JP2004096436A - DeltaSigma MODULATOR AND PLL CIRCUIT IN DeltaSigma MODULATION METHOD - Google Patents

DeltaSigma MODULATOR AND PLL CIRCUIT IN DeltaSigma MODULATION METHOD Download PDF

Info

Publication number
JP2004096436A
JP2004096436A JP2002254945A JP2002254945A JP2004096436A JP 2004096436 A JP2004096436 A JP 2004096436A JP 2002254945 A JP2002254945 A JP 2002254945A JP 2002254945 A JP2002254945 A JP 2002254945A JP 2004096436 A JP2004096436 A JP 2004096436A
Authority
JP
Japan
Prior art keywords
signal
adder
value
output
set value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002254945A
Other languages
Japanese (ja)
Inventor
Isao Tamura
田 村   功
Hideaki Masuoka
桝 岡 秀 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Information Systems Japan Corp
Original Assignee
Toshiba Corp
Toshiba Information Systems Japan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Information Systems Japan Corp filed Critical Toshiba Corp
Priority to JP2002254945A priority Critical patent/JP2004096436A/en
Publication of JP2004096436A publication Critical patent/JP2004096436A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ΔΣ modulator which is excellent in spurious characteristics and in which power consumption can be reduced and the scale of a circuit can be reduced, and to provide a PLL circuit in a ΔΣ modulation method. <P>SOLUTION: The ΔΣ modulator 6a has a multiplier 11 to multiply a first setting value and a feedback signal, a first adder 12 to add a second setting value to an output signal of the multiplier 11, a first integrator 13 to integrate an output signal of the first adder 12, a second integrator 14 to integrate an output signal of the first integrator 13, a second adder 15 to add both output signals of the first/second integrators 13, 14, and a comparator 16 to compare an output signal of the second adder 15 with a value correlative to the first setting value and to output three values showing comparison results as the feedback signal. A division ratio of a divider 2 in the PLL circuit in the ΔΣ modulation method can be set to three types since the output of the comparator 16 in the ΔΣ modulator 6a is made to be the three values. It is possible to prevent spuriousness from occurring since a changing cycle of a division ratio can be set longer than that of the conventional one. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、PLL回路やA/D変換器などに用いられるΔΣ変調器と、このΔΣ変調器を用いたPLL回路とに関する。
【0002】
【従来の技術】
A/D変換器などの変換精度を上げるには、標本化周波数をきわめて高くしなければならず、回路を実現するのが困難になる。また、A/D変換器のビット数が増えるほど、量子化雑音と折返し雑音が増大する。
【0003】
標本化周波数を高くせず、量子化雑音と折返し雑音を低減できる手法として、ΔΣ変調方式が知られている。ΔΣ変調器は、A/D変換器やD/A変換器に用いられる他に、PLL回路にも用いられる。
【0004】
図6は従来のΔΣ変調器を用いた従来のPLL回路の概略構成を示すブロック図である。図示のように、従来のPLL回路は、電圧制御型発振器(VCO)1と、分周器2と、位相比較器3と、チャージポンプ4と、ループフィルタ5と、ΔΣ変調器6とを有する。
【0005】
ΔΣ変調器6は、分周器2の分周比に基づいて、次回の分周器2の分周比を決定する。ΔΣ変調器6の出力は2値であり、分周器2はΔΣ変調器6の2値出力に基づいて新たな分周比を決定する。より具体的には、ΔΣ変調器6の2値出力に基づいて、分周器2は分周比を±1する。
【0006】
【発明が解決しようとする課題】
このように、従来のΔΣ変調器6は、2値のみを出力していたため、ΔΣ変調方式PLL回路の分周比は、+1されるか−1されるかの2通りしかなく、ΔΣ変調器6の出力の周期を長く設定できないことから、スプリアス特性がよくなかった。
【0007】
また、ΔΣ変調方式PLL回路の分周比は、分周器2の分周比をNとしたときに、(N+F/D)で表される。FとDは、ΔΣ変調器6に入力される値である。従来は、Fを正の値にしていたため、ΔΣ変調器6内の加算器のビット数が多くなり、その結果、ΔΣ変調器6の回路規模が大きくなるとともに、消費電流も増えるという問題があった。
【0008】
本発明は、このような点に鑑みてなされたものであり、その目的は、スプリアス特性が良好で、消費電流を低減でき、かつ回路規模も縮小できるΔΣ変調器及びΔΣ変調方式PLL回路を提供することにある。
【0009】
【課題を解決するための手段】
上述した課題を解決するために、本発明は、第1の設定値と帰還信号とを乗算する掛算器と、前記掛算器の出力信号に第2の設定値を加算する第1の加算器と、前記第1の加算器の出力信号を積分する第1の積分器と、前記第1の積分器の出力信号を積分する第2の積分器と、前記第1及び第2の積分器の出力信号同士を加算する第2の加算器と、前記第2の加算器の出力信号と前記第1の設定値に相関する値とを比較し、比較結果を示す3値を前記帰還信号として出力する比較器と、を備える。
【0010】
本発明では、比較器から比較結果を示す3値を出力することにより、ΔΣ変調器の出力周期を長く設定し、スプリアスを防止する。
【0011】
また、電圧信号に応じた周波数の発振信号を出力する電圧制御型発振器と、前記発振信号の周波数を所定の分周比で分周した分周信号を出力する分周器と、前記分周信号と基準周波数信号との位相差に応じた信号を出力する位相比較器と、前記位相比較器の出力信号に応じた電流信号を出力するチャージポンプと、前記チャージポンプから出力された電流信号に応じた電圧信号を出力するループフィルタと、前記分周器の分周比を決定するΔΣ変調器と、を備え、前記ΔΣ変調器は、第1の設定値と帰還信号とを乗算する掛算器と、前記掛算器の出力信号に第2の設定値を加算する第1の加算器と、前記第1の加算器の出力信号を積分する第1の積分器と、前記第1の積分器の出力信号を積分する第2の積分器と、前記第1及び第2の積分器の出力信号同士を加算する第2の加算器と、前記第2の加算器の出力信号と前記第1の設定値に相関する値とを比較し、比較結果を示す3値を前記帰還信号として出力する比較器と、を有し、前記分周器は、前記比較器の出力に基づいて分周比を設定する。
【0012】
【発明の実施の形態】
以下、本発明に係るΔΣ変調器及びΔΣ変調方式PLL回路について、図面を参照しながら具体的に説明する。
【0013】
図1は本発明に係るΔΣ変調器を用いたΔΣ変調方式PLL回路の一実施形態の概略構成を示すブロック図である。図1のΔΣ変調方式PLL回路は、電圧信号に応じた周波数の発振信号を出力する電圧制御型発振器(VCO)1と、VCO1の発振信号の周波数を所定の分周比で分周した分周信号を出力する分周器2と、分周信号と基準周波数信号との位相差に応じた信号を出力する位相比較器3と、位相比較器3の出力信号に応じた電流信号を出力するチャージポンプ4と、チャージポンプ4から出力された電流信号に応じた電圧信号を出力するループフィルタ5と、分周器2の分周比を決定するΔΣ変調器6aと、を備えている。
【0014】
図1のΔΣ変調方式PLL回路は、図6に示した従来のΔΣ変調方式PLL回路と比べて、ΔΣ変調器6aが3値を出力する点で異なっている。このため、図1の分周器2は、直前の分周比Nの±1か、直前の分周比Nと同じ分周比Nに設定される。
【0015】
図2は図1のΔΣ変調器6aの内部構成を示すブロック図である。図2のΔΣ変調器6aは、第1の設定値と帰還信号とを乗算する掛算器11と、掛算器11の出力信号に第2の設定値を加算する第1の加算器12と、第1の加算器12の出力信号を積分する第1の積分器13と、第1の積分器13の出力信号を積分する第2の積分器14と、第1及び第2の積分器13,14の出力信号同士を加算する第2の加算器15と、第2の加算器15の出力信号と第1の設定値に相関する値とを比較し、比較結果を示す3値を帰還信号として出力する比較器16と、を有する。
【0016】
第1の積分器13は第3の加算器17と第1の遅延回路18とで構成され、第2の積分器14は第4の加算器19と第2の遅延回路20とで構成される。
【0017】
第1の加算器12のビット数をA、第3の加算器17のビット数をb、第4の加算器19のビット数をc、第2の加算器15のビット数をdとすると、A<b<c≦dの関係が成り立つ。
【0018】
図1のΔΣ変調方式PLL回路の周波数分周値は、図6のΔΣ変調方式PLL回路と同様に、(N+F/D)で表される。分数部(F/D)の分母Dは第1の設定値として掛算器11に入力され、分子Fは第2の設定値として第1の加算器12に入力される。
【0019】
比較器16は、第2の加算器15の出力Yと第1の設定値に相関する値D/4との大小を比較して、以下の3値を出力する。
【0020】
Y<−D/4の場合、+1を出力。
【0021】
−D/4≦Y≦D/4の場合、0を出力。
【0022】
D/4<Yの場合、−1を出力。
【0023】
なお、第1の設定値に相関する値は、必ずしもD/4である必要はなく、Dに相関する値であればよい。
【0024】
比較器16の出力は掛算器11に入力されるとともに、分周器2にも入力される。分周器2は、比較器16の出力が+1であれば、分周比Nを(N+1)にし、比較器16の出力が0であれば、分周比Nをそのままにし、比較器16の出力が−1であれば、分周比Nを(N−1)にする。
【0025】
このように、従来のΔΣ変調器6aは、分周比Nを(N+1)か(N−1)に変更していたが、本実施形態では、Nのままという設定も可能になる。これにより、分周比Nの変化する周期を従来よりも長く設定でき、スプリアスを防止できる。
【0026】
第1の設定値Dの値は特に制限されていないが、例えば200〜300である。Dの値が大きくなるほど、掛算器11や第1〜第4の加算器12,15,17,19のビット数が増えて、回路規模が増大する。
【0027】
第1及び第2の設定値D,Fは,−D/2≦F≦D/2の関係を満たしている。
【0028】
従来は、第2の設定値Fを正の値にしていたため、第2の設定値Fの値を大きくせざるを得ず、第1〜第4の加算器12,15,17,19と比較器16のビット数が増えて、回路規模が大きくなるという問題があった。ところが、本実施形態のように、第2の設定値Fが負の値も取れるようにし、第2の設定値Fの絶対値がD/2を超えないようにすれば、従来に比べて第1〜第4の加算器12,15,17,19と比較器16のビット数を削減でき、回路規模を縮小できる。
【0029】
例えば、(1)第2の設定値Fが正の値で、比較器16の出力が2値の場合、(2)−D/2≦F≦D/2の関係が成り立つが、比較器16の出力が2値の場合、(3)第2の設定値Fが正の値で、比較器16の出力が3値の場合、(4)−D/2≦F≦D/2の関係が成り立ち、比較器16の出力が3値の場合のそれぞれについて、ΔΣ変調器6a内の演算処理上の最大値と最小値を比較すると、以下のようになる。なお、(1)の場合の最大値をZ1、最小値をY1、(2)の場合の最大値をZ2、最小値をY2、(3)の場合の最大値をZ3、最小値をY3、(4)の場合の最大値をZ4、最小値をY4とする。
【0030】
この場合、最大値は、Z1>Z3>Z2>Z4となり、最小値は、Y1<Y3<Y2<Y4になる。
【0031】
このことからも、ビット数を最も削減できるのは、本実施形態と同様の(4)の場合であることがわかる。
【0032】
例えば、分母Dを127とした場合、従来のΔΣ変調器6で演算処理上必要なビット数は16ビットであるのに対し、本実施形態の場合、10ビットである。特に、従来は、第2の加算器15、第4の加算器19及び比較器16のそれぞれに16ビット必要であるのに対し、本実施形態の場合、第2の加算器15は9ビット、第4の加算器19及び比較器16はそれぞれ10ビット必要であり、従来に比べてビット数を大幅に削減できる。
【0033】
第1〜第4の加算器12,15,17,19は、図3に示すように、N個の加算器21を縦続接続して構成される。各加算器21は、図4に拡大して示すように、入力A,B間で加算演算を行い、桁あふれを示すキャリー出力を次段の加算器21のキャリー入力端子に供給する。加算器21の動作を示す論理図は図5のようになる。
【0034】
このように、本実施形態では、ΔΣ変調器6a内の比較器16の出力を3値にしたため、ΔΣ変調方式PLL回路内の分周器2の分周比を3通りに設定でき、分周比が変化する周期を従来よりも長くすることができるため、スプリアスを防止できる。
【0035】
また、ΔΣ変調方式PLL回路の周波数分周値(N+F/D)の分数部分F/Dの分子Fは、−D/2≦F≦D/2の関係を満たすように設定されるため、ΔΣ変調器6a内の第1〜第4の加算器12,15,17,19と比較器16のビット数を従来よりも削減でき、回路規模を縮小できるとともに、消費電流も抑制できる。
【0036】
本実施形態のΔΣ変調方式PLL回路は、例えば携帯電話等の通信用として用いられるが、用途は特に問わない。
【0037】
【発明の効果】
以上詳細に説明したように、本発明によれば、ΔΣ変調器内の比較器が3値を出力するため、ΔΣ変調器の出力周期を長くすることができ、スプリアスの発生を抑制できる。
【図面の簡単な説明】
【図1】本発明に係るΔΣ変調器を用いたΔΣ変調方式PLL回路の一実施形態の概略構成を示すブロック図。
【図2】図1のΔΣ変調器の内部構成を示すブロック図。
【図3】第1〜第4の加算器の内部構成を示すブロック図。
【図4】図3の加算器の拡大図。
【図5】図3の加算器の動作を示す論理図。
【図6】従来のΔΣ変調器を用いた従来のPLL回路の概略構成を示すブロック図。
【符号の説明】
1 電圧制御型発振器(VCO)
2 分周器
3 位相比較器
4 チャージポンプ
5 ループフィルタ
6 ΔΣ変調器
11 掛算器
12 第1の加算器
13 第1の積分器
14 第2の積分器
15 第2の加算器
16 比較器
17 第3の加算器
18 第1の遅延回路
19 第4の加算器
20 第2の遅延回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a ΔΣ modulator used for a PLL circuit, an A / D converter, and the like, and a PLL circuit using the ΔΣ modulator.
[0002]
[Prior art]
To increase the conversion accuracy of an A / D converter or the like, the sampling frequency must be extremely high, which makes it difficult to realize a circuit. Further, as the number of bits of the A / D converter increases, quantization noise and aliasing noise increase.
[0003]
A Δ 手法 modulation method is known as a technique that can reduce quantization noise and aliasing noise without increasing the sampling frequency. The ΔΣ modulator is used not only for an A / D converter and a D / A converter but also for a PLL circuit.
[0004]
FIG. 6 is a block diagram showing a schematic configuration of a conventional PLL circuit using a conventional ΔΣ modulator. As shown, the conventional PLL circuit includes a voltage controlled oscillator (VCO) 1, a frequency divider 2, a phase comparator 3, a charge pump 4, a loop filter 5, and a ΔΣ modulator 6. .
[0005]
The ΔΣ modulator 6 determines the next frequency division ratio of the frequency divider 2 based on the frequency division ratio of the frequency divider 2. The output of the ΔΣ modulator 6 is binary, and the frequency divider 2 determines a new frequency division ratio based on the binary output of the ΔΣ modulator 6. More specifically, the frequency divider 2 sets the frequency division ratio to ± 1 based on the binary output of the Δ ± modulator 6.
[0006]
[Problems to be solved by the invention]
As described above, since the conventional ΔΣ modulator 6 outputs only two values, the frequency division ratio of the ΔΣ modulation type PLL circuit is only one of +1 and −1. Since the output cycle of No. 6 could not be set long, spurious characteristics were not good.
[0007]
The division ratio of the ΔΣ modulation type PLL circuit is represented by (N + F / D), where N is the division ratio of the divider 2. F and D are values input to the ΔΣ modulator 6. Conventionally, since F has a positive value, the number of bits of the adder in the ΔΣ modulator 6 increases, and as a result, the circuit scale of the ΔΣ modulator 6 increases and the current consumption increases. Was.
[0008]
The present invention has been made in view of such a point, and an object of the present invention is to provide a ΔΣ modulator and a ΔΣ modulation type PLL circuit that have good spurious characteristics, can reduce current consumption, and can reduce the circuit scale. Is to do.
[0009]
[Means for Solving the Problems]
In order to solve the above-described problem, the present invention provides a multiplier that multiplies a first set value and a feedback signal, and a first adder that adds a second set value to an output signal of the multiplier. A first integrator for integrating an output signal of the first adder, a second integrator for integrating an output signal of the first integrator, and outputs of the first and second integrators A second adder for adding the signals to each other, comparing an output signal of the second adder with a value correlated with the first set value, and outputting a ternary value indicating a comparison result as the feedback signal; And a comparator.
[0010]
In the present invention, by outputting three values indicating the comparison result from the comparator, the output cycle of the ΔΣ modulator is set long, and spurious is prevented.
[0011]
A voltage-controlled oscillator that outputs an oscillation signal having a frequency corresponding to the voltage signal; a frequency divider that outputs a frequency-divided signal obtained by dividing the frequency of the oscillation signal by a predetermined frequency division ratio; A phase comparator that outputs a signal corresponding to a phase difference between the signal and a reference frequency signal, a charge pump that outputs a current signal corresponding to an output signal of the phase comparator, and a charge pump that outputs a current signal according to the current signal output from the charge pump. A loop filter that outputs a divided voltage signal, and a ΔΣ modulator that determines a frequency division ratio of the frequency divider. The ΔΣ modulator includes a multiplier that multiplies a first set value by a feedback signal. A first adder for adding a second set value to an output signal of the multiplier, a first integrator for integrating an output signal of the first adder, and an output of the first integrator A second integrator for integrating a signal; and a first integrator for the first and second integrators. A second adder for adding the force signals to each other, comparing an output signal of the second adder with a value correlated with the first set value, and outputting a ternary value indicating the comparison result as the feedback signal And the divider sets a frequency division ratio based on an output of the comparator.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a ΔΣ modulator and a ΔΣ modulation type PLL circuit according to the present invention will be specifically described with reference to the drawings.
[0013]
FIG. 1 is a block diagram showing a schematic configuration of an embodiment of a ΔΣ modulation type PLL circuit using a ΔΣ modulator according to the present invention. 1 is a voltage controlled oscillator (VCO) 1 that outputs an oscillation signal having a frequency corresponding to a voltage signal, and a frequency divider that divides the frequency of the oscillation signal of the VCO 1 by a predetermined frequency division ratio. A frequency divider 2 for outputting a signal, a phase comparator 3 for outputting a signal corresponding to a phase difference between the divided signal and the reference frequency signal, and a charge for outputting a current signal according to the output signal of the phase comparator 3 It includes a pump 4, a loop filter 5 that outputs a voltage signal corresponding to a current signal output from the charge pump 4, and a ΔΣ modulator 6 a that determines a frequency division ratio of the frequency divider 2.
[0014]
The ΔΣ modulation type PLL circuit of FIG. 1 is different from the conventional ΔΣ modulation type PLL circuit shown in FIG. 6 in that the ΔΣ modulator 6a outputs three values. Therefore, the frequency divider 2 of FIG. 1 is set to ± 1 of the immediately preceding frequency dividing ratio N or the same frequency dividing ratio N as the immediately preceding frequency dividing ratio N.
[0015]
FIG. 2 is a block diagram showing the internal configuration of the ΔΣ modulator 6a of FIG. The ΔΣ modulator 6a of FIG. 2 includes a multiplier 11 for multiplying a first set value and a feedback signal, a first adder 12 for adding a second set value to an output signal of the multiplier 11, A first integrator 13 for integrating the output signal of the first adder 12, a second integrator 14 for integrating the output signal of the first integrator 13, and first and second integrators 13, 14. A second adder 15 that adds the output signals of the second adder 15 to each other, compares the output signal of the second adder 15 with a value correlated with the first set value, and outputs a ternary value indicating the comparison result as a feedback signal. And a comparator 16.
[0016]
The first integrator 13 is composed of a third adder 17 and a first delay circuit 18, and the second integrator 14 is composed of a fourth adder 19 and a second delay circuit 20. .
[0017]
If the number of bits of the first adder 12 is A, the number of bits of the third adder 17 is b, the number of bits of the fourth adder 19 is c, and the number of bits of the second adder 15 is d, The relationship of A <b <c ≦ d holds.
[0018]
The frequency division value of the ΔΣ modulation type PLL circuit of FIG. 1 is expressed by (N + F / D), similarly to the ΔΣ modulation type PLL circuit of FIG. The denominator D of the fractional part (F / D) is input to the multiplier 11 as a first set value, and the numerator F is input to the first adder 12 as a second set value.
[0019]
The comparator 16 compares the output Y of the second adder 15 with a value D / 4 correlated with the first set value, and outputs the following three values.
[0020]
When Y <−D / 4, +1 is output.
[0021]
When D / 4 ≦ Y ≦ D / 4, 0 is output.
[0022]
If D / 4 <Y, -1 is output.
[0023]
Note that the value correlated with the first set value does not necessarily need to be D / 4, but may be any value that correlates with D.
[0024]
The output of the comparator 16 is input to the multiplier 11 and also to the frequency divider 2. If the output of the comparator 16 is +1, the frequency divider 2 sets the frequency division ratio N to (N + 1). If the output of the comparator 16 is 0, the frequency divider 2 keeps the frequency division ratio N unchanged. If the output is -1, the dividing ratio N is set to (N-1).
[0025]
As described above, in the conventional Δa modulator 6a, the frequency division ratio N is changed to (N + 1) or (N−1). However, in the present embodiment, it is possible to set the frequency division ratio to N. This makes it possible to set the period in which the frequency division ratio N changes longer than in the past, and to prevent spurious.
[0026]
The value of the first set value D is not particularly limited, but is, for example, 200 to 300. As the value of D increases, the number of bits of the multiplier 11 and the first to fourth adders 12, 15, 17, and 19 increases, and the circuit scale increases.
[0027]
The first and second set values D and F satisfy the relationship of -D / 2 ≦ F ≦ D / 2.
[0028]
Conventionally, since the second set value F is set to a positive value, the value of the second set value F must be increased, and compared with the first to fourth adders 12, 15, 17, and 19. There is a problem that the number of bits of the circuit 16 increases and the circuit scale increases. However, if the second set value F is allowed to take a negative value and the absolute value of the second set value F is set not to exceed D / 2 as in the present embodiment, the second set value F becomes smaller than the conventional one. The number of bits of the first to fourth adders 12, 15, 17, 19 and the comparator 16 can be reduced, and the circuit scale can be reduced.
[0029]
For example, (1) when the second set value F is a positive value and the output of the comparator 16 is binary, the relationship of (2) −D / 2 ≦ F ≦ D / 2 is established. Is binary, (3) When the second set value F is a positive value, and when the output of the comparator 16 is ternary, the relationship of (4) −D / 2 ≦ F ≦ D / 2 is satisfied. When the maximum value and the minimum value in the arithmetic processing in the ΔΣ modulator 6a are compared for each case where the output of the comparator 16 is ternary, the following results are obtained. The maximum value in the case (1) is Z1, the minimum value is Y1, the maximum value in the case (2) is Z2, the minimum value is Y2, the maximum value in the case (3) is Z3, the minimum value is Y3, In the case of (4), the maximum value is Z4, and the minimum value is Y4.
[0030]
In this case, the maximum value is Z1>Z3>Z2> Z4, and the minimum value is Y1 <Y3 <Y2 <Y4.
[0031]
From this, it can be seen that the number of bits can be reduced most in the case (4) similar to the present embodiment.
[0032]
For example, if the denominator D is 127, the number of bits required for the arithmetic processing in the conventional ΔΣ modulator 6 is 16 bits, whereas in the present embodiment, it is 10 bits. In particular, conventionally, each of the second adder 15, the fourth adder 19, and the comparator 16 requires 16 bits, whereas in the present embodiment, the second adder 15 has 9 bits, The fourth adder 19 and the comparator 16 each require 10 bits, and the number of bits can be greatly reduced as compared with the conventional case.
[0033]
Each of the first to fourth adders 12, 15, 17, and 19 is configured by cascade-connecting N adders 21, as shown in FIG. As shown in an enlarged manner in FIG. 4, each adder 21 performs an addition operation between inputs A and B, and supplies a carry output indicating overflow to a carry input terminal of the adder 21 at the next stage. A logical diagram showing the operation of the adder 21 is as shown in FIG.
[0034]
As described above, in the present embodiment, since the output of the comparator 16 in the ΔΣ modulator 6a is ternary, the frequency division ratio of the frequency divider 2 in the ΔΣ modulation type PLL circuit can be set to three ways, Since the period at which the ratio changes can be made longer than before, spurious can be prevented.
[0035]
Further, the numerator F of the fractional part F / D of the frequency division value (N + F / D) of the ΔΣ modulation type PLL circuit is set so as to satisfy the relationship of −D / 2 ≦ F ≦ D / 2. The number of bits of the first to fourth adders 12, 15, 17, 19 and the comparator 16 in the modulator 6a can be reduced as compared with the conventional case, the circuit scale can be reduced, and the current consumption can be suppressed.
[0036]
The ΔΣ modulation PLL circuit of the present embodiment is used for communication of, for example, a mobile phone, but the application is not particularly limited.
[0037]
【The invention's effect】
As described above in detail, according to the present invention, since the comparator in the ΔΣ modulator outputs three values, the output cycle of the ΔΣ modulator can be lengthened, and the occurrence of spurious can be suppressed.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a schematic configuration of an embodiment of a ΔΣ modulation type PLL circuit using a ΔΣ modulator according to the present invention.
FIG. 2 is a block diagram showing an internal configuration of the ΔΣ modulator of FIG. 1;
FIG. 3 is a block diagram showing an internal configuration of first to fourth adders.
FIG. 4 is an enlarged view of the adder of FIG. 3;
FIG. 5 is a logic diagram showing the operation of the adder of FIG. 3;
FIG. 6 is a block diagram showing a schematic configuration of a conventional PLL circuit using a conventional ΔΣ modulator.
[Explanation of symbols]
1 Voltage controlled oscillator (VCO)
2 frequency divider 3 phase comparator 4 charge pump 5 loop filter 6 ΔΣ modulator 11 multiplier 12 first adder 13 first integrator 14 second integrator 15 second adder 16 comparator 17 3 adders 18 1st delay circuit 19 4th adder 20 2nd delay circuit

Claims (7)

第1の設定値と帰還信号とを乗算する掛算器と、
前記掛算器の出力信号に第2の設定値を加算する第1の加算器と、
前記第1の加算器の出力信号を積分する第1の積分器と、
前記第1の積分器の出力信号を積分する第2の積分器と、
前記第1及び第2の積分器の出力信号同士を加算する第2の加算器と、
前記第2の加算器の出力信号と前記第1の設定値に相関する値とを比較し、比較結果を示す3値を前記帰還信号として出力する比較器と、を備えることを特徴とするΔΣ変調器。
A multiplier for multiplying the first set value by the feedback signal;
A first adder for adding a second set value to an output signal of the multiplier;
A first integrator for integrating an output signal of the first adder;
A second integrator for integrating an output signal of the first integrator;
A second adder for adding output signals of the first and second integrators,
A comparator for comparing an output signal of the second adder with a value correlated with the first set value, and outputting a three-value indicating a comparison result as the feedback signal. Modulator.
前記第1の設定値をD、前記第2の設定値をFとしたとき、−D/2≦F≦D/2の関係を満たすようにすることを特徴とする請求項1に記載のΔΣ変調器。The Δ と き according to claim 1, wherein when the first set value is D and the second set value is F, the relationship of -D / 2? F? D / 2 is satisfied. Modulator. 前記比較器は、前記第2の加算器の出力信号が前記第1の設定値に相関する値より大きいことを示す第1の値と、前記第2の加算器の出力信号が前記第1の設定値に相関する値に等しいことを示す第2の値と、前記第2の加算器の出力信号が前記第1の設定値に相関する値より小さいことを示す第3の値とを前記帰還信号として出力することを特徴とする請求項1または2に記載のΔΣ変調方式PLL回路。The comparator includes a first value indicating that an output signal of the second adder is larger than a value correlated with the first set value, and an output signal of the second adder being equal to the first signal. A second value indicating that the output value of the second adder is equal to a value correlated with the set value, and a third value indicating that the output signal of the second adder is smaller than the value correlated with the first set value. The ΔΣ modulation type PLL circuit according to claim 1, wherein the PLL circuit outputs the signal as a signal. 電圧信号に応じた周波数の発振信号を出力する電圧制御型発振器と、
前記発振信号の周波数を所定の分周比で分周した分周信号を出力する分周器と、
前記分周信号と基準周波数信号との位相差に応じた信号を出力する位相比較器と、
前記位相比較器の出力信号に応じた電流信号を出力するチャージポンプと、
前記チャージポンプから出力された電流信号に応じた電圧信号を出力するループフィルタと、
前記分周器の分周比を決定するΔΣ変調器と、を備え、
前記ΔΣ変調器は、
第1の設定値と帰還信号とを乗算する掛算器と、
前記掛算器の出力信号に第2の設定値を加算する第1の加算器と、
前記第1の加算器の出力信号を積分する第1の積分器と、
前記第1の積分器の出力信号を積分する第2の積分器と、
前記第1及び第2の積分器の出力信号同士を加算する第2の加算器と、
前記第2の加算器の出力信号と前記第1の設定値に相関する値とを比較し、比較結果を示す3値を前記帰還信号として出力する比較器と、
を有し、
前記分周器は、前記比較器の出力に基づいて分周比を設定することを特徴とするΔΣ変調方式PLL回路。
A voltage-controlled oscillator that outputs an oscillation signal having a frequency corresponding to the voltage signal;
A frequency divider that outputs a frequency-divided signal obtained by dividing the frequency of the oscillation signal by a predetermined frequency division ratio,
A phase comparator that outputs a signal corresponding to the phase difference between the frequency-divided signal and the reference frequency signal,
A charge pump that outputs a current signal according to an output signal of the phase comparator,
A loop filter that outputs a voltage signal according to the current signal output from the charge pump,
A ΔΣ modulator for determining a frequency division ratio of the frequency divider,
The ΔΣ modulator includes:
A multiplier for multiplying the first set value by the feedback signal;
A first adder for adding a second set value to an output signal of the multiplier;
A first integrator for integrating an output signal of the first adder;
A second integrator for integrating an output signal of the first integrator;
A second adder for adding output signals of the first and second integrators,
A comparator that compares an output signal of the second adder with a value correlated with the first set value, and outputs a three-value indicating a comparison result as the feedback signal;
Has,
The frequency divider sets a frequency division ratio based on an output of the comparator.
前記比較器は、前記第2の加算器の出力信号が前記分周比信号に相関する信号より大きいことを示す第1の値と、前記第2の加算器の出力信号が前記分周比信号に相関する信号に等しいことを示す第2の値と、前記第2の加算器の出力信号が前記分周比信号に相関する信号より小さいことを示す第3の値とを前記帰還信号として出力することを特徴とする請求項4に記載のΔΣ変調方式PLL回路。The comparator includes a first value indicating that an output signal of the second adder is larger than a signal correlated with the frequency division ratio signal, and an output signal of the second adder including the frequency division signal. And a third value indicating that the output signal of the second adder is smaller than the signal correlated with the frequency division ratio signal as the feedback signal. 5. The ΔΣ modulation type PLL circuit according to claim 4, wherein: 前記第1の設定値に相関する値は、前記第1の設定値を1/4した値であることを特徴とする請求項4または5に記載のΔΣ変調方式PLL回路。The ΔΣ modulation type PLL circuit according to claim 4, wherein the value correlated with the first set value is a value obtained by quarter of the first set value. 7. 前記第1の設定値をD、前記第2の設定値をFとしたとき、−D/2≦F≦D/2の関係を満たすようにすることを特徴とする請求項4及至6のいずれかに記載のΔΣ変調方式PLL回路。7. When the first set value is D and the second set value is F, the relationship of -D / 2 ≦ F ≦ D / 2 is satisfied. A ΔΣ modulation type PLL circuit according to any one of the above.
JP2002254945A 2002-08-30 2002-08-30 DeltaSigma MODULATOR AND PLL CIRCUIT IN DeltaSigma MODULATION METHOD Pending JP2004096436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002254945A JP2004096436A (en) 2002-08-30 2002-08-30 DeltaSigma MODULATOR AND PLL CIRCUIT IN DeltaSigma MODULATION METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002254945A JP2004096436A (en) 2002-08-30 2002-08-30 DeltaSigma MODULATOR AND PLL CIRCUIT IN DeltaSigma MODULATION METHOD

Publications (1)

Publication Number Publication Date
JP2004096436A true JP2004096436A (en) 2004-03-25

Family

ID=32060602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002254945A Pending JP2004096436A (en) 2002-08-30 2002-08-30 DeltaSigma MODULATOR AND PLL CIRCUIT IN DeltaSigma MODULATION METHOD

Country Status (1)

Country Link
JP (1) JP2004096436A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029428A1 (en) * 2005-09-08 2007-03-15 Matsushita Electric Industrial Co., Ltd. Pll circuit
JP2007274081A (en) * 2006-03-30 2007-10-18 Mitsubishi Electric Corp Phase locked loop type frequency synthesizer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029428A1 (en) * 2005-09-08 2007-03-15 Matsushita Electric Industrial Co., Ltd. Pll circuit
JPWO2007029428A1 (en) * 2005-09-08 2009-03-26 パナソニック株式会社 PLL circuit
US7746132B2 (en) 2005-09-08 2010-06-29 Panasonic Corporation PLL circuit
JP4623678B2 (en) * 2005-09-08 2011-02-02 パナソニック株式会社 PLL circuit
US7898305B2 (en) 2005-09-08 2011-03-01 Panasonic Corporation PLL circuit
JP2007274081A (en) * 2006-03-30 2007-10-18 Mitsubishi Electric Corp Phase locked loop type frequency synthesizer

Similar Documents

Publication Publication Date Title
JP4064338B2 (en) Delta-sigma fractional frequency division PLL synthesizer
JP3319677B2 (en) Frequency synthesizer
JP4620931B2 (en) Noise shaping and digital frequency synthesis
JP4275502B2 (en) Fractional N frequency synthesizer and fractional N frequency synthesizer method
US20100329388A1 (en) Frequency synthesizer and polar transmitter having the same
US20080198959A1 (en) Fractional Frequency Divider PLL Device and Control Method Thereof
JP3611589B2 (en) Fractional N divider
Kozak et al. A pipelined noise shaping coder for fractional-N frequency synthesis
KR100801034B1 (en) Method of reducing noise in sigma-delta modulation using delayed clock signals and fractional-n pll using the method
WO2006065482A2 (en) Method and apparatus for variable sigma-delta modulation
CN100571040C (en) The sigma-delta-modulator of PLL circuit
JP2004096436A (en) DeltaSigma MODULATOR AND PLL CIRCUIT IN DeltaSigma MODULATION METHOD
JP2003523095A (en) Digital phase discrimination based on frequency sampling
US11652488B2 (en) Phase coherent frequency synthesis
JP2012147080A (en) Delta-sigma modulation-type fraction division pll frequency synthesizer, and wireless communication device having the same
US11552648B2 (en) Digital filter for a delta-sigma analog-to-digital converter
US6556087B2 (en) Fractional frequency division frequency synthesizer having rounded phase control value
JP3792706B2 (en) PLL circuit ΣΔ modulator
Meyer-Base et al. Accumulator-synthesizer with error-compensation
EP1518323A1 (en) Phase-locked loop with incremental phase detectors and a converter for combining a logical operation with a digital to analog conversion
CN117833912A (en) Fractional frequency division phase-locked loop based on phase interpolation and sampling
JP2005303996A (en) Frequency modulating device
KR20230079723A (en) Fractional divider with phase shifter and fractional phase locked loop including the same
CN117997336A (en) Phase-locked loop and signal delay processing method
JP2003115764A (en) Sigma/delta converter and limiter circuit