JP2004095711A - Jet stream type heating element cooling apparatus having multiple headers and power electronics device - Google Patents

Jet stream type heating element cooling apparatus having multiple headers and power electronics device Download PDF

Info

Publication number
JP2004095711A
JP2004095711A JP2002252500A JP2002252500A JP2004095711A JP 2004095711 A JP2004095711 A JP 2004095711A JP 2002252500 A JP2002252500 A JP 2002252500A JP 2002252500 A JP2002252500 A JP 2002252500A JP 2004095711 A JP2004095711 A JP 2004095711A
Authority
JP
Japan
Prior art keywords
heating element
headers
jet
header
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002252500A
Other languages
Japanese (ja)
Other versions
JP4005878B2 (en
Inventor
Yoshifumi Nakahama
中濱 敬文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002252500A priority Critical patent/JP4005878B2/en
Publication of JP2004095711A publication Critical patent/JP2004095711A/en
Application granted granted Critical
Publication of JP4005878B2 publication Critical patent/JP4005878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a difference of a heat transfer rate which occurs in a collision area by interference of orthogonal currents from holes, to reduce dispersion of a cooling performance for each heating element, and to reduce a difference of stress which occurs in the heating element. <P>SOLUTION: The jet stream type heating element cooling apparatus has the multiple headers configured by arranging a heating element 5 on a front surface of a heat sink 4, providing a plurality of holes 3 for jetting a cooling medium toward the heating element 5 on a rear surface of the heat sink 4, arranging a plurality of headers 2 and 8 on the opposite side of the heating element, and arranging a channel 9 for returning the cooling medium jetted out of the holes 3 to the other header 8. In the apparatus, a branch 9a is arranged from the channel 9 for returning to the other header 8 approximately perpendicularly to a flowing direction to make approximately equal shortest distances from the channel 9 for returning to the other header 8 to the holes 3. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えばパワーエレクトロニクス装置の冷却に用いられる、複数ヘッダを持つ噴流方式発熱体冷却装置、およびそれを備えて成るパワーエレクトロニクス装置に係り、特に発熱体に生じる応力の差を小さくできるようにした複数ヘッダを持つ噴流方式発熱体冷却装置およびパワーエレクトロニクス装置に関するものである。
【0002】
【従来の技術】
従来から、例えばパワーエレクトロニクス装置の冷却に用いられる冷却装置の一つとして、複数ヘッダを持つ噴流方式発熱体冷却装置がある。
【0003】
この複数ヘッダを持つ噴流方式発熱体冷却装置は、ヒートシンクの表面に発熱体を配置すると共に、ヒートシンクの裏面に発熱体に向けて冷却媒体を噴出する複数の孔を設け、反発熱体側に複数のヘッダを配し、各孔から噴出した冷却媒体を別のヘッダに戻す流路を配して構成されている。
【0004】
図8(a)(b)は、この種の従来の複数ヘッダを持つ噴流方式発熱体冷却装置の構成例を示す断面図である。
【0005】
図8において、流入口1から入った冷却媒体(以下、流体とも称する)は、ヘッダ2から複数の孔3を通り、ヒートシンク4の表面に配された複数個の発熱体5の内側壁面(衝突面)6に衝突する。
【0006】
流体は、衝突空間7から別の下流側のヘッダ8に戻す流路9の入り口10に向かう。
【0007】
これら複数のヘッダ2,8、孔3、衝突空間7からなる噴流冷却ユニット11を経てから、ヒートシンク流出口12より排出される。
【0008】
発熱体5で発生した熱量は、ヒートシンク2に熱伝導し、発熱体5の内側壁面6に衝突する流体に熱伝達する。
【0009】
衝突噴流は高い熱伝達率を示し、複数の発熱体5を冷却する。
【0010】
【発明が解決しようとする課題】
ところで、上記のように、ヒートシンク4の裏面に発熱体5に向けて冷却媒体を噴出する複数の孔3を設け、反発熱体側に複数のヘッダ2,8を配し、孔3から噴出した冷却媒体を別のヘッダ8に戻す流路9を配した構成を有する発熱体冷却装置においては、発熱体5の内側壁面6に流体が衝突する複数の点から、別のヘッダ8に戻す流路9の入り口10までの距離に大きな差が生じる。
【0011】
この距離の差は、流体が発熱体5の内側壁面6に衝突した後の、別のヘッダ8に戻す流路9の入り口10に至るまでの流れ(以下、直交流と称する)に影響を及ぼす。
【0012】
すなわち、それぞれの孔3からの直交流が干渉して、衝突領域の熱伝達率に差が生じ、発熱体5毎の冷却性能がばらつく。
【0013】
そして、複数ある発熱体の中で冷却性能にばらつきが生じると、発熱体5に生じる応力にも大小の差が現われるという問題がある。
【0014】
本発明の目的は、それぞれの孔からの直交流が干渉して衝突領域に生じる熱伝達率の差が小さくなり、発熱体毎の冷却性能がばらつくことが少なくなり、発熱体に生じる応力の差を小さくすることが可能な複数ヘッダを持つ噴流方式発熱体冷却装置およびパワーエレクトロニクス装置を提供することにある。
【0015】
【課題を解決するための手段】
上記の目的を達成するために、請求項1に対応する発明では、ヒートシンクの表面に発熱体を配置すると共に、ヒートシンクの裏面に発熱体に向けて冷却媒体を噴出する複数の孔を設け、反発熱体側に複数のヘッダを配し、各孔から噴出した冷却媒体を別のヘッダに戻す流路を配して構成される複数ヘッダを持つ噴流方式発熱体冷却装置において、別のヘッダに戻す流路から各孔までの最短距離がほぼ等しくなるように、別のヘッダに戻す流路から流れ方向に対してほぼ直角方向に支流路を配している。
【0016】
従って、請求項1に対応する発明の複数ヘッダを持つ噴流方式発熱体冷却装置においては、別のヘッダに戻す流路から各孔までの最短距離がほぼ等しくなるように、別のヘッダに戻す流路から流れ方向に対してほぼ直角方向に支流路を配することにより、衝突面にぶつかった噴流の直交流が、別のヘッダに戻す流路の支流路に至るが、他の孔からの直交流によって受ける干渉状態が孔毎にほとんど等しくなり、各孔の衝突領域の熱伝達率が一様となる。
これにより、発熱体毎の冷却性能のばらつきが少なくなるため、発熱体に生じる応力のばらつきを小さくすることができる。
【0017】
また、請求項2に対応する発明では、ヒートシンクの表面に発熱体を配置すると共に、ヒートシンクの裏面に発熱体に向けて冷却媒体を噴出する複数の孔を設け、反発熱体側に複数のヘッダを配し、各孔から噴出した冷却媒体を別のヘッダに戻す流路を配して構成される複数ヘッダを持つ噴流方式発熱体冷却装置において、ヘッダの下流側に仕切りを隔てて、当該ヘッダから別のヘッダに戻す流路に対してほぼ直角方向となるように支流路を配している。
【0018】
従って、請求項2に対応する発明の複数ヘッダを持つ噴流方式発熱体冷却装置においては、ヘッダの下流側に仕切りを隔てて、当該ヘッダから別のヘッダに戻す流路に対してほぼ直角方向となるように支流路を配することにより、ヘッダ内に上記支流路のような突出部がなくなるため、渦ができにくくなり、各孔からの噴流流速もほぼ等しくなり、衝突領域の熱伝達率が一様となる。
これにより、発熱体毎の冷却性能のばらつきが少なくなるため、発熱体に生じる応力のばらつきを小さくすることができる。
【0019】
さらに、請求項3に対応する発明では、上記請求項1に対応する発明の複数ヘッダを持つ噴流方式発熱体冷却装置において、ヘッダの下流側に仕切りを隔てて、当該ヘッダから別のヘッダに戻す流路に対してほぼ直角方向となるように支流路を配している。
【0020】
従って、請求項3に対応する発明の複数ヘッダを持つ噴流方式発熱体冷却装置においては、ヘッダの下流側に仕切りを隔てて、当該ヘッダから別のヘッダに戻す流路に対してほぼ直角方向となるように支流路を配することにより、上記請求項1に対応する発明に対して、直交流により受ける干渉状態が孔毎にほとんど等しくなる孔の個数が多くなり、各孔の衝突領域の熱伝達率がより一層一様となる。
これにより、発熱体毎の冷却性能のばらつきがさらに少なくなるため、発熱体に生じる応力のばらつきをより一層小さくすることができる。
【0021】
さらにまた、請求項4に対応する発明では、上記請求項2に対応する発明の複数ヘッダを持つ噴流方式発熱体冷却装置において、ヘッダの、仕切りを隔てた下流側に設けたほぼ流れ直角方向の支流路の、先端から流れ上流側にさらに支流路を伸ばしている。
【0022】
従って、請求項4に対応する発明の複数ヘッダを持つ噴流方式発熱体冷却装置においては、ヘッダの、仕切りを隔てた下流側に設けたほぼ流れ直角方向の支流路の、先端から流れ上流側にさらに支流路を伸ばすことにより、直交流により受ける干渉状態が孔毎にほとんど等しくなる孔の個数が多くなる上、ヘッダ内に渦ができにくくなり、各孔からの噴流流速もほぼ等しくなり、衝突領域の熱伝達率が一様となる。
これにより、発熱体毎の冷却性能のばらつきが少なくなるため、発熱体に生じる応力のばらつきを小さくすることができる。
【0023】
一方、請求項5に対応する発明では、ヒートシンクの表面に発熱体を配置すると共に、ヒートシンクの裏面に発熱体に向けて冷却媒体を噴出する複数の孔を設け、反発熱体側に複数のヘッダを配し、各孔から噴出した冷却媒体を別のヘッダに戻す流路を配して構成される複数ヘッダを持つ噴流方式発熱体冷却装置において、ヘッダより別のヘッダに戻す流路の上流端よりヘッド下流端に向けて入り込むようなほぼ三角形状の先端部を設けている。
【0024】
従って、請求項5に対応する発明の複数ヘッダを持つ噴流方式発熱体冷却装置においては、ヘッダより別のヘッダに戻す流路の上流端よりヘッド下流端に向けて入り込むようなほぼ三角形状の先端部を設けることにより、別のヘッダに戻す流路への距離のばらつきが少なくなって流体抵抗がより一層均一になり、噴流流速がより一層等しくなる。
これにより、発熱体毎の冷却性能のばらつきがさらに少なくなるため、発熱体に生じる応力のばらつきをより一層小さくすることができる。
【0025】
また、請求項6に対応する発明では、ヒートシンクの表面に発熱体を配置すると共に、ヒートシンクの裏面に発熱体に向けて冷却媒体を噴出する複数の孔を設け、反発熱体側に複数のヘッダを配し、各孔から噴出した冷却媒体を別のヘッダに戻す流路を配して構成される複数ヘッダを持つ噴流方式発熱体冷却装置において、ヘッダより別のヘッダに戻す流路の上流端よりヘッド下流端に向けて入り込むようなほぼ台形状の先端部を設けている。
【0026】
従って、請求項6に対応する発明の複数ヘッダを持つ噴流方式発熱体冷却装置においては、ヘッダより別のヘッダに戻す流路の上流端よりヘッド下流端に向けて入り込むようなほぼ台形状の先端部を設けることにより、上記請求項5に対応する発明よりも、ヘッダより別のヘッダに向かう流路に流入する時の流体抵抗が小さくなり、流量が増え、各孔の衝突点の熱伝達率が大きくなる。
これにより、発熱体毎の冷却性能のばらつきがさらに少なくなるため、発熱体に生じる応力のばらつきをより一層小さくすることができる。
【0027】
さらに、請求項7に対応する発明では、ヒートシンクの表面に発熱体を配置すると共に、ヒートシンクの裏面に発熱体に向けて冷却媒体を噴出する複数の孔を設け、反発熱体側に複数のヘッダを配し、各孔から噴出した冷却媒体を別のヘッダに戻す流路を配して構成される複数ヘッダを持つ噴流方式発熱体冷却装置において、ヘッダに至る流路の下流部分を末広がり形状としている。
【0028】
従って、請求項7に対応する発明の複数ヘッダを持つ噴流方式発熱体冷却装置においては、ヘッダに至る流路の下流部分を末広がり形状とすることにより、ヘッダ内に渦ができにくくなり、各孔からの噴流流速もほぼ等しくなり、衝突領域の熱伝達率が一様となる。
これにより、発熱体毎の冷却性能のばらつきが少なくなるため、発熱体に生じる応力のばらつきを小さくすることができる。
【0029】
一方、請求項8に対応する発明のパワーエレクトロニクス装置は、上記請求項1乃至請求項7のいずれか1項に対応する発明の複数ヘッダを持つ噴流方式発熱体冷却装置を備えている。
【0030】
従って、請求項8に対応する発明のパワーエレクトロニクス装置においては、上記請求項1乃至請求項7のいずれか1項に対応する発明の複数ヘッダを持つ噴流方式発熱体冷却装置を備えることにより、発熱体毎の冷却性能のばらつきが少なくなるため、発熱体に生じる応力のばらつきを小さくすることが可能となり、パワーエレクトロニクス装置本体をより一層効果的に冷却することができる。
【0031】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して詳細に説明する。
【0032】
(第1の実施の形態)
図1(a)(b)は、本実施の形態による複数ヘッダを持つ噴流方式発熱体冷却装置の構成例を示す断面図であり、図8と同一要素には同一符号を付して示している。
【0033】
図1において、ヒートシンク4の表面に、発熱体5を配置している。
【0034】
また、ヒートシンク4の裏面6に、発熱体5に向けて冷却媒体を噴出する複数の孔3を設けている。
【0035】
さらに、反発熱体側に複数のヘッダ(本例では2,8)を配し、各孔3から噴出した冷却媒体を別のヘッダ8に戻す流路9を配している。
【0036】
そして、別のヘッダ8に戻す流路9から各孔3までの最短距離がほぼ等しくなるように、別のヘッダ8に戻す流路9から流れ方向に対してほぼ直角方向に支流路9aを配している。
【0037】
次に、以上のように構成した本実施の形態による複数ヘッダを持つ噴流方式発熱体冷却装置においては、別のヘッダ8に戻す流路9から各孔3までの最短距離がほぼ等しくなるように、別のヘッダ8に戻す流路9から流れ方向に対してほぼ直角方向に支流路9aを配していることにより、衝突面6にぶつかった噴流は、その後、衝突面に沿って流れ、別のヘッダ8に戻す流路9の支流路9aに至るが、孔3毎に、他の孔3からの直交流によって受ける干渉状態がほとんど等しくなり、各孔3の衝突領域の熱伝達率が一様となる。
【0038】
これにより、発熱体5毎の冷却性能のばらつきが少なくなるため、発熱体5に生じる応力のばらつきを小さくすることができる。
【0039】
上述したように、本実施の形態による複数ヘッダを持つ噴流方式発熱体冷却装置では、それぞれの孔3からの直交流が干渉して衝突領域に生じる熱伝達率の差が小さくなり、発熱体5毎の冷却性能がばらつくことが少なくなり、発熱体5に生じる応力の差を小さくすることが可能となる。
【0040】
(第2の実施の形態)
図2(a)(b)は、本実施の形態による複数ヘッダを持つ噴流方式発熱体冷却装置の構成例を示す断面図であり、図1と同一要素には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。
【0041】
図2において、ヘッダ2の下流側に仕切り13を隔てて、当該ヘッダ2から別の下流側のヘッダ8に戻す流路9に対してほぼ直角方向となるように支流路9bを配している。
【0042】
次に、以上のように構成した本実施の形態による複数ヘッダを持つ噴流方式発熱体冷却装置においては、ヘッダ2の下流側に仕切り13を隔てて、当該ヘッダ2から別のヘッダ8に戻す流路9に対してほぼ直角方向となるように支流路9bを配していることにより、ヘッダ2内に前述の支流路9aのような突出部がなくなるため、渦ができにくくなり、各孔3からの噴流流速もほぼ等しくなり、衝突領域の熱伝達率が一様となる。
【0043】
これにより、発熱体5毎の冷却性能のばらつきが少なくなるため、発熱体5に生じる応力のばらつきを小さくすることができる。
【0044】
上述したように、本実施の形態による複数ヘッダを持つ噴流方式発熱体冷却装置では、それぞれの孔3からの直交流が干渉して衝突領域に生じる熱伝達率の差が小さくなり、発熱体5毎の冷却性能がばらつくことが少なくなり、発熱体5に生じる応力の差を小さくすることが可能となる。
【0045】
(第3の実施の形態)
図3(a)(b)は、本実施の形態による複数ヘッダを持つ噴流方式発熱体冷却装置の構成例を示す断面図であり、図1と同一要素には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。
【0046】
図3において、ヘッダ2の下流側に仕切り13を隔てて、当該ヘッダ2から別の下流側のヘッダ8に戻す流路9に対してほぼ直角方向となるように支流路9bを配している。
【0047】
すなわち、前述した第1の実施の形態の複数ヘッダを持つ噴流方式発熱体冷却装置において、前述した第2の実施の形態の複数ヘッダを持つ噴流方式発熱体冷却装置の支流路9bを配した構成としている。
【0048】
次に、以上のように構成した本実施の形態による複数ヘッダを持つ噴流方式発熱体冷却装置においては、ヘッダ2の下流側に仕切り13を隔てて、当該ヘッダ2から別のヘッダ8に戻す流路9に対してほぼ直角方向となるように支流路9bを配していることにより、前述した第1の実施の形態に対して、他の孔3からの直交流から受ける干渉状態がほとんど等しくなる孔3が増え、各孔3の衝突領域の熱伝達率がより一層一様となる。
【0049】
これにより、発熱体5毎の冷却性能のばらつきがさらに少なくなるため、発熱体5に生じる応力のばらつきをより一層小さくすることができる。
【0050】
上述したように、本実施の形態による複数ヘッダを持つ噴流方式発熱体冷却装置では、それぞれの孔3からの直交流が干渉して衝突領域に生じる熱伝達率の差が小さくなり、発熱体5毎の冷却性能がばらつくことがさらに少なくなり、発熱体5に生じる応力の差をより一層小さくすることが可能となる。
【0051】
(第4の実施の形態)
図4(a)(b)は、本実施の形態による複数ヘッダを持つ噴流方式発熱体冷却装置の構成例を示す断面図であり、図2と同一要素には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。
【0052】
図4において、ヘッダ2の、仕切り13を隔てた下流側に設けたほぼ流れ直角方向に支流路9bの、先端から流れ上流側にさらに支流路9cを伸ばすようにしている。
【0053】
次に、以上のように構成した本実施の形態による複数ヘッダを持つ噴流方式発熱体冷却装置においては、仕切り13を隔てた下流側に設けたほぼ流れ直角方向に支流路9bの、先端から流れ上流側にさらに支流路9cを伸ばしていることにより、他の孔3からの直交流による噴流への干渉状態がほとんど等しくなる上、ヘッダ2内に渦ができにくくなり、各孔3からの噴流流速もほぼ等しくなり、衝突領域の熱伝達率が一様となる。
【0054】
これにより、発熱体5毎の冷却性能のばらつきが少なくなるため、発熱体5に生じる応力のばらつきを小さくすることができる。
【0055】
上述したように、本実施の形態による複数ヘッダを持つ噴流方式発熱体冷却装置では、それぞれの孔3からの直交流が干渉して衝突領域に生じる熱伝達率の差が小さくなり、発熱体5毎の冷却性能がばらつくことが少なくなり、発熱体5に生じる応力の差を小さくすることが可能となる。
【0056】
(第5の実施の形態)
図5(a)(b)は、本実施の形態による複数ヘッダを持つ噴流方式発熱体冷却装置の構成例を示す断面図であり、図8と同一要素には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。
【0057】
図5において、ヘッダ2より別の下流側のヘッダ8に戻す流路9の上流端9dよりヘッダ下流端2aに向けて入り込むようなほぼ三角形状の先端部9eを設けている。
【0058】
次に、以上のように構成した本実施の形態による複数ヘッダを持つ噴流方式発熱体冷却装置においては、ヘッダ2より別の下流側のヘッダ8に戻す流路9の上流端9dよりヘッダ下流端2aに向けて入り込むようなほぼ三角形状の先端部9eを設けていることにより、従来のように別のヘッダ8に戻す流路9への距離のばらつきが少なくなって流体抵抗がより一層均一になり、噴流流速がより一層等しくなる。
【0059】
これにより、発熱体5毎の冷却性能のばらつきがさらに少なくなるため、発熱体5に生じる応力のばらつきをより一層小さくすることができる。
【0060】
上述したように、本実施の形態による複数ヘッダを持つ噴流方式発熱体冷却装置では、それぞれの孔3からの直交流が干渉して衝突領域に生じる熱伝達率の差が小さくなり、発熱体5毎の冷却性能がばらつくことがさらに少なくなり、発熱体5に生じる応力の差をより一層小さくすることが可能となる。
【0061】
(第6の実施の形態)
図6(a)(b)は、本実施の形態による複数ヘッダを持つ噴流方式発熱体冷却装置の構成例を示す断面図であり、図8と同一要素には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。
【0062】
図6において、ヘッダ2より別の下流側のヘッダ8に戻す流路9の上流端9dよりヘッダ下流端2aに向けて入り込むようなほぼ台形状の先端部9fを設けている。
【0063】
次に、以上のように構成した本実施の形態による複数ヘッダを持つ噴流方式発熱体冷却装置においては、ヘッダ2より別の下流側のヘッダ8に戻す流路9の上流端9dよりヘッダ下流端2aに向けて入り込むようなほぼ台形状の先端部9fを設けていることにより、前述した第5の実施の形態と同様に、別のヘッダ8に戻す流路9への距離のばらつきが少なくなって流体抵抗がより一層均一になり、噴流流速がより一層等しくなる。
【0064】
これにより、発熱体5毎の冷却性能のばらつきがさらに少なくなるため、発熱体5に生じる応力のばらつきをより一層小さくすることができる。
【0065】
上述したように、本実施の形態による複数ヘッダを持つ噴流方式発熱体冷却装置では、それぞれの孔3からの直交流が干渉して衝突領域に生じる熱伝達率の差が小さくなり、発熱体5毎の冷却性能がばらつくことがさらに少なくなり、発熱体5に生じる応力の差をより一層小さくすることが可能となる。
【0066】
(第7の実施の形態)
図7(a)(b)は、本実施の形態による複数ヘッダを持つ噴流方式発熱体冷却装置の構成例を示す断面図であり、図8(a)(b)と同一要素には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。
【0067】
図7において、ヘッダ2,8に至る流路9の下流部分9gを、末広がり形状としている。
【0068】
次に、以上のように構成した本実施の形態による複数ヘッダを持つ噴流方式発熱体冷却装置においては、ヘッダ2,8に至る流路9の下流部分9gを末広がり形状としていることにより、ヘッダ2,8内に渦ができにくくなり、各孔3からの噴流流速もほぼ等しくなり、衝突領域の熱伝達率が一様となる。
【0069】
これにより、発熱体5毎の冷却性能のばらつきが少なくなるため、発熱体5に生じる応力のばらつきを小さくすることができる。
【0070】
上述したように、本実施の形態による複数ヘッダを持つ噴流方式発熱体冷却装置では、それぞれの孔3からの直交流が干渉して衝突領域に生じる熱伝達率の差が小さくなり、発熱体5毎の冷却性能がばらつくことが少なくなり、発熱体5に生じる応力の差を小さくすることが可能となる。
【0071】
(第8の実施の形態)
本実施の形態では、前述した第1乃至第7の実施の形態のうちの、いずれかの複数ヘッダを持つ噴流方式発熱体冷却装置を備えて、パワーエレクトロニクス装置を構成している。
【0072】
以上のように構成した本実施の形態によるパワーエレクトロニクス装置においては、前述した第1乃至第7のいずれかの実施の形態の複数ヘッダを持つ噴流方式発熱体冷却装置を備えていることにより、発熱体5毎の冷却性能のばらつきが少なくなるため、発熱体5に生じる応力のばらつきを小さくすることが可能となり、パワーエレクトロニクス装置本体をより一層効果的に冷却することができる。
【0073】
(その他の実施の形態)
尚、本発明は、上記各実施の形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で、種々に変形して実施することが可能である。
例えば、上記第5の実施の形態、または第6の実施の形態では、ヘッダ2より別の下流側のヘッダ8に戻す流路9の上流端9dよりヘッダ下流端2aに向けて入り込むようなほぼ三角形状の先端部9e、またはほぼ台形状の先端部9fを設ける場合について説明したが、これに限らず、別のヘッダ8に戻す流路9への距離のばらつきが少なくなって流体抵抗が均一になるような形状であれば、三角形状、または台形状以外の形状の先端部を設けるようにしてもよい。
【0074】
また、各実施の形態は可能な限り適宜組み合わせて実施してもよく、その場合には組み合わせた作用効果を得ることができる。
さらに、上記各実施の形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組み合わせにより、種々の発明を抽出することができる。
例えば、実施の形態に示される全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題(の少なくとも一つ)が解決でき、発明の効果の欄で述べられている効果(の少なくとも一つ)が得られる場合には、この構成要件が削除された構成を発明として抽出することができる。
【0075】
【発明の効果】
以上説明したように、本発明の複数ヘッダを持つ噴流方式発熱体冷却装置およびパワーエレクトロニクス装置によれば、それぞれの孔からの直交流が干渉して衝突領域に生じる熱伝達率の差が小さくなり、発熱体毎の冷却性能がばらつくことが少なくなり、発熱体に生じる応力の差を小さくすることが可能となる。
【図面の簡単な説明】
【図1】本発明による複数ヘッダを持つ噴流方式発熱体冷却装置の第1の実施の形態を示す断面図。
【図2】本発明による複数ヘッダを持つ噴流方式発熱体冷却装置の第2の実施の形態を示す断面図。
【図3】本発明による複数ヘッダを持つ噴流方式発熱体冷却装置の第3の実施の形態を示す断面図。
【図4】本発明による複数ヘッダを持つ噴流方式発熱体冷却装置の第4の実施の形態を示す断面図。
【図5】本発明による複数ヘッダを持つ噴流方式発熱体冷却装置の第5の実施の形態を示す断面図。
【図6】本発明による複数ヘッダを持つ噴流方式発熱体冷却装置の第6の実施の形態を示す断面図。
【図7】本発明による複数ヘッダを持つ噴流方式発熱体冷却装置の第7の実施の形態を示す断面図。
【図8】従来の複数ヘッダを持つ噴流方式発熱体冷却装置の構成例を示す断面図。
【符号の説明】
1…流入口
2…ヘッダ
2a…ヘッダ下流端
3…孔
4…ヒートシンク
5…発熱体
6…衝突面
7…衝突空間
8…下流側のヘッダ
9…流路
9a…支流路
9b…支流路
9c…支流路
9d…流路9の上流端
9e…ほぼ三角形状の先端部
9f…ほぼ台形状の先端部
9g…流路9の下流部分
10…流路9の入り口
11噴流冷却ユニット
12…ヒートシンク流出口
13…仕切り。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a jet-type heating element cooling device having a plurality of headers and a power electronic device including the same, which are used, for example, for cooling a power electronics device, and particularly to reduce a difference in stress generated in the heating element. TECHNICAL FIELD The present invention relates to a jet-type heating element cooling device having a plurality of headers and a power electronics device.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, for example, as one of cooling devices used for cooling power electronics devices, there is a jet-type heating element cooling device having a plurality of headers.
[0003]
This jet type heating element cooling device having a plurality of headers has a heating element disposed on the surface of a heat sink, and a plurality of holes for ejecting a cooling medium toward the heating element on the back surface of the heat sink, and a plurality of holes on an anti-heating element side. A header is provided, and a flow path for returning the cooling medium ejected from each hole to another header is provided.
[0004]
FIGS. 8A and 8B are cross-sectional views showing a configuration example of this type of conventional jet-type heating element cooling device having a plurality of headers.
[0005]
In FIG. 8, a cooling medium (hereinafter, also referred to as “fluid”) entering from the inlet 1 passes through the plurality of holes 3 from the header 2 and passes through the inner wall surfaces of the plurality of heating elements 5 disposed on the surface of the heat sink 4 (impact). Plane) 6.
[0006]
The fluid goes to the inlet 10 of the flow path 9 returning from the collision space 7 to another downstream header 8.
[0007]
After passing through the jet cooling unit 11 including the plurality of headers 2, 8, holes 3, and collision space 7, the heat is discharged from the heat sink outlet 12.
[0008]
The heat generated by the heating element 5 conducts heat to the heat sink 2 and transfers heat to the fluid that collides with the inner wall surface 6 of the heating element 5.
[0009]
The impinging jet shows a high heat transfer coefficient and cools the plurality of heating elements 5.
[0010]
[Problems to be solved by the invention]
By the way, as described above, the plurality of holes 3 for ejecting the cooling medium toward the heating element 5 are provided on the back surface of the heat sink 4, and the plurality of headers 2 and 8 are arranged on the side opposite to the heating element. In a heating element cooling device having a configuration in which a flow path 9 for returning a medium to another header 8 is arranged, a flow path 9 for returning to another header 8 from a plurality of points at which a fluid collides with the inner wall surface 6 of the heating element 5. There is a large difference in the distance to the entrance 10 of the vehicle.
[0011]
This difference in the distance affects the flow (hereinafter, referred to as cross flow) up to the entrance 10 of the flow path 9 returning to another header 8 after the fluid collides with the inner wall surface 6 of the heating element 5. .
[0012]
That is, the cross-flows from the holes 3 interfere with each other, causing a difference in the heat transfer coefficient in the collision area, and the cooling performance of each heating element 5 varies.
[0013]
When the cooling performance varies among a plurality of heating elements, there is a problem in that the stress generated in the heating element 5 also differs in magnitude.
[0014]
An object of the present invention is to reduce the difference in heat transfer coefficient generated in the collision area due to interference of cross flow from each hole, reduce the variation in cooling performance of each heating element, and reduce the difference in stress generated in the heating element. It is an object of the present invention to provide a jet-type heating element cooling device and a power electronics device having a plurality of headers capable of reducing the size.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, in the invention corresponding to claim 1, a heating element is arranged on a surface of a heat sink, and a plurality of holes for ejecting a cooling medium toward the heating element are provided on a back surface of the heat sink to provide repulsion. A plurality of headers are arranged on the heating element side, and a flow returning to another header is provided in a jet type heating element cooling device having a plurality of headers configured by arranging a flow path for returning the cooling medium ejected from each hole to another header. A branch channel is arranged in a direction substantially perpendicular to the flow direction from the channel returning to another header so that the shortest distance from the channel to each hole is substantially equal.
[0016]
Therefore, in the jet-type heating element cooling device having a plurality of headers according to the present invention, the flow returned to another header is set so that the shortest distance from the flow path returned to another header to each hole becomes substantially equal. By arranging the branch flow path in a direction substantially perpendicular to the flow direction from the path, the cross flow of the jet hitting the collision surface reaches the branch flow path of the flow path returning to another header, but the straight flow from other holes. The interference state received by the alternating current becomes almost equal for each hole, and the heat transfer coefficient in the collision area of each hole becomes uniform.
Thereby, the variation in the cooling performance for each heating element is reduced, so that the variation in the stress generated in the heating element can be reduced.
[0017]
In the invention corresponding to claim 2, a heating element is arranged on the surface of the heat sink, a plurality of holes for ejecting a cooling medium toward the heating element are provided on the back surface of the heat sink, and a plurality of headers are provided on the side opposite to the heating element. In a jet-type heating element cooling device having a plurality of headers arranged and provided with a flow path for returning the cooling medium ejected from each hole to another header, a partition is provided downstream of the header, and the header is separated from the header. The branch channel is arranged so as to be substantially perpendicular to the channel returned to another header.
[0018]
Therefore, in the jet-type heating element cooling device having a plurality of headers according to the second aspect of the present invention, a partition is provided downstream of the header, and the flow path returning from the header to another header is substantially perpendicular to the flow path. By arranging the branch channels so that the protrusions such as the branch channels in the header are eliminated, vortices are less likely to be formed, and the jet flow velocities from the respective holes are almost equal, and the heat transfer coefficient in the collision area is reduced. Become uniform.
Thereby, the variation in the cooling performance for each heating element is reduced, so that the variation in the stress generated in the heating element can be reduced.
[0019]
According to a third aspect of the present invention, in the jet-type heating element cooling apparatus having a plurality of headers according to the first aspect of the present invention, the header is returned to another header by separating a partition downstream of the header. The branch channel is arranged so as to be substantially perpendicular to the channel.
[0020]
Therefore, in the jet-type heating element cooling device having a plurality of headers according to the third aspect of the present invention, a partition is provided downstream of the header, and a direction substantially perpendicular to a flow path returning from the header to another header. By arranging the branch channels so that the number of holes in which the interference state received by the cross flow is almost equal for each hole is increased, as compared with the invention corresponding to claim 1, the heat in the collision area of each hole is increased. The transmissivity becomes more uniform.
Thereby, the variation in the cooling performance of each heating element is further reduced, so that the variation in the stress generated in the heating element can be further reduced.
[0021]
Furthermore, according to the invention corresponding to claim 4, in the jet-type heating element cooling apparatus having a plurality of headers according to the invention corresponding to claim 2, the header is provided on the downstream side of the partition in a direction substantially perpendicular to the flow direction. The branch channel extends further upstream from the tip of the branch channel.
[0022]
Therefore, in the jet-type heating element cooling device having a plurality of headers according to the invention according to claim 4, in the header, the sub-flow path substantially perpendicular to the flow direction, which is provided on the downstream side of the partition, from the front end to the upstream side of the flow. In addition, by extending the branch channel, the number of holes where the cross-current received by the cross flow is almost the same for each hole increases, the vortex does not easily form in the header, the jet flow velocity from each hole becomes almost equal, and the collision occurs. The region has a uniform heat transfer coefficient.
Thereby, the variation in the cooling performance for each heating element is reduced, so that the variation in the stress generated in the heating element can be reduced.
[0023]
On the other hand, in the invention corresponding to claim 5, a heating element is arranged on the surface of the heat sink, a plurality of holes for ejecting a cooling medium toward the heating element are provided on the back surface of the heat sink, and a plurality of headers are provided on the side opposite to the heating element. In a jet-type heating element cooling device having a plurality of headers arranged and provided with a flow path for returning the cooling medium ejected from each hole to another header, in the jet type heating element cooling device having a plurality of headers, the upstream end of the flow path for returning to another header from the header A substantially triangular tip is provided to enter toward the downstream end of the head.
[0024]
Therefore, in the jet-type heating element cooling device having a plurality of headers according to the fifth aspect of the present invention, a substantially triangular-shaped tip that enters from the upstream end of the flow path returning to another header from the header toward the downstream end of the head. By providing the portion, the variation in the distance to the flow path returning to another header is reduced, the fluid resistance becomes more uniform, and the jet flow velocity becomes more equal.
Thereby, the variation in the cooling performance of each heating element is further reduced, so that the variation in the stress generated in the heating element can be further reduced.
[0025]
In the invention corresponding to claim 6, a heating element is arranged on the surface of the heat sink, a plurality of holes for jetting a cooling medium toward the heating element are provided on the back surface of the heat sink, and a plurality of headers are provided on the side opposite to the heating element. In a jet-type heating element cooling device having a plurality of headers arranged and provided with a flow path for returning the cooling medium ejected from each hole to another header, in the jet type heating element cooling device having a plurality of headers, the upstream end of the flow path for returning to another header from the header A substantially trapezoidal tip portion is provided so as to enter toward the downstream end of the head.
[0026]
Therefore, in the jet-type heating element cooling device having a plurality of headers according to the invention according to claim 6, a substantially trapezoidal tip which enters the head downstream end from the upstream end of the flow path returning to another header from the header. By providing the portion, the fluid resistance when flowing into the flow path from the header to another header becomes smaller than that of the invention corresponding to claim 5, the flow rate increases, and the heat transfer coefficient at the collision point of each hole increases. Becomes larger.
Thereby, the variation in the cooling performance of each heating element is further reduced, so that the variation in the stress generated in the heating element can be further reduced.
[0027]
Further, in the invention corresponding to claim 7, a heating element is arranged on the surface of the heat sink, a plurality of holes for ejecting a cooling medium toward the heating element are provided on the back surface of the heat sink, and a plurality of headers are provided on the side opposite to the heating element. In a jet-type heating element cooling device having a plurality of headers arranged and provided with a flow path for returning a cooling medium ejected from each hole to another header, a downstream portion of the flow path leading to the header has a divergent shape. .
[0028]
Therefore, in the jet-type heating element cooling device having a plurality of headers according to the present invention, by forming the downstream portion of the flow path leading to the header to have a divergent shape, it is difficult for vortices to be generated in the header and each hole is formed. The jet flow velocity from the jet is also substantially equal, and the heat transfer coefficient in the collision area becomes uniform.
Thereby, the variation in the cooling performance for each heating element is reduced, so that the variation in the stress generated in the heating element can be reduced.
[0029]
On the other hand, a power electronics device according to an eighth aspect of the present invention includes the jet-type heating element cooling device having a plurality of headers according to the first aspect of the present invention.
[0030]
Therefore, in the power electronic device according to the invention according to claim 8, by providing the jet-type heating element cooling device having a plurality of headers according to any one of claims 1 to 7, heat is generated. Since the variation in the cooling performance for each body is reduced, the variation in the stress generated in the heating element can be reduced, and the power electronics device main body can be more effectively cooled.
[0031]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0032]
(First Embodiment)
FIGS. 1A and 1B are cross-sectional views showing a configuration example of a jet-type heating element cooling device having a plurality of headers according to the present embodiment. The same elements as those in FIG. I have.
[0033]
In FIG. 1, a heating element 5 is arranged on the surface of a heat sink 4.
[0034]
In addition, a plurality of holes 3 for ejecting a cooling medium toward the heating element 5 are provided on the back surface 6 of the heat sink 4.
[0035]
Further, a plurality of headers (2 and 8 in this example) are arranged on the side opposite to the heating element, and a flow path 9 for returning the cooling medium ejected from each hole 3 to another header 8 is arranged.
[0036]
A branch channel 9a is arranged in a direction substantially perpendicular to the flow direction from the flow path 9 returning to another header 8 so that the shortest distance from the flow path 9 returning to another header 8 to each hole 3 is substantially equal. are doing.
[0037]
Next, in the jet-type heating element cooling device having a plurality of headers according to the present embodiment configured as described above, the shortest distance from the flow path 9 returning to another header 8 to each of the holes 3 is substantially equal. By arranging the branch flow path 9a in a direction substantially perpendicular to the flow direction from the flow path 9 returning to another header 8, the jet colliding with the collision surface 6 then flows along the collision surface, Of the flow path 9 returning to the header 8, the interference state received by the cross flow from the other holes 3 becomes almost equal for each hole 3, and the heat transfer coefficient of the collision area of each hole 3 becomes one. Looks like.
[0038]
Thus, the variation in the cooling performance of each heating element 5 is reduced, so that the variation in the stress generated in the heating element 5 can be reduced.
[0039]
As described above, in the jet-type heating element cooling device having a plurality of headers according to the present embodiment, the difference in the heat transfer coefficient generated in the collision region due to the interference of the cross flow from each hole 3 is reduced, and the heating element 5 The variation in cooling performance of each heating element is reduced, and the difference in stress generated in the heating element 5 can be reduced.
[0040]
(Second embodiment)
2A and 2B are cross-sectional views showing a configuration example of a jet-type heating element cooling device having a plurality of headers according to the present embodiment. The same elements as those in FIG. Are omitted, and only different parts will be described here.
[0041]
In FIG. 2, a branch channel 9 b is arranged so as to be substantially perpendicular to a flow channel 9 returning from the header 2 to another downstream header 8 with a partition 13 provided downstream of the header 2. .
[0042]
Next, in the jet-type heating element cooling device having a plurality of headers according to the present embodiment configured as described above, the flow returning from the header 2 to another header 8 with a partition 13 downstream of the header 2. By arranging the branch passages 9b so as to be substantially perpendicular to the path 9, the protrusions such as the aforementioned branch passages 9a in the header 2 are eliminated. The jet flow velocity from the jet is also substantially equal, and the heat transfer coefficient in the collision area becomes uniform.
[0043]
Thus, the variation in the cooling performance of each heating element 5 is reduced, so that the variation in the stress generated in the heating element 5 can be reduced.
[0044]
As described above, in the jet-type heating element cooling device having a plurality of headers according to the present embodiment, the difference in the heat transfer coefficient generated in the collision region due to the interference of the cross flow from each hole 3 is reduced, and the heating element 5 The variation in cooling performance of each heating element is reduced, and the difference in stress generated in the heating element 5 can be reduced.
[0045]
(Third embodiment)
FIGS. 3A and 3B are cross-sectional views showing a configuration example of a jet-type heating element cooling device having a plurality of headers according to the present embodiment, and the same elements as those in FIG. Are omitted, and only different parts will be described here.
[0046]
In FIG. 3, a branch channel 9b is arranged so as to be substantially perpendicular to a flow channel 9 returning from the header 2 to another downstream header 8 with a partition 13 provided downstream of the header 2. .
[0047]
That is, in the jet-type heating element cooling device having a plurality of headers according to the first embodiment described above, the branch channel 9b of the jet-type heating element cooling device having a plurality of headers according to the second embodiment is arranged. And
[0048]
Next, in the jet-type heating element cooling device having a plurality of headers according to the present embodiment configured as described above, the flow returning from the header 2 to another header 8 with a partition 13 downstream of the header 2. By arranging the branch channel 9b so as to be substantially perpendicular to the path 9, the interference state received from the cross flow from the other holes 3 is almost equal to the first embodiment described above. The number of holes 3 increases, and the heat transfer coefficient in the collision area of each hole 3 becomes more uniform.
[0049]
Thereby, the variation in the cooling performance of each heating element 5 is further reduced, so that the variation in the stress generated in the heating element 5 can be further reduced.
[0050]
As described above, in the jet-type heating element cooling device having a plurality of headers according to the present embodiment, the difference in the heat transfer coefficient generated in the collision region due to the interference of the cross flow from each hole 3 is reduced, and the heating element 5 Variations in the cooling performance at each time are further reduced, and the difference in stress generated in the heating element 5 can be further reduced.
[0051]
(Fourth embodiment)
FIGS. 4A and 4B are cross-sectional views showing a configuration example of a jet-type heating element cooling device having a plurality of headers according to the present embodiment. The same elements as those in FIG. Are omitted, and only different parts will be described here.
[0052]
In FIG. 4, the branch channel 9b extends from the tip to the upstream side of the branch channel 9b in a direction substantially perpendicular to the flow provided on the downstream side of the partition 13 with the partition 13 therebetween.
[0053]
Next, in the jet-type heating element cooling device having a plurality of headers according to the present embodiment configured as described above, the flow from the front end of the branch passage 9b is provided in a direction substantially perpendicular to the flow provided on the downstream side of the partition 13. Since the branch channel 9c is further extended to the upstream side, the state of interference with the jet flow due to the cross flow from the other holes 3 becomes almost equal, and vortices are less likely to be formed in the header 2; The flow rates are also substantially equal, and the heat transfer coefficient in the collision area is uniform.
[0054]
Thus, the variation in the cooling performance of each heating element 5 is reduced, so that the variation in the stress generated in the heating element 5 can be reduced.
[0055]
As described above, in the jet-type heating element cooling device having a plurality of headers according to the present embodiment, the difference in the heat transfer coefficient generated in the collision region due to the interference of the cross flow from each hole 3 is reduced, and the heating element 5 The variation in cooling performance of each heating element is reduced, and the difference in stress generated in the heating element 5 can be reduced.
[0056]
(Fifth embodiment)
FIGS. 5A and 5B are cross-sectional views showing a configuration example of a jet-type heating element cooling device having a plurality of headers according to the present embodiment. The same elements as those in FIG. Are omitted, and only different parts will be described here.
[0057]
In FIG. 5, a substantially triangular tip portion 9e is provided so as to enter the header downstream end 2a from the upstream end 9d of the flow path 9 returning to the header 8 on the downstream side different from the header 2.
[0058]
Next, in the jet-type heating element cooling device having a plurality of headers according to the present embodiment configured as described above, the header downstream end from the upstream end 9d of the flow path 9 returning to the header 8 different from the header 2 on the downstream side. By providing the substantially triangular tip portion 9e that enters toward 2a, variation in the distance to the flow path 9 returning to another header 8 as in the conventional case is reduced, and the fluid resistance is made more uniform. And the jet flow velocity becomes even more equal.
[0059]
Thereby, the variation in the cooling performance of each heating element 5 is further reduced, so that the variation in the stress generated in the heating element 5 can be further reduced.
[0060]
As described above, in the jet-type heating element cooling device having a plurality of headers according to the present embodiment, the difference in the heat transfer coefficient generated in the collision region due to the interference of the cross flow from each hole 3 is reduced, and the heating element 5 Variations in the cooling performance at each time are further reduced, and the difference in stress generated in the heating element 5 can be further reduced.
[0061]
(Sixth embodiment)
FIGS. 6A and 6B are cross-sectional views showing a configuration example of a jet-type heating element cooling device having a plurality of headers according to the present embodiment, and the same elements as those in FIG. Are omitted, and only different parts will be described here.
[0062]
In FIG. 6, a substantially trapezoidal tip portion 9f is provided so as to enter the header downstream end 2a from the upstream end 9d of the flow path 9 returning to the header 8 on another downstream side from the header 2.
[0063]
Next, in the jet-type heating element cooling device having a plurality of headers according to the present embodiment configured as described above, the header downstream end from the upstream end 9d of the flow path 9 returning to the header 8 different from the header 2 on the downstream side. By providing the substantially trapezoidal tip portion 9f that enters toward 2a, variation in the distance to the flow path 9 to be returned to another header 8 is reduced as in the fifth embodiment described above. Thus, the fluid resistance becomes more uniform, and the jet flow velocity becomes more equal.
[0064]
Thereby, the variation in the cooling performance of each heating element 5 is further reduced, so that the variation in the stress generated in the heating element 5 can be further reduced.
[0065]
As described above, in the jet-type heating element cooling device having a plurality of headers according to the present embodiment, the difference in the heat transfer coefficient generated in the collision region due to the interference of the cross flow from each hole 3 is reduced, and the heating element 5 Variations in the cooling performance at each time are further reduced, and the difference in stress generated in the heating element 5 can be further reduced.
[0066]
(Seventh embodiment)
FIGS. 7A and 7B are cross-sectional views showing a configuration example of a jet-type heating element cooling device having a plurality of headers according to the present embodiment, and the same elements as those in FIGS. 8A and 8B have the same reference numerals. The description is omitted here, and only different parts will be described here.
[0067]
In FIG. 7, the downstream portion 9g of the flow path 9 reaching the headers 2 and 8 has a divergent shape.
[0068]
Next, in the jet-type heating element cooling device having a plurality of headers according to the present embodiment configured as described above, the downstream portion 9g of the flow path 9 reaching the headers 2 and 8 is formed to have a divergent shape. , 8 are hardly formed, the jet flow velocities from each hole 3 become almost equal, and the heat transfer coefficient in the collision area becomes uniform.
[0069]
Thus, the variation in the cooling performance of each heating element 5 is reduced, so that the variation in the stress generated in the heating element 5 can be reduced.
[0070]
As described above, in the jet-type heating element cooling device having a plurality of headers according to the present embodiment, the difference in the heat transfer coefficient generated in the collision region due to the interference of the cross flow from each hole 3 is reduced, and the heating element 5 The variation in cooling performance of each heating element is reduced, and the difference in stress generated in the heating element 5 can be reduced.
[0071]
(Eighth embodiment)
In the present embodiment, a power electronics device is provided with the jet-type heating element cooling device having any one of the plurality of headers of the above-described first to seventh embodiments.
[0072]
The power electronics device according to the present embodiment configured as described above includes the jet-type heating element cooling device having a plurality of headers according to any of the above-described first to seventh embodiments, thereby generating heat. Since the variation in the cooling performance of each body 5 is reduced, the variation in the stress generated in the heating element 5 can be reduced, and the power electronics device main body can be more effectively cooled.
[0073]
(Other embodiments)
It should be noted that the present invention is not limited to the above embodiments, and can be variously modified and implemented in an implementation stage without departing from the scope of the invention.
For example, in the fifth embodiment or the sixth embodiment described above, the flow path 9 for returning to the header 8 on the downstream side different from the header 2 is almost completely inserted from the upstream end 9d of the flow path 9 toward the header downstream end 2a. The case where the triangular tip portion 9e or the substantially trapezoidal tip portion 9f is provided has been described. However, the present invention is not limited to this, and the variation in the distance to the flow path 9 returning to another header 8 is reduced, and the fluid resistance is uniform. As long as the shape is such that, the tip portion may have a shape other than a triangular shape or a trapezoidal shape.
[0074]
In addition, the embodiments may be combined as appropriate as much as possible, and in that case, the combined effects can be obtained.
Furthermore, the above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent features.
For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiments, at least one of the problems described in the section of the problem to be solved by the invention can be solved, and the effects of the invention can be solved. In the case where (at least one of) the effects described in the section is obtained, a configuration from which this configuration requirement is deleted can be extracted as an invention.
[0075]
【The invention's effect】
As described above, according to the jet-type heating element cooling device and the power electronics device having a plurality of headers of the present invention, the difference in heat transfer coefficient generated in the collision area due to interference of the cross flow from each hole is reduced. In addition, the variation in cooling performance of each heating element is reduced, and the difference in stress generated in the heating element can be reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a first embodiment of a jet-type heating element cooling device having a plurality of headers according to the present invention.
FIG. 2 is a sectional view showing a jet-type heating element cooling device having a plurality of headers according to a second embodiment of the present invention.
FIG. 3 is a sectional view showing a third embodiment of a jet-type heating element cooling device having a plurality of headers according to the present invention.
FIG. 4 is a sectional view showing a fourth embodiment of a jet-type heating element cooling device having a plurality of headers according to the present invention.
FIG. 5 is a sectional view showing a fifth embodiment of a jet-type heating element cooling device having a plurality of headers according to the present invention.
FIG. 6 is a sectional view showing a jet-type heating element cooling device having a plurality of headers according to a sixth embodiment of the present invention.
FIG. 7 is a sectional view showing a jet-type heating element cooling device having a plurality of headers according to a seventh embodiment of the present invention.
FIG. 8 is a cross-sectional view showing a configuration example of a conventional jet-type heating element cooling device having a plurality of headers.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Inflow port 2 ... Header 2a ... Header downstream end 3 ... Hole 4 ... Heat sink 5 ... Heating element 6 ... Collision surface 7 ... Collision space 8 ... Downstream header 9 ... Channel 9a ... Branch channel 9b ... Branch channel 9c ... 9 d ··· upstream end 9e of flow passage 9 ··· approximately triangular tip 9f ··· substantially trapezoidal tip 9g · downstream portion 10 of flow passage 9 · entrance 11 of flow passage 9 · jet cooling unit 12 · heat sink outlet 13 ... partition.

Claims (8)

ヒートシンクの表面に発熱体を配置すると共に、前記ヒートシンクの裏面に前記発熱体に向けて冷却媒体を噴出する複数の孔を設け、
反発熱体側に複数のヘッダを配し、前記各孔から噴出した冷却媒体を別のヘッダに戻す流路を配して構成される複数ヘッダを持つ噴流方式発熱体冷却装置において、
前記別のヘッダに戻す流路から前記各孔までの最短距離がほぼ等しくなるように、前記別のヘッダに戻す流路から流れ方向に対してほぼ直角方向に支流路を配して成ることを特徴とする複数ヘッダを持つ噴流方式発熱体冷却装置。
A heating element is arranged on the surface of the heat sink, and a plurality of holes for ejecting a cooling medium toward the heating element are provided on the back surface of the heat sink,
A plurality of headers are arranged on the anti-heating element side, and a jet-type heating element cooling device having a plurality of headers configured by arranging a flow path for returning the cooling medium ejected from each hole to another header,
The flow path returned to the another header and the holes are arranged so that the shortest distances to the respective holes are substantially equal to each other. Jet-type heating element cooling device with multiple headers.
ヒートシンクの表面に発熱体を配置すると共に、前記ヒートシンクの裏面に前記発熱体に向けて冷却媒体を噴出する複数の孔を設け、
反発熱体側に複数のヘッダを配し、前記各孔から噴出した冷却媒体を別のヘッダに戻す流路を配して構成される複数ヘッダを持つ噴流方式発熱体冷却装置において、
前記ヘッダの下流側に仕切りを隔てて、当該ヘッダから前記別のヘッダに戻す流路に対してほぼ直角方向となるように支流路を配して成ることを特徴とする複数ヘッダを持つ噴流方式発熱体冷却装置。
A heating element is arranged on the surface of the heat sink, and a plurality of holes for ejecting a cooling medium toward the heating element are provided on the back surface of the heat sink,
A plurality of headers are arranged on the anti-heating element side, and a jet-type heating element cooling device having a plurality of headers configured by arranging a flow path for returning the cooling medium ejected from each hole to another header,
A jet flow method having a plurality of headers, wherein a partition is arranged downstream of the header, and a branch channel is arranged so as to be substantially perpendicular to a channel returning from the header to the another header. Heating element cooling device.
前記請求項1に記載の複数ヘッダを持つ噴流方式発熱体冷却装置において、
前記ヘッダの下流側に仕切りを隔てて、当該ヘッダから前記別のヘッダに戻す流路に対してほぼ直角方向となるように支流路を配して成ることを特徴とする複数ヘッダを持つ噴流方式発熱体冷却装置。
The jet-type heating element cooling device having a plurality of headers according to claim 1,
A jet flow method having a plurality of headers, wherein a partition is arranged downstream of the header, and a branch channel is arranged so as to be substantially perpendicular to a channel returning from the header to the another header. Heating element cooling device.
前記請求項2に記載の複数ヘッダを持つ噴流方式発熱体冷却装置において、
前記ヘッダの、仕切りを隔てた下流側に設けたほぼ流れ直角方向の支流路の、先端から流れ上流側にさらに支流路を伸ばしたことを特徴とする複数ヘッダを持つ噴流方式発熱体冷却装置。
The jet-type heating element cooling device having a plurality of headers according to claim 2,
A jet-type heating element cooling device having a plurality of headers, wherein a branch passage is further extended from a leading end to a flow upstream side of a branch passage in a direction substantially perpendicular to the flow provided on the downstream side of the partition with a partition therebetween.
ヒートシンクの表面に発熱体を配置すると共に、前記ヒートシンクの裏面に前記発熱体に向けて冷却媒体を噴出する複数の孔を設け、
反発熱体側に複数のヘッダを配し、前記各孔から噴出した冷却媒体を別のヘッダに戻す流路を配して構成される複数ヘッダを持つ噴流方式発熱体冷却装置において、
前記ヘッダより別のヘッダに戻す流路の上流端より前記ヘッド下流端に向けて入り込むようなほぼ三角形状の先端部を設けたことを特徴とする複数ヘッダを持つ噴流方式発熱体冷却装置。
A heating element is arranged on the surface of the heat sink, and a plurality of holes for ejecting a cooling medium toward the heating element are provided on the back surface of the heat sink,
A plurality of headers are arranged on the anti-heating element side, and a jet-type heating element cooling device having a plurality of headers configured by arranging a flow path for returning the cooling medium ejected from each hole to another header,
A jet-type heating element cooling device having a plurality of headers, wherein a substantially triangular tip portion is provided so as to enter from the upstream end of the flow path returning from the header to another header toward the downstream end of the head.
ヒートシンクの表面に発熱体を配置すると共に、前記ヒートシンクの裏面に前記発熱体に向けて冷却媒体を噴出する複数の孔を設け、
反発熱体側に複数のヘッダを配し、前記各孔から噴出した冷却媒体を別のヘッダに戻す流路を配して構成される複数ヘッダを持つ噴流方式発熱体冷却装置において、
前記ヘッダより別のヘッダに戻す流路の上流端より前記ヘッド下流端に向けて入り込むようなほぼ台形状の先端部を設けたことを特徴とする複数ヘッダを持つ噴流方式発熱体冷却装置。
A heating element is arranged on the surface of the heat sink, and a plurality of holes for ejecting a cooling medium toward the heating element are provided on the back surface of the heat sink,
A plurality of headers are arranged on the anti-heating element side, and a jet-type heating element cooling device having a plurality of headers configured by arranging a flow path for returning the cooling medium ejected from each hole to another header,
A jet-type heating element cooling device having a plurality of headers, wherein a substantially trapezoidal tip portion is provided so as to enter from the upstream end of the flow path returning from the header to another header toward the downstream end of the head.
ヒートシンクの表面に発熱体を配置すると共に、前記ヒートシンクの裏面に前記発熱体に向けて冷却媒体を噴出する複数の孔を設け、
反発熱体側に複数のヘッダを配し、前記各孔から噴出した冷却媒体を別のヘッダに戻す流路を配して構成される複数ヘッダを持つ噴流方式発熱体冷却装置において、
前記ヘッダに至る流路の下流部分を末広がり形状としたことを特徴とする複数ヘッダを持つ噴流方式発熱体冷却装置。
A heating element is arranged on the surface of the heat sink, and a plurality of holes for ejecting a cooling medium toward the heating element are provided on the back surface of the heat sink,
A plurality of headers are arranged on the anti-heating element side, and a jet-type heating element cooling device having a plurality of headers configured by arranging a flow path for returning the cooling medium ejected from each hole to another header,
A jet-type heating element cooling device having a plurality of headers, wherein a downstream portion of a flow path leading to the header has a divergent shape.
前記請求項1乃至請求項7のいずれか1項に記載の複数ヘッダを持つ噴流方式発熱体冷却装置を備えて成ることを特徴とするパワーエレクトロニクス装置。A power electronic device comprising the jet-type heating element cooling device having a plurality of headers according to any one of claims 1 to 7.
JP2002252500A 2002-08-30 2002-08-30 Jet-type heating element cooling device having multiple headers and power electronics device Expired - Fee Related JP4005878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002252500A JP4005878B2 (en) 2002-08-30 2002-08-30 Jet-type heating element cooling device having multiple headers and power electronics device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002252500A JP4005878B2 (en) 2002-08-30 2002-08-30 Jet-type heating element cooling device having multiple headers and power electronics device

Publications (2)

Publication Number Publication Date
JP2004095711A true JP2004095711A (en) 2004-03-25
JP4005878B2 JP4005878B2 (en) 2007-11-14

Family

ID=32058749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002252500A Expired - Fee Related JP4005878B2 (en) 2002-08-30 2002-08-30 Jet-type heating element cooling device having multiple headers and power electronics device

Country Status (1)

Country Link
JP (1) JP4005878B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007799A1 (en) * 2006-07-11 2008-01-17 Toyota Jidosha Kabushiki Kaisha Cooling device and vehicle with the same
JP2008501926A (en) * 2004-06-04 2008-01-24 クーリギー インコーポレイテッド Heat exchanger and cooling method
JP2012069916A (en) * 2010-07-19 2012-04-05 Toyota Motor Engineering & Manufacturing North America Inc Heat exchanger fluid distribution manifold and power electronics module incorporating the heat exchanger fluid distribution manifold
US9642287B2 (en) 2015-06-12 2017-05-02 Fujitsu Limited Cooling plate and data processing system provided with cooling plates
JP2017174991A (en) * 2016-03-24 2017-09-28 アイシン精機株式会社 Cooling device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008501926A (en) * 2004-06-04 2008-01-24 クーリギー インコーポレイテッド Heat exchanger and cooling method
WO2008007799A1 (en) * 2006-07-11 2008-01-17 Toyota Jidosha Kabushiki Kaisha Cooling device and vehicle with the same
US8251131B2 (en) 2006-07-11 2012-08-28 Toyota Jidosha Kabushiki Kaisha Injection cooling heat exchanger for vehicle electrical components
JP2012069916A (en) * 2010-07-19 2012-04-05 Toyota Motor Engineering & Manufacturing North America Inc Heat exchanger fluid distribution manifold and power electronics module incorporating the heat exchanger fluid distribution manifold
US9642287B2 (en) 2015-06-12 2017-05-02 Fujitsu Limited Cooling plate and data processing system provided with cooling plates
JP2017174991A (en) * 2016-03-24 2017-09-28 アイシン精機株式会社 Cooling device

Also Published As

Publication number Publication date
JP4005878B2 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
JP6526166B2 (en) Vane cooling structure
JP5343007B2 (en) Liquid cooling system
JP4147239B2 (en) Double jet film cooling structure
JP4954309B2 (en) Double jet film cooling structure
JP4087894B2 (en) Hand dryer
JP6924024B2 (en) Cooling circuit for multiple wall blades
JP2002237691A (en) Cooling for electrical-element
JP2017040256A (en) Turbo-engine component
JP5803963B2 (en) Cooler
JP4845912B2 (en) Liquid cooling system
JP2015076575A (en) Cooler
KR20090078748A (en) Liquid-cooled-type cooling device
JP5804741B2 (en) Turbine blade and impingement cooling structure
WO1998034013A1 (en) Gas turbine cooling stationary vane
JP5519589B2 (en) Cooling mechanism
US20050082035A1 (en) Heat dissipating apparatus
JP5078630B2 (en) Liquid cooling system
JP2004095711A (en) Jet stream type heating element cooling apparatus having multiple headers and power electronics device
JP2006214324A (en) Film-cooling blade
JP6162632B2 (en) Cooler
JP2002299871A (en) Heat sink assembly
JP2015149361A (en) cooler
JP2016211458A (en) Turbine blade
JP4000080B2 (en) Heating element cooling device and power electronics device having the same
JPH0693802A (en) Gas turbine stator vane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

A977 Report on retrieval

Effective date: 20070801

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070824

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110831

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20120831

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees