JP2004103702A - Near field mask exposure method and near field mask exposure device - Google Patents

Near field mask exposure method and near field mask exposure device Download PDF

Info

Publication number
JP2004103702A
JP2004103702A JP2002261293A JP2002261293A JP2004103702A JP 2004103702 A JP2004103702 A JP 2004103702A JP 2002261293 A JP2002261293 A JP 2002261293A JP 2002261293 A JP2002261293 A JP 2002261293A JP 2004103702 A JP2004103702 A JP 2004103702A
Authority
JP
Japan
Prior art keywords
mask
light
exposure
field
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002261293A
Other languages
Japanese (ja)
Other versions
JP4261849B2 (en
Inventor
Yasuhisa Inao
稲生 耕久
Akira Kuroda
黒田 亮
Natsuhiko Mizutani
水谷 夏彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002261293A priority Critical patent/JP4261849B2/en
Application filed by Canon Inc filed Critical Canon Inc
Priority to PCT/JP2003/011357 priority patent/WO2004023211A2/en
Priority to EP03794254A priority patent/EP1535113A2/en
Priority to US10/654,913 priority patent/US7144682B2/en
Priority to KR1020057003801A priority patent/KR20050035538A/en
Priority to AU2003265176A priority patent/AU2003265176A1/en
Publication of JP2004103702A publication Critical patent/JP2004103702A/en
Priority to US11/548,756 priority patent/US20070065734A1/en
Application granted granted Critical
Publication of JP4261849B2 publication Critical patent/JP4261849B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/7035Proximity or contact printers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/50Mask blanks not covered by G03F1/20 - G03F1/34; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2014Contact or film exposure of light sensitive plates such as lithographic plates or circuit boards, e.g. in a vacuum frame
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70325Resolution enhancement techniques not otherwise provided for, e.g. darkfield imaging, interfering beams, spatial frequency multiplication, nearfield lenses or solid immersion lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70566Polarisation control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem in near field mask exposure that the aspect ratio of a pattern being formed on a resist lowers when the opening width of a mask is set smaller than one third the exposure wavelength. <P>SOLUTION: In the near field mask exposure method for exposing a workpiece with near field light leaking from the opening of a mask, the mask surface is irradiated with unpolarized light having a field strength uniform over all directions in a plane parallel with the mask surface and, using a mask provided with a plurality of rectangular openings having a short side narrower than one third of the wavelength of exposure light and a long side directing two or more directions in that plane, only a polarized light component in the light impinging on the mask surface having an electric field directing the short side direction of the rectangular opening is leaked as near field light from the opening thus exposing the opening pattern. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体デバイスや光デバイスを製造するために用いられる露光方法及び、装置に関する。
【0002】
【背景技術】
近年の電子機器の小型化及び薄型化の要請から、電子機器に搭載される半導体素子の微細化への要求はますます高くなっている。例えば、マスクまたはレチクルのパターンに対するデザインルールはライン・アンド・スペース(L&S)130nmを量産工程で達成しようとし、今後益々小さくなることが予想される。L&Sは露光においてラインとスペースの幅が等しい状態でウェハ上に投影された像であり、露光の解像度を示す尺度である。
【0003】
近年主流である投影露光装置は、一般に、光源から出射された光束を利用してマスクを照明する照明光学系とマスクと被露光物との間に配置される投影光学系とを有する。照明光学系においては、均一な照明領域を得るために光源からの光束を複数のロッドレンズから構成されるハエの目レンズなどのライトインテグレータに導入し、ライトインテグレータ射出面を2次光源面としてコンデンサーレンズでマスク面をケーラー照明する。
【0004】
投影露光装置の解像度Rは、光源の波長λと露光装置の開口数(NA)を用いて次式で与えられる。
【外1】

Figure 2004103702
【0005】
従って、波長を短くすればするほど、及び、NAを上げれば上げるほど、解像度は良くなる。
【0006】
一方、一定の結像性能を維持できる焦点範囲を焦点深度といい、焦点深度DOFは次式で与えられる。
【外2】
Figure 2004103702
【0007】
従って、波長を短くすればするほど、及び、NAを上げれば上げるほど、焦点深度は小さくなる。焦点深度は小さくなるとフォーカス合せが難しくなり、基板のフラットネス(平坦度)やフォーカス精度を上げることが要求されるため、基本的に大きい方が好ましい。
【0008】
外1及び2からNAよりも波長を短くする方が有効であることが理解される。このため、近年の光源は、従来の超高圧水銀ランプからより波長の短いKrFエキシマレーザー(波長約248nm)やArFエキシマレーザー(波長約193nm)に移行しつつある。
【0009】
しかし、比例定数k及びkの値は通常0.5乃至0.7程度であり、位相シフト等の解像力増強方を用いても0.4程度に止まるため、比例定数を低減して解像度を向上することは困難である。また、投影露光装置では一般に解像度は使用する光源の波長が略限界であると言われ、エキシマレーザーを使用しても投影露光装置は0.10μm以下のパタ−ンを形成することが困難である。加えて、仮に、より短い波長を有する光源が存在しても、かかる短波長の露光光を投影光学系に使用される光学材料(即ち、レンズの硝材)が透過できずに(その結果被露光物に投影できずに)露光ができなくなるという問題もある。即ち、殆どの硝材の透過率は遠紫外線領域では0に近い。特別な製造方法を用いて製造される合成石英は露光光の波長約248nmには対応することができるが、波長193nm以下の波長に対しては透過率が急激に低下する。このため、0.10μm以下の微細パタ−ンに対応する波長150nm以下の露光光に対して透過率が十分に高くて実用的な硝材を開発することは非常に困難である。更に、遠紫外線領域で使用される硝材は、透過率以外にも、耐久性、屈折率、均一性、光学的歪み、加工性等の複数の観点で一定の条件を満たす必要があり、これらも実用的な硝材の開発を困難にしている。
【0010】
かかる問題に対して、近年、0.1μm以下の微細加工を可能にする手段として近接場光学顕微鏡(Scanning Near Field Microscope:SNOM)の原理を用いた露光装置が提案されている。公開特許平成11年第145051号公報や公開特許平成11年第184094号公報では、マスク面の法線方向に弾性変形可能なマスクをレジストに密着させ、マスク面に形成した100nm以下の大きさの微小開口パターンから滲み出す近接場光を用いて被露光物に光の波長限界を越える局所的な露光を行う装置を提案している。
【0011】
近接場光を用いて露光を行なう場合、微小開口パターンに照射する光の偏光方向により発生する近接場光の強度分布が変化するという現象がみられる。例えば、微小開口パターンの幅が照射する光波長の1/2程度の場合、マスク上の微小開口パターンに対して入射する光の電場方向が微小開口パターンの長手方向に対して垂直(=入射する光の電場方向が微小開口パターンの短手方向と同じ)である場合と、平行(=入射する光の電場方向が微小開口パターンの長手方向と同じ)である場合を比較すると、微小開口パターンから滲み出す近接場光の強度自体は両者ともほぼ同じ程度である。しかしながら、強度分布に関しては、後者の場合の微小開口パターンから滲み出した近接場光が微小開口パターンの長手方向に垂直な方向(=微小開口パターンの短手方向)に強度分布の広がりの程度に比べ、前者の場合の近接場光は強度分布の広がりの程度が小さい。そのため、微小開口パターンに照射する光の偏光方向を制御することにより、より細かなパターン形成が可能である。
【0012】
例えば、公開特許公報特開2000−112116号では、近接場光を利用した露光に用いるマスク中に微小開口パターンの長手方向に平行な方向の偏光のみ透過させる偏光子を作りこみ偏光方向を制御するという提案がされている。
【0013】
【発明が解決しようとする課題】
しかしながら、公開特許公報特開2000−112116号で提案されている偏光子を組み込んだ近接場光露光マスクでは、微小開口パターンが作製されている領域全てに微小開口パターンの方向に応じた偏光子を作製する必要があるため、マスク作製のコストが高くなっていた。
【0014】
また、さらに微細なパターンを形成するため、微小開口パターン幅を露光波長の1/3よりもさらに小さくすると、レジストへ形成されるパターンのアスペクト比が低下してしまうという課題が生じた。
【0015】
【課題を解決するための手段】
上記の課題を解決する手段としての本発明は、第1に、マスクの開口から滲み出させた近接場光によって被加工物に露光を行う近接場マスク露光方法であって、マスク面に平行な面内の電場強度が該面内の全方向にわたって均一である非偏光光をマスク面に照射し、短手方向の幅が露光光の波長の1/3以下で、かつ、長手方向が該面内の少なくとも2つ以上の方向を向いた複数の矩形開口を有するマスクを用いて、マスク面に照射された光のうち、電場の向きが該矩形開口の短手方向である偏光成分のみを近接場光として該開口から滲み出させることにより、該開口パターンの露光を行なうことを特徴とする。
【0016】
第2に、本発明は、マスクの開口から滲み出させた近接場光によって被加工物に露光を行う近接場マスク露光装置であって、短手方向の幅が露光光の波長の1/3以下で、かつ、長手方向が該面内の少なくとも2つ以上の方向を向いた複数の矩形開口を有するマスクと、マスク面に平行な面内の電場強度が該面内の全方向にわたって均一である非偏光光をマスク面に照射する手段とを有し、マスク面に照射された光のうち、電場の向きが該矩形開口の短手方向である偏光成分のみを近接場光として該開口から滲み出させることにより、該開口パターンの露光を行なうことを特徴とする。
【0017】
【発明の実施の形態】
以下、添付図面を参照して、本発明の例示的な露光方法1について説明する。ここで、光装置1の概略断面図である。本発明の実施の形態を図1、図2を用いて詳細に説明する。
【0018】
図1は、本発明の露光マスクの構成を表す図面、図2は、この露光マスクを用いた露光装置の構成を表す図面である。
【0019】
本発明の露光マスク100について、図1を参照して説明する。図1は、図2に示す露光装置に用いられる露光マスクの図であり、(1a)はおもて面側、(1b)は断面図である。なお、本発明において「おもて面」とは、遮光膜が設けられた面をいい、「裏面」とは、その反対側をいう。
【0020】
図1における露光マスク100は、マスク支持体104、マスク母材101、遮光膜102から構成されている。遮光膜102は、マスク母材101の上に成膜されており、その遮光膜102に微小開口が所望のパターン103に形成されている。露光マスク100上に形成されている微小開口パターン103は、矩形、もしくは矩形をつなぎ合わせたパターンを持ち、個々の矩形は、短手方向の幅が露光光源の光波長の1/3以下で、かつ、長手方向が該面内の少なくとも2つ以上の方向を向いているものから構成されている。また、マスク母材101は弾性体で構成されており、薄膜として存在している。
【0021】
この露光マスクは、図2において説明するが、近接場露光装置の圧力調整容器内に、露光マスクの裏面が面するように配置して圧力調整を加えマスクのたわみを調整する。
【0022】
図2における近接場露光装置は大きく分類すると、圧力調整装置、露光マスク、光源、被露光物とに分かれる。上述したが、露光マスクを圧力調整装置に裏面を面して配置し、被露光物に相対させて配置する。
【0023】
被露光物としては、基板203の表面にレジスト202を形成する。レジスト202/基板203をステージ207上に取り付け、ステージ207を駆動することにより、露光マスク201に対する基板203のマスク面内2次元方向の相対位置合わせを行う。次に、マスク面法線方向にステージ207を駆動し、露光マスク201のおもて面と基板203上のレジスト202面との間隔が全面にわたって100nm以下になるように両者を密着させる。
【0024】
この後、露光光源209から出射される露光光210をコリメータレンズ211で平行光にした後、ガラス窓212を通し、圧力調整容器205内に導入し、露光マスク201に対して裏面(図2では上側)から照射し、露光マスク201おもて面のマスク母材206上の遮光膜207に形成された微小開口パターン204から滲み出す近接場でレジスト202の露光を行う。
【0025】
ここで、本発明では露光光源209から出射される露光光210は、露光マスク201裏面に平行な面内方向の電場強度が面内の全方向にわたって均一である光を照射する。
【0026】
前述したように、微小開口パターンの幅が露光波長の1/2程度までは、電場の向きが微小開口パターンの長手方向に対して垂直な方向に偏光した光を照射した場合に比べ、平行な方向に偏光した光を照射した場合の方が微小開口から発生する近接場光の(微小開口パターンの短手方向の)強度分布が狭くなる。しかしながら、形成パターンをさらに微細化するため、微小開口パターンの幅を露光波長の1/3よりも小さくすると、平行な方向に偏光した光を照射した場合、レジストへ形成されるパターンのアスペクト比が低下してしまう。
【0027】
これは、微小開口パターンの幅が照射する光波長の1/3以下になると、マスク上の微小開口パターンに対して入射する光の電場方向が微小開口パターンの長手方向に対して平行である場合に微小開口パターンから滲み出す近接場光の強度が、微小開口以外の遮光膜部分を直接に透過する光の強度と同程度になるため、この直接透過光が微小開口近傍の光強度分布において、近接場光に対してバックグランド光として重畳し、微小開口近傍の開口部と非開口部の光強度コントラストが大きく低下するためである。
【0028】
しかしながら、図5に示すように、マスク上の微小開口パターンに対して入射する光の電場方向が微小開口パターンの長手方向に対して垂直である場合に微小開口パターンから滲み出す近接場光の強度は、微小開口以外の遮光膜部分を直接に透過する光の強度より大きく、この直接透過光が微小開口近傍の光強度分布において、近接場光に対してバックグランド光として重畳する影響が小さいため、微小開口近傍の開口部と非開口部の光強度コントラスト低下をより小さくすることが可能である。
【0029】
したがって、微小開口パターンの幅が照射する光波長の1/3以下の場合は、電場の向きが微小開口パターンの長手方向に対して平行な方向に偏光した光を照射した場合に比べ、垂直な方向に偏光した光を照射した場合の方が、レジストへ形成されるパターンのアスペクト比を大きくできる。
【0030】
さらに、図6に示すように、微小開口パターンの幅が照射する光波長の1/3以下の場合、マスク上の微小開口パターンに対して入射する光の電場方向が微小開口パターンの長手方向に対して平行(=入射する光の電場方向が微小開口パターンの長手方向と同じ)である場合に微小開口パターンから滲み出す近接場光の強度に比べ、垂直(=入射する光の電場方向が微小開口パターンの短手方向と同じ)である場合に微小開口パターンから滲み出す近接場光の強度が大きくなる。ここで、遮光膜材料がCr(複素誘電率:−13.1+14.3i)、遮光膜の厚さが100nmである場合の計算結果を示した。
【0031】
したがって、近接場マスクの裏面から、裏面に対して平行な面内方向の電場強度が面内の全方向にわたって均一である光を照射することにより、近接場マスクの微小開口パターンの長手方向がどの方向であっても、微小開口パターンに対して入射する光のうち、電場方向が微小開口パターンの長手方向に対して垂直な成分によって微小開口パターンから滲み出させる近接場光の強度を、平行な成分による近接場光の強度よりも大きくすることができる。
【0032】
このため、長手方向が近接場マスク面内の少なくとも2つ以上の方向を向いた微小開口パターンを有する近接場マスクにおいても、照射された光が微小開口パターン中を透過する際に、実質的に電場の向きが微小開口パターンの短手方向(長手方向に垂直な方向)である偏光成分のみを近接場光として微小開口パターンから滲み出し、複数の方向を向いた微小開口パターンに対して、コントラスト低下が少ない均一な露光を行うことができる。
【0033】
本発明では、露光光210に近接場マスク面に平行な面内方向の電場強度が該面内の全方向にわたって均一である光を用いることにより、露光光に全ての偏光成分が含まれることになり、微小開口の長手方向に対する角度依存性が無くなる。つまり、図3のように微小開口の長手方向がx方向、y方向、その中間の方向とどのような方向に向いていても、露光光は近接場マスク面に平行な面内方向の電場強度が該面内の全方向にわたって均一であるであるため微小開口には、どの方向にも一様な電場成分が与えられることになる。そのため微小開口が100nm以下のサイズであれば、マスク自体が微小開口の長手方向に対して平行な偏光方向の光は通さず、垂直な偏光方向の光のみを選択的に通し、近接場を発生させるので微小開口の長手方向によらずパターンをむらなく形成することが出来る。
【0034】
ここで用いた近接場マスク面に平行な面内方向の電場強度が該面内の全方向にわたって均一である光を出射する露光光源としては、水銀ランプなど無偏光の光源が挙げられる。また、近接場マスク面に平行な面内方向の電場強度が該面内の全方向にわたって均一である光源として、レーザのような通常偏光を有する光を偏光解消板や拡散板などを通すことで十分に偏光を解消して用いても良い。つまり、露光マスクに照射する以前の露光光210が近接場マスク面に平行な面内方向の電場強度が該面内の全方向にわたって均一である(偏光が解消されている)状態であればよい。
【0035】
次に、露光マスクとレジスト/基板の密着方法の詳細について図2を用いて説明する。
【0036】
露光マスク201のおもて面と基板203上のレジスト202面がともに完全に平坦であれば、全面にわたって両者を密着させることが可能である。しかしながら、実際には、マスク面やレジスト/基板面に凹凸やうねりが存在するので、両者を近づけ、接触させただけでは、密着している部分と非密着部分が混在する状態になってしまう。
【0037】
そこで、露光マスク201の裏面からおもて面方向に向かって圧力を印加することにより、露光マスク201に弾性変形による撓みを生じさせ、レジスト202/基板203へ押し付けるようにすることにより、薄膜部が全面にわたって密着させることができる。
【0038】
このような圧力を印加する方法の一例として、図2に示したように、露光マスク201のおもて面を圧力調整容器205外側に面するように、裏面を圧力調整容器205内側に面するように配置させ、ポンプ等の圧力調整手段213を用いて、圧力調整容器205内に高圧ガスを導入し、圧力調整容器205内が外気圧より高い圧力になるようにする。
【0039】
他の例として、圧力調整容器205の内部を露光光210に対して透明な液体で満たし、シリンダーを用いて圧力調整容器205内部の液体の圧力を調整するようにしても良い。
【0040】
さて、圧力調整手段213から圧力調整容器205内に高圧ガスを導入し、圧力調整容器205内の圧力を増大させ、露光マスク201のおもて面と基板203上のレジスト202面とを全面にわたって均一な圧力で密着させる。
【0041】
このような方法で圧力の印加を行うと、パスカルの原理により、近接場マスク201のおもて面と基板203上のレジスト202面との間に作用する斥力が均一になる。このため、露光マスク201や基板203上のレジスト202面に対し、局所的に大きな力が加わったりすることがなく、露光マスク201や基板203、レジスト202が局所的に破壊されたりすることがなくなるという効果を有する。
【0042】
このとき、圧力調整容器205内の圧力を調整することにより、露光マスク201とレジスト202/基板203との間に働かせる押し付け力、すなわち、両者の密着力を制御することができる。例えば、マスク面やレジスト/基板面の凹凸やうねりがやや大きいときには、圧力調整容器内の圧力を高めに設定することにより、密着力を増大させ、凹凸やうねりによるマスク面とレジスト/基板面との間の間隔ばらつきをなくすようにすることができる。
【0043】
ここでは、露光マスク201とレジスト202/基板203を密着させるために、露光マスクの裏面を圧力調整容器205内に配置し、圧力調整容器205内より低い外気圧との圧力差により、露光マスク201の裏面側からおもて面側に圧力が加わるようにした例を示したが、逆の構成として、近接場マスクのおもて面およびレジスト/基板を減圧容器内に配置し、減圧容器内より高い外気圧との圧力差により、近接場マスクの裏面側からおもて面側に圧力が加わるようにしても良い。いずれにしても、近接場マスクのおもて面側に比べ、裏面側が高い圧力となるような圧力差を設けるようにすれば良い。
【0044】
さて、近接場光による露光終了後における露光マスクとレジスト/基板の剥離に関しては以下のように行う。
【0045】
圧力調整手段213を用いて、圧力調整容器205内の圧力を外気圧より小さくし、基板203上のレジスト202面から露光マスク201上の金属薄膜を剥離させる。
【0046】
また、このような方法で圧力の減圧を行い、レジスト202/基板203からの露光マスク201の剥離を行う場合、パスカルの原理により、露光マスク201のおもて面と基板203上のレジスト202面との間に作用する引力が均一になる。このため、露光マスク201や基板203上のレジスト202面に対し、局所的に大きな力が加わったりすることがなく、露光マスク201や基板203、レジスト202が剥離時に局所的に破壊されたりすることもなくなるという効果を有する。
【0047】
このとき、圧力調整容器205内の圧力を調整することにより、露光マスク201とレジスト202/基板203との間に働く引力、すなわち、両者の引っ張り力を制御することができる。例えば、マスク面とレジスト/基板面との間の吸着力が大きいときには、圧力調整容器内の圧力をより低めに設定することにより、引っ張り力を増大させ、剥離しやすくすることができる。
【0048】
前述したように、密着時の圧力印加の装置構成において、図2とは逆の構成として、露光マスクのおもて面およびレジスト/基板を減圧容器内に配置し、減圧容器内より高い外気圧との圧力差により、露光マスクの裏面側からおもて面側に圧力が加わるようにした場合は、剥離時には、容器内を外気圧より高い圧力にすればよい。
【0049】
いずれにしても剥離時には、露光マスクのおもて面側に比べ、裏面側が低い圧力となるような圧力差を設けるようにすれば良い。
【0050】
以上のように、露光マスクをレジスト/基板に密着し、露光光に無偏光の光を用いることで、前述して説明したように、微小開口から滲み出る近接場強度が一定となり、露光マスクに偏光子を作りこまなくてもレジストへの露光むらが低減させることができる。
【0051】
【実施例】
本実施例は、本発明の実施の形態の一例で、構成を具体的に説明するものであり、上述してきた実施の形態の露光装置を使用して行うものである。
【0052】
図1と図4を用いて本実施例を具体的に説明する。
【0053】
露光マスク100において、マスク支持体104としてSi(100)基板を選び、Si(100)上にマスクの母材層101としてSiNをLPCVD法(Low Pressure 0Chemical Vapor Deposition)を用いて500nm成膜した。さらに、マスク面となる側のSiN上部に遮光膜層102となるCrをスパッタリング法を用いて50nm成膜する。その遮光膜層104のCrに使用する波長以下の微小開口103(開口径〜100nm)を所望のパターンにEBリソグラフィー法で電子線レジスト上にパターンを形成し、そのレジストをマスクとしてドライエッチング法を用いて遮光膜層102のCrをエッチングすることでマスクのパターンとする。このマスクのパターンは図1に図示されているように、微小開口の長手方向はどのような方向を向いていても良い。つまり、どのような微小開口パターンでも良い。次に、遮光膜層102とは反対の面に、露光マスクを薄膜にしたい部分にフォトリソグラフィー法で26mm×26mmの大きさでパターニングを施し、その部分のSiNをCF4ガスを用いたRIE(Reactive Ion Etching)により除去する。残ったSiNをエッチングマスク106とし、110℃に温めた30wt%の水酸化カリウム水溶液内に上述してきた基板を浸すことでSiをエッチングして薄膜にしたい部分のSiのみを取り除く。以上のようなプロセスによってSiウエハに支持された露光マスク100を作製する。
【0054】
本実施例ではマスクの母材にSiNを、遮光膜としてCrを用いた例を示したが、本発明の概念は特定の材料に限るものではない。マスクの母材では露光に用いる波長の光が透過する材料であって、薄膜にしたときに十分な機械的強度を有していることが望ましく、また遮光膜においては、被露光物に影響をもたらさない材料であって、露光に用いる波長の光が透過しない材料とし、十分に光が減衰する膜厚であることが望ましい。
【0055】
次に、本実施例で行った露光の方法について図4を用いて詳しく説明する。
【0056】
以上のように作製したマスクを、図4に示す露光装置に取り付け使用する。
【0057】
その後、被露光物であるレジスト402と露光マスク401の薄膜マスクを全面に渡って近づけるために、露光マスク401とレジスト402が塗布された基板403のアライメントを施し、圧力調整容器405に圧縮空気を40kPaの圧力で導入することで、露光マスク401のおもて面と裏面との間に圧力差を設ける。そして、全ての薄膜マスクをたわませ薄膜マスクをレジスト402に均一に100nm以下にまで近づける。
【0058】
その後、露光光源409としてg線(波長436nm)やi線(波長365nm)の水銀ランプや、波長860nmのSHG(第二高調波)のレーザから射出された光を偏光解消板を通し十分に偏光を解消し、その後コリメータレンズ411を通し平行光として用いても良い。
【0059】
このようにして近接場マスク面に平行な面内方向の電場強度が該面内の全方向にわたって均一であるようにした露光光を露光マスク全面に照射することで、露光マスク上の微小開口から均一な強度で近接場を発生させることができ、近接場による露光に際して、露光むらを低減させることができる。
剥離するときは露光マスクをレジスト402に近づけるのとは反対に、圧力調整容器205内圧力を、ポンプを用いて大気圧より40kPaほど低い圧力にして、露光マスクとレジスト402を剥離する。
【0060】
本実施例では、露光光源405として使用した光源は、水銀ランプやSHGレーザの偏光解消光であるが、これに限るものではなく、用いるレジスト402を露光可能な波長の光を照射するものを用いればよい。例えば、レジスト407として、g線(波長436nm)・i線(波長365nm)対応のフォトレジストを選択した場合、露光光源405として、青色LEDやHeCdレーザ(光波長:325nm、442nm)、GaN系の青色半導体レーザ(同:〜410nm)や、他の赤外光レーザの第3高調波(THG)レーザを用いても良い。
【0061】
レーザのような通常偏光している光の場合は、露光マスクに光を照射する以前に、偏光解消板や、拡散板などを通して十分に偏光を解消すればよい。
【0062】
【発明の効果】
以上のように、近接場マスク上の微小開口に近接場マスク面に平行な面内方向の電場強度が該面内の全方向にわたって均一である光を近接場マスクに照射することで、長手方向が該面内の少なくとも2つ以上の方向を向いた開口パターンを有する近接場マスクにおいて微小開口から滲み出る近接場強度を一定にすることができ、パターンを近一に露光することができる。そのため、近接場マスクに偏光子を作りこむ必要が無くなり、近接場マスクの生産性が高くなるとともに低コスト化が可能となった。
【図面の簡単な説明】
【図1】(1a)本発明の例示的な露光マスクの概略図
(1b)本発明の例示的な露光マスクの概略断面図
【図2】本発明の例示的な露光装置の概略断面図
【図3】本発明の偏光方向についての説明の図
【図4】本発明の実施例の露光装置の概略断面図
【図5】微小開口パターンから発生する近接場強度のコントラストと開口幅の関係の電場の方向依存を説明する図
【図6】微小開口パターンから発生する近接場強度と開口幅の関係の電場の方向依存を説明する図
【符号の説明】
100 露光マスク
101 マスク母材
102 遮光膜
103 微小開口パターン
104 マスク支持体
201 露光マスク
202 レジスト
203 基板
204 微小開口パターン
205 圧力調整容器
206 マスク母材
207 ステージ
209 露光光源
210 露光光
211 コリメータレンズ
212 ガラス窓
213 圧力調整手段
301 微小開口
302 偏光方向
401 露光マスク
402 レジスト
403 基板
404 微小開口パターン
405 圧力調整容器
406 マスク母材
407 ステージ
408 偏光解消板
409 露光光源
410 露光光
411 コリメータレンズ
412 ガラス窓
413 圧力調整手段[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exposure method and an apparatus used for manufacturing a semiconductor device or an optical device.
[0002]
[Background Art]
In recent years, demands for miniaturization and thinning of electronic devices have increased demands for miniaturization of semiconductor elements mounted on electronic devices. For example, a design rule for a mask or reticle pattern is to achieve a line and space (L & S) of 130 nm in a mass production process, and is expected to become smaller in the future. L & S is an image projected on a wafer in a state where the widths of lines and spaces are equal in exposure, and is a scale indicating the resolution of exposure.
[0003]
2. Description of the Related Art In recent years, a projection exposure apparatus that has become mainstream generally has an illumination optical system that illuminates a mask using a light beam emitted from a light source, and a projection optical system that is disposed between the mask and an object to be exposed. In an illumination optical system, a light flux from a light source is introduced into a light integrator such as a fly-eye lens composed of a plurality of rod lenses in order to obtain a uniform illumination area, and a light integrator exit surface is used as a secondary light source surface to form a condenser. The mask surface is Koehler-illuminated with a lens.
[0004]
The resolution R of the projection exposure apparatus is given by the following equation using the wavelength λ of the light source and the numerical aperture (NA) of the exposure apparatus.
[Outside 1]
Figure 2004103702
[0005]
Therefore, the shorter the wavelength and the higher the NA, the better the resolution.
[0006]
On the other hand, a focus range in which a certain imaging performance can be maintained is called a depth of focus, and the depth of focus DOF is given by the following equation.
[Outside 2]
Figure 2004103702
[0007]
Therefore, the shorter the wavelength and the higher the NA, the smaller the depth of focus. As the depth of focus becomes smaller, focusing becomes difficult, and it is required to increase the flatness (flatness) and focus accuracy of the substrate.
[0008]
It is understood from the first and second examples that shortening the wavelength is more effective than NA. For this reason, the light source in recent years is shifting from a conventional ultra-high pressure mercury lamp to a shorter wavelength KrF excimer laser (wavelength: about 248 nm) or ArF excimer laser (wavelength: about 193 nm).
[0009]
However, the values of the proportional constants k 1 and k 2 are usually about 0.5 to 0.7, and even when using a resolution enhancement method such as a phase shift, the value is only about 0.4. It is difficult to improve. It is generally said that the resolution of a projection exposure apparatus is substantially limited to the wavelength of a light source used, and it is difficult for a projection exposure apparatus to form a pattern of 0.10 μm or less even when an excimer laser is used. . In addition, even if a light source having a shorter wavelength is present, the exposure material having the shorter wavelength cannot pass through the optical material used for the projection optical system (that is, the glass material of the lens). There is also a problem that exposure cannot be performed (because it cannot be projected on an object). That is, the transmittance of most glass materials is close to 0 in the far ultraviolet region. Synthetic quartz manufactured by using a special manufacturing method can cope with the wavelength of exposure light of about 248 nm, but the transmittance sharply decreases for a wavelength of 193 nm or less. For this reason, it is very difficult to develop a practical glass material having sufficiently high transmittance for exposure light having a wavelength of 150 nm or less corresponding to a fine pattern of 0.10 μm or less. Furthermore, glass materials used in the deep ultraviolet region need to satisfy certain conditions from a plurality of viewpoints such as durability, refractive index, uniformity, optical distortion, workability, etc., in addition to transmittance. This makes it difficult to develop practical glass materials.
[0010]
In order to solve such a problem, an exposure apparatus using a principle of a near-field optical microscope (Scanning Near Microscope: SNOM) has recently been proposed as a means for enabling fine processing of 0.1 μm or less. In Japanese Patent Application Laid-Open No. 1145051/1999 and Japanese Patent Application Publication No. 184094/1999, a mask elastically deformable in the normal direction of the mask surface is brought into close contact with the resist, and a mask having a size of 100 nm or less is formed on the mask surface. There has been proposed an apparatus for performing local exposure on an object to be exposed exceeding a wavelength limit of light by using near-field light oozing from a fine aperture pattern.
[0011]
When exposure is performed using near-field light, a phenomenon is observed in which the intensity distribution of the near-field light generated varies depending on the polarization direction of light applied to the minute aperture pattern. For example, when the width of the fine aperture pattern is about 1/2 of the light wavelength to be irradiated, the direction of the electric field of light incident on the fine aperture pattern on the mask is perpendicular (= incident) to the longitudinal direction of the fine aperture pattern. Comparing the case where the electric field direction of light is the same as the short direction of the small aperture pattern and the case where it is parallel (= the direction of the electric field of the incident light is the same as the longitudinal direction of the small opening pattern) The intensity of the near-field light that exudes is almost the same in both cases. However, with respect to the intensity distribution, the near-field light oozing out of the minute aperture pattern in the latter case has a degree of spread of the intensity distribution in a direction perpendicular to the longitudinal direction of the minute aperture pattern (= shorter direction of the minute aperture pattern). In comparison, in the former case, the degree of spread of the intensity distribution of the near-field light is small. Therefore, a finer pattern can be formed by controlling the polarization direction of the light applied to the minute aperture pattern.
[0012]
For example, in Japanese Patent Laid-Open Publication No. 2000-112116, a polarizer that transmits only polarized light in a direction parallel to the longitudinal direction of a minute aperture pattern is formed in a mask used for exposure using near-field light, and the polarization direction is controlled. It has been proposed.
[0013]
[Problems to be solved by the invention]
However, in a near-field light exposure mask incorporating a polarizer proposed in Japanese Patent Application Laid-Open No. 2000-112116, a polarizer according to the direction of the fine aperture pattern is applied to all regions where the fine aperture pattern is formed. Since it is necessary to manufacture the mask, the cost of manufacturing the mask has been high.
[0014]
Further, if the width of the fine opening pattern is made smaller than 露 光 of the exposure wavelength in order to form a finer pattern, there arises a problem that the aspect ratio of the pattern formed on the resist decreases.
[0015]
[Means for Solving the Problems]
The present invention as a means for solving the above-mentioned problem is, firstly, a near-field mask exposure method for exposing a workpiece with near-field light oozing from an opening of a mask, the method comprising: The mask surface is irradiated with unpolarized light whose electric field intensity in the plane is uniform in all directions in the plane, and the width in the short direction is equal to or less than 1/3 of the wavelength of the exposure light, and the longitudinal direction is the plane. Using a mask having a plurality of rectangular openings oriented in at least two directions, only the polarized light components of which the electric field is in the short direction of the rectangular openings are brought into close proximity among the light applied to the mask surface. The exposure of the opening pattern is performed by oozing out from the opening as field light.
[0016]
Secondly, the present invention relates to a near-field mask exposure apparatus for exposing a workpiece with near-field light exuding from an opening of a mask, wherein the width in the short direction is 3 of the wavelength of the exposure light. A mask having a plurality of rectangular openings whose longitudinal directions are directed to at least two or more directions in the plane, and an electric field strength in a plane parallel to the mask plane is uniform in all directions in the plane. Means for irradiating a certain non-polarized light on the mask surface, and among the light irradiated on the mask surface, only the polarized light component in which the direction of the electric field is the short direction of the rectangular opening is emitted from the opening as near-field light. The exposure of the opening pattern is performed by exuding.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an exemplary exposure method 1 of the present invention will be described with reference to the accompanying drawings. Here, it is a schematic sectional view of the optical device 1. An embodiment of the present invention will be described in detail with reference to FIGS.
[0018]
FIG. 1 is a drawing showing a configuration of an exposure mask of the present invention, and FIG. 2 is a drawing showing a configuration of an exposure apparatus using the exposure mask.
[0019]
The exposure mask 100 of the present invention will be described with reference to FIG. FIG. 1 is a view of an exposure mask used in the exposure apparatus shown in FIG. 2, (1a) is a front surface side, and (1b) is a cross-sectional view. In the present invention, the “front surface” refers to the surface on which the light shielding film is provided, and the “back surface” refers to the opposite side.
[0020]
The exposure mask 100 in FIG. 1 includes a mask support 104, a mask base material 101, and a light shielding film 102. The light-shielding film 102 is formed on the mask base material 101, and minute openings are formed in the light-shielding film 102 in a desired pattern 103. The micro-aperture pattern 103 formed on the exposure mask 100 has a rectangular shape or a pattern obtained by joining rectangles, and each rectangular shape has a width in the lateral direction of 1/3 or less of the light wavelength of the exposure light source. And it is comprised from what has a longitudinal direction facing at least two directions in the said plane. Further, the mask base material 101 is made of an elastic material and exists as a thin film.
[0021]
Although this exposure mask will be described with reference to FIG. 2, it is arranged in a pressure adjustment container of the near-field exposure apparatus so that the back surface of the exposure mask faces, and pressure is adjusted to adjust the deflection of the mask.
[0022]
The near-field exposure apparatus in FIG. 2 can be roughly classified into a pressure adjusting apparatus, an exposure mask, a light source, and an object to be exposed. As described above, the exposure mask is arranged on the pressure adjusting device with its back face facing, and is arranged so as to face the object to be exposed.
[0023]
As an object to be exposed, a resist 202 is formed on the surface of a substrate 203. The resist 202 / substrate 203 are mounted on the stage 207, and the stage 207 is driven to perform relative positioning of the substrate 203 with respect to the exposure mask 201 in a two-dimensional direction within the mask plane. Next, the stage 207 is driven in the normal direction of the mask surface, and the exposure mask 201 and the resist 202 on the substrate 203 are brought into close contact with each other such that the distance between the front surface and the resist 202 surface is 100 nm or less over the entire surface.
[0024]
Thereafter, the exposure light 210 emitted from the exposure light source 209 is collimated by a collimator lens 211, and then introduced into a pressure adjustment container 205 through a glass window 212. Irradiation is performed from the upper side, and the exposure of the resist 202 is performed in a near field that exudes from the fine opening pattern 204 formed in the light shielding film 207 on the mask base material 206 on the front surface of the exposure mask 201.
[0025]
Here, in the present invention, the exposure light 210 emitted from the exposure light source 209 irradiates light whose electric field intensity in an in-plane direction parallel to the back surface of the exposure mask 201 is uniform in all directions in the plane.
[0026]
As described above, when the width of the micro-aperture pattern is about half of the exposure wavelength, the direction of the electric field is more parallel than when irradiating light polarized in a direction perpendicular to the longitudinal direction of the micro-aperture pattern. When the light polarized in the direction is irradiated, the intensity distribution of the near-field light generated from the minute aperture (in the lateral direction of the minute aperture pattern) becomes narrower. However, if the width of the fine aperture pattern is made smaller than 1/3 of the exposure wavelength in order to further refine the formed pattern, the aspect ratio of the pattern formed on the resist when irradiated with light polarized in a parallel direction is reduced. Will drop.
[0027]
This is because the direction of the electric field of light incident on the micro-aperture pattern on the mask is parallel to the longitudinal direction of the micro-aperture pattern when the width of the micro-aperture pattern becomes 1/3 or less of the light wavelength to be irradiated. Since the intensity of the near-field light oozing out of the micro-aperture pattern is substantially the same as the intensity of the light directly transmitting through the light-shielding film portion other than the micro-aperture, this directly transmitted light is in the light intensity distribution near the micro-aperture, This is because the light intensity contrast is superimposed on the near-field light as background light, and the light intensity contrast between the opening near the minute opening and the non-opening greatly decreases.
[0028]
However, as shown in FIG. 5, when the electric field direction of the light incident on the micro-aperture pattern on the mask is perpendicular to the longitudinal direction of the micro-aperture pattern, the intensity of the near-field light oozing from the micro-aperture pattern Is larger than the intensity of the light directly transmitted through the light shielding film portion other than the minute aperture, and since the directly transmitted light has a small influence on the near-field light as background light in the light intensity distribution near the minute aperture. Further, it is possible to further reduce the decrease in the light intensity contrast between the opening near the minute opening and the non-opening.
[0029]
Therefore, when the width of the fine aperture pattern is 1/3 or less of the light wavelength to be irradiated, the direction of the electric field is more vertical than when the light is polarized in a direction parallel to the longitudinal direction of the fine aperture pattern. Irradiation with light polarized in the direction can increase the aspect ratio of the pattern formed on the resist.
[0030]
Further, as shown in FIG. 6, when the width of the fine opening pattern is equal to or less than 1/3 of the light wavelength to be irradiated, the electric field direction of the light incident on the fine opening pattern on the mask is in the longitudinal direction of the fine opening pattern. When the direction of the incident light is parallel (= the direction of the electric field of the incident light is the same as the longitudinal direction of the minute aperture pattern), the intensity of the near-field light oozing from the minute opening pattern is perpendicular (= the direction of the electric field of the incident light is minute). (The same as the short direction of the opening pattern), the intensity of the near-field light oozing from the minute opening pattern increases. Here, the calculation results in the case where the light shielding film material is Cr (complex dielectric constant: -13.1 + 14.3i) and the thickness of the light shielding film is 100 nm are shown.
[0031]
Therefore, by irradiating light whose electric field strength in the in-plane direction parallel to the back surface is uniform in all directions in the plane from the back surface of the near-field mask, the longitudinal direction of the minute aperture pattern of the near-field mask is Direction, the intensity of the near-field light that causes the electric field direction to ooze out of the micro-aperture pattern by a component perpendicular to the longitudinal direction of the micro-aperture pattern, of the light incident on the micro-aperture pattern, The intensity of the near-field light due to the component can be made larger.
[0032]
For this reason, even in a near-field mask having a minute aperture pattern whose longitudinal direction faces at least two or more directions in the near-field mask plane, when the irradiated light passes through the minute aperture pattern, substantially Only the polarization component in which the direction of the electric field is in the short side direction (perpendicular to the longitudinal direction) of the minute aperture pattern oozes out from the minute aperture pattern as near-field light, and contrasts with the minute aperture pattern directed in multiple directions. Uniform exposure with little reduction can be performed.
[0033]
In the present invention, the exposure light includes all polarization components by using light having an electric field intensity in an in-plane direction parallel to the near-field mask plane uniform in all directions in the plane. Thus, the angle dependency of the minute aperture with respect to the longitudinal direction is eliminated. That is, as shown in FIG. 3, even if the longitudinal direction of the minute opening is oriented in the x direction, the y direction, or any intermediate direction, the exposure light is exposed to the electric field intensity in the in-plane direction parallel to the near-field mask surface. Is uniform in all directions in the plane, so that the minute aperture is given a uniform electric field component in any direction. Therefore, if the micro opening has a size of 100 nm or less, the mask itself does not transmit light in the polarization direction parallel to the longitudinal direction of the micro opening, but selectively transmits only light in the vertical polarization direction to generate a near field. Therefore, the pattern can be formed evenly regardless of the longitudinal direction of the minute opening.
[0034]
A non-polarized light source such as a mercury lamp is used as an exposure light source that emits light whose electric field intensity in an in-plane direction parallel to the near-field mask surface used is uniform in all directions in the plane. In addition, as a light source in which the electric field intensity in the in-plane direction parallel to the near-field mask surface is uniform in all directions in the plane, light having a normal polarization such as a laser is passed through a depolarizing plate or a diffusing plate. Polarization may be sufficiently eliminated before use. In other words, the exposure light 210 before irradiating the exposure mask may be in a state where the electric field strength in the in-plane direction parallel to the near-field mask surface is uniform (polarized light is eliminated) in all directions in the surface. .
[0035]
Next, details of a method of adhering the exposure mask and the resist / substrate will be described with reference to FIG.
[0036]
If both the front surface of the exposure mask 201 and the surface of the resist 202 on the substrate 203 are completely flat, it is possible to bring both surfaces into close contact with each other. However, actually, since there are irregularities and undulations on the mask surface and the resist / substrate surface, just bringing them close to each other and bringing them into contact will result in a state in which a close contact portion and a non-contact portion are mixed.
[0037]
Therefore, by applying pressure from the back surface of the exposure mask 201 toward the front surface, the exposure mask 201 is bent by elastic deformation, and is pressed against the resist 202 / substrate 203, so that the thin film portion is formed. Can be adhered over the entire surface.
[0038]
As an example of a method for applying such a pressure, as shown in FIG. 2, the back surface of the exposure mask 201 faces the inside of the pressure adjustment container 205 such that the front surface faces the outside of the pressure adjustment container 205. The high pressure gas is introduced into the pressure adjusting container 205 using the pressure adjusting means 213 such as a pump so that the pressure inside the pressure adjusting container 205 becomes higher than the outside air pressure.
[0039]
As another example, the inside of the pressure adjustment container 205 may be filled with a liquid transparent to the exposure light 210, and the pressure of the liquid inside the pressure adjustment container 205 may be adjusted using a cylinder.
[0040]
Now, a high-pressure gas is introduced from the pressure adjusting means 213 into the pressure adjusting container 205 to increase the pressure in the pressure adjusting container 205 so that the front surface of the exposure mask 201 and the surface of the resist 202 on the substrate 203 are entirely covered. Adhere with uniform pressure.
[0041]
When pressure is applied in such a manner, the repulsive force acting between the front surface of the near-field mask 201 and the surface of the resist 202 on the substrate 203 becomes uniform by the principle of Pascal. Therefore, a large force is not locally applied to the surface of the resist 202 on the exposure mask 201 and the substrate 203, and the exposure mask 201, the substrate 203, and the resist 202 are not locally destroyed. This has the effect.
[0042]
At this time, by adjusting the pressure in the pressure adjusting container 205, it is possible to control the pressing force acting between the exposure mask 201 and the resist 202 / substrate 203, that is, the adhesive force between them. For example, when the irregularities and undulations on the mask surface and the resist / substrate surface are slightly large, the pressure inside the pressure regulating container is set to be high to increase the adhesion, and the mask surface and the resist / substrate surface due to the irregularities and undulations are increased. Can be eliminated.
[0043]
Here, in order to bring the exposure mask 201 into close contact with the resist 202 / substrate 203, the back surface of the exposure mask is disposed in the pressure adjustment container 205, and the pressure difference between the exposure mask 201 and the outside air pressure lower than that in the pressure adjustment container 205 is caused. An example is shown in which pressure is applied from the back side to the front side. However, as a reverse configuration, the front side of the near-field mask and the resist / substrate are arranged in a decompression container. Pressure may be applied to the front surface side from the back surface side of the near-field mask by a pressure difference from a higher external atmospheric pressure. In any case, a pressure difference may be provided so that the pressure on the back side is higher than that on the front side of the near-field mask.
[0044]
Now, the exfoliation of the exposure mask and the resist / substrate after the end of the exposure by the near-field light is performed as follows.
[0045]
The pressure inside the pressure adjusting container 205 is made lower than the outside air pressure by using the pressure adjusting means 213 to peel off the metal thin film on the exposure mask 201 from the surface of the resist 202 on the substrate 203.
[0046]
When the pressure is reduced by such a method and the exposure mask 201 is separated from the resist 202 / substrate 203, the front surface of the exposure mask 201 and the surface of the resist 202 on the substrate 203 are removed by the principle of Pascal. And the attractive force acting between them becomes uniform. Therefore, a large force is not locally applied to the surface of the resist 202 on the exposure mask 201 and the substrate 203, and the exposure mask 201, the substrate 203, and the resist 202 are locally broken at the time of peeling. This also has the effect of eliminating.
[0047]
At this time, by adjusting the pressure in the pressure adjusting container 205, the attractive force acting between the exposure mask 201 and the resist 202 / substrate 203, that is, the tensile force of both can be controlled. For example, when the attraction force between the mask surface and the resist / substrate surface is large, by setting the pressure in the pressure adjustment container to be lower, the pulling force can be increased and the separation can be easily performed.
[0048]
As described above, in the configuration of the apparatus for applying pressure during close contact, the front surface of the exposure mask and the resist / substrate are arranged in a reduced-pressure container in a configuration opposite to that in FIG. When pressure is applied from the back side to the front side of the exposure mask due to the pressure difference between the pressure and the pressure, the inside of the container may be set to a pressure higher than the outside air pressure at the time of peeling.
[0049]
In any case, at the time of peeling, a pressure difference may be provided so that the pressure on the back side is lower than that on the front side of the exposure mask.
[0050]
As described above, by bringing the exposure mask into close contact with the resist / substrate and using non-polarized light as the exposure light, as described above, the near-field intensity oozing from the minute opening becomes constant, and the exposure mask becomes Even if a polarizer is not formed, unevenness in exposure to the resist can be reduced.
[0051]
【Example】
This embodiment is an example of an embodiment of the present invention, which specifically describes the configuration, and is performed using the exposure apparatus of the embodiment described above.
[0052]
This embodiment will be specifically described with reference to FIGS.
[0053]
In the exposure mask 100, a Si (100) substrate was selected as the mask support 104, and a 500 nm-thick SiN film was formed on the Si (100) as the base material layer 101 of the mask using an LPCVD method (Low Pressure 0 Chemical Vapor Deposition). Further, a Cr film serving as the light-shielding film layer 102 is formed to a thickness of 50 nm on the SiN on the mask surface side by a sputtering method. A pattern is formed on the electron beam resist by EB lithography to form a small opening 103 (opening diameter: 100 nm) having a wavelength equal to or less than the wavelength used for Cr of the light-shielding film layer 104 in a desired pattern, and dry etching is performed using the resist as a mask. Then, Cr of the light shielding film layer 102 is etched to form a mask pattern. As shown in FIG. 1, the pattern of the mask may be oriented in any direction in the longitudinal direction of the minute opening. That is, any minute opening pattern may be used. Next, on a surface opposite to the light-shielding film layer 102, a portion where an exposure mask is to be formed into a thin film is patterned by photolithography with a size of 26 mm × 26 mm, and the SiN in that portion is subjected to RIE (Reactive) using CF 4 gas. (Ion Etching). Using the remaining SiN as an etching mask 106, the above-described substrate is immersed in a 30 wt% aqueous potassium hydroxide solution heated to 110 ° C. to etch the Si, thereby removing only the portion of the Si to be formed into a thin film. The exposure mask 100 supported by the Si wafer is manufactured by the above process.
[0054]
In this embodiment, an example is shown in which SiN is used as a base material of a mask and Cr is used as a light-shielding film, but the concept of the present invention is not limited to a specific material. The base material of the mask is a material through which light of a wavelength used for exposure is transmitted, and it is desirable that the mask has sufficient mechanical strength when formed into a thin film. It is preferable that the material does not provide the material and does not transmit light having a wavelength used for exposure, and has a film thickness that sufficiently attenuates the light.
[0055]
Next, the exposure method performed in this embodiment will be described in detail with reference to FIG.
[0056]
The mask manufactured as described above is used by attaching it to the exposure apparatus shown in FIG.
[0057]
Then, in order to bring the resist 402, which is the object to be exposed, and the thin film mask of the exposure mask 401 close to each other over the entire surface, the exposure mask 401 and the substrate 403 coated with the resist 402 are aligned, and compressed air is supplied to the pressure adjusting container 405. By introducing at a pressure of 40 kPa, a pressure difference is provided between the front and back surfaces of the exposure mask 401. Then, all the thin film masks are deflected so that the thin film mask is uniformly brought close to the resist 402 to 100 nm or less.
[0058]
Thereafter, light emitted from a g-line (436 nm) or i-line (365 nm) mercury lamp or an SHG (second harmonic) laser having a wavelength of 860 nm as an exposure light source 409 is sufficiently polarized through a depolarizing plate. Then, the light may be passed through the collimator lens 411 and used as parallel light.
[0059]
By irradiating the entire surface of the exposure mask with the exposure light in which the electric field strength in the in-plane direction parallel to the near-field mask surface is uniform in all directions in the plane, the fine openings on the exposure mask A near field can be generated with a uniform intensity, and when performing exposure with a near field, uneven exposure can be reduced.
When peeling, the exposure mask and the resist 402 are peeled by setting the pressure in the pressure adjustment container 205 to about 40 kPa lower than the atmospheric pressure using a pump, as opposed to bringing the exposure mask close to the resist 402.
[0060]
In this embodiment, the light source used as the exposure light source 405 is depolarized light from a mercury lamp or SHG laser, but is not limited to this, and a light source that irradiates light with a wavelength capable of exposing the resist 402 to be used is used. Just fine. For example, when a photoresist corresponding to g-line (wavelength: 436 nm) / i-line (wavelength: 365 nm) is selected as the resist 407, a blue LED, a HeCd laser (light wavelength: 325 nm, 442 nm), or a GaN-based light source is used as the exposure light source 405. A blue semiconductor laser (up to 410 nm) or a third harmonic (THG) laser of another infrared light laser may be used.
[0061]
In the case of a normally polarized light such as a laser, the polarized light may be sufficiently depolarized through a depolarizing plate or a diffusion plate before irradiating the light to the exposure mask.
[0062]
【The invention's effect】
As described above, by irradiating the near-field mask with light in which the electric field intensity in the in-plane direction parallel to the near-field mask surface is uniform over the minute apertures on the near-field mask over all directions in the plane, the longitudinal direction is reduced. In a near-field mask having an opening pattern oriented in at least two or more directions in the plane, the near-field intensity oozing out of the minute opening can be made constant, and the pattern can be exposed to close proximity. Therefore, it is not necessary to form a polarizer in the near-field mask, and the productivity of the near-field mask is increased and the cost can be reduced.
[Brief description of the drawings]
1A is a schematic cross-sectional view of an exemplary exposure mask of the present invention. FIG. 1B is a schematic cross-sectional view of an exemplary exposure mask of the present invention. FIG. 2 is a schematic cross-sectional view of an exemplary exposure apparatus of the present invention. FIG. 3 is a diagram illustrating the polarization direction of the present invention. FIG. 4 is a schematic cross-sectional view of an exposure apparatus according to an embodiment of the present invention. FIG. 5 is a diagram showing the relationship between the contrast of the near-field intensity generated from a small aperture pattern and the aperture width. FIG. 6 is a diagram for explaining the direction dependence of the electric field. FIG. 6 is a diagram for explaining the direction dependence of the electric field on the relationship between the near-field intensity and the opening width generated from the minute aperture pattern.
REFERENCE SIGNS LIST 100 Exposure mask 101 Mask base material 102 Light shielding film 103 Micro aperture pattern 104 Mask support 201 Exposure mask 202 Resist 203 Substrate 204 Micro aperture pattern 205 Pressure adjustment container 206 Mask base material 207 Stage 209 Exposure light source 210 Exposure light 211 Collimator lens 212 Glass Window 213 Pressure adjusting means 301 Micro aperture 302 Polarization direction 401 Exposure mask 402 Resist 403 Substrate 404 Micro aperture pattern 405 Pressure adjustment container 406 Mask base material 407 Stage 408 Depolarizing plate 409 Exposure light source 410 Exposure light 411 Collimator lens 412 Glass window 413 Pressure Adjustment means

Claims (2)

マスクの開口から滲み出させた近接場光によって被加工物に露光を行う近接場マスク露光方法であって、マスク面に平行な面内の電場強度が該面内の全方向にわたって均一である非偏光光をマスク面に照射し、短手方向の幅が露光光の波長の1/3以下で、かつ、長手方向が該面内の少なくとも2つ以上の方向を向いた複数の矩形開口を有するマスクを用いて、マスク面に照射された光のうち、電場の向きが該矩形開口の短手方向である偏光成分のみを近接場光として該開口から滲み出させることにより、該開口パターンの露光を行なうことを特徴とする近接場マスク露光方法。A near-field mask exposure method for exposing a workpiece with near-field light exuding from an opening of a mask, wherein the electric field intensity in a plane parallel to the mask plane is uniform in all directions in the plane. The mask surface is irradiated with polarized light, and has a plurality of rectangular openings whose width in the short direction is 1/3 or less of the wavelength of the exposure light and whose longitudinal direction is directed to at least two or more directions in the surface. Using a mask, of the light irradiated on the mask surface, only the polarized component whose electric field direction is the short direction of the rectangular opening is oozed out of the opening as near-field light, thereby exposing the opening pattern. A near-field mask exposure method. マスクの開口から滲み出させた近接場光によって被加工物に露光を行う近接場マスク露光装置であって、短手方向の幅が露光光の波長の1/3以下で、かつ、長手方向が該面内の少なくとも2つ以上の方向を向いた複数の矩形開口を有するマスクと、マスク面に平行な面内の電場強度が該面内の全方向にわたって均一である非偏光光をマスク面に照射する手段とを有し、マスク面に照射された光のうち、電場の向きが該矩形開口の短手方向である偏光成分のみを近接場光として該開口から滲み出させることにより、該開口パターンの露光を行なうことを特徴とする近接場マスク露光装置。A near-field mask exposure apparatus for exposing a workpiece with near-field light exuding from an opening of a mask, wherein the width in the short direction is equal to or less than 1/3 of the wavelength of the exposure light, and A mask having a plurality of rectangular openings oriented in at least two or more directions in the plane; and a non-polarized light having an electric field intensity in a plane parallel to the mask plane uniform in all directions in the plane. Means for irradiating the mask surface, out of the light applied to the mask surface, only the polarized component whose electric field direction is the short direction of the rectangular opening is exuded from the opening as near-field light, A near-field mask exposure apparatus for exposing a pattern.
JP2002261293A 2002-09-06 2002-09-06 Exposure method using near-field light and exposure apparatus using near-field light Expired - Fee Related JP4261849B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002261293A JP4261849B2 (en) 2002-09-06 2002-09-06 Exposure method using near-field light and exposure apparatus using near-field light
EP03794254A EP1535113A2 (en) 2002-09-06 2003-09-05 Exposure method, exposure mask, and exposure apparatus
US10/654,913 US7144682B2 (en) 2002-09-06 2003-09-05 Near-field exposure method
KR1020057003801A KR20050035538A (en) 2002-09-06 2003-09-05 Exposure method, exposure mask, and exposure apparatus
PCT/JP2003/011357 WO2004023211A2 (en) 2002-09-06 2003-09-05 Exposure method, exposure mask, and exposure apparatus
AU2003265176A AU2003265176A1 (en) 2002-09-06 2003-09-05 Exposure method, exposure mask, and exposure apparatus
US11/548,756 US20070065734A1 (en) 2002-09-06 2006-10-12 Exposure method, exposure mask, and exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002261293A JP4261849B2 (en) 2002-09-06 2002-09-06 Exposure method using near-field light and exposure apparatus using near-field light

Publications (2)

Publication Number Publication Date
JP2004103702A true JP2004103702A (en) 2004-04-02
JP4261849B2 JP4261849B2 (en) 2009-04-30

Family

ID=31973121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002261293A Expired - Fee Related JP4261849B2 (en) 2002-09-06 2002-09-06 Exposure method using near-field light and exposure apparatus using near-field light

Country Status (6)

Country Link
US (2) US7144682B2 (en)
EP (1) EP1535113A2 (en)
JP (1) JP4261849B2 (en)
KR (1) KR20050035538A (en)
AU (1) AU2003265176A1 (en)
WO (1) WO2004023211A2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60307296T2 (en) * 2002-09-27 2007-10-25 Dsm Ip Assets B.V. PROCESS FOR PREPARING VITAMIN B6
JP4183245B2 (en) * 2003-05-12 2008-11-19 キヤノン株式会社 Alignment method and exposure method using the alignment method
JP4194516B2 (en) * 2003-06-24 2008-12-10 キヤノン株式会社 Exposure method, exposure mask and device manufacturing method
JP4194514B2 (en) * 2003-06-26 2008-12-10 キヤノン株式会社 Exposure mask design method and manufacturing method
JP4027286B2 (en) * 2003-08-08 2007-12-26 キヤノン株式会社 Near-field exposure method and apparatus
JP4185830B2 (en) * 2003-08-08 2008-11-26 キヤノン株式会社 Near-field exposure method, near-field exposure apparatus, and near-field exposure mask
JP2005085922A (en) * 2003-09-08 2005-03-31 Canon Inc Method of manufacturing mask, and the mask having very small opening
US7279253B2 (en) * 2003-09-12 2007-10-09 Canon Kabushiki Kaisha Near-field light generating structure, near-field exposure mask, and near-field generating method
JP4217570B2 (en) * 2003-09-12 2009-02-04 キヤノン株式会社 Near-field light source device, optical head having the near-field light source device, optical device, exposure device, and microscope device
JP4347009B2 (en) 2003-09-26 2009-10-21 キヤノン株式会社 Near-field light generation method, near-field exposure mask, near-field exposure method, near-field exposure apparatus, near-field light head
JP4522166B2 (en) * 2004-06-29 2010-08-11 キヤノン株式会社 Exposure method
JP4250570B2 (en) * 2004-06-30 2009-04-08 キヤノン株式会社 Near-field exposure method and device manufacturing method using the same
JP4574250B2 (en) * 2004-06-30 2010-11-04 キヤノン株式会社 Photo mask
JP2006019447A (en) * 2004-06-30 2006-01-19 Canon Inc Methods for forming resist pattern, machining substrate and making device
JP2006049538A (en) * 2004-08-04 2006-02-16 Canon Inc Near field exposure mask and unit and method for controlling adhesion thereof
JP2007329214A (en) * 2006-06-07 2007-12-20 Canon Inc Proximity exposure method
US7605908B2 (en) * 2006-10-03 2009-10-20 Canon Kabushiki Kaisha Near-field exposure mask, near-field exposure apparatus, and near-field exposure method
JP2008098265A (en) * 2006-10-10 2008-04-24 Canon Inc Exposure method by near-field light and method of forming resist pattern
US8139199B2 (en) * 2007-04-02 2012-03-20 Nikon Corporation Exposure method, exposure apparatus, light converging pattern formation member, mask, and device manufacturing method
JP2009294439A (en) * 2008-06-05 2009-12-17 Toshiba Corp Resist pattern forming method
JP5075786B2 (en) * 2008-10-06 2012-11-21 株式会社東芝 Light emitting device and manufacturing method thereof
JP2022065451A (en) * 2020-10-15 2022-04-27 株式会社ディスコ Laser processing method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171730B1 (en) * 1997-11-07 2001-01-09 Canon Kabushiki Kaisha Exposure method and exposure apparatus
JP4346701B2 (en) 1998-03-25 2009-10-21 キヤノン株式会社 Exposure method using evanescent light
US6303276B1 (en) * 1998-05-08 2001-10-16 Physical Optics Corporation Method and apparatus for making optical master surface diffusers suitable for producing large format optical components
US6243348B1 (en) * 1998-06-05 2001-06-05 Massachusetts Institute Of Technology Very-high-density memory device utilizing a scintillating data-storage medium
JP3809500B2 (en) 1998-10-05 2006-08-16 正喜 江刺 Near-field light exposure mask, manufacturing method thereof, near-field light exposure apparatus, and near-field light exposure method
US6236033B1 (en) * 1998-12-09 2001-05-22 Nec Research Institute, Inc. Enhanced optical transmission apparatus utilizing metal films having apertures and periodic surface topography
GB2349237A (en) * 1999-04-24 2000-10-25 Sharp Kk An optical element, method of manufacture thereof and a display device incorporating said element.
EP1054296A3 (en) * 1999-04-30 2002-03-06 Fuji Photo Film Co., Ltd. Fine pattern forming method
JP2001308002A (en) 2000-02-15 2001-11-02 Canon Inc Method of forming pattern by use of photomask and pattern-forming device
AU2001264776A1 (en) * 2000-05-22 2001-12-03 Adc Telecommunications Inc. Polarization control of uv writing
JP2002062489A (en) 2000-08-22 2002-02-28 Canon Inc Optical modulating device, optical switch by the same device, movement amount detecting device and distance measuring instrument by the same device, positioning device and semiconductor exposure seems by the same device, and their methods
JP2002190444A (en) 2000-10-10 2002-07-05 Canon Inc Pattern projection aligner, pattern preparation method, and device prepared by the pattern projection aligner and the preparation method
JP2002246307A (en) 2000-12-12 2002-08-30 Canon Inc System and method for exposure
JP3791673B2 (en) * 2001-06-21 2006-06-28 富士写真フイルム株式会社 Near-field light exposure system
US6983444B2 (en) * 2003-08-01 2006-01-03 Macronix International Co., Ltd. Mask for reducing proximity effect

Also Published As

Publication number Publication date
KR20050035538A (en) 2005-04-18
JP4261849B2 (en) 2009-04-30
WO2004023211A3 (en) 2004-10-14
WO2004023211A2 (en) 2004-03-18
EP1535113A2 (en) 2005-06-01
US20070065734A1 (en) 2007-03-22
AU2003265176A8 (en) 2004-03-29
US7144682B2 (en) 2006-12-05
US20040121245A1 (en) 2004-06-24
AU2003265176A1 (en) 2004-03-29

Similar Documents

Publication Publication Date Title
JP4261849B2 (en) Exposure method using near-field light and exposure apparatus using near-field light
JP3894550B2 (en) Manufacturing method of near-field exposure mask
JP5088899B2 (en) Pattern mask holding device and method using two holding systems
KR102252049B1 (en) Mask for photolithography, method of manufacturing the same and method of manufacturing substrate using the same
JP2005039203A (en) Exposure mask, designing method and manufacturing method of exposure mask, exposure method and equipment, pattern lithography method, and fabrication method of device
KR100702929B1 (en) Exposure method, and method of fabricating a semiconductor device using the same
JP2004111500A (en) Mask, exposure device and its method
TW200817843A (en) Exposure apparatus and device manufacturing method
US10859744B2 (en) Method of manufacturing wire grid polarization element
JPH0815848A (en) Photoreticle
JP2002231614A (en) Spacer for peel off and device and method for peeling off
JP4199708B2 (en) Diffractive optical element and method of forming diffractive optical element
KR100608449B1 (en) Exposing system for semiconductor device
KR20060135156A (en) Photomask and exposing method using the same
CN110989286B (en) Super-surface information multiplexing mask plate system and preparation method thereof
JP2005005342A (en) Near-field exposure mask and method for manufacturing the same
JP3903032B2 (en) Near-field exposure method
KR100791680B1 (en) Method for exposing in a stepper
US7625675B2 (en) Method for producing masks for photolithography and the use of such masks
JP2002231615A (en) Member, aligner, and method of exposure, method of manufacturing device, and device
JP2004327786A (en) Exposure method and aligner
JPH04365050A (en) Manufacture of projection exposing device and semiconductor device
KR20030072867A (en) Method for wafer edge expose and apparatus the same
KR20070079861A (en) Exposure device
JP2006013278A (en) Near field exposure method, manufacturing method of mask for near field exposure and mask for near field exposure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees