JP2004096131A - Gallium nitride-based compound semiconductor light emitting element - Google Patents

Gallium nitride-based compound semiconductor light emitting element Download PDF

Info

Publication number
JP2004096131A
JP2004096131A JP2003402112A JP2003402112A JP2004096131A JP 2004096131 A JP2004096131 A JP 2004096131A JP 2003402112 A JP2003402112 A JP 2003402112A JP 2003402112 A JP2003402112 A JP 2003402112A JP 2004096131 A JP2004096131 A JP 2004096131A
Authority
JP
Japan
Prior art keywords
layer
gallium nitride
based compound
compound semiconductor
electrode contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003402112A
Other languages
Japanese (ja)
Other versions
JP2004096131A5 (en
Inventor
Masaaki Onomura
小野村 正明
Kazuhiko Itaya
板谷 和彦
Genichi Hatagoshi
波多腰 玄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003402112A priority Critical patent/JP2004096131A/en
Publication of JP2004096131A publication Critical patent/JP2004096131A/en
Publication of JP2004096131A5 publication Critical patent/JP2004096131A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gallium nitride-based compound semiconductor light emitting element having a low threshold value current and a low operating voltage, free from deterioration, and highly reliable by employing a p-type gallium nitride-based compound semiconductor structure, in which a low-resistance p-side electrode can be easily formed and which has a high carrier concentration that realizes a highly efficient and uniform carrier injection to an active layer. <P>SOLUTION: In the gallium nitride-based compound semiconductor light emitting element, a hole conductive type semiconductor layer has a p-electrode contact layer (9) doped with Mg and at least a Ga<SB>x2</SB>In<SB>y2</SB>Al<SB>z2</SB>N(x2+y2+z2=1, 0≤x2, z2≤1, 0<y2≤1) smoothing layer is formed on the side nearer to an active layer (6) than to the p-electrode contact layer. At the same time, on the surface of the p-electrode contact layer, a laminated structure having a Pt layer (10), TiN layer (11a) and Ti layer (11) laminated in this order is formed and between the p-electrode contact layer and the Pt layer, an alloy layer (15) consisting of Pt and semiconductor is formed. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、例えば、窒化ガリウム系青紫色半導体レーザ(以下、LDともいう)、あるいは窒化ガリウム系高輝度青/緑色発光ダイオード(以下、LEDともいう)の如き、窒化ガリウム系化合物半導体発光素子に関する。 The present invention relates to a gallium nitride-based compound semiconductor light-emitting device such as a gallium nitride-based blue-violet semiconductor laser (hereinafter, also referred to as LD) or a gallium nitride-based high-brightness blue / green light-emitting diode (hereinafter, also referred to as LED). .

 従来、短波長半導体レーザは、InGaAlP材料を用いた600nm帯の光源により、ディスクの読出/書込のいずれも可能なレベルに特性改善され、すでに実用化されている。 Conventionally, short-wavelength semiconductor lasers have already been put into practical use with a 600 nm-band light source using an InGaAlP material whose characteristics have been improved to a level that allows both reading and writing of a disk.

 そこで、さらなる記録密度向上を目指し、より波長の短い青色半導体レーザが盛んに開発されている。発振波長の短いレーザ光は集光サイズを小さくでき、記録密度を高めるには有効であるからである。 Therefore, blue semiconductor lasers with shorter wavelengths are being actively developed with the aim of further improving the recording density. This is because laser light having a short oscillation wavelength can reduce the size of condensed light and is effective in increasing the recording density.

 このため、近年、GaN、InGaN、GaAlN、InGaAlN等の窒化ガリウム系化合物半導体は、高密度光ディスクシステム等への応用を図る短波長半導体レーザの材料として注目されている。 Therefore, in recent years, gallium nitride-based compound semiconductors such as GaN, InGaN, GaAlN, and InGaAlN have been attracting attention as materials for short-wavelength semiconductor lasers for application to high-density optical disk systems and the like.

 例えば、GaN系材料を用いた半導体レーザでは、波長380〜417nmの室温パルス発振が確認されている。しかしながら、GaN系材料を用いた半導体レーザは満足な特性が得られず、室温パルス発振におけるしきい値電圧は、10〜4OVと高い値である上、ばらつきが大きい。 For example, room-temperature pulse oscillation at a wavelength of 380 to 417 nm has been confirmed in a semiconductor laser using a GaN-based material. However, a semiconductor laser using a GaN-based material cannot provide satisfactory characteristics, and the threshold voltage at room temperature pulse oscillation is as high as 10 to 40 V and has large variations.

 これは、窒化ガリウム系化合物半導体層の結晶成長が難しいことと、素子抵抗が大きいことに起因する。即ち、表面が平滑で且つ高キャリア濃度のp型窒化ガリウム系化合物半導体層を形成できないことと、p側電極コンタクト抵抗が高いことにより、大きな電圧降下を招き、バルス発振動作でさえ発熱や金属反応による劣化を生ずる。なお、室温連続発振は、発熱量を考慮して10V以下まで動作電圧を低減しなければ達成できない。 This is due to the difficulty of crystal growth of the gallium nitride based compound semiconductor layer and the high device resistance. In other words, the inability to form a p-type gallium nitride-based compound semiconductor layer with a smooth surface and a high carrier concentration and a high p-side electrode contact resistance cause a large voltage drop, and generate heat and metal reaction even in pulse oscillation operation. This causes deterioration. Note that continuous oscillation at room temperature cannot be achieved unless the operating voltage is reduced to 10 V or less in consideration of the amount of heat generated.

 また、レーザ発振に必要な電流を注入すると、p型の窒化ガリウム系化合物半導体層が良質な結晶でなく、下層から上層への成長方向に沿って微細な複数の穴を有する欠陥があるため、局所的に高い電流が流れ、活性層に均一にキャリアを注入できないばかりか、瞬発的な素子破壊を起こすので、連続発振に至らない。 Also, when a current required for laser oscillation is injected, the p-type gallium nitride-based compound semiconductor layer is not a good crystal and has a defect having a plurality of fine holes along a growth direction from a lower layer to an upper layer. Since a locally high current flows, carriers cannot be uniformly injected into the active layer, and instantaneous device breakdown occurs, continuous oscillation does not occur.

 このように、光ディスク等への実用に供する低しきい値電流、低しきい値電圧で動作し、信頼性の高い窒化ガリウム系青紫色半導体レーザを実現させるためには、活性層へのキャリア注入を効率的に且つ均一に行うと共に電極コンタクトでの電圧降下の抑制が重要であるものの、現状では極めて困難となっている。 As described above, in order to realize a highly reliable gallium nitride-based blue-violet semiconductor laser that operates at a low threshold current and a low threshold voltage for practical use in an optical disk or the like, carrier injection into the active layer is required. It is important to perform the process efficiently and uniformly and to suppress the voltage drop at the electrode contacts, but it is extremely difficult at present.

 以上のように窒化ガリウム系化合物半導体レーザでは、微細な複数の穴状欠陥をもたない良質のp型窒化ガリウム系化合物半導体を得ることが困難であり、またp側電極コンタクト抵抗が高いために、電極コンタクトで大きな電圧降下を生じ、さらに、活性層への均一なキャリア注入ができず、低しきい値電流、低動作電圧の素子の実現が困難となっている。 As described above, in the gallium nitride-based compound semiconductor laser, it is difficult to obtain a high-quality p-type gallium nitride-based compound semiconductor without a plurality of fine hole-shaped defects, and the p-side electrode contact resistance is high. In addition, a large voltage drop occurs at the electrode contact, and further, uniform carrier injection into the active layer cannot be performed, which makes it difficult to realize a device having a low threshold current and a low operating voltage.

 GaN系発光素子ではp側電極コンタクト抵抗が高いために動作電圧が高くなるばかりか、p側電極金属であるニッケルとp型半導体層を構成するガリウムが通電時に反応、溶融し、劣化を起こすためにレーザの連続発振が困難であつた。 In a GaN-based light emitting device, not only does the operating voltage increase due to the high p-side electrode contact resistance, but also nickel, which is the p-side electrode metal, and gallium, which forms the p-type semiconductor layer, react, melt, and deteriorate when energized. In addition, continuous oscillation of the laser was difficult.

 本発明は上記実情を考慮してなされたもので、低抵抗p側電極を容易に形成でき、且つ、活性層へ高効率で均一にキャリア注入できる高キャリア濃度のp型窒化ガリウム系化合物半導体構造により、低しきい値電流、低動作電圧で、劣化を起こさず、優れた信頼性を有する窒化ガリウム系化合物半導体発光素子を提供することを目的とする。 The present invention has been made in view of the above circumstances, and has a high carrier concentration p-type gallium nitride-based compound semiconductor structure capable of easily forming a low-resistance p-side electrode and efficiently and uniformly injecting carriers into an active layer. Accordingly, it is an object of the present invention to provide a gallium nitride-based compound semiconductor light emitting device having a low threshold current, a low operating voltage, no deterioration, and excellent reliability.

 請求項1に対応する発明は、窒化ガリウム系化合物半導体(Gax1Iny1Alz1N:x1+y1+z1=1、0≦x1,y1,z1≦1)からなり、活性層を導電型の異なる半導体層で挟んだ窒化ガリウム系化合物半導体発光素子において、正孔伝導型半導体層はMgを添加したp電極コンタクト層を有し、前記p電極コンタクト層よりも前記活性層側にはGax2Iny2Alz2N(x2+y2+z2=1、0≦x2,z2≦1、O<y2≦1)平滑化層が形成され、且つ前記p電極コンタクト層の表面にはPt層、TiN層及びTi層の順序の積層構造が形成され、しかも、前記p電極コンタクト層と前記Pt層との間にはPt−半導体からなる合金層が形成されている窒化ガリウム系化合物半導体発光素子である。 The invention according to claim 1 comprises a gallium nitride-based compound semiconductor (Ga x1 In y1 Al z1 N: x1 + y1 + z1 = 1, 0 ≦ x1, y1, z1 ≦ 1), and the active layer is a semiconductor layer having a different conductivity type. In the sandwiched gallium nitride-based compound semiconductor light emitting device, the hole conduction type semiconductor layer has a p-electrode contact layer to which Mg is added, and Ga x2 In y2 Al z2 N is closer to the active layer than the p-electrode contact layer. (X2 + y2 + z2 = 1, 0 ≦ x2, z2 ≦ 1, O <y2 ≦ 1) A smoothing layer is formed, and a stacked structure of a Pt layer, a TiN layer, and a Ti layer is formed on the surface of the p-electrode contact layer. This is a gallium nitride-based compound semiconductor light emitting device in which an alloy layer made of a Pt-semiconductor is formed between the p-electrode contact layer and the Pt layer.

 また、請求項2に対応する発明は、請求項1に対応する窒化ガリウム系化合物半導体発光素子において、前記Ti層上には第2のPt層を介してAu層が形成されている窒化ガリウム系化合物半導体発光素子である。 According to a second aspect of the present invention, in the gallium nitride-based compound semiconductor light-emitting device according to the first aspect, a gallium nitride-based compound semiconductor light emitting device includes an Au layer formed on the Ti layer via a second Pt layer. It is a compound semiconductor light emitting device.

 さらに、請求項3に対応する発明は、請求項1に対応する窒化ガリウム系化合物半導体発光素子において、前記p電極コンタクト層は炭素を含有し、前記TiN層と前記Pt層との界面は、前記p電極コンタクト層よりも炭素濃度が高くなっている窒化ガリウム系化合物半導体発光素子である。 Further, the invention corresponding to claim 3 is the gallium nitride-based compound semiconductor light emitting device according to claim 1, wherein the p-electrode contact layer contains carbon, and the interface between the TiN layer and the Pt layer is This is a gallium nitride-based compound semiconductor light emitting device having a higher carbon concentration than a p-electrode contact layer.

 また、請求項4に対応する発明は、請求項1に対応する窒化ガリウム系化合物半導体発光素子において、前記p電極コンタクト層は炭素及び酸素を含有し、前記TiN層と前記Pt層との界面は、前記p電極コンタクト層よりも炭素濃度及び酸素濃度が高くなっている窒化ガリウム系化合物半導体発光素子である。 According to a fourth aspect of the present invention, in the gallium nitride based compound semiconductor light emitting device according to the first aspect, the p-electrode contact layer contains carbon and oxygen, and an interface between the TiN layer and the Pt layer is A gallium nitride-based compound semiconductor light emitting device having a carbon concentration and an oxygen concentration higher than those of the p-electrode contact layer.

 さらに、請求項5に対応する発明は、請求項1に対応する窒化ガリウム系化合物半導体発光素子において、前記p電極コンタクト層は水素を含有し、前記第2のPt層と前記Au層との界面は、前記p電極コンタクト層よりも水素濃度が高くなっている窒化ガリウム系化合物半導体発光素子である。 Further, according to a fifth aspect of the present invention, in the gallium nitride-based compound semiconductor light emitting device according to the first aspect, the p-electrode contact layer contains hydrogen and an interface between the second Pt layer and the Au layer. Is a gallium nitride-based compound semiconductor light emitting device having a higher hydrogen concentration than the p-electrode contact layer.

 なお、これら請求項1乃至請求項5に対応する発明は、以下の(1)〜(5)を個々に満たすに従い、より望ましい実施形態となる。 The inventions corresponding to claims 1 to 5 are more preferable embodiments as the following (1) to (5) are individually satisfied.

(1)p電極コンタクト層のMg添加量は表面近傍で高濃度分布を有する。 (1) The amount of Mg added to the p-electrode contact layer has a high concentration distribution near the surface.

(2)p電極コンタクト層は組成の異なる2種類以上の窒化ガリウム系化合物半導体からなる。 (2) The p-electrode contact layer is composed of two or more gallium nitride-based compound semiconductors having different compositions.

(3)GaInAlN平滑化層は活性層を多重量子井戸構造に形成してなる。 (3) The GaInAlN smoothing layer has an active layer formed in a multiple quantum well structure.

(4)p電極コンタクト層の下部にn型導電層が存在する場合は、p型導電層とn型導電層の間には少なくとも1層のGaInAlN平滑化層を挿入してなる。換言すると、GaInAlN平滑化層よりも上層にp電極コンタクト層を形成するという位置関係が重要である。なお、GaInAlN平滑化層とp電極コンタクト層との間において、クラッド層や導波層などは有っても無くてもよい。 (4) When an n-type conductive layer exists below the p-electrode contact layer, at least one GaInAlN smoothing layer is inserted between the p-type conductive layer and the n-type conductive layer. In other words, the positional relationship of forming the p-electrode contact layer above the GaInAlN smoothing layer is important. The cladding layer, the waveguide layer, and the like may or may not be provided between the GaInAlN smoothing layer and the p-electrode contact layer.

(5)p電極コンタクト層に接する電極構造は、膜厚10nm以下の薄いPt層の上部に、Ti/Pt/Auが積層される。 (5) In the electrode structure in contact with the p-electrode contact layer, Ti / Pt / Au is laminated on a thin Pt layer having a thickness of 10 nm or less.

(作用)
 従って、請求項1及び請求項2に対応する発明は以上のような手段を講じたことにより、少なくともIn元素を含むGaInAlN平滑化層の上にMg添加窒化ガリウム系半導体層を形成し、さらにPt及びTi電極を形成することで、微細な穴状欠陥等の結晶欠陥が少なくアクセプタ濃度の高いp型半導体層が得られ、且つ電極金属である薄いPt層がp型半導体層に僅かに拡散することで実効的な電極接触面積が増大するとともに、Pt元素はMg添加と同時に取込まれる水素元素や結晶成長後の大気暴露による表面酸化膜の還元触媒として働きMgの活性化率を向上させ実効的なアクセプタ濃度を増大させ、さらに上部のTi層が窒化ガリウム系半導体層の窒素元素と反応し極めて安定なTiNを形成することで上部の電極金属である第2のPt層及びAu層の下方への拡散を抑制できるので、結果として結晶品質の向上を図ることができる。このため、低抵抗p側電極を容易に形成でき、且つ、活性層へ高効率で均一にキャリア注入できる高キャリア濃度のp型窒化ガリウム系化合物半導体構造を実現でき、電極コンタクトでの電圧降下を抑制して、低しきい値電流、低動作電圧で、劣化を起こさず、優れた信頼性を奏することができる。
(Action)
Therefore, the invention corresponding to claim 1 and claim 2 takes the above measures to form an Mg-added gallium nitride-based semiconductor layer on the GaInAlN smoothing layer containing at least the In element, and further to form Pt. And the formation of the Ti electrode, a p-type semiconductor layer having a small crystal defect such as a fine hole-like defect and a high acceptor concentration can be obtained, and a thin Pt layer as an electrode metal is slightly diffused into the p-type semiconductor layer. As a result, the effective electrode contact area increases, and the Pt element acts as a hydrogen element taken in simultaneously with the addition of Mg and as a catalyst for reducing the surface oxide film due to exposure to the air after crystal growth, improving the activation rate of Mg and improving the effectiveness. The upper acceptor concentration, and the upper Ti layer reacts with the nitrogen element of the gallium nitride based semiconductor layer to form extremely stable TiN, thereby being an upper electrode metal. Since the diffusion of downward second Pt layer and an Au layer can be suppressed, it is possible to result improvement in crystal quality. Therefore, a p-type gallium nitride-based compound semiconductor structure with a high carrier concentration that can easily form a low-resistance p-side electrode and can efficiently and uniformly inject carriers into the active layer can be realized, and a voltage drop at an electrode contact can be reduced. Suppressing, low threshold current, low operating voltage, no deterioration, and excellent reliability can be achieved.

 また、請求項3及び請求項4に対応する発明は、前記p電極コンタクト層は炭素及び酸素を含有し、TiN層とPt層との界面は、p電極コンタクト層よりも炭素濃度及び酸素濃度が高くなっており、すなわち、半導体層中の炭素及び酸素が、Ptを触媒にして外部に除去される過程でTiN層にて止められているので、請求項1に対応する作用と同様の作用を奏することができる。 In the invention corresponding to claims 3 and 4, the p-electrode contact layer contains carbon and oxygen, and the interface between the TiN layer and the Pt layer has a lower carbon concentration and oxygen concentration than the p-electrode contact layer. In other words, since the carbon and oxygen in the semiconductor layer are stopped by the TiN layer in the process of being removed to the outside by using Pt as a catalyst, the same operation as the operation corresponding to claim 1 is performed. Can play.

 さらに、請求項5に対応する発明は、前記p電極コンタクト層は水素を含有し、第2のPt層とAu層との界面は、p電極コンタクト層よりも水素濃度が高くなっており、すなわち、半導体層中の炭素及び酸素が、Ptを触媒にして外部に除去される過程でAu層にて止められているので、請求項1に対応する作用と同様の作用を奏することができる。 Further, in the invention corresponding to claim 5, the p-electrode contact layer contains hydrogen, and the interface between the second Pt layer and the Au layer has a higher hydrogen concentration than the p-electrode contact layer. Since the carbon and oxygen in the semiconductor layer are stopped by the Au layer in the process of being removed to the outside by using Pt as a catalyst, the same operation as the first embodiment can be achieved.

(関連発明)
 なお、上述した請求項1乃至請求項5に対応する発明に対する関連発明について説明する。この関連発明は、p型GaN系半導体への電流供給のために、パラジウム(Pd)またはPtとTiを夫々1%以上含有するp型半導体層を形成することで動作電圧の低減と発熱量の抑制を図り、さらには構成元素の通電による拡散を防止することで信頼性の向上を図るものである。
(Related invention)
A description will be given of related inventions with respect to the inventions corresponding to claims 1 to 5 described above. This related invention reduces the operating voltage and reduces the amount of heat generated by forming a p-type semiconductor layer containing 1% or more of each of palladium (Pd) or Pt and Ti for supplying current to a p-type GaN-based semiconductor. The purpose of the present invention is to improve the reliability by suppressing the diffusion and preventing the diffusion of the constituent elements due to the conduction.

 例えば、六方晶構造を有する III−V族化合物半導体装置のp型半導体層に電流を供給するために、PdまたはPtとTiを夫々1%以上含有するp型半導体層を形成することで、実質的な電極接触面積が増大し電極抵抗を10-5Ωcm2 程度まで低減できるばかりか、GaN系半導体の表面から浅い領域に形成されるこの層はTiとNの結合を含むために安定な拡散防止層となり通電時に起こる元素拡散を抑制し素子劣化が防止可能である。 For example, in order to supply a current to a p-type semiconductor layer of a group III-V compound semiconductor device having a hexagonal structure, a p-type semiconductor layer containing 1% or more of each of Pd or Pt and Ti is substantially formed. Not only the electrode contact area can be increased and the electrode resistance can be reduced to about 10 −5 Ωcm 2 , but also this layer formed in a shallow region from the surface of the GaN-based semiconductor contains a bond between Ti and N and thus has a stable diffusion. It serves as a prevention layer and suppresses element diffusion that occurs at the time of energization, thereby preventing element deterioration.

 また、p型半導体層をInを含むGax Iny Alz N(0≦x,y,z≦1、かつ、x+y+z=1)半導体にすることで、PdまたはPtとTiを夫々1%以上含有するp型半導体層との電極抵抗を10-6Ωcm2 まで低減可能である。また、六方晶構造 III−V族化合物半導体装置のp型半導体層表面に、PdまたはPtが(10nm以下の範囲で)形成され、さらにTiが(50nm以下の範囲で)形成され、さらにp型半導体層に電流を供給する電極金属を形成された半導体装置において、300℃以上の熱処理工程により化学的に結合の強いPdまたはPtとTiを夫々1%以上含有する厚さ20nm以下のp型半導体層が形成可能である。 Further, by making the p-type semiconductor layer a Ga x In y Al z N (0 ≦ x, y, z ≦ 1 and x + y + z = 1) semiconductor containing In, Pd or Pt and Ti are each 1% or more. The electrode resistance with the contained p-type semiconductor layer can be reduced to 10 −6 Ωcm 2 . Further, Pd or Pt is formed (in a range of 10 nm or less), Ti is formed (in a range of 50 nm or less), and p-type is formed on the surface of the p-type semiconductor layer of the hexagonal structure III-V compound semiconductor device. In a semiconductor device in which an electrode metal for supplying a current to a semiconductor layer is formed, a p-type semiconductor having a thickness of 20 nm or less containing 1% or more of Pd or Pt and Ti each having a chemically strong bond by a heat treatment process of 300 ° C. or more. Layers can be formed.

 以上説明したように本発明によれば、低抵抗p側電極を容易に形成でき、且つ、活性層へ高効率で均一にキャリア注入できる高キャリア濃度のp型窒化ガリウム系化合物半導体構造により、低しきい値電流、低動作電圧で、劣化を起こさず、優れた信頼性を有する窒化ガリウム系化合物半導体発光素子を提供できる。 As described above, according to the present invention, a low-resistance p-side electrode can be easily formed, and a high carrier concentration p-type gallium nitride-based compound semiconductor structure capable of injecting carriers with high efficiency and uniformity into the active layer has a low resistance. It is possible to provide a gallium nitride-based compound semiconductor light-emitting device that has excellent reliability at a threshold current and a low operating voltage without causing deterioration.

 以下、本発明の実施の形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1の実施の形態)
 図1は本発明の第1の実施例に係る青色半導体レーザの概略構成を示す断面図である。この青色半導体レーザは、MOCVD法により、サファイア基板1上に、GaNバッファ層2、n−GaNコンタクト層3(Siドープ、5×1018cm-3、4μm)、n−Al0.2 Ga0.8 Nクラッド層(Siドープ、5×1017cm-3、0.3μm)4、GaN導波層(アンドープ、0.1μm)5、活性層6、p−GaN導波層(Mgドープ、0.1μm)7、p−Al0.2 Ga0.8 Nクラッド層(Mgドープ、5×1017cm-3、0.3μm)8、p−GaNコンタクト層(Mgドープ、1×1018cm-3、1μm)9が順次形成された、多層構造を有している。
(First Embodiment)
FIG. 1 is a sectional view showing a schematic configuration of a blue semiconductor laser according to a first embodiment of the present invention. This blue semiconductor laser has a GaN buffer layer 2, an n-GaN contact layer 3 (Si-doped, 5 × 10 18 cm −3 , 4 μm), an n-Al 0.2 Ga 0.8 N clad on a sapphire substrate 1 by MOCVD. Layer (Si-doped, 5 × 10 17 cm −3 , 0.3 μm) 4, GaN waveguide layer (undoped, 0.1 μm) 5, Active layer 6, p-GaN waveguide layer (Mg-doped, 0.1 μm) 7, p-Al 0.2 Ga 0.8 N cladding layer (Mg doped, 5 × 10 17 cm −3 , 0.3 μm) 8, p-GaN contact layer (Mg doped, 1 × 10 18 cm −3 , 1 μm) 9 It has a multilayer structure formed sequentially.

 この多層構造のp型GaNコンタクト層9上には、10nm厚のPt層10、熱処理に後述するTiN層11a、30nm厚のTi層11、10nm厚のPt層12、及び1μm厚のAu電極パッド13が順次積層され、p型電極が形成される。 On this p-type GaN contact layer 9 having a multilayer structure, a Pt layer 10 having a thickness of 10 nm, a TiN layer 11 a to be described later for heat treatment, a Ti layer 11 having a thickness of 30 nm, a Pt layer 12 having a thickness of 10 nm, and an Au electrode pad having a thickness of 1 μm 13 are sequentially laminated to form a p-type electrode.

 また、このAu電極パッド13又はp型GaNコンタクト層9の最表面の一部は、n型GaNコンタクト層3に達する深さまでドライエッチング法により除去され、これにより露出されたGaNコンタクト層3上にはn側電極14が形成される。 A part of the outermost surface of the Au electrode pad 13 or the p-type GaN contact layer 9 is removed by a dry etching method to a depth reaching the n-type GaN contact layer 3, and the GaN contact layer 3 exposed by the dry etching is removed. Is formed with an n-side electrode 14.

 なお、活性層6は、10層のIn0.2 Ga0.8 N量子井戸(アンドープ、2.5nm)を個別に挟むIn0.05Ga0.95N障壁層(アンドープ、5nm)からなるものである。 The active layer 6 is composed of an In 0.05 Ga 0.95 N barrier layer (undoped, 5 nm) sandwiching 10 layers of In 0.2 Ga 0.8 N quantum wells (undoped, 2.5 nm).

 次に、このような青色半導体レーザの製造方法及び作用について説明する。 Next, a method of manufacturing such a blue semiconductor laser and its operation will be described.

 図1中、サファイア基板1上のGaNバッファ層2からp−GaNコンタクト層9までの各層は、1回のMOCVD法により形成される。 In FIG. 1, each layer from the GaN buffer layer 2 to the p-GaN contact layer 9 on the sapphire substrate 1 is formed by one MOCVD method.

 また、この青色半導体レーザでは、Inを含むGaInAIN平滑化層を、InGaN量子井戸活性層6として用い、その上部にMg添加の窒化ガリウム系半導体18,19を形成しているために、基板1側から伝搬される微細な穴状欠陥やクラックや転位等の結晶欠陥をGaInAIN平滑化層が抑制するので、p側電極側では、平滑なp型半導体層18,19を得ることができる。 Further, in this blue semiconductor laser, the GaInAIN smoothing layer containing In is used as the InGaN quantum well active layer 6, and the Mg-added gallium nitride based semiconductors 18 and 19 are formed thereon. The GaInAIN smoothing layer suppresses minute hole-like defects and crystal defects such as cracks and dislocations propagated from the substrate, so that smooth p-type semiconductor layers 18 and 19 can be obtained on the p-side electrode side.

 なお、本発明者らの実験によると、GaInAIN平滑化層無しでも、p−GaNコンタクト層9の厚さが0.6μm以上あるとき、p−GaNコンタクト層9の表面は微細な複数の穴状欠陥を埋込み可能と考えられる。すなわち、GaInAIN平滑化層を設けることに加え、p−GaNコンタクト層9の厚さを0.6μm以上とすることにより、確実にp型半導体層の高品質化を図ることができる。 According to the experiments of the present inventors, even if the GaInAIN smoothing layer is not provided, when the thickness of the p-GaN contact layer 9 is 0.6 μm or more, the surface of the p-GaN contact layer 9 has a plurality of fine holes. It is considered that the defect can be embedded. That is, in addition to providing the GaInAIN smoothing layer and setting the thickness of the p-GaN contact layer 9 to 0.6 μm or more, it is possible to reliably improve the quality of the p-type semiconductor layer.

 次にp−GaNコンタクト層9の表面に幅10μmの領域にPt(5nm)/Ti(30nm)/Pt(10nm)/Au(1μm)が順次積層される。 Next, Pt (5 nm) / Ti (30 nm) / Pt (10 nm) / Au (1 μm) are sequentially laminated on the surface of the p-GaN contact layer 9 in a region having a width of 10 μm.

 次に、350℃窒素雰囲気で熱処理を施すと、Ptは最大で堆積膜厚の約3倍の深さまで下方拡散しp−GaNコンタクト層9中のGaと固相反応してPt−半導体の合金層15を形成し、同時に、Tiはp−GaNコンタクト層9から上方拡散するNと固相反応し、夫々安定に結合してTiN層11aをPt層との界面に形成するが、この熱処理によりp型ドーバントであるMgのアクセプタとしての活性化を妨げている水素元素や炭素元素、あるいは電極形成前の大気暴露により表面に結合した酸素元素はPtが触媒として働き、膜中から除去されるためにアクセプタ濃度が上昇し、Mgの活性化率はほぼ100%になることがわかった(なお、上記水素元素、炭素元素及び酸素元素は、成長時の種々の要因により、当該熱処理の前には各半導体層からなる多層構造中にほぼ一定濃度で分布しているものである)。 Next, when heat treatment is performed in a nitrogen atmosphere at 350 ° C., Pt diffuses down to a depth of about three times the deposited film thickness at the maximum, and undergoes a solid-phase reaction with Ga in the p-GaN contact layer 9 to form an alloy of Pt-semiconductor. A layer 15 is formed, and at the same time, Ti undergoes a solid-phase reaction with N that diffuses upward from the p-GaN contact layer 9 to form a TiN layer 11a at the interface with the Pt layer by being stably bonded. Pt acts as a catalyst to remove the hydrogen element and carbon element that hinder the activation of Mg, which is a p-type dopant, as an acceptor, or the oxygen element that has been bonded to the surface by exposure to the atmosphere before electrode formation, and is removed from the film. It was found that the acceptor concentration increased and the activation rate of Mg became almost 100% (the hydrogen element, the carbon element and the oxygen element were changed before the heat treatment due to various factors during the growth. A multilayer structure consisting of the semiconductor layer in which are distributed at a substantially constant concentration).

 さらに、TiN層11aとPt層10との界面は、p−GaNコンタクト層9よりも炭素濃度及び酸素濃度が高くなっており、すなわち、半導体層中の炭素及び酸素が、Ptを触媒にして外部に除去される過程でTiN層11aにて止められる。 Further, the interface between the TiN layer 11a and the Pt layer 10 has a higher carbon concentration and oxygen concentration than the p-GaN contact layer 9, that is, the carbon and oxygen in the semiconductor layer are externalized by using Pt as a catalyst. Is stopped at the TiN layer 11a in the process of being removed.

 また、上層のPt層12とAu層13との界面は、p−GaNコンタクト層9よりも水素濃度が高くなっており、すなわち、半導体層中の炭素及び酸素が、Ptを触媒にして外部に除去される過程でAu層13にて止められる。 Further, the interface between the upper Pt layer 12 and the Au layer 13 has a higher hydrogen concentration than the p-GaN contact layer 9, that is, carbon and oxygen in the semiconductor layer are externalized using Pt as a catalyst. Stopped at the Au layer 13 during the removal process.

 次に、n側電極14形成のためにp側電極を含んだメサ形状が形成され、メサ下部に現れたn−GaNコンタクト層3にTi/Auによりn側電極14が形成される。ここで、n側電極14形成の後にp電極を形成してもよい。さらにサファイア基板1は50μmまで鏡面研磨され、p側電極の長手方向に対して垂直方向にへき開され、もって、1mm長のレーザチップが形成される。 Next, a mesa shape including a p-side electrode is formed for forming the n-side electrode 14, and the n-side electrode 14 is formed of Ti / Au on the n-GaN contact layer 3 appearing below the mesa. Here, a p-electrode may be formed after the formation of the n-side electrode 14. Further, the sapphire substrate 1 is mirror-polished to 50 μm and cleaved in a direction perpendicular to the longitudinal direction of the p-side electrode, thereby forming a 1 mm long laser chip.

 この青色半導体レーザは、しきい値電流80mAで室温連続発振した。発振波長は420nm、動作電圧は7Vであり、さらに50℃、30mW駆動における素子寿命は5000時間であった。本レーザの場合、Pt層10とpーGaNコンタクト層9との実質的な接触面積が増大するために抵抗が1×10-5Ωcm2 と低減できたばかりか、このp−GaNコンタクト層9のMg活性化率がほぼ100%まで良質化できたために高キャリア濃度が得られ、p−AlGaNクラッド層8を介して活性層6に均一にキャリアを注入できるようになった。 This blue semiconductor laser continuously oscillated at room temperature with a threshold current of 80 mA. The oscillation wavelength was 420 nm, the operating voltage was 7 V, and the device life under driving at 50 ° C. and 30 mW was 5000 hours. In the case of this laser, since the substantial contact area between the Pt layer 10 and the p-GaN contact layer 9 increases, the resistance can be reduced not only to 1 × 10 −5 Ωcm 2 , but also the p-GaN contact layer 9 Since the Mg activation rate could be improved to almost 100%, a high carrier concentration was obtained, and carriers could be uniformly injected into the active layer 6 via the p-AlGaN cladding layer 8.

 さらに、第1の実施の形態に係るp−GaNコンタクト層9のMg添加量を表面から0.2μmの範囲で2倍に、残る0.8μmの範囲で1/2倍にした2段階ドープにした青色半導体レーザでは、さらに特性が改善された。すなわち、本構造による青色半導体レーザでは、動作電圧が第1の実施の形態よりさらに下がり6.5Vであった。p型コンタクト層を2段階ドープにすることで、表面の電極コンタクト抵抗を低減させる効果と、コンタクト層下部の抵抗を上げて横方向への漏れ電流を抑制する効果が得られた。 Furthermore, the two-step doping in which the amount of Mg added to the p-GaN contact layer 9 according to the first embodiment is doubled in the range of 0.2 μm from the surface and halved in the remaining range of 0.8 μm. The characteristics of the blue semiconductor laser were further improved. That is, in the blue semiconductor laser having this structure, the operating voltage was further reduced to 6.5 V as compared with the first embodiment. By doping the p-type contact layer with two steps, the effect of reducing the electrode contact resistance on the surface and the effect of increasing the resistance under the contact layer to suppress the leakage current in the lateral direction were obtained.

 上述したように第1の実施の形態によれば、少なくともInを含むGaInAlN平滑化層の上にMg添加窒化ガリウム系半導体層を形成することにより、微細な穴状欠陥等の結晶欠陥を低減させることができる。 As described above, according to the first embodiment, by forming the Mg-doped gallium nitride-based semiconductor layer on the GaInAlN smoothing layer containing at least In, crystal defects such as minute hole defects are reduced. be able to.

 また、p−GaNコンタクト層9の上にPt層10を形成することにより、Pt層がp−GaNコンタクト層9に僅かに拡散することで実効的な電極接触面積が増大するとともに、Pt元素は、p型半導体層に種々の原因により存在する水素元素、炭素元素及び酸素元素の還元触媒として働き、これら各不純物元素をp型半導体層から除去するように作用するので、Mgの活性化率を向上させて実効的なアクセプタ濃度を増大させることができる。 Further, by forming the Pt layer 10 on the p-GaN contact layer 9, the Pt layer slightly diffuses into the p-GaN contact layer 9, thereby increasing the effective electrode contact area. , Acts as a reduction catalyst for the hydrogen element, carbon element, and oxygen element present in the p-type semiconductor layer due to various causes, and acts to remove each of these impurity elements from the p-type semiconductor layer. It is possible to increase the effective acceptor concentration.

 さらにPt層10上にTi層11を形成することにより、Ti層が窒化ガリウム系半導体層のN元素と反応し極めて安定なTiNを形成することで上部の電極金属である第2のPt層12及びAu層13の下方への拡散を抑制できる。 Further, by forming the Ti layer 11 on the Pt layer 10, the Ti layer reacts with the N element of the gallium nitride based semiconductor layer to form extremely stable TiN, thereby forming the second Pt layer 12 as the upper electrode metal. And diffusion of Au layer 13 downward.

 これらGaInAlN平滑化層、Pt層10及びTi層11などの各効果により、結果として結晶品質の向上を図ることができる。 各 Each effect of the GaInAlN smoothing layer, the Pt layer 10 and the Ti layer 11 can improve the crystal quality as a result.

 従って、低抵抗p側電極を容易に形成でき、且つ、活性層へ高効率で均一にキャリア注入できる高キャリア濃度のp型窒化ガリウム系化合物半導体構造を実現でき、電極コンタクトでの電圧降下を抑制して、低しきい値電流、低動作電圧で、劣化を起こさず、優れた信頼性を奏することができる。 Therefore, a low-resistance p-side electrode can be easily formed, and a p-type gallium nitride-based compound semiconductor structure having a high carrier concentration that can efficiently and uniformly inject carriers into the active layer can be realized, and a voltage drop at an electrode contact can be suppressed. As a result, excellent reliability can be achieved with low threshold current and low operating voltage without deterioration.

(第2の実施の形態)
 次に、本発明の第2の実施の形態に係る青色半導体レーザについて説明する。図2はこの青色半導体レーザの概略構成を示す断面図であり、図1と同一部分には同一符号を付してその詳しい説明は省略し、ここでは異なる部分についてのみ述べる。
(Second embodiment)
Next, a blue semiconductor laser according to a second embodiment of the present invention will be described. FIG. 2 is a cross-sectional view showing a schematic configuration of the blue semiconductor laser. The same portions as those in FIG. 1 are denoted by the same reference numerals, detailed description thereof will be omitted, and only different portions will be described here.

 すなわち、本実施の形態に係る半導体レーザは、第1の実施の形態に比べ、より一層のコンタクト抵抗の低減を図るものであり、具体的には図2に示すように、p−GaN層9とPt電極10との間に、p−In0.1 Ga0.9 Nコンタクト層21が挿入された構造となっている。 That is, the semiconductor laser according to the present embodiment is intended to further reduce the contact resistance as compared with the first embodiment, and more specifically, as shown in FIG. The structure is such that a p-In 0.1 Ga 0.9 N contact layer 21 is inserted between the Pt electrode 10 and the Pt electrode 10.

 ここで、p−In0.1 Ga0.9 Nコンタクト層21は、Mgドープ、1×1019cm-3、厚さ0.2μmの半導体層である。 Here, the p-In 0.1 Ga 0.9 N contact layer 21 is a semiconductor layer doped with Mg, 1 × 10 19 cm −3 and a thickness of 0.2 μm.

 また、この青色半導体レーザは、p−In0.1 Ga0.9 Nコンタクト層21を形成する以外は、第1の実施の形態と同様に製造される。 The blue semiconductor laser is manufactured in the same manner as in the first embodiment except that the p-In 0.1 Ga 0.9 N contact layer 21 is formed.

 以上のような青色半導体レーザは、しきい値電流75mAで室温連続発振した。発振波長は420nm、動作電圧は6Vであり、さらに50℃、30mW駆動における素子寿命は5000時間であった。本レーザの場合、Pt層10と接触するp−In0.1 Ga0.9 Nコンタクト層21がp−GaN層9よりバンドギャップが狭いためにショットキー障壁が低くなり、従って実質的な接触面積増大効果と相まって電極コンタクト抵抗が7×10-6Ωcm2 と低減できたばかりか、p−In0.1 Ga0.9 Nコンタクト層21のMg活性化率がほぼ100%まで良質化できたために高キャリア濃度が得られ、p−AlGaNクラッド層8を介して活性層6に均一にキャリアを注入できるようになった。 The blue semiconductor laser described above continuously oscillated at room temperature with a threshold current of 75 mA. The oscillation wavelength was 420 nm, the operating voltage was 6 V, and the device life at 50 ° C. and 30 mW drive was 5000 hours. In the case of this laser, since the band gap of the p-In 0.1 Ga 0.9 N contact layer 21 in contact with the Pt layer 10 is smaller than that of the p-GaN layer 9, the Schottky barrier is reduced. As a result, not only the electrode contact resistance could be reduced to 7 × 10 −6 Ωcm 2 , but also the Mg activation rate of the p-In 0.1 Ga 0.9 N contact layer 21 could be improved to almost 100%, so that a high carrier concentration was obtained. Carriers can be uniformly injected into the active layer 6 via the p-AlGaN cladding layer 8.

 上述したように第2の実施の形態によれば、p−GaN層9とPt電極10との間に、p−GaN層9よりもバンドギャップの狭いp−In0.1 Ga0.9 Nコンタクト層21が挿入されたので、第1の実施の形態の効果に加え、p側電極とのコンタクト抵抗を一層低減させることができ、もって、動作電圧の低減化などを図ることができる。 As described above, according to the second embodiment, the p-In 0.1 Ga 0.9 N contact layer 21 having a narrower band gap than the p-GaN layer 9 is provided between the p-GaN layer 9 and the Pt electrode 10. Since it is inserted, in addition to the effects of the first embodiment, the contact resistance with the p-side electrode can be further reduced, and thus the operating voltage can be reduced.

(第3の実施の形態)
 次に、本発明の第3の実施の形態に係る青色半導体レーザについて説明する。図3はこの青色半導体レーザの概略構成を示す断面図であり、図1と同一部分には同一符号を付してその詳しい説明は省略し、ここでは異なる部分についてのみ述べる。
(Third embodiment)
Next, a blue semiconductor laser according to a third embodiment of the present invention will be described. FIG. 3 is a sectional view showing a schematic configuration of the blue semiconductor laser. The same parts as those in FIG. 1 are denoted by the same reference numerals, detailed description thereof will be omitted, and only different parts will be described here.

 すなわち、本実施の形態に係る半導体レーザは、第1の実施の形態とは異なり、内部電流狭窄構造を有するものであり、具体的には図3に示すように、p−Al0.2 Ga0.8 Nクラッド層8上に選択的に形成された複数のn−GaN電流ブロック層31(1×1018cm-3、0.5μm)と、これらp−Al0.2 Ga0.8 Nクラッド層8上及び各n−GaN電流ブロック層31上に形成された0.1μm厚のIn0.1 Ga0.9 N平滑化層32とを備えている。 That is, unlike the first embodiment, the semiconductor laser according to the present embodiment has an internal current confinement structure. Specifically, as shown in FIG. 3, p-Al 0.2 Ga 0.8 N A plurality of n-GaN current blocking layers 31 (1 × 10 18 cm −3 , 0.5 μm) selectively formed on the cladding layer 8, the p-Al 0.2 Ga 0.8 N cladding layer 8 and each n-GaN A 0.1 μm-thick In 0.1 Ga 0.9 N smoothing layer 32 formed on the current blocking layer 31;

 なお、In0.1 Ga0.9 N平滑化層32上には、前述同様に、p−GaNコンタクト層9が形成されている。 The p-GaN contact layer 9 is formed on the In 0.1 Ga 0.9 N smoothing layer 32 as described above.

 また、この青色半導体レーザは、電流狭窄構造によってMOCVD法による成長回数が3回となっていることを除き、第1の実施の形態と同様に製造される。 以上のような半導体レーザは、しきい値電流70mAで室温連続発振した。発振波長は420nm、動作電圧は6.5Vであり、さらに50℃、30mW駆動における素子寿命は5000時間であった。本レーザの場合、第1の実施の形態に述べた効果に加え、さらに内部電流狭窄構造を形成したためにp側電極の面積が増大してp側コンタクト抵抗が5×10-6Ωcm2 まで低減できた。すなわち、内部構造電流狭窄構造により、さらなる低電圧動作化が図られた。 This blue semiconductor laser is manufactured in the same manner as in the first embodiment, except that the number of times of growth by the MOCVD method is three due to the current confinement structure. The semiconductor laser as described above continuously oscillated at room temperature with a threshold current of 70 mA. The oscillation wavelength was 420 nm, the operating voltage was 6.5 V, and the device life under driving at 50 ° C. and 30 mW was 5000 hours. In the case of this laser, in addition to the effects described in the first embodiment, the area of the p-side electrode is increased due to the formation of the internal current confinement structure, and the p-side contact resistance is reduced to 5 × 10 −6 Ωcm 2. did it. That is, further lower voltage operation was achieved by the internal structure current confinement structure.

 上述したように第3の実施の形態によれば、第1の実施の形態の効果に加え、より一層、コンタクト抵抗を低減させることができる。 According to the third embodiment, as described above, the contact resistance can be further reduced in addition to the effects of the first embodiment.

 また、In0.1 Ga0.9 N平滑化層32のすぐ上にp−GaNコンタクト層9を形成した構成としても、前述同様に、In0.1 Ga0.9 N平滑化層32が微細な穴状欠陥の伝搬を阻止するので、結晶の品質を向上させることができる。 Further, even in a configuration in which the p-GaN contact layer 9 is formed immediately above the In 0.1 Ga 0.9 N smoothing layer 32, as described above, the In 0.1 Ga 0.9 N smoothing layer 32 prevents propagation of fine hole-like defects. Since this is prevented, the quality of the crystal can be improved.

(第4の実施の形態)
 次に、本発明の第4の実施の形態に係る青色半導体レーザについて説明する。 図4はこの青色半導体レーザの概略構成を示す断面図であり、図1と同一部分には同一符号を付してその詳しい説明は省略し、ここでは異なる部分についてのみ述べる。
(Fourth embodiment)
Next, a blue semiconductor laser according to a fourth embodiment of the present invention will be described. FIG. 4 is a cross-sectional view showing a schematic configuration of this blue semiconductor laser. The same parts as those in FIG. 1 are denoted by the same reference numerals, detailed description thereof will be omitted, and only different parts will be described here.

 すなわち、本実施の形態に係る青色半導体レーザは、第1の実施の形態とは異なり、埋込み型の電流狭窄構造を有するものであり、具体的には図4に示すように、GaN導波層5乃至p−Al0.2 Ga0.8 Nクラッド層8が幅10μmのメサ構造とされ(厚さは前述した通り)、このメサ構造の両側にアンドープAl0.1 Ga0.9 Nブロック層41が形成され、且つ、これらAl0.1 Ga0.9 Nブロック層41及びp−Al0.2 Ga0.8 Nクラッド層8の両層41,8とp−GaNコンタクト層9との間にInGaAlN平滑化層42を介在させた構造となっている。 That is, unlike the first embodiment, the blue semiconductor laser according to the present embodiment has a buried-type current confinement structure. Specifically, as shown in FIG. The 5 to p-Al 0.2 Ga 0.8 N cladding layer 8 has a mesa structure with a width of 10 μm (the thickness is as described above), and undoped Al 0.1 Ga 0.9 N block layers 41 are formed on both sides of the mesa structure. A structure in which an InGaAlN smoothing layer 42 is interposed between the p-GaN contact layer 9 and the layers 41 and 8 of the Al 0.1 Ga 0.9 N block layer 41 and the p-Al 0.2 Ga 0.8 N cladding layer 8 is provided. I have.

 なお、この青色半導体レーザは、内部電流狭窄構造によってMOCVD法による成長回数が3回となっていることを除き、第1の実施の形態と同様に製造される。 The blue semiconductor laser is manufactured in the same manner as in the first embodiment, except that the number of times of growth by the MOCVD method is three due to the internal current confinement structure.

 以上のような青色半導体レーザは、しきい値電流60mAで室温連続発振した。発振波長は420nm、動作電圧は5Vであり、さらに50℃、 30mW駆動における素子寿命は5000時間であった。本レーザの場合、実施例1に述べた効果の上に、さらに埋め込み構造電流狭窄構造を形成したためにp側電極10〜13の面積が増大しp側コンタクト抵抗が5×10-6Ωcm2 まで低減できた。すなわち、臨界膜厚以下の薄膜量子井戸活性層による低しきい利得化と埋め込み構造電流狭窄構造により、さらなる低電圧動作化が図られた。 The blue semiconductor laser as described above continuously oscillated at room temperature with a threshold current of 60 mA. The oscillation wavelength was 420 nm, the operating voltage was 5 V, and the device life under driving at 50 ° C. and 30 mW was 5000 hours. In the case of this laser, in addition to the effects described in the first embodiment, the area of the p-side electrodes 10 to 13 increases due to the formation of the buried structure current confinement structure, and the p-side contact resistance becomes 5 × 10 −6 Ωcm 2. Could be reduced. In other words, the lower threshold gain by the thin film quantum well active layer having a thickness equal to or less than the critical thickness and the buried structure and the current confinement structure have further reduced the voltage operation.

 上述したように第4の実施の形態によれば、第1の実施の形態の効果に加え、内部電流狭窄構造を具備することができる。 According to the fourth embodiment, as described above, in addition to the effects of the first embodiment, an internal current confinement structure can be provided.

(第5の実施の形態)
 次に、本発明の第5の実施の形態に係る青色半導体レーザについて説明する。 図5はこの青色半導体レーザの概略構成を示す断面図であり、図1と同一部分には同一符号を付してその詳しい説明は省略し、ここでは異なる部分についてのみ述べる。
(Fifth embodiment)
Next, a blue semiconductor laser according to a fifth embodiment of the present invention will be described. FIG. 5 is a cross-sectional view showing a schematic configuration of the blue semiconductor laser. The same parts as those in FIG. 1 are denoted by the same reference numerals, detailed description thereof will be omitted, and only different parts will be described here.

 すなわち、本実施の形態に係る青色半導体レーザは、第1の実施の形態とは異なり、電流狭窄構造を有するものであり、具体的には図5に示すように、GaN導波層7とp−Al0.8 Ga0.2 Nクラッド層8との接合部がInGaAlN平滑化層42を介し、アンドープAl0.1 Ga0.9 Nブロック層51により、電流狭窄構造とされている。 That is, unlike the first embodiment, the blue semiconductor laser according to the present embodiment has a current confinement structure. Specifically, as shown in FIG. The junction with the −Al 0.8 Ga 0.2 N cladding layer 8 has a current confinement structure with the undoped Al 0.1 Ga 0.9 N block layer 51 via the InGaAlN smoothing layer 42.

 ここで、GaN導波層7は、活性層6上に形成され、幅10μm、厚さ0.2μmのメサ形状を有するアンドープ半導体層である。なお、GaN導波層7のメサ下部は、厚さ0.1μmであり、その上にアンドープAl0.1 Ga0.9 Nブロック層51が形成されている。 Here, the GaN waveguide layer 7 is formed on the active layer 6 and is an undoped semiconductor layer having a mesa shape with a width of 10 μm and a thickness of 0.2 μm. The lower portion of the mesa of the GaN waveguide layer 7 has a thickness of 0.1 μm, and an undoped Al 0.1 Ga 0.9 N block layer 51 is formed thereon.

 p−Al0.8 Ga0.2 Nクラッド層8は、幅10μmの窓を有し、この窓がGaN導波層7のメサ上部に対向するように、InGaAlN平滑化層42を介して、GaN導波層7のメサ上部及びアンドープAl0.1 Ga0.9 Nブロック層51の上に形成されている。また、p−Al0.8 Ga0.2 Nクラッド層8は、前述同様に、Mgドープ、5×1017cm-3、(窓部の)厚さ0.3μmである。 The p-Al 0.8 Ga 0.2 N cladding layer 8 has a window having a width of 10 μm, and the GaN waveguide layer is interposed through the InGaAlN smoothing layer 42 so that the window faces the upper mesa of the GaN waveguide layer 7. 7 and on the undoped Al 0.1 Ga 0.9 N block layer 51. The p-Al 0.8 Ga 0.2 N cladding layer 8 is Mg-doped, 5 × 10 17 cm −3 , and 0.3 μm in thickness (at the window), as described above.

 なお、この青色半導体レーザは、電流狭窄構造によってMOCVD法による成長回数が3回となっていることを除き、第1の実施の形態と同様に製造される。 The blue semiconductor laser is manufactured in the same manner as in the first embodiment, except that the number of times of growth by the MOCVD method is three due to the current confinement structure.

 以上のような青色半導体レーザは、しきい値電流60mAで室温連続発振した。発振波長は420nm、動作電圧は5Vであり、さらに50℃、30mW駆動における素子寿命は5000時間であった。本レーザの場合も、第4の実施の形態と同様の効果が得られた。 The blue semiconductor laser described above continuously oscillated at room temperature with a threshold current of 60 mA. The oscillation wavelength was 420 nm, the operating voltage was 5 V, and the element life under driving at 50 ° C. and 30 mW was 5000 hours. In the case of the present laser, the same effect as in the fourth embodiment was obtained.

(他の実施の形態)
 本発明及びその関連発明などは、上記第1乃至第5の実施の形態に限られるものではなく、半導体層の組成や膜厚、さらには導電性が逆の構造であってもよい。また、発光素子以外にも、受光素子や、トランジスタなどの電子デバイスにも適用可能である。
(Other embodiments)
The present invention and related inventions are not limited to the above-described first to fifth embodiments, and may have a structure in which the composition and the thickness of the semiconductor layer and the conductivity are reversed. In addition to the light emitting element, the present invention can be applied to a light receiving element and an electronic device such as a transistor.

 その他、本発明はその要旨を逸脱しない範囲で種々変形して実施できる。 In addition, the present invention can be variously modified and implemented without departing from the gist thereof.

本発明の第1の実施例に係る青色半導体レーザの概略構成を示す断面図。FIG. 1 is a sectional view showing a schematic configuration of a blue semiconductor laser according to a first embodiment of the present invention. 本発明の第2の実施例に係る青色半導体レーザの概略構成を示す断面図。FIG. 4 is a sectional view showing a schematic configuration of a blue semiconductor laser according to a second embodiment of the present invention. 本発明の第3の実施例に係る青色半導体レーザの概略構成を示す断面図。FIG. 7 is a sectional view showing a schematic configuration of a blue semiconductor laser according to a third example of the present invention. 本発明の第4の実施例に係る青色半導体レーザの概略構成を示す断面図。FIG. 9 is a sectional view showing a schematic configuration of a blue semiconductor laser according to a fourth example of the present invention. 本発明の第5の実施例に係る青色半導体レーザの概略構成を示す断面図。FIG. 13 is a sectional view showing a schematic configuration of a blue semiconductor laser according to a fifth example of the present invention.

符号の説明Explanation of reference numerals

 1…サファイア基板、2…GaNバッファ層、3…n−GaNコンタクト層、4…n−Al0.2 Ga0.8 Nクラッド層、5…GaN導波層、6…活性層、7…p−GaN導波層、8…p−Al0.2 Ga0.8 Nクラッド層、9…p−GaNコンタクト層、10…Pt層、11a…TiN層、11…Ti層、12…Pt層、13…Au電極パッド、14…n側電極、15…合金層、31…n−GaN電流ブロック層、32…In0.1 Ga0.9 N平滑化層、41,51…アンドープAl0.1 Ga0.9 Nブロック層、42…InGaAlN平滑化層。 1 ... sapphire substrate, 2 ... GaN buffer layer, 3 ... n-GaN contact layer, 4 ... n-Al 0.2 Ga 0.8 N cladding layer, 5 ... GaN waveguide layer, 6 ... active layer, 7 ... p-GaN waveguiding layer, 8 ... p-Al 0.2 Ga 0.8 N cladding layer, 9 ... p-GaN contact layer, 10 ... Pt layer, 11a ... TiN layer, 11 ... Ti layer, 12 ... Pt layer, 13 ... Au electrode pad, 14 ... n-side electrode, 15 ... alloy layer, 31 ... n-GaN current blocking layer, 32 ... In 0.1 Ga 0.9 n smoothing layer, 41, 51 ... undoped Al 0.1 Ga 0.9 n blocking layer, 42 ... InGaAlN smoothing layer.

Claims (5)

 窒化ガリウム系化合物半導体(Gax1Iny1Alz1N:x1+y1+z1=1、0≦x1,y1,z1≦1)からなり、活性層を導電型の異なる半導体層で挟んだ窒化ガリウム系化合物半導体発光素子において、
 正孔伝導型半導体層はMgを添加したp電極コンタクト層を有し、前記p電極コンタクト層よりも前記活性層側には少なくともGax2Iny2Alz2N(x2+y2+z2=1、0≦x2,z2≦1、0<y2≦1)平滑化層が形成され、且つ前記p電極コンタクト層の表面にはPt層、TiN層及びTi層の順序の積層構造が形成され、しかも、前記p電極コンタクト層と前記Pt層との間にはPt−半導体からなる合金層が形成されていることを特徴とする窒化ガリウム系化合物半導体発光素子。
A gallium nitride-based compound semiconductor light-emitting device composed of a gallium nitride-based compound semiconductor (Ga x1 In y1 Al z1 N: x1 + y1 + z1 = 1, 0 ≦ x1, y1, z1 ≦ 1) and having an active layer sandwiched between semiconductor layers of different conductivity types At
The hole conduction type semiconductor layer has a p-electrode contact layer to which Mg is added, and at least Ga x2 In y2 Al z2 N (x2 + y2 + z2 = 1, 0 ≦ x2, z2) on the active layer side of the p-electrode contact layer. .Ltoreq.1, 0 <y2.ltoreq.1) A smoothing layer is formed, and a laminated structure of a Pt layer, a TiN layer and a Ti layer is formed on the surface of the p-electrode contact layer, and the p-electrode contact layer is formed. A gallium nitride-based compound semiconductor light emitting device, wherein an alloy layer made of a Pt-semiconductor is formed between the Pt layer and the Pt layer.
 請求項1に記載の窒化ガリウム系化合物半導体発光素子において、
 前記Ti層上には第2のPt層を介してAu層が形成されていることを特徴とする窒化ガリウム系化合物半導体発光素子。
The gallium nitride-based compound semiconductor light emitting device according to claim 1,
A gallium nitride-based compound semiconductor light emitting device, wherein an Au layer is formed on the Ti layer via a second Pt layer.
 請求項1に記載の窒化ガリウム系化合物半導体発光素子において、
 前記p電極コンタクト層は炭素を含有し、
 前記TiN層と前記Pt層との界面は、前記p電極コンタクト層よりも炭素濃度が高いことを特徴とする窒化ガリウム系化合物半導体発光素子。
The gallium nitride-based compound semiconductor light emitting device according to claim 1,
The p-electrode contact layer contains carbon,
A gallium nitride-based compound semiconductor light emitting device, wherein the interface between the TiN layer and the Pt layer has a higher carbon concentration than the p-electrode contact layer.
 請求項1に記載の窒化ガリウム系化合物半導体発光素子において、
 前記p電極コンタクト層は炭素及び酸素を含有し、
 前記TiN層と前記Pt層との界面は、前記p電極コンタクト層よりも炭素濃度及び酸素濃度が高いことを特徴とする窒化ガリウム系化合物半導体発光素子。
The gallium nitride-based compound semiconductor light emitting device according to claim 1,
The p-electrode contact layer contains carbon and oxygen;
A gallium nitride-based compound semiconductor light emitting device, wherein the interface between the TiN layer and the Pt layer has a higher carbon concentration and oxygen concentration than the p-electrode contact layer.
 請求項1に記載の窒化ガリウム系化合物半導体発光素子において、
 前記p電極コンタクト層は水素を含有し、
 前記第2のPt層と前記Au層との界面は、前記p電極コンタクト層よりも水素濃度が高いことを特徴とする窒化ガリウム系化合物半導体発光素子。
The gallium nitride-based compound semiconductor light emitting device according to claim 1,
The p-electrode contact layer contains hydrogen;
A gallium nitride-based compound semiconductor light emitting device, wherein the interface between the second Pt layer and the Au layer has a higher hydrogen concentration than the p-electrode contact layer.
JP2003402112A 2003-12-01 2003-12-01 Gallium nitride-based compound semiconductor light emitting element Pending JP2004096131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003402112A JP2004096131A (en) 2003-12-01 2003-12-01 Gallium nitride-based compound semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003402112A JP2004096131A (en) 2003-12-01 2003-12-01 Gallium nitride-based compound semiconductor light emitting element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP23674396A Division JP4018177B2 (en) 1996-09-06 1996-09-06 Gallium nitride compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2004096131A true JP2004096131A (en) 2004-03-25
JP2004096131A5 JP2004096131A5 (en) 2005-09-02

Family

ID=32064730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003402112A Pending JP2004096131A (en) 2003-12-01 2003-12-01 Gallium nitride-based compound semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JP2004096131A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117175347A (en) * 2023-09-01 2023-12-05 安徽格恩半导体有限公司 Semiconductor laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117175347A (en) * 2023-09-01 2023-12-05 安徽格恩半导体有限公司 Semiconductor laser
CN117175347B (en) * 2023-09-01 2024-04-26 安徽格恩半导体有限公司 Semiconductor laser

Similar Documents

Publication Publication Date Title
JP4018177B2 (en) Gallium nitride compound semiconductor light emitting device
JP3679914B2 (en) Semiconductor light emitting device and manufacturing method thereof
US7769066B2 (en) Laser diode and method for fabricating same
US6185238B1 (en) Nitride compound semiconductor laser and its manufacturing method
JP2007066981A (en) Semiconductor device
JP2002016312A (en) Nitride semiconductor element and its manufacturing method
JP2003198045A (en) Semiconductor laser structure body
JP2008109092A (en) Semiconductor light emitting element
JP3325479B2 (en) Compound semiconductor device and method of manufacturing the same
JP2008053760A (en) Nitride semiconductor laser element
JP2007214570A (en) Ridge waveguide type semiconductor laser diode
JP5507792B2 (en) Group III nitride semiconductor optical device
JPH1131866A (en) Semiconductor device of gallium nitride compound
JP2001036196A (en) Gallium nitride light emitting element with p-type dopant material diffusion preventing layer
JP3494880B2 (en) P-side electrode of nitride semiconductor light emitting device and nitride semiconductor light emitting device
JPWO2005106979A1 (en) Nitride semiconductor light emitting device
JP2000223742A (en) Nitrogen compound semiconductor element
JP3678399B2 (en) Nitride semiconductor laser device
JP3457516B2 (en) Gallium nitride based compound semiconductor device
JPH10200214A (en) Gallium nitride light emitting element having p-type dopant material diffusion-blocking layer
JP3946337B2 (en) Gallium nitride compound semiconductor laser
JP2003243772A (en) Semiconductor light emitting device and its manufacturing method
JP3796065B2 (en) Light emitting device and manufacturing method thereof
JP3496480B2 (en) Nitride semiconductor device
JP3464890B2 (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Effective date: 20070205

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20090210

Free format text: JAPANESE INTERMEDIATE CODE: A02