JP2004098162A - Method for profile-controlling welding line - Google Patents

Method for profile-controlling welding line Download PDF

Info

Publication number
JP2004098162A
JP2004098162A JP2003172799A JP2003172799A JP2004098162A JP 2004098162 A JP2004098162 A JP 2004098162A JP 2003172799 A JP2003172799 A JP 2003172799A JP 2003172799 A JP2003172799 A JP 2003172799A JP 2004098162 A JP2004098162 A JP 2004098162A
Authority
JP
Japan
Prior art keywords
welding
correlation coefficient
welding line
series data
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003172799A
Other languages
Japanese (ja)
Other versions
JP4379910B2 (en
Inventor
Shinji Okumura
奥村 信治
Ryuichi Morita
守田 隆一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2003172799A priority Critical patent/JP4379910B2/en
Publication of JP2004098162A publication Critical patent/JP2004098162A/en
Application granted granted Critical
Publication of JP4379910B2 publication Critical patent/JP4379910B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for profile-controlling a welding line with which the effect with welding phenomena, such as short circuit, is little and the follow-up of the welding line can be improved without developing meandered bead by informing it to the outer part that the welding is in an abnormal state. <P>SOLUTION: In the method for profile-controlling the welding line, with which the welding is performed while profiling the welding line by correcting a position to the welding line of the welding torch, on the basis of electrical data in time series detected while periodically weaving the welding torch, the electrical data in the time series corresponding to the position of the welding line and the welding torch, are stored as the reference data in advance. Then, when the practical welding is performed, the present electrical data in the time series are prepared (S1) and a correlation coefficient with the reference data is obtained (S2), and the position of the welding torch is corrected so that this correlation coefficient becomes large. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、溶接トーチを溶接線に対して左右方向にウィービングさせながら溶接線に沿って進行させる溶接線倣い制御方法に関する。
【0002】
【従来の技術】
溶接線の自動倣い制御に際しては、例えば、図4に示すようなV形開先内にて溶接トーチ1を左右(左端をL、右端をR、ウィービング中心をOとして図示する)にウィービングさせた場合のワイヤ突き出し長さと溶接電流との関係を利用することが一般的に行なわれている(例えば特許文献1)。
この従来技術では、図5に示すようにウィービング中心と溶接線とが一致している場合の溶接電流波形と、図6および図7に示すように、ウィービング中心と溶接線とが一致していない場合の溶接電流波形とが異なることを利用している。つまり、ウィービング左右方向の倣いでは、L端からR端までの行程中の最大電流値ILと最小電流値ILとの差ΔIL=IL−IL、および、R端からL端までの行程中の最大電流値IRと最小電流値IRとの差ΔIR=IR−IRが、図5に示す状態ではΔIL=ΔIR、図6に示す状態ではΔIL>ΔIR、図7に示す状態でΔIL<ΔIRとなることを用いている。
従って、ΔIL>ΔIRとなれば図6に示すような左ずれ状態であるので、溶接トーチ1を右方向へ予め決められた一定量Kだけ位置修正を行なう一方、ΔIL<ΔIRとなれば図7に示すような右ずれ状態であるので、溶接トーチ1を左方向へ前記一定量Kだけ位置修正を行なう。このような修正動作をウィービング半周期毎に行ない、溶接トーチ1のウィービング中心を溶接線に自動的に倣わせている。
【0003】
【特許文献1】
特開昭61−144272号公報
【0004】
【発明が解決しようとする課題】
しかしながら、従来の溶接線倣い制御方法では、ウィービング両端の位置における溶接電流値の差によってずれを識別しているため、両端位置で突発的に発生した短絡などにより誤修正を行うことがあった。また、電流値の差だけであれば溶接状態にかかわらず修正を行うという問題が生じていた。
本発明は、短絡などの溶接現象の影響が少なく、また、溶接が異常な状態である場合に外部に通知することで、蛇行ビードを生じさせることなく溶接線の追従性の向上を図る溶接線倣い制御方法を提供するものである。
【0005】
【課題を解決するための手段】
請求項1記載の溶接線倣い制御方法は、溶接トーチを周期的にウィービングさせながら検出した電気的な時系列データに基づいて、前記溶接トーチの溶接線に対する位置を修正して前記溶接線に倣いながら溶接を行う溶接線倣い制御方法において、予め前記溶接線と前記溶接トーチとの位置に対応した前記電気的な時系列データを基準データとして記憶しておき、実際の溶接実行時には、現在の電気的な時系列データと前記基準データとの相関係数を求め、前記相関係数が大きくなるように前記溶接トーチの位置を修正することができる。
【0006】
請求項1記載の溶接線倣い制御方法によれば、現在の電気的な時系列データと前記基準データとの相関係数を求め、前記相関係数が大きくなるように溶接線倣い制御を行っているので、確実に溶接線とのずれを検出し、修正されるので、安定した溶接線倣い制御を実現することができる。
【0007】
請求項2記載の溶接線倣い制御方法は、溶接トーチを周期的にウィービングさせながら検出した電気的な時系列データに基づいて、前記溶接トーチの溶接線に対する位置を修正して前記溶接線に倣いながら溶接を行う溶接線倣い制御方法において、予め、前記溶接トーチの位置が前記溶接線上に存在する場合の電気的な時系列データをずれ無し基準データとし、前記溶接トーチの位置が前記溶接線に対してずれた場合の電気的な時系列データをずれ有り基準データとし、実際の溶接実行時には、現在の電気的な時系列データと前記ずれ無し基準データとの相関係数を求め、前記相関係数が設定された相関係数以上の場合には、前記溶接トーチの位置を修正せず、前記相関係数が設定された相関係数未満の場合には、前記現在の電気的な時系列データと前記ずれ有り基準データとの相関係数を求め、前記相関係数の最大値である最大相関係数を求め、前記最大相関係数が前記設定された相関係数未満の場合には異常信号を外部に出力し、前記最大相関係数が前記設定された相関係数以上の場合には、前記溶接トーチの位置を修正することができる。
【0008】
請求項2記載の溶接線倣い制御方法によれば、現在の電気的な時系列データと前記ずれ無し基準データとの相関係数を求め、設定された相関係数以上・未満に応じて、修正動作・未修正動作・異常信号出力の溶接線倣い制御を行うことで、無駄な修正を行うことなく、安定した溶接線倣い制御を実現することができる。
【0009】
請求項3記載の溶接線倣い制御方法は、溶接トーチを周期的にウィービングさせながら検出した電気的な時系列データに基づいて、前記溶接トーチの溶接線に対する位置を修正して前記溶接線に倣いながら溶接を行う溶接線倣い制御方法において、溶接開始位置から一定時間の溶接を施工した時の電気的な時系列データを基準データとして登録し、前記一定時間経過後の溶接においては、前記基準データと現在の電気的な時系列データとの相関係数を求め、前記相関係数が大きくなるように前記溶接トーチの位置を修正することを特徴とするものである。
【0010】
請求項3記載の溶接線倣い制御方法によれば、一定区間の溶接の電気的な時系列データとの相関係数により溶接線倣いを行うために、一つの溶接線について、均一な品質の溶接施工を実施することができる。
【0011】
請求項4記載の前記電気的な時系列データは、溶接電流値、溶接電圧値、または溶接電流値と溶接電圧値との積のいずれか一つまたは複数の組み合わせことができ、請求項1乃至2記載の溶接線倣い制御が可能となる。
【0012】
請求項4記載の前記電気的な時系列データによれば、定電圧溶接電源、定電流溶接電源、パルス駆動型の溶接電源の何れに対しても、溶接線倣い制御が安定して実現することができる。
【0013】
【発明の実施の形態】
本発明の実施の形態を図を用いて説明する。図2は、本発明の構成図である。ロボット1は、ロボット制御装置2により制御される。溶接トーチ3は、ロボット1の先端に取り付けられ、溶接電源4によって電力を供給され、ワーク5の溶接を行う。ワーク5の溶接開始点10から溶接終了点11に向けて、ロボット1は、溶接線に設定されたウィービングパターンに基づいて、ウィービングしながら溶接を実行する。また、ロボット制御装置2は、溶接実行中の溶接電流値を取得するように、溶接電流検出器からのデータを取り込めるようになっている。
【0014】
(実施例1)
本発明の第1の実施の形態について、以下に説明する。本実施例では、溶接電源は、定電圧特性を有しているものである。これは、溶接電源側の制御が、溶接電圧を指令された電圧となるように制御するため、電極−母材間の距離の変化が、溶接電流値変化として表れるようになっている。
ティーチング時の動作について説明する。溶接開始命令に基づき、ロボット制御装置2内の一定時間間隔のタイマを起動する。このタイマの周期に応じて、溶接トーチ3の先端位置と溶接電流値を取得する。溶接トーチ3の位置を溶接線上に移動させる位置指令をトリガとして、溶接電流値のデータをタイマ周期で標本化し記憶しておく。このとき、ウィービング周期の複数回のデータを記憶しておき、そのウィービング周期の回数で割ったものを基準データとしておく。上記のようにして、ずれ量に応じた溶接電流値の時系列データをロボット制御装置2に記憶しておく。例えば、図3に示すように溶接進行方向に関して右1mmずらしたものM1、右2mmずらしたものM2、ずれなしをZ0、左1mmずらしたものL1、左2mmにずらしたものL2のようにして、溶接電流値の時系列データを記憶させておく。
【0015】
次に、プレイバック時のフローについて、図1に基づいて説明する。ステップS1では、ウィービング周期毎に溶接電流値の時系列データを作成する。ステップS2では、作成した現在の溶接電流値の時系列データとずれ無しの溶接電流値の時系列データとの相関係数R1を求める。
ここで、相関係数の算出方法について説明する。現在の電流値データを
【0016】
【数1】

Figure 2004098162
【0017】
とし、基準となる溶接電流値データを
【0018】
【数2】
Figure 2004098162
【0019】
とする。
このときの相関係数Rは、
【0020】
【数3】
Figure 2004098162
【0021】
となる。
ここで
【0022】
【数4】
Figure 2004098162
【0023】
である。
ステップS3では、求めた相関係数R1と予め設定されているずれ無し識別値を比較する。比較して相関係数R1が大きい場合には、ステップS4に進む。それ以外の場合には、ステップS5に進む。
ステップS4では、求めた相関係数R1がロボット制御装置2内に予め設定されているずれ無し識別値以上であれば、ずれ無しとして軌跡修正を行わない。
ステップS5では、現在の溶接電流値の時系列データと右1mmずれの溶接電流値の時系列データとの相関係数R2を求める。
ステップS6では、現在の溶接電流値の時系列データと右2mmずれの溶接電流値の時系列データとの相関係数R3を求める。
ステップS7では、現在の溶接電流値の時系列データと左1mmずれの溶接電流値の時系列データとの相関係数R4を求める。
ステップS8では、現在の溶接電流値の時系列データと左2mmずれの溶接電流値の時系列データとの相関係数R5を求める。
ステップS9では、相関係数R1からR5のなかで最も大きい相関係数RMAXを求める。
【0024】
ステップS10では、ステップ9で求めた相関係数RMAXがずれ有り識別値以上かどうかを判定する。
ステップS11では、相関係数RMAXがずれ有り識別値以上あるので、相関値RMAXを与えたずれデータに基づいて、軌跡修正を行う。例えば、右2mmずれのデータの場合には、ロボット1は、ワーク5の溶接線に対して左2mmに軌跡の修正を行う。
ステップS12では、相関係数RMAXがすれ有り識別値未満であるので、異常として修正は行わず外部に異常であることを通知する。例えば、ロボット制御装置2に接続されている上位シーケンサへ異常として出力する。
【0025】
(実施例2)
本発明の第2の実施の形態について、以下に説明する。本実施例では、溶接電源は、定電流特性を有しているものである。これは、溶接電源側の制御が、溶接電流を指令された電流となるように制御するため、電極−母材間の距離の変化が、溶接電圧値に表れるためである。時系列データに溶接電圧値データを使用する。処理フローは図1の記載のとおりである。
【0026】
(実施例3)
本発明の第3の実施の形態について説明する。標本化した時系列データを溶接電流値と溶接電圧値との積とするものである。これは、溶接電源側の制御が、定電流制御と定電圧制御の組み合わせの場合に、対応するためのものである。フローについては、図1と同様である。
【0027】
(実施例4)
本発明の第4の実施の形態について説明する。ステップG1は、溶接開始位置から一定時間の時系列的な溶接電流値を基準データとして記憶する。ここで、この基準データをロボット制御装置に記憶しておく。
ステップG2では、溶接電流値をウィービング周期に時系列に取得する。この場合、基準データの時系列データを時間的にずらしたものと現在の時系列の溶接電流値との相関係数を求める。図8に基づいて説明する。
1周期をTw、標本化周期をTsとすると、基準データの個数Mは、
【0028】
【数5】
Figure 2004098162
【0029】
となる。
ステップG3では、一つの標本化周期Tsをずらして、相関係数を求める。例えば、2回目は以降の演算では、Ts*K(K=1,・・・,M−1)の時間をずらす。
ステップG4では、M個の相関係数を求めることができる。このM個の標本化係数の中で最大値を与える相関係数を求める。例えば、Tkの時点で相関係数の最大値を与える場合には、その時刻が予め設定されている時刻の範囲内であれば、軌跡修正を行わない(G6)。また、範囲外であれば、軌跡修正を実行する(G5)。設定されている時刻とは、溶接条件(例えば、ガスや溶滴移行種類、ロボット機種等)によって、予め設定しておくものである。
【発明の効果】
請求項1記載の溶接線倣い制御方法によれば、現在の電気的な時系列データと前記基準データとの相関係数を求め、前記相関係数が大きくなるように溶接線倣い制御を行っているので、確実に溶接線とのずれを検出し、修正されるので、安定した溶接線倣い制御を実現することができる。
請求項2記載の溶接線倣い制御方法によれば、現在の電気的な時系列データと前記ずれ無し基準データとの相関係数を求め、設定された相関係数以上・未満に応じて、修正動作・未修正動作・異常信号出力の溶接線倣い制御を行うことで、無駄な修正を行うことなく、安定した溶接線倣い制御を実現することができる。請求項3記載の溶接線倣い制御方法によれば、溶接開始位置近傍の溶接現象を再現できるように倣い制御を行うため、溶接長に対して均一な品質を確保することができる。
請求項4記載の前記電気的な時系列データによれば、定電圧溶接電源、定電流溶接電源、パルス駆動型の溶接電源の何れに対しても、溶接線倣い制御が安定して実現することができる。
以上のように、本発明によれば、その溶接施工条件での溶接電流波形を使用することで、精度よく溶接線倣いを実現できるものである。また、予めずれ量ごとの電流値波形データを記憶しておくことで、異常な電流値波形が発生したことを認識できるという格別の効果を奏するものである。
【図面の簡単な説明】
【図1】本発明のフロー
【図2】本発明の構成図
【図3】本発明の教示時の説明図
【図4】従来技術の説明図
【図5】溶接線に対して溶接トーチの位置がずれていない場合の電流波形図
【図6】溶接線に対して溶接トーチの位置がL側にずれている場合の電流波形図
【図7】溶接線に対して溶接トーチの位置がR側にずれている場合の電流波形図
【図8】本発明の第4の実施の形態のフロー
【符号の説明】
1:ロボット
2:ロボット制御装置
3:溶接トーチ
4:溶接電源
5:ワーク[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a welding line tracing control method that advances a welding torch along a welding line while weaving the welding torch in a lateral direction with respect to the welding line.
[0002]
[Prior art]
In the automatic profiling control of the welding line, for example, the welding torch 1 was weaved to the left and right (the left end is L, the right end is R, and the weaving center is O) in a V-shaped groove as shown in FIG. It is common practice to use the relationship between the wire protrusion length and the welding current in such a case (for example, Patent Document 1).
In this prior art, the welding current waveform when the weaving center coincides with the welding line as shown in FIG. 5, and the weaving center does not coincide with the welding line as shown in FIGS. 6 and 7. The fact that the welding current waveform is different is used. In other words, in the weaving left-right scanning, the difference ΔIL = IL 1 −IL 2 between the maximum current value IL 1 and the minimum current value IL 2 during the process from the L end to the R end, and from the R end to the L end. difference ΔIR = IR 1 -IR 2 between the maximum current value IR 1 and the minimum current value IR 2 in the stroke, shown AIL> .DELTA.iR, 7 in the state shown AIL = .DELTA.iR, in FIG. 6 in the state shown in FIG. 5 It is used that ΔIL <ΔIR in the state.
Therefore, if ΔIL> ΔIR, the position of the welding torch 1 is corrected rightward in the leftward direction by a predetermined constant K, whereas if ΔIL <ΔIR, FIG. (1), the position of the welding torch 1 is corrected leftward by the fixed amount K. Such a correcting operation is performed every half cycle of the weaving, and the center of the weaving of the welding torch 1 is automatically made to follow the welding line.
[0003]
[Patent Document 1]
JP-A-61-144272
[Problems to be solved by the invention]
However, in the conventional welding line scanning control method, since the deviation is identified based on the difference between the welding current values at the positions of both ends of the weaving, erroneous correction may be performed due to a sudden short circuit or the like at both ends. In addition, there has been a problem that the correction is performed irrespective of the welding state if only the difference between the current values is used.
The present invention provides a welding line that is less affected by welding phenomena such as a short circuit, and that improves the followability of the welding line without generating a meandering bead by notifying the outside when the welding is abnormal. The present invention provides a copying control method.
[0005]
[Means for Solving the Problems]
The welding line following control method according to claim 1, wherein the position of the welding torch with respect to the welding line is corrected based on electrical time-series data detected while periodically weaving the welding torch to follow the welding line. In the welding line scanning control method for performing welding, the electrical time-series data corresponding to the positions of the welding line and the welding torch are stored in advance as reference data, and the current electrical A correlation coefficient between the time series data and the reference data is obtained, and the position of the welding torch can be corrected so that the correlation coefficient increases.
[0006]
According to the welding line tracing control method according to the first aspect, a correlation coefficient between current electrical time-series data and the reference data is obtained, and the welding line tracing control is performed so that the correlation coefficient becomes large. Therefore, the deviation from the welding line is reliably detected and corrected, so that stable welding line scanning control can be realized.
[0007]
The welding line following control method according to claim 2, wherein the position of the welding torch with respect to the welding line is corrected based on electrical time-series data detected while periodically weaving the welding torch to follow the welding line. In the welding line following control method for performing welding, in advance, electrical time-series data when the position of the welding torch is present on the welding line is used as reference data without deviation, and the position of the welding torch is located on the welding line. The electrical time-series data in the case of deviation is regarded as reference data with deviation, and at the time of actual welding execution, a correlation coefficient between the current electrical time-series data and the reference data without deviation is obtained, and the phase relationship is obtained. If the number is equal to or greater than the set correlation coefficient, the position of the welding torch is not corrected, and if the correlation coefficient is less than the set correlation coefficient, the current electrical time series is not corrected. A correlation coefficient between the data and the reference data having a deviation, a maximum correlation coefficient which is a maximum value of the correlation coefficient is determined, and when the maximum correlation coefficient is less than the set correlation coefficient, An abnormal signal is output to the outside, and when the maximum correlation coefficient is equal to or greater than the set correlation coefficient, the position of the welding torch can be corrected.
[0008]
According to the welding line scanning control method of the second aspect, the correlation coefficient between the current electrical time-series data and the reference data without deviation is obtained, and is corrected according to the set correlation coefficient. By performing welding line scanning control of operation, uncorrected operation, and abnormal signal output, stable welding line scanning control can be realized without performing unnecessary correction.
[0009]
The welding line following control method according to claim 3, wherein the position of the welding torch with respect to the welding line is corrected based on electrical time-series data detected while periodically weaving the welding torch to follow the welding line. In the welding line tracing control method of performing welding, electrical time-series data when welding is performed for a predetermined time from a welding start position is registered as reference data, and in the welding after the predetermined time, the reference data And a current electric time series data, and a position of the welding torch is corrected so as to increase the correlation coefficient.
[0010]
According to the welding line tracing control method according to the third aspect, in order to perform welding line profiling based on a correlation coefficient with electrical time-series data of welding in a certain section, welding of uniform quality is performed for one welding line. Construction can be carried out.
[0011]
The electrical time-series data according to claim 4 may be any one or a combination of a welding current value, a welding voltage value, or a product of a welding current value and a welding voltage value, and may be a combination. The welding line following control described in 2 can be performed.
[0012]
According to the electric time series data described in claim 4, welding line scanning control can be stably realized for any of a constant voltage welding power supply, a constant current welding power supply, and a pulse drive type welding power supply. Can be.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a configuration diagram of the present invention. The robot 1 is controlled by a robot control device 2. The welding torch 3 is attached to the tip of the robot 1 and is supplied with electric power by a welding power source 4 to perform welding of the work 5. From the welding start point 10 to the welding end point 11 of the workpiece 5, the robot 1 performs welding while weaving based on the weaving pattern set on the welding line. Further, the robot control device 2 can take in data from a welding current detector so as to acquire a welding current value during execution of welding.
[0014]
(Example 1)
The first embodiment of the present invention will be described below. In this embodiment, the welding power source has a constant voltage characteristic. This is because the control on the welding power supply side controls the welding voltage to be a commanded voltage, so that a change in the distance between the electrode and the base material appears as a change in the welding current value.
The operation at the time of teaching will be described. Based on the welding start command, a timer at a fixed time interval in the robot controller 2 is started. The position of the tip of the welding torch 3 and the welding current value are acquired according to the cycle of the timer. Using a position command to move the position of the welding torch 3 on the welding line as a trigger, data of the welding current value is sampled and stored in a timer cycle. At this time, data of a plurality of times of the weaving cycle is stored, and a value obtained by dividing the data by the number of times of the weaving cycle is set as reference data. As described above, the time series data of the welding current value according to the deviation amount is stored in the robot control device 2. For example, as shown in FIG. 3, M1 shifted right by 1 mm, M2 shifted right 2 mm, Z0 without shift, L1 shifted 1 mm left, L2 shifted 2 mm left as shown in FIG. Time series data of the welding current value is stored.
[0015]
Next, a flow at the time of playback will be described with reference to FIG. In step S1, time series data of a welding current value is created for each weaving cycle. In step S2, a correlation coefficient R1 between the created time-series data of the current welding current value and the time-series data of the welding current value without deviation is obtained.
Here, a method of calculating the correlation coefficient will be described. The present current value data is
(Equation 1)
Figure 2004098162
[0017]
And the reference welding current value data is
(Equation 2)
Figure 2004098162
[0019]
And
The correlation coefficient R at this time is
[0020]
[Equation 3]
Figure 2004098162
[0021]
It becomes.
Here [0022]
(Equation 4)
Figure 2004098162
[0023]
It is.
In step S3, the obtained correlation coefficient R1 is compared with a preset discrimination-free identification value. If the correlation coefficient R1 is large, the process proceeds to step S4. Otherwise, the process proceeds to step S5.
In step S4, if the obtained correlation coefficient R1 is equal to or greater than the discrimination-free identification value set in advance in the robot controller 2, it is determined that there is no displacement, and no trajectory correction is performed.
In step S5, a correlation coefficient R2 between the time series data of the current welding current value and the time series data of the welding current value shifted by 1 mm to the right is determined.
In step S6, a correlation coefficient R3 between the time series data of the current welding current value and the time series data of the welding current value shifted by 2 mm to the right is obtained.
In step S7, a correlation coefficient R4 between the time series data of the current welding current value and the time series data of the welding current value shifted left by 1 mm is obtained.
In step S8, a correlation coefficient R5 between the time series data of the current welding current value and the time series data of the welding current value shifted left by 2 mm is obtained.
In step S9, the largest correlation coefficient RMAX among the correlation coefficients R1 to R5 is determined.
[0024]
In step S10, it is determined whether or not the correlation coefficient RMAX obtained in step 9 is equal to or greater than the discrimination value with deviation.
In step S11, since the correlation coefficient RMAX is equal to or more than the discrimination value with deviation, the trajectory is corrected based on the deviation data given the correlation value RMAX. For example, in the case of data shifted by 2 mm to the right, the robot 1 corrects the trajectory 2 mm to the left with respect to the welding line of the work 5.
In step S12, since the correlation coefficient RMAX is less than the discrimination value with bleeding, the correction is not performed as an abnormality, and the fact that the abnormality is abnormal is notified to the outside. For example, an error is output to an upper sequencer connected to the robot controller 2.
[0025]
(Example 2)
A second embodiment of the present invention will be described below. In this embodiment, the welding power source has a constant current characteristic. This is because the control on the welding power supply side controls the welding current to be the commanded current, so that a change in the distance between the electrode and the base material appears in the welding voltage value. Use welding voltage value data for time series data. The processing flow is as described in FIG.
[0026]
(Example 3)
A third embodiment of the present invention will be described. The sampled time series data is a product of the welding current value and the welding voltage value. This is to cope with the case where the control on the welding power supply side is a combination of constant current control and constant voltage control. The flow is the same as in FIG.
[0027]
(Example 4)
A fourth embodiment of the present invention will be described. Step G1 stores, as reference data, a time-series welding current value for a predetermined time from the welding start position. Here, this reference data is stored in the robot controller.
In Step G2, the welding current value is obtained in time series in the weaving cycle. In this case, a correlation coefficient between the time series data of the reference data and the current time series welding current value is obtained. A description will be given based on FIG.
Assuming that one cycle is Tw and the sampling cycle is Ts, the number M of reference data is
[0028]
(Equation 5)
Figure 2004098162
[0029]
It becomes.
In step G3, a correlation coefficient is obtained by shifting one sampling period Ts. For example, in the second calculation, the time of Ts * K (K = 1,..., M−1) is shifted for the second time.
In step G4, M correlation coefficients can be obtained. A correlation coefficient that gives the maximum value among the M sampling coefficients is obtained. For example, when the maximum value of the correlation coefficient is given at the time of Tk, if the time is within a preset time range, the trajectory correction is not performed (G6). If it is out of the range, the trajectory is corrected (G5). The set time is set in advance according to welding conditions (for example, the type of gas or droplet transfer, robot model, etc.).
【The invention's effect】
According to the welding line tracing control method according to the first aspect, a correlation coefficient between current electrical time-series data and the reference data is obtained, and the welding line tracing control is performed so that the correlation coefficient becomes large. Therefore, the deviation from the welding line is reliably detected and corrected, so that stable welding line scanning control can be realized.
According to the welding line scanning control method of the second aspect, the correlation coefficient between the current electrical time-series data and the reference data without deviation is obtained, and is corrected according to the set correlation coefficient. By performing welding line scanning control of operation, uncorrected operation, and abnormal signal output, stable welding line scanning control can be realized without performing unnecessary correction. According to the welding line scanning control method according to the third aspect, since the scanning control is performed so that the welding phenomenon near the welding start position can be reproduced, uniform quality can be secured for the welding length.
According to the electric time series data described in claim 4, welding line scanning control can be stably realized for any of a constant voltage welding power supply, a constant current welding power supply, and a pulse drive type welding power supply. Can be.
As described above, according to the present invention, welding line profiling can be realized with high accuracy by using the welding current waveform under the welding conditions. Further, by storing the current value waveform data for each shift amount in advance, it is possible to recognize that an abnormal current value waveform has occurred.
[Brief description of the drawings]
FIG. 1 is a flowchart of the present invention. FIG. 2 is a structural diagram of the present invention. FIG. 3 is an explanatory diagram of teaching of the present invention. FIG. 4 is an explanatory diagram of a conventional technique. Current waveform diagram when the position is not shifted [FIG. 6] Current waveform diagram when the position of the welding torch is shifted to the L side with respect to the welding line [FIG. 7] The position of the welding torch with respect to the welding line is R FIG. 8 is a flow chart of a fourth embodiment of the present invention.
1: Robot 2: Robot controller 3: Welding torch 4: Welding power supply 5: Work

Claims (4)

溶接トーチを周期的にウィービングさせながら検出した電気的な時系列データに基づいて、前記溶接トーチの溶接線に対する位置を修正して前記溶接線に倣いながら溶接を行う溶接線倣い制御方法において、
予め前記溶接線と前記溶接トーチとの位置に対応した前記電気的な時系列データを基準データとして記憶しておき、
実際の溶接実行時には、現在の電気的な時系列データと前記基準データとの相関係数を求め、前記相関係数が大きくなるように前記溶接トーチの位置を修正することを特徴とする溶接線倣い制御方法。
Based on electrical time-series data detected while periodically weaving the welding torch, in a welding line tracing control method for correcting the position of the welding torch with respect to the welding line and performing welding while following the welding line,
The electrical time-series data corresponding to the position of the welding line and the welding torch is stored in advance as reference data,
In actual welding execution, a correlation coefficient between current electrical time-series data and the reference data is obtained, and the position of the welding torch is corrected so that the correlation coefficient increases. Copying control method.
溶接トーチを周期的にウィービングさせながら検出した電気的な時系列データに基づいて、前記溶接トーチの溶接線に対する位置を修正して前記溶接線に倣いながら溶接を行う溶接線倣い制御方法において、
予め、前記溶接トーチの位置が前記溶接線上に存在する場合の電気的な時系列データをずれ無し基準データとし、前記溶接トーチの位置が前記溶接線に対してずれた場合の電気的な時系列データをずれ有り基準データとし、実際の溶接実行時には、現在の電気的な時系列データと前記ずれ無し基準データとの相関係数を求め、前記相関係数が設定された相関係数以上の場合には、前記溶接トーチの位置を修正せず、
前記相関係数が設定された相関係数未満の場合には、前記現在の電気的な時系列データと前記ずれ有り基準データとの相関係数を求め、前記相関係数の最大値である最大相関係数を求め、前記最大相関係数が前記設定された相関係数未満の場合には異常信号を外部に出力し、前記最大相関係数が前記設定された相関係数以上の場合には、前記溶接トーチの位置を修正することを特徴とする溶接線倣い制御方法。
Based on electrical time-series data detected while periodically weaving the welding torch, in a welding line tracing control method for correcting the position of the welding torch with respect to the welding line and performing welding while following the welding line,
In advance, electrical time-series data when the position of the welding torch is present on the welding line is used as reference data without deviation, and electrical time-series when the position of the welding torch is shifted with respect to the welding line. The data is used as reference data with deviation, and at the time of actual welding execution, a correlation coefficient between the current electrical time-series data and the reference data without deviation is obtained, and the correlation coefficient is equal to or larger than the set correlation coefficient. Without correcting the position of the welding torch,
When the correlation coefficient is less than the set correlation coefficient, a correlation coefficient between the current electrical time-series data and the reference data with a deviation is obtained, and the maximum value of the correlation coefficient is obtained. Obtain a correlation coefficient, if the maximum correlation coefficient is less than the set correlation coefficient, output an abnormal signal to the outside, and if the maximum correlation coefficient is equal to or more than the set correlation coefficient, And correcting the position of the welding torch.
溶接トーチを周期的にウィービングさせながら検出した電気的な時系列データに基づいて、前記溶接トーチの溶接線に対する位置を修正して前記溶接線に倣いながら溶接を行う溶接線倣い制御方法において、
溶接開始位置から一定時間の溶接を施工した時の電気的な時系列データを基準データとして登録し、
前記一定時間経過後の溶接においては、前記基準データと現在の電気的な時系列データとの相関係数を求め、
前記相関係数が大きくなるように前記溶接トーチの位置を修正することを特徴とする溶接線倣い制御方法。
Based on electrical time-series data detected while periodically weaving the welding torch, in a welding line tracing control method for correcting the position of the welding torch with respect to the welding line and performing welding while following the welding line,
Register electrical time-series data when welding is performed for a certain period of time from the welding start position as reference data,
In the welding after the elapse of the certain time, a correlation coefficient between the reference data and current electrical time-series data is obtained,
A welding line tracing control method, wherein the position of the welding torch is corrected so that the correlation coefficient increases.
前記電気的な時系列データは、溶接電流値、溶接電圧値、または溶接電流値と溶接電圧値との積のいずれか一つまたは複数の組み合わせであることを特徴とする請求項1乃至3の溶接線倣い制御方法。4. The electric time series data according to claim 1, wherein the electric time series data is any one or a combination of a welding current value, a welding voltage value, or a product of the welding current value and the welding voltage value. Welding line profiling control method.
JP2003172799A 2002-07-17 2003-06-18 Welding line scanning control method Expired - Fee Related JP4379910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003172799A JP4379910B2 (en) 2002-07-17 2003-06-18 Welding line scanning control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002208304 2002-07-17
JP2003172799A JP4379910B2 (en) 2002-07-17 2003-06-18 Welding line scanning control method

Publications (2)

Publication Number Publication Date
JP2004098162A true JP2004098162A (en) 2004-04-02
JP4379910B2 JP4379910B2 (en) 2009-12-09

Family

ID=32300288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003172799A Expired - Fee Related JP4379910B2 (en) 2002-07-17 2003-06-18 Welding line scanning control method

Country Status (1)

Country Link
JP (1) JP4379910B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018092514A1 (en) 2016-11-16 2018-05-24 株式会社神戸製鋼所 Method of detecting amount of discrepancy in arc tracking welding
KR20190068579A (en) 2016-11-16 2019-06-18 가부시키가이샤 고베 세이코쇼 Method of detecting misalignment amount in arc tracking welding
JP7420690B2 (en) 2020-10-12 2024-01-23 株式会社神戸製鋼所 Arc copy welding method and welding device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018092514A1 (en) 2016-11-16 2018-05-24 株式会社神戸製鋼所 Method of detecting amount of discrepancy in arc tracking welding
KR20190068579A (en) 2016-11-16 2019-06-18 가부시키가이샤 고베 세이코쇼 Method of detecting misalignment amount in arc tracking welding
US11235414B2 (en) 2016-11-16 2022-02-01 Kobe Steel, Ltd. Method of detecting amount of discrepancy in arc tracking welding
JP7420690B2 (en) 2020-10-12 2024-01-23 株式会社神戸製鋼所 Arc copy welding method and welding device

Also Published As

Publication number Publication date
JP4379910B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
JP5179699B2 (en) Welding current control system and method
JP4891726B2 (en) Robot controller for controlling tandem arc welding system and arc scanning control method using the same
KR102111811B1 (en) Arc welding system with power converter and controller for operating the power converter through a waveform control signal and the motion of the electrode/through a motion control signal based both on welding state and motion state tables and sensing data
EP1294521B1 (en) Method of controlling arc welding processes and welder using same
US20080078812A1 (en) Non-linear adaptive control system and method for welding
US20090107969A1 (en) Arc welding robot control system and method thereof
CN105008082A (en) A method and system of welding with a power supply having a single welding mode
JPH05329645A (en) Arc sensor monitoring device and its using method
EP2691203B1 (en) Method for determining arc consistency in pulsed gas metal arc welding systems
JP2011167717A (en) Tip-base metal distance control method for arc welding system and arc welding system
JP4422729B2 (en) How to control the welding process
US20140360997A1 (en) Arc welding apparatus, arc welding system, and arc welding method
JP2004098162A (en) Method for profile-controlling welding line
US8575516B2 (en) Arc welding power source
JP2825708B2 (en) Resistance welding control device
JP5396994B2 (en) Welding method
KR101010788B1 (en) Welding robot apparatus and its control method
JP2009183976A (en) Welding control method and welding device
JP2010125461A (en) Method and system of controlling pulse tig welding robot
JP2001347374A (en) Method and device for setting arc welding condition
JP5163922B2 (en) Robot control apparatus and robot trajectory control method
JP3813732B2 (en) Method and apparatus for controlling pulse arc welding
JPH06218548A (en) Welding control method for welding robot
JPH0630809B2 (en) Control device of automatic arc welding machine
JP5759737B2 (en) Control method and control system for pulse TIG welding robot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141002

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees