該凹部が薄肉の振動部として機能するよう構成したことを特徴とする請求項1乃至5のいずれかに記載の圧電振動子の電極構造。6. The piezoelectric substrate constituting the piezoelectric vibrating element includes a concave portion formed by etching at a predetermined position on one surface, and the concave portion functions as a thin vibrating portion. The electrode structure of the piezoelectric vibrator according to any one of the above. 圧電振動素子の励振用主電極に導通したパッド電極とパッケージ内部のパッド電極とをバンプを介して接続したことを特徴とする請求項1乃至6のいずれかに記載の圧電振動子の電極構造。7. The electrode structure of a piezoelectric vibrator according to claim 1, wherein a pad electrode connected to the main excitation electrode of the piezoelectric vibrating element and a pad electrode inside the package are connected via a bump.
JP2002267448A 2002-09-12 2002-09-12 Electrode structure for piezoelectric vibrator Withdrawn JP2004104719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002267448A JP2004104719A (en) 2002-09-12 2002-09-12 Electrode structure for piezoelectric vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002267448A JP2004104719A (en) 2002-09-12 2002-09-12 Electrode structure for piezoelectric vibrator

Publications (1)

Publication Number Publication Date
JP2004104719A true JP2004104719A (en) 2004-04-02

Family

ID=32265934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002267448A Withdrawn JP2004104719A (en) 2002-09-12 2002-09-12 Electrode structure for piezoelectric vibrator

Country Status (1)

Country Link
JP (1) JP2004104719A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007174230A (en) * 2005-12-21 2007-07-05 Daishinku Corp Piezoelectric vibrating reed, and piezoelectric vibrator
US7948156B2 (en) 2005-12-21 2011-05-24 Daishinku Corporation Piezoelectric resonator plate, and piezoelectric resonator device
WO2012115239A1 (en) 2011-02-25 2012-08-30 株式会社大真空 Piezoelectric vibrating reed, piezoelectric vibrator, method for manufacturing piezoelectric vibrating reed, and method for manufacturing piezoelectric vibrator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007174230A (en) * 2005-12-21 2007-07-05 Daishinku Corp Piezoelectric vibrating reed, and piezoelectric vibrator
JP4529894B2 (en) * 2005-12-21 2010-08-25 株式会社大真空 Piezoelectric vibrating piece and piezoelectric vibrating device
US7948156B2 (en) 2005-12-21 2011-05-24 Daishinku Corporation Piezoelectric resonator plate, and piezoelectric resonator device
WO2012115239A1 (en) 2011-02-25 2012-08-30 株式会社大真空 Piezoelectric vibrating reed, piezoelectric vibrator, method for manufacturing piezoelectric vibrating reed, and method for manufacturing piezoelectric vibrator

Similar Documents

Publication Publication Date Title
JP2013258571A (en) Vibration element, vibrator, electronic device, electronic apparatus, and moving body
WO2007072668A1 (en) Piezoelectric vibration piece and piezoelectric vibration device
JP2007096899A (en) Manufacturing method and bonding structure of piezoelectric vibration piece, and piezoelectric device
US6731046B2 (en) Surface acoustic wave element and manufacturing method of the same
CN113994593A (en) BAW resonator with asymmetric thick electrodes
WO1991019351A1 (en) Structure of electrode and lead thereof of ultra thin plate piezoelectric resonator
CN111313859A (en) Bulk acoustic wave resonator, method of manufacturing the same, filter, and electronic apparatus
JP2001015540A (en) Electronic element, surface acoustic wave element, method for mounting them, manufacture of electronic parts or surface acoustic wave device, and surface acoustic wave device
JP5152012B2 (en) Piezoelectric vibration device and method for manufacturing piezoelectric vibration device
JP2000232332A (en) Surface mounted piezoelectric resonator
JP5824958B2 (en) Vibration element, vibrator, electronic device, and electronic apparatus
JP2005033293A (en) Piezoelectric device
JP4012753B2 (en) Surface acoustic wave device
JP5155352B2 (en) Piezoelectric device
JP2004328338A (en) Crystal vibrator and mounting structure thereof
JP2004104719A (en) Electrode structure for piezoelectric vibrator
JPH05291864A (en) Sample-and hold circuit element mount circuit and its manufacture
JP2001313305A (en) Electronic component element, electronic component device, and communications equipment device
JP5341685B2 (en) Piezoelectric device
JPH11186850A (en) Piezoelectric oscillator
JP2001102905A (en) Surface acoustic wave device
JP2004328028A (en) Piezoelectric device and manufacturing method therefor
JP2001257560A (en) Electrode structure for ultra-thin board piezoelectric vibration element
JP4075301B2 (en) Piezoelectric device, package of piezoelectric device, and manufacturing method thereof
JP5071164B2 (en) Electronic device and method for manufacturing electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050912

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070402

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810