JP2004094144A - Method and apparatus for manufacturing semiconductor device - Google Patents

Method and apparatus for manufacturing semiconductor device Download PDF

Info

Publication number
JP2004094144A
JP2004094144A JP2002258543A JP2002258543A JP2004094144A JP 2004094144 A JP2004094144 A JP 2004094144A JP 2002258543 A JP2002258543 A JP 2002258543A JP 2002258543 A JP2002258543 A JP 2002258543A JP 2004094144 A JP2004094144 A JP 2004094144A
Authority
JP
Japan
Prior art keywords
shg element
semiconductor laser
shg
ultraviolet
adhesive resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002258543A
Other languages
Japanese (ja)
Inventor
Hiroto Osaki
大▲崎▼ 裕人
Koji Masui
増井 浩司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002258543A priority Critical patent/JP2004094144A/en
Publication of JP2004094144A publication Critical patent/JP2004094144A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem that, when an SHG element is wholly irradiated with UV light at a time to cure a UV curing resin, the SHG element is heated to an extremely high temperature by the heat of reaction to generate stress due to expansion and shrinkage in the SHG element while the adhesive resin is cured, and this causes misalignment in the positional relation of the optical axes of a waveguide and a semiconductor laser in the SHG element which are preliminarily aligned. <P>SOLUTION: In the method to precisely position, adhere and fix an optical element, heating of the SHG element to extremely high temperature is prevented: by carrying out two-step irradiation of UV rays, that is, the irradiation in the entrance end side and another irradiation in the exit side after the SHG element is positioned with respect to the semiconductor laser element; or by condensing the UV rays to narrow down the irradiation range and gradually moving the light spot from the entrance end to the exit end. Thus, the SHG element and the semiconductor laser can be adhered and fixed while keeping the aligned state without generating stress or distortion in the SHG element. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、赤外光または赤色光の特定の波長をもつ光の波長を半分に変換するSHG素子を、赤外光または赤色光を発光する波長可変な半導体レーザ素子に対して位置合わせして接着固定するための製造方法および製造装置に関するものである。
【0002】
【従来の技術】
SHG素子を波長可変な半導体レーザ素子に対して位置合わせして接着固定するための従来の製造方法について図を用いて説明する。図5(a)に示すように、予め半導体レーザ素子21を固着させた基板22を例えば真空吸着等の方法によりステージ23上に把持し、図5(b)に示すように、該基板22上のSHG素子が搭載される部分の一箇所または複数箇所に紫外線硬化型の接着樹脂24,25を塗布するとともに、半導体レーザ素子21の利得電極26に給電用プローブ針29を接触させる。波長可変な半導体レーザ素子21には、レーザ光を発光させるための利得電極26と発光波長を制御するための位相電極27とDBR電極28という3つの電極があるが、ここでは利得電極26のみを利用する。一方、図5(c)に示すように、SHG素子30の上面の面積よりも小さい接触面積をもつコレット31で真空吸着によりSHG素子30を把持しながら基板22の近傍へもってくる。尚、該コレット31は3次元的に位置変化し得る機構に連結されている。次に図6(d)に示すように、半導体レーザ素子21の利得電極26へ給電して半導体レーザ素子21からレーザ光32を発光させ、該レーザ光32がSHG素子30の内部にある導波路と呼ばれる光の通り道の中へ最大限入る様に、コレット31を動かすことでSHG素子30の位置を合わせる。ただし、このとき発光するレーザ光32の波長はSHG素子30の波長変換作用が起こらない波長である。SHG素子30の位置合わせが完了すると、図6(e)に示すように、半導体レーザ素子21とSHG素子30の相対的位置関係を保持したまま、外部より紫外線照射ユニット33にて紫外線を接着樹脂24,25に向けて照射する。SHG素子30は透明で紫外線を透過するため、SHG素子30の上方から紫外線を照射してもSHG素子30と基板22との間にある接着樹脂24,25まで紫外線は到達する。所定時間の該紫外線照射により接着樹脂24,25が硬化しSHG素子30が基板に固定され、SHG素子30の半導体レーザ素子21に対する位置合わせ接着固定が完了する。
【0003】
【発明が解決しようとする課題】
しかしながら、紫外線硬化型の樹脂を硬化させるために、SHG素子全体へ同時に紫外線光を照射すると、その熱によりSHG素子自身が著しく高温になり、接着樹脂が硬化する過程でSHG素子の内部に膨張収縮により応力が生じ、せっかく合わせたSHG素子の内部にある導波路と半導体レーザの光軸の位置関係がズレてしまうという課題があった。
【0004】
【課題を解決するための手段】
本発明の光素子を精密位置決め接着固定するための製造方法は、SHG素子を半導体レーザ素子に対して位置合わせした後に、紫外線照射を入射端側と出射端側の2回に分ける、または紫外線を集光して照射範囲を狭くして入射端から出射端へ徐々に移動させることで、SHG素子が著しく高温になることを回避することにより、SHG素子内部に応力や歪みが発生せず、SHG素子と半導体レーザの位置調整した関係を保った状態で接着固定することができる。また、本発明の光素子を精密位置決め接着固定するための製造装置は、2つの紫外線照射ユニットを備えて照射を入射端側と出射端側に分けることで照射に時間差をつけることができる、または1つの紫外線照射ユニットを入射端側から出射端側へ徐々に移動させながら照射するので、少量の紫外線照射で接着樹脂を硬化させることができる。
【0005】
【発明の実施の形態】
以下、本発明の実施の形態について図面を用いて説明する。
【0006】
図1、図2に、本発明の実施の形態による光素子位置決め接着固定製造装置による製造方法の第1の実施の形態を示す。図1(a)に示すように、予め半導体レーザ素子1を固着させた基板2を例えば真空吸着等の方法によりステージ3上に把持し、図1(b)に示すように、該基板2上のSHG素子が搭載される部分のうち、SHG素子の入射端付近に紫外線硬化型の接着樹脂4および出射端付近に同じく紫外線硬化型の接着樹脂5を塗布するとともに、半導体レーザ素子1の利得電極6に給電用プローブ針9を接触させる。波長可変な半導体レーザ素子1には、レーザ光を発光させるための利得電極6と発光波長を制御するための位相電極7とDBR電極8という3つの電極があるが、ここでは利得電極6のみを利用する。一方、図1(c)に示すように、SHG素子10の上面の面積よりも小さい接触面積をもつコレット11で真空吸着によりSHG素子10を把持しながら基板2の近傍へもってくる。尚、該コレット11は3次元的に位置変化し得る機構に連結されている。次に図2(d)に示すように、半導体レーザ素子1の利得電極6へ給電して半導体レーザ素子1からレーザ光12を発光させ、該レーザ光12がSHG素子10の内部にある導波路と呼ばれる光の通り道の中へ最大限入る様に、コレット11を動かすことでSHG素子10の位置を合わせる。ただし、このとき発光するレーザ光12の波長はSHG素子10の波長変換作用が起こらない波長である。SHG素子10の位置合わせが完了すると、図2(e)に示すように、半導体レーザ素子1とSHG素子10の相対的位置関係を保持したままで外部よりまず紫外線照射ユニット13Aにて紫外線を接着樹脂4の付近に限定して所定時間の照射をする。このとき紫外線SHG素子10は透明で紫外線を透過するため、SHG素子10の上方から紫外線を照射してもSHG素子10と基板2との間にある接着樹脂4まで紫外線は到達する。所定時間の該紫外線照射により接着樹脂4が硬化しSHG素子が基板に固定され、SHG素子の入射端側の半導体レーザ素子に対する位置合わせ接着固定が完了する。次に図2(f)に示すように、コレット11はSHG素子10の真空吸着を解除してSHG素子から離脱したのち、外部より紫外線照射ユニット13Bにて紫外線を接着樹脂5の付近に限定して所定時間照射を行なうことにより、接着樹脂5が硬化しSHG素子が基板に固定される。以上2回の紫外線照射によりSHG素子10の半導体レーザ素子1に対する位置合わせ接着固定が完了する。
【0007】
図3、図4に、本発明の実施の形態による光素子位置決め接着固定製造装置による製造方法の第2の実施の形態を示す。図3(a)に示すように、予め半導体レーザ素子1を固着させた基板2を例えば真空吸着等の方法によりステージ3上に把持し、図3(b)に示すように、該基板2上のSHG素子が搭載される部分に紫外線硬化型の接着樹脂4を塗布するとともに、半導体レーザ素子1の利得電極6に給電用プローブ針9を接触させる。紫外線硬化型の接着剤塗布方法については、入射端側から出射端側へ複数箇所を順次塗布していく方法やラインで塗布していく方法でも、その逆方向、すなわち出射端側から入射端側へ複数箇所を順次塗布していく方法やラインで塗布していく方法でも構わない。また波長可変な半導体レーザ素子1には、レーザ光を発光させるための利得電極6と発光波長を制御するための位相電極7とDBR電極8という3つの電極があるが、ここでは利得電極6のみを利用する。一方、図3(c)に示すように、SHG素子10の上面の面積よりも小さい接触面積をもつコレット11で真空吸着によりSHG素子10を把持しながら基板2の近傍へもってくる。尚、該コレット11は3次元的に位置変化し得る機構に連結されている。次に図4(d)に示すように、半導体レーザ素子1の利得電極6へ給電して半導体レーザ素子1からレーザ光12を発光させ、該レーザ光12がSHG素子10の内部にある導波路と呼ばれる光の通り道の中へ最大限入る様に、コレット11を動かすことでSHG素子10の位置を合わせる。ただし、このとき発光するレーザ光12の波長はSHG素子10の波長変換作用が起こらない波長である。SHG素子10の位置合わせが完了すると、図4(e)に示すように、半導体レーザ素子1とSHG素子10の相対的位置関係を保持したままで外部より紫外線照射ユニット13にて紫外線を接着樹脂4に向けて照射する。この紫外線照射ユニット13はSHG素子の長手方向に沿って移動可能な機構を有しており、移動速度や移動距離を予め設定プログラミングしておくことができる。すなわち、紫外線照射ユニット13は紫外線を照射しながら、予め設定された速度と距離をSHG素子10の長手方向に沿って移動しながら接着樹脂4を硬化して、SHG素子10が基板2に固定されることでSHG素子10の半導体レーザ素子1に対する位置合わせ接着固定が完了する。
【0008】
【発明の効果】
本発明の第1の実施の形態によれば、照射範囲を狭めることができ、なおかつ2つの紫外線照射ユニットの紫外線照射のタイミングを意図的に変えることで、SHG素子の入射側の接着樹脂を硬化させた後に、出射側の接着樹脂を硬化させるといった硬化に時差を設けることができる。よってSHG素子の著しい温度上昇を抑えることができ、その結果、応力が発生せず、歪み発生のないSHG素子の接着固定を実現することができる。
【0009】
本発明の第2の実施の形態によれば、照射範囲を狭めることができ、なおかつ1つの紫外線照射ユニットをSHG素子に沿って入射端から出射端へ移動させながら照射することで、SHG素子の入射側の接着樹脂から順次硬化させていくことができる。よってSHG素子の急激な温度上昇を抑えることができ、その結果、応力が発生せず、歪み発生のないSHG素子の接着固定を実現することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態における光素子接着固定方法を示す図
【図2】本発明の第1の実施の形態における光素子接着固定方法を示す図
【図3】本発明の第2の実施の形態における光素子接着固定方法を示す図
【図4】本発明の第2の実施の形態における光素子接着固定方法を示す図
【図5】従来の光素子接着固定方法を示す図
【図6】従来の光素子接着固定方法を示す図
【符号の説明】
1 半導体レーザ素子
2 基板
3 ステージ
4 接着樹脂
5 接着樹脂
6 利得電極
7 位相電極
8 DBR電極
9 給電用プローブ針
10 SHG素子
11 コレット
12 レーザ光
13 紫外線照射ユニット
21 半導体レーザ素子
22 基板
23 ステージ
24 接着樹脂
25 接着樹脂
26 利得電極
27 位相電極
28 DBR電極
29 給電用プローブ針
30 SHG素子
31 コレット
32 レーザ光
33 紫外線照射ユニット
[0001]
TECHNICAL FIELD OF THE INVENTION
According to the present invention, an SHG element that converts the wavelength of light having a specific wavelength of infrared light or red light into half is aligned with a wavelength-variable semiconductor laser element that emits infrared light or red light. The present invention relates to a manufacturing method and a manufacturing apparatus for bonding and fixing.
[0002]
[Prior art]
A conventional manufacturing method for positioning and bonding and fixing an SHG element to a wavelength-variable semiconductor laser element will be described with reference to the drawings. As shown in FIG. 5A, a substrate 22 on which a semiconductor laser element 21 is fixed in advance is gripped on a stage 23 by, for example, a method such as vacuum suction, and as shown in FIG. UV-curable adhesive resins 24 and 25 are applied to one or more locations where the SHG element is mounted, and the power supply probe needle 29 is brought into contact with the gain electrode 26 of the semiconductor laser element 21. The wavelength-tunable semiconductor laser element 21 has three electrodes: a gain electrode 26 for emitting laser light, a phase electrode 27 for controlling the emission wavelength, and a DBR electrode 28. Here, only the gain electrode 26 is used. Use. On the other hand, as shown in FIG. 5C, the collet 31 having a contact area smaller than the area of the upper surface of the SHG element 30 is brought into the vicinity of the substrate 22 while holding the SHG element 30 by vacuum suction. The collet 31 is connected to a mechanism that can change its position three-dimensionally. Next, as shown in FIG. 6D, power is supplied to the gain electrode 26 of the semiconductor laser device 21 to cause the semiconductor laser device 21 to emit a laser beam 32, and the laser beam 32 is emitted from the waveguide inside the SHG device 30. The position of the SHG element 30 is adjusted by moving the collet 31 so that the collet 31 enters the path of the light called "maximum". However, the wavelength of the laser light 32 emitted at this time is a wavelength at which the wavelength conversion operation of the SHG element 30 does not occur. When the positioning of the SHG element 30 is completed, as shown in FIG. 6 (e), the ultraviolet ray is irradiated from the outside by an ultraviolet irradiation unit 33 with an adhesive resin while maintaining the relative positional relationship between the semiconductor laser element 21 and the SHG element 30. Irradiate toward 24, 25. Since the SHG element 30 is transparent and transmits ultraviolet rays, the ultraviolet rays reach the adhesive resins 24 and 25 between the SHG element 30 and the substrate 22 even when the ultraviolet rays are irradiated from above the SHG element 30. The irradiation of the ultraviolet rays for a predetermined time cures the adhesive resins 24 and 25, fixes the SHG element 30 to the substrate, and completes the positioning and adhesive fixing of the SHG element 30 to the semiconductor laser element 21.
[0003]
[Problems to be solved by the invention]
However, when simultaneously irradiating the entire SHG element with ultraviolet light to cure the ultraviolet-curable resin, the heat causes the SHG element itself to become extremely hot, and expands and contracts inside the SHG element during the curing of the adhesive resin. As a result, there is a problem that the positional relationship between the optical axis of the semiconductor laser and the waveguide inside the SHG element that has been adjusted is misaligned.
[0004]
[Means for Solving the Problems]
In the manufacturing method for precisely positioning and fixing the optical element of the present invention, after aligning the SHG element with the semiconductor laser element, ultraviolet irradiation is divided into two parts, an incident end side and an outgoing end side, or ultraviolet rays are emitted. By condensing and narrowing the irradiation range and gradually moving from the input end to the output end, it is possible to prevent the SHG element from becoming extremely hot, so that stress and distortion do not occur inside the SHG element and SHG It is possible to bond and fix the element and the semiconductor laser while maintaining the adjusted position. In addition, the manufacturing apparatus for precisely positioning and fixing the optical element of the present invention includes two ultraviolet irradiation units to divide irradiation into an incident end side and an outgoing end side so that a time difference can be given to irradiation, or Since the irradiation is performed while one ultraviolet irradiation unit is gradually moved from the incident end side to the emission end side, the adhesive resin can be cured with a small amount of ultraviolet irradiation.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0006]
1 and 2 show a first embodiment of a manufacturing method using an optical element positioning adhesive fixing manufacturing apparatus according to an embodiment of the present invention. As shown in FIG. 1A, a substrate 2 to which a semiconductor laser element 1 is fixed in advance is gripped on a stage 3 by, for example, a method such as vacuum suction, and then, as shown in FIG. In the portion where the SHG element is mounted, the UV-curable adhesive resin 4 is applied near the incident end of the SHG element and the UV-curable adhesive resin 5 is similarly applied near the output end of the SHG element. 6 is brought into contact with the power supply probe needle 9. The wavelength-tunable semiconductor laser device 1 has three electrodes, namely, a gain electrode 6 for emitting laser light, a phase electrode 7 for controlling the emission wavelength, and a DBR electrode 8. Here, only the gain electrode 6 is used. Use. On the other hand, as shown in FIG. 1C, the collet 11 having a contact area smaller than the area of the upper surface of the SHG element 10 is brought into the vicinity of the substrate 2 while holding the SHG element 10 by vacuum suction. The collet 11 is connected to a mechanism that can change its position three-dimensionally. Next, as shown in FIG. 2D, power is supplied to the gain electrode 6 of the semiconductor laser device 1 to cause the semiconductor laser device 1 to emit a laser beam 12, and the laser beam 12 is emitted from the waveguide inside the SHG device 10. The position of the SHG element 10 is adjusted by moving the collet 11 so as to enter the path of the light called “maximum”. However, the wavelength of the laser light 12 emitted at this time is a wavelength at which the wavelength conversion action of the SHG element 10 does not occur. When the alignment of the SHG element 10 is completed, as shown in FIG. 2E, ultraviolet rays are first adhered from the outside by the ultraviolet irradiation unit 13A while maintaining the relative positional relationship between the semiconductor laser element 1 and the SHG element 10. Irradiation is performed for a predetermined time only in the vicinity of the resin 4. At this time, since the ultraviolet ray SHG element 10 is transparent and transmits ultraviolet ray, the ultraviolet ray reaches the adhesive resin 4 between the SHG element 10 and the substrate 2 even if the ultraviolet ray is irradiated from above the SHG element 10. The adhesive resin 4 is cured by the irradiation of the ultraviolet light for a predetermined time, and the SHG element is fixed to the substrate, thereby completing the alignment bonding and fixing of the SHG element to the semiconductor laser element on the incident end side. Next, as shown in FIG. 2F, the collet 11 releases the vacuum suction of the SHG element 10 and separates from the SHG element, and then limits the ultraviolet rays to the vicinity of the adhesive resin 5 from outside using an ultraviolet irradiation unit 13B. By performing irradiation for a predetermined time, the adhesive resin 5 is cured and the SHG element is fixed to the substrate. By the above two irradiations of the ultraviolet rays, the positioning and bonding of the SHG element 10 to the semiconductor laser element 1 are completed.
[0007]
3 and 4 show a second embodiment of the manufacturing method using the optical element positioning adhesive fixing manufacturing apparatus according to the embodiment of the present invention. As shown in FIG. 3A, a substrate 2 on which a semiconductor laser element 1 is fixed in advance is held on a stage 3 by, for example, a method such as vacuum suction or the like, and as shown in FIG. The UV curable adhesive resin 4 is applied to the portion where the SHG element is mounted, and the power supply probe needle 9 is brought into contact with the gain electrode 6 of the semiconductor laser element 1. Regarding the method of applying the UV-curable adhesive, a method of sequentially applying a plurality of portions from the incident end side to the emission end side or a method of applying in a line is also the opposite direction, that is, from the emission end side to the incidence end side. A method in which a plurality of portions are sequentially applied or a method in which application is performed in a line may be employed. The wavelength-tunable semiconductor laser device 1 has three electrodes: a gain electrode 6 for emitting laser light, a phase electrode 7 for controlling the emission wavelength, and a DBR electrode 8. Use On the other hand, as shown in FIG. 3C, the collet 11 having a contact area smaller than the area of the upper surface of the SHG element 10 is brought near the substrate 2 while holding the SHG element 10 by vacuum suction. The collet 11 is connected to a mechanism that can change its position three-dimensionally. Next, as shown in FIG. 4D, power is supplied to the gain electrode 6 of the semiconductor laser device 1 to cause the semiconductor laser device 1 to emit a laser beam 12, and the laser beam 12 is emitted from the waveguide inside the SHG device 10. The position of the SHG element 10 is adjusted by moving the collet 11 so as to enter the path of the light called “maximum”. However, the wavelength of the laser light 12 emitted at this time is a wavelength at which the wavelength conversion action of the SHG element 10 does not occur. When the alignment of the SHG element 10 is completed, as shown in FIG. 4 (e), ultraviolet rays are applied from the outside by the ultraviolet irradiation unit 13 while maintaining the relative positional relationship between the semiconductor laser element 1 and the SHG element 10. Irradiate toward 4. The ultraviolet irradiation unit 13 has a mechanism capable of moving along the longitudinal direction of the SHG element, and the moving speed and the moving distance can be set and programmed in advance. That is, the ultraviolet irradiation unit 13 cures the adhesive resin 4 while irradiating ultraviolet rays at a preset speed and distance along the longitudinal direction of the SHG element 10, and the SHG element 10 is fixed to the substrate 2. Thus, the positioning and bonding of the SHG element 10 to the semiconductor laser element 1 are completed.
[0008]
【The invention's effect】
According to the first embodiment of the present invention, the irradiation range can be narrowed and the adhesive resin on the incident side of the SHG element is cured by intentionally changing the ultraviolet irradiation timing of the two ultraviolet irradiation units. After that, it is possible to provide a time difference in curing such as curing the adhesive resin on the emission side. Therefore, a remarkable rise in temperature of the SHG element can be suppressed, and as a result, the SHG element can be bonded and fixed without generating stress and without distortion.
[0009]
According to the second embodiment of the present invention, the irradiation range can be narrowed, and the irradiation is performed while moving one ultraviolet irradiation unit from the input end to the output end along the SHG element, whereby the SHG element It can be cured sequentially from the adhesive resin on the incident side. Therefore, a sharp rise in temperature of the SHG element can be suppressed, and as a result, the SHG element can be bonded and fixed without generating stress and without distortion.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an optical element bonding and fixing method according to a first embodiment of the present invention; FIG. 2 is a diagram illustrating an optical element bonding and fixing method according to a first embodiment of the present invention; FIG. 4 is a view showing an optical element bonding and fixing method according to a second embodiment of the present invention. FIG. 4 is a view showing an optical element bonding and fixing method according to a second embodiment of the present invention. FIG. 6 shows a conventional method for bonding and fixing an optical element.
DESCRIPTION OF SYMBOLS 1 Semiconductor laser element 2 Substrate 3 Stage 4 Adhesive resin 5 Adhesive resin 6 Gain electrode 7 Phase electrode 8 DBR electrode 9 Power supply probe needle 10 SHG element 11 Collet 12 Laser beam 13 Ultraviolet irradiation unit 21 Semiconductor laser element 22 Substrate 23 Stage 24 Adhesion Resin 25 Adhesive resin 26 Gain electrode 27 Phase electrode 28 DBR electrode 29 Power supply probe needle 30 SHG element 31 Collet 32 Laser beam 33 Ultraviolet irradiation unit

Claims (4)

レーザ波長を半分に変換するための光素子(以下SHG素子と呼ぶ)を赤外光または赤色光を発光する半導体レーザ素子に対して位置合わせして接着固定する製造工程において、接着固定するための接着剤として紫外線硬化型の樹脂を用い、半導体レーザ素子とSHG素子との位置合わせを行なった後に、SHG素子の入射端側に塗布された接着樹脂の硬化と出射端側に塗布された接着樹脂の硬化に時差を設けてSHG素子を接着固定することを特徴とする半導体装置の製造方法。In a manufacturing process in which an optical element (hereinafter, referred to as an SHG element) for converting a laser wavelength to a half is aligned and fixed with respect to a semiconductor laser element that emits infrared light or red light, a bonding process is performed. An ultraviolet-curable resin is used as an adhesive, and after the semiconductor laser element and the SHG element are aligned, the adhesive resin applied to the incident end side of the SHG element is cured and the adhesive resin applied to the output end side A method of manufacturing a semiconductor device, characterized in that an SHG element is bonded and fixed with a time difference in curing of the semiconductor device. 半導体レーザ素子およびSHG素子をそれぞれ把持できる機構と、半導体レーザ素子とSHG素子との3次元的な相対的位置を微小に変化させ得る機構と、半導体レーザ素子からレーザ光を発生させるための電気的回路と、紫外線硬化樹脂を塗布する装置と、SHG素子の入射端側に塗布された接着樹脂を硬化させる紫外線照射ユニットと出射端側に塗布された接着樹脂を硬化させる紫外線照射ユニットの2つの紫外線照射ユニットを備えることにより、上記請求項1に記載の光素子位置合わせ接着を実施し得ることを特徴とする半導体装置の製造装置。A mechanism capable of holding the semiconductor laser element and the SHG element, a mechanism capable of minutely changing the three-dimensional relative position between the semiconductor laser element and the SHG element, and an electrical mechanism for generating laser light from the semiconductor laser element. A circuit, an apparatus for applying an ultraviolet curing resin, and an ultraviolet irradiation unit for curing the adhesive resin applied to the incident end side of the SHG element and an ultraviolet irradiation unit for curing the adhesive resin applied to the emission end side of the SHG element. 2. An apparatus for manufacturing a semiconductor device, comprising the irradiation unit, wherein the optical element alignment bonding according to claim 1 can be performed. レーザ波長を半分に変換するための光素子を赤外光または赤色光を発光する半導体レーザ素子に対して位置合わせして接着固定する製造工程において、接着固定するための接着剤として紫外線硬化型の樹脂を用い、半導体レーザ素子とSHG素子との位置合わせを行なった後に、照射範囲を絞った紫外線を入射端から出射端へ移動しながら塗布された接着樹脂を硬化することでSHG素子を接着固定することを特徴とする半導体装置の製造方法。In the manufacturing process of aligning and fixing the optical element for converting the laser wavelength in half to the semiconductor laser element that emits infrared light or red light, an ultraviolet-curable adhesive is used as an adhesive for bonding and fixing. After aligning the semiconductor laser element and SHG element using resin, the SHG element is bonded and fixed by curing the applied adhesive resin while moving ultraviolet rays with a narrower irradiation range from the input end to the output end. A method of manufacturing a semiconductor device. 半導体レーザ素子およびSHG素子をそれぞれ把持できる機構と、半導体レーザ素子とSHG素子との3次元的な相対的位置を微小に変化させ得る機構と、半導体レーザ素子からレーザ光を発生させるための電気的回路と、紫外線硬化樹脂を塗布する装置と、照射範囲を絞った紫外線照射ユニットを備え、該紫外線照射ユニットがSHG素子に沿って移動可能な機構であることを特徴とする上記請求項3記載の光素子位置合わせ接着を実施し得ることを特徴とする半導体装置の製造装置。A mechanism capable of holding the semiconductor laser element and the SHG element, a mechanism capable of minutely changing the three-dimensional relative position between the semiconductor laser element and the SHG element, and an electrical mechanism for generating laser light from the semiconductor laser element. 4. The circuit according to claim 3, further comprising a circuit, an apparatus for applying an ultraviolet curing resin, and an ultraviolet irradiation unit having a narrow irradiation range, wherein the ultraviolet irradiation unit is a mechanism movable along the SHG element. An apparatus for manufacturing a semiconductor device, capable of performing optical element alignment bonding.
JP2002258543A 2002-09-04 2002-09-04 Method and apparatus for manufacturing semiconductor device Pending JP2004094144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002258543A JP2004094144A (en) 2002-09-04 2002-09-04 Method and apparatus for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002258543A JP2004094144A (en) 2002-09-04 2002-09-04 Method and apparatus for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2004094144A true JP2004094144A (en) 2004-03-25

Family

ID=32063130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002258543A Pending JP2004094144A (en) 2002-09-04 2002-09-04 Method and apparatus for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2004094144A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170280829A1 (en) * 2014-04-09 2017-10-05 Nike, Inc. Selectively applied particulate on nonmetallic substrates
US10702011B2 (en) 2014-04-09 2020-07-07 Nike, Inc. Selectively applied adhesive particulate on nonmetallic substrates

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170280829A1 (en) * 2014-04-09 2017-10-05 Nike, Inc. Selectively applied particulate on nonmetallic substrates
US10702011B2 (en) 2014-04-09 2020-07-07 Nike, Inc. Selectively applied adhesive particulate on nonmetallic substrates

Similar Documents

Publication Publication Date Title
JP4773729B2 (en) Transfer apparatus and device manufacturing method
US20090090468A1 (en) Flip-chip mounting apparatus
US20140000804A1 (en) Fixing technology for component attach
JP2004235465A (en) Bonding method, bonding device and sealant
JP3355122B2 (en) Optical module sealing method
US8748850B2 (en) Energy application device and energy application method
US6582548B1 (en) Compression bonding method using laser assisted heating
JP2005177859A (en) Method and apparatus for simultaneously heating materials
KR101703561B1 (en) Solder reflow equipment
JP2009224394A (en) Jointing apparatus and jointing method
JP2004094144A (en) Method and apparatus for manufacturing semiconductor device
JP2009088321A (en) Bonding device
KR101960267B1 (en) method for film desquamation for bending of flexible display
JP2008161749A (en) Resin curing apparatus
JP2004323666A (en) Bonding method, boding device and part bonding apparatus using the boding device
JP2004126533A (en) Method for adjusting optical axis direction of lens
KR102643109B1 (en) Ultraviolet curing apparatus, bending protect layer forming system and method for ultraviolet curing
US20230332021A1 (en) Method for producing an adhesive connection
JPH09296155A (en) Bonding device
NL2030087B1 (en) Method and device for temperature-controlled bonding of substrates with electromagnetic irradiation
JP2004087774A (en) Method for assembling lens in semiconductor laser
JP2023144225A (en) Transfer device and transfer method
KR20070038366A (en) Stack die bonding apparatus and methods of bonding using the same
JPH1114859A (en) Method for connecting optical waveguide and optical fiber
JPH11295550A (en) Assembly method for optical component, optical component connection method and optical component clamping chuck

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050127

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070828