JP2004094070A - Optical path converting parts and optical surface mounted waveguide using the parts - Google Patents

Optical path converting parts and optical surface mounted waveguide using the parts Download PDF

Info

Publication number
JP2004094070A
JP2004094070A JP2002257383A JP2002257383A JP2004094070A JP 2004094070 A JP2004094070 A JP 2004094070A JP 2002257383 A JP2002257383 A JP 2002257383A JP 2002257383 A JP2002257383 A JP 2002257383A JP 2004094070 A JP2004094070 A JP 2004094070A
Authority
JP
Japan
Prior art keywords
optical
optical path
core
path conversion
conversion component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002257383A
Other languages
Japanese (ja)
Inventor
Atsushi Sasaki
佐々木 淳
Mamoru Ishizaki
石崎 守
Taketo Tsukamoto
塚本 健人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2002257383A priority Critical patent/JP2004094070A/en
Publication of JP2004094070A publication Critical patent/JP2004094070A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide optical path converting parts, in which high density packaging and reduction in the size are achieved, packaging of an optoelectronic element is easily conducted with low coupling loss and reliability is made high, and to provide an optical surface mounted waveguide using the parts. <P>SOLUTION: A core 3 of the transmission path of the optical path converting part has a light beam incident port 5, a light emitting port 6 and a reflection surface 4. The portions excluding the ports 5 and 6 and the surface 4 are covered by clad 2 having a refractive index lower than that of the core 3. An optical path of light beams is converted to have a prescribed angle using reflection at the surface 4. The refractive indexes of the core of the transmission path and the clad are matched with the refractive indexes of the core of the optical wavegudie and the clad. Hole spaces 47 are formed at prescribed positions of the optical waveguide, the optical path converting part is buried and an optoelectronic element is packaged on the top section. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、光を利用して信号を伝送する交換装置、通信装置、及び情報処理装置等に用いられる光表面実装導波路に関するものであり、特に、光導波路の表面に光電素子を実装するのに有用な光路変換部品、及びそれを用いた光表面実装導波路に関する。
【0002】
【従来の技術】
近年、情報通信装置の発展に伴い、これらの装置内に於ける信号配線の容量不足が問題となりつつあり、これを解消するために装置内部のプリント基板の銅による電気配線の一部を光ファイバー又は光導波路に置き換え、電気信号の代わりに光信号を利用することが検討され始めている。
装置内部に於いては装置間を接続する場合と異なり、高密度の光配線を限られたスペースに収容する必要があるため、一般的にはICやマルチチップモジュールと同じようにレーザーダイオードやフォトダイオードの光電素子を基板表面に実装し、電気配線板と同一基板に光配線を積層するなどの方法が検討されている。
【0003】
光導波路が電気配線と同一の基板上で積層された光・電気配線基板は高密度実装が可能であり、小型化の観点から望ましい構造であるが、光導波路をレーザーダイオードやフォトダイオードといった光電素子と光学的に結合させる為には、光路を90°変換する光路変換技術が要求される。
【0004】
90°光路変換に関しては、光導波路自体へメカニカルな加工装置を用いて斜め45°の切り込みを入れ、空気との屈折率の違いを利用し90°全反射面を形成する方法が、例えば、市村他:”光表面実装向け45°ミラー付き高分子導波路”、回路実装学会誌、Vol13、No2、pp97−102、1998.に提案されている。
しかしながら、切り込みによる45°面の形成は、光導波路への切削領域が比較的広範囲に及ぶため高密度実装に不利と指摘されていた。
【0005】
この問題を解決するための手段として光プリント基板の任意の場所に、局所的にプリズム状の45°ミラーを設置する方法、或いは、マイクロミラー付きピンを利用する方法が、例えば、佐藤他:”光SMT向けマイクロミラー付きピンによる90°光路変換”、Optics Japan ”99、23pB18、1999.に提案されている。
後者においては、微細に断裁した光ファイバーの端面を45°加工し、これをマイクロミラー付きのピンとして光電素子との結合に用いている。これらの方法は表面高密度実装の問題を解決できると考えられているが、45°面での信号の洩れ光などの為に入力信号が50%以上も損失してしまうなど、データ伝送における信号誤りといった信頼性の点で実用化には課題が残っていた。
【0006】
【発明が解決しようとする課題】
本発明は、斯かる従来技術の状況に鑑みてなされたものであり、高密度実装又は小型化が可能で、しかも光電素子の実装が容易に、且つ低結合損失で行え、データ伝送における信号誤りのない信頼性の高い光路変換部品を提供することを課題とするものである。
また、該光路変換部品を用いた光表面実装導波路を提供することを課題とする。
【0007】
【課題を解決するための手段】
本発明は、コアとクラッドで構成された光導波路に光電素子を実装する際に用いられる光路変換部品であって、該光路変換部品の伝送路のコアが、光の入射口、出射口、及び反射面を有し、光の入射口、出射口、及び反射面を除いて、コアより屈折率の低いクラッドで覆われており、該反射面における反射を利用して、入射口からの光の光路を所定の角度に変換して出射口から光を出射させることを特徴とする光路変換部品である。
【0008】
また、本発明は、上記発明による光路変換部品において、前記伝送路のコア及びクラッドの材料が、無機材料、金属材料、有機高分子材料、或いはこれらを組み合わせた材料であり、伝送路のコア及びクラッドの各々の屈折率が、前記光導波路のコア及びクラッドの各々の屈折率と概ね一致していることを特徴とする光路変換部品である。
【0009】
また、本発明は、上記発明による光路変換部品において、前記反射面に、金属薄膜の単層、或いは2種以上の金属薄膜の多層が設けられていることを特徴とする光路変換部品である。
【0010】
また、本発明は、コアとクラッドで構成された光導波路の所定の位置にホール空間を形成し、該ホール空間へ、上記いずれかの光路変換部品を埋設し、該光路変換部品の上部へ光電素子を実装したことを特徴とする光表面実装導波路である。
【0011】
【発明の実施の形態】
以下に、本発明による光路変換部品、及び光表面実装導波路を、その実施の形態に基づいて説明する。
図1は、本発明による光路変換部品の一実施例を示す斜視図である。図1に示す光路変換部品は光路を90°変換する光路変換部品である。
図1に示すように、光路変換部品1は、伝送路のコア3が、光の入射口5、出射口6、及び反射面4を有し、光の入射口5、出射口6、及び反射面4を除いて、コアより屈折率の低いクラッド2で覆われており、該反射面4における反射を利用して、入射口5からの光の光路を所定の角度に変換して出射口6から光を出射させるものである。
【0012】
すなわち、光を伝搬する屈折率の高い円筒形状のコア3が屈折率の低いクラッド2中に設けられており、このコア3の一部に反射面4が形成されている。光信号を全反射させる為に反射面4には、反射膜としてAu、Ag、Cu、Al、Cr、Rh、Pt、Ti、Siなどの金属膜や、SiO2 、SiN、Al2 3 、TiO2 、Ta2 5 などの誘電体膜などが単独、或いはこれらを組み合わせて成膜することが好ましい。
【0013】
光路変換部品1は、光信号を外部の光電素子からコア3に入射する入射口5、光路変換部品1内で90°光路変換された光を出射する出射口6とを備え、例えば、入射口5にVCSELなどの半導体レーザーが、出射口6に光導波路が接続される。
入射口5から入射した伝送路のコア3中の光信号は、反射面4により90°光路変換され再び伝送路を伝搬し出射口6から光導波路に入射される。この構造により、光導波路に実装する光電素子の光信号を光路変換部品内に閉じ込めたまま、光導波路へ接続できる。従って、表面実装した光電素子と光導波路内を伝搬する光信号とを高い結合効率で、90°垂直方向に光路変換する事が可能となる。なお、この一実施例では90°の光路変換を取り上げたが、光路変換の角度は任意に設定することができる。
【0014】
光導波路と光電素子とを光接続する、本発明による光路変換部品は、ガラス、石英、セラミックなどの無機材料、鉄、アルミ、ステンレスなどの金属材料、エポキシ樹脂、ポリイミド、ポリメチルメタクリレートなどの有機高分子材料、或いはこれらを組み合わせた伝送路の構造である。その伝送路を構成するコア及びクラッドの各々の屈折率は、光路変換部品を埋設する光導波路のコア及びクラッドの各々の屈折率と概ね一致していることが好ましい。
【0015】
一般に、コア径、屈折率、比屈折率差といった伝送路の構造と信号源の光の波長が与えられた場合、光は伝送路内で任意の伝搬角をとることができず、飛び飛びの伝搬角をとることになる。この形態はモードと呼ばれるが、前記の各々の屈折率が概ね一致していると、光路変換部品内と光導波路内の信号を同じモードで伝送できることになる。
【0016】
無機材料としては、例えば、鉛カリソーダ、ソーダ石灰、アルカリ亜鉛硼珪酸、アルミノ珪酸、ガラスセラミック、硼珪酸、ソーダ亜鉛、ソーダバリウム、バリウム硼珪酸、高鉛、ソーダバリウム珪酸、96%珪酸、石英ガラス、チタン珪酸、鉛カリ、鉛珪酸等が挙げられる。
【0017】金属材料としては、鉄、アルミ、ステンレス、炭素鋼、銅、チタン、コバルト等が挙げられる。また必要に応じてアルミナ、炭化ケイ素、窒化ケイ素、窒化アルミ、アルチック、チタン酸カルシウム、チタン酸バリウム、チタン酸ジルコニウム、ジルコニア、マコール、ホトベール、コージライト、ボロンナイトライド、フォルステライト等のセラミックス材料を用いることも可能である。
【0018】
本発明に於ける有機高分子材料としては、透明性に優れ、屈折率を自由に制御できるエポキシ樹脂、ポリイミド、ポリカーボネート、(メタ)アクリル樹脂、重水素化ポリフルオロメタクリレート、重水素化ポリメチルメタクリレートなどが挙げられるが、好ましくはフッ素化ポリイミド、脂肪族環状エポキシ樹脂、エポキシアクリレート樹脂、重水素化ポリメチルメタクリレート等である。
【0019】
90°光路変換において、光路変換部品の具体的な形状は、埋設側光導波路の膜厚、コアサイズ、コアピッチに応じて外形サイズが数十μm〜数百μmの四角柱、円柱、多角柱などにする事ができる。
図1中符号2、3は上記のガラス、石英、セラミックなどの無機材料、鉄、アルミ、ステンレスなどの金属材料、フッ素化ポリイミド樹脂、脂肪族環状エポキシ樹脂、エポキシアクリレート樹脂、重水素化ポリメチルメタクリレートなどの高分子材料からなる。
【0020】
光路変換部品の製造方法としては、例えば、所望サイズを得るのに研磨や加熱成形によってマイクロガラス柱状に加工を行う。次いで、光路の変換方向に一致させて2軸方向から、マイクロガラス柱内部へレーザ照射、例えば、波長800nmのフェムト秒レーザーを照射し、直径5〜100μmとなるように直接ガラスの屈折率を高くし伝送路を設ける。
或いは、別な方法としては、例えば、マイクロガラス柱へドリルやCO2 、エキシマ等のレーザ照射によって2軸方向からスルーホールを形成し、このスルーホールへ高屈折率のガラス材料、金属材料、或いは、フッ素化ポリイミド樹脂、脂肪族環状エポキシ樹脂、重水素化ポリメチルメタクリレートなどの高分子材料を充填する。こうして伝送路を形成した後、再び研磨によってマイクロガラス柱の傾斜面を形成するといった方法が挙げられる。
【0021】
図2は、本発明による光路変換部品の一実施例の製造方法を示す斜視図である。図2(a)に示すように、先ず、光導波路のクラッド2に相当する、例えば、屈折率1.512のホウ珪酸ガラスを縦100μm×横120μm×高さ700μmのサイズに断裁、研磨加工する。次いで、直径40μmのダイヤモンドドリルで、光導波路の伝送路方向に対して水平及び垂直の2方向から切削し、径40μmのスルーホール7を形成する(図2(b))。
この後、コア3として屈折率1.533のエポキシ系紫外線硬化型樹脂を前記スルーホール中へ、1×10−3torrの減圧環境下にて充填する(図2(c))。更に、紫外線照射を5分間行い硬化させた後、70℃で60分間加熱処理しエポキシ樹脂を安定化させコア3とする。
この後、コア3の交差部に45°の傾斜面を研磨によって形成し、この傾斜面へ、例えば、Au属膜を蒸着し反射面4とする(図2(d))。
【0022】
表面実装される光電素子の半導体レーザをオン・オフして得られる光強度変調信号は、送受システムにおいて損失が大きいと、波形劣化、歪みの原因となりオン・オフ信号を誤って判定し、システム全体の動作の安定性、信頼性に影響を与える。
光導波路へ単に45°の切り込みを入れた従来の光変換方法では、反射面から数十ミクロン離れた光導波路表面に半導体レーザを設けていたために、光信号が広がってしまい反射面以外への光洩れが極端に多かった。また、反射面−半導体レーザ間は屈折率の低いクラッド層になるためモード変換が避けられなかった。
【0023】
本発明の光路変換部品を用いたシステムでは、光路変換部品自体が導波路の屈折率に合わせた伝送路構造を有しているためモード変換を解消できる。また、入射口5、出射口6がそれぞれ表面に実装される光電素子、光導波路端面と接触しているために、半導体レーザからの信号を洩れなく90°光路変換し光導波路へ導入できる。
光導波路を伝送した信号をフォトダイオードで受光する場合は、同様に洩れなく90°光路変換しフォトダイオードで受光できる。この結果、優れた送受信特性の実現が可能となっている。
【0024】
光路変換部品が埋設される側の光導波路については、光ファイバで実証済みのように波長1.3μmにおいて0.1dB/cm以下を達成している無機材料系の石英光導波路や、低温プロセスで製造可能な各種高分子材料系光導波路を用いることが可能である。
光導波路の材料は無機材料、高分子材料どちらでもよいが、本発明では高分子からなり、コアとクラッドの屈折率差が0.3乃至2.0%で、トータル膜厚が10μm以上とすることが好ましい。光導波路を構成するコアの形状は円形或いは矩形であり、サイズ5〜100μmであることが好ましい。5〜100μm以外になると単一の反射角をもった光信号の伝搬(シングルモード)や複数の反射角をもった光信号の伝搬(マルチモード)の為の、位相条件を満たす事が難しくなるからである。一方、クラッドの膜厚は上部、下部共に5μm以上であることが好ましい。膜厚5μm以下ではコア内を伝搬する光信号がクラッドへ放射されてしまい易く、損失を招く原因となり易いからである。
【0025】
上記の光導波路の材料としては、例えば、コアが重水素化ポリメチルメタクリレート(d−PMMA)またはフッ素化ポリメチルメタクリレートであり、クラッドがコアよりも屈折率の低いエポキシ樹脂が好ましい。コアにd−PMMAを用いた場合にはd−PMMA中に多量に含まれるCH基による1.55μm帯における光吸収損失のすそのために光信号の赤外線レーザの伝搬損失が大きくなってしまうが、重水素化する事により両波長での損失は小さくできるからである。
【0026】
一方、クラッドとして用いるエポキシ樹脂は、ビスフェノールAとエピクロルヒドリンの縮合生成物、或いはビスフェノールAに変えてビスフェノールFやポリグリコール等を基本とした樹脂である。エポキシ樹脂をクラッドに用いる事で、コアとクラッドの屈折率差制御、耐環境性、ハンダ熱耐性、クラッド自体の塗布性など光導波路に対する各種要求特性を満足するように設計できるからである。本実施の形態では必ずしも上記の高分子材料に限定された訳ではなく、吸収損失の小さいその他の高分子材が利用可能である。
【0027】
高分子光導波路の製造方法としては、例えば、光導波路パターンの形成に、フォトレジストを塗布、パターニングして、反応性イオンエッチングを用いる方法、紫外線で硬化する官能基を有した脂肪族環状エポキシ樹脂を用い紫外線照射により硬化を行い、直接パターニングする方法等が挙げられる。また、光導波路の構造としては埋め込み型が好ましいが、特に限定される訳ではない。
【0028】
光導波路へ光路変換部品を所定の位置に埋設するために形成するホール空間は、機械的なドリルを用いる事やレーザ(CO2 、エキシマ、フェムト秒等)照射或いは光導波路表面にフォトレジストを塗布、パターニングして、反応性イオンエッチングする等公知の手法を用いることができる。
【0029】
本発明の光導波路に実装される光電素子としては高速周波数特性、低電圧特性の、例えば、波長0.85mmのVCSEL(面発光レーザー)や0.65mmの半導体レーザー、1.3mmの通信用レーザーを用いることができる。これらにより電気信号を光信号に変換し、光路変換部品を介して光導波路内へ光信号を送信する。
また、光信号を再び電気信号に変換するフォトダイオードは、例えば、光導電効果や光起電力効果で検出するpn接合フォトダイオード、pinフォトダイオード、ショットキー障壁型フォトダイオード、アバランシェ増幅型フォトダイオード、及びフォトトランジスタを用いる事ができる。これらもまた各種レーザーと同様に光導波路に実装し、光導波路中の光信号を光路変換部品を介して受光する事ができる。また、場合によって、フォトトランジスタ、CdSセル(硫化カドミウムセル)などの光導電効果を利用した光センサーを用いても良い。
【0030】
図3は、本発明の光表面実装導波路に用いる光導波路の作製方法の一例を断面を示す工程図である。任意の基板、例えば、電気配線されたセラミック基板8上に高分子光導波路の下部クラッド用エポキシ樹脂組成物液をスピンコート等の方法により塗布し、これを紫外線照射により硬化させて下部クラッド9を膜厚30μmに形成する(図3(a))。
次いで、下部クラッドとして用いた高分子より屈折率の高い紫外線硬化型エポキシ樹脂組成物33を、下部クラッド9を形成したときと同様の方法により塗布、乾燥し40μmの膜厚に形成する(図3(b))。次ぎに、コア層に対して窒素気流下、超高圧水銀灯で所望の部位を光伝送路状に露光した後、有機溶剤で直接現像し、所望の部位以外の領域を除去し、更に、加熱処理を行いコアパターン34を得る(図3(c))。
この後、下部クラッドとして用いた組成物をスピンコート法により塗布し、これを紫外線硬化させて上部クラッド10を形成する(図3(d))。
【0031】
光路変換部品を光導波路へ埋設する為のホール空間は、KrFエキシマレーザで、例えば、ビーム出力15W、発振周波数600pps(Pulse PerSecond),パルスエネルギー30mJ/パルス、照射エネルギー密度1J/cm2 (結像レンズ0.385倍)の条件で、コアサイズ40μm角、上下クラッド厚各30μmの光導波路に対して孔径150μmのホール空間47を形成する。図4は、光導波路へKrFエキシマレーザによりホール空間47を形成した状態を示す斜視図である。
【0032】
図5は、光路変換部品1を光導波路11のホール空間47へ光学接着剤12を用いて埋設し、この表面へデータ伝送用の波長850nmの垂直共振器型面発光レーザー(VCSEL)13及び受光径80μmInGaAs−Pinフォトダイオード14を実装した状態を示している。
VCSEL13及びフォトダイオード14はチップ部品型でパッケージ内へ下向きに実装され、電極17が金錫ペースト15等でセラミック基板8の電気配線16と接合されている。
【0033】
光導波路11の所定の場所に適度のクリアランスを設けて形成したホール空間47に、光路変換部品1を直接差し込む手法であることから、光路変換部品1の側面や上面等にアライメントマークを複数形成することで、光導波路11の縦、横方向、及び深さ方向での光路ずれは埋設の際に最小限になるよう容易に調整できる。
また、90°光路変換を行う方法においては、従来のミラー反射のみの方式に比べ、光路変換部品1は伝送路の構造を有していることから、光信号を閉じ込めたままの状態を保持できる。これらの結果、光路変換部品自体の損失と接続に伴う損失を合わせても、出力信号が入力信号に対して80%以上と大幅に改善され、実用化に多大な効果のあることが確められた。これは、光路変換部品の反射面からの不要な光輻射や光電変換素子や光導波路との接続面での放射が大幅に低減した結果に由来しているからである。
【0034】
なお、本発明において光路変換部品を埋設する光導波路が複数線路で構成されている場合、それぞれの線路に対応させて光路変換部品を設置できるが、部品サイズ自体を拡大し、光信号の変換方向に沿った伝送路を複数有するアレイ状としても特に問題はない。
【0035】
上記のように、本発明では部品自体が低損失化されるのに加え、局所的に形成した光導波路のホール空間に光路変換部品を精度良く位置あわせ出来ることから、光路ズレに伴う結合損失を最小限に抑えることが可能になる。従って、高密度且つ信頼性の優れた光表面実装導波路、或いは光・電気配線基板の実現が可能になる。
【0036】
【発明の効果】
本発明は、伝送路のコアが、光の入射口、出射口、及び反射面を有し、光の入射口、出射口、及び反射面を除いて、コアより屈折率の低いクラッドで覆われており、該反射面における反射を利用して、入射口からの光の光路を所定の角度に変換して出射口から光を出射させる光路変換部品であるので、高密度実装又は小型化が可能で、しかも光電素子の実装が容易に、且つ低結合損失で行え、信頼性の高い光路変換部品となる。
【0037】
また、本発明は、局所的に形成した光導波路のホール空間に光路変換部品を精度良く位置あわせ出来ることから、光路ズレに伴う結合損失を最小限に抑え、高密度且つ信頼性の優れた光表面実装導波路を可能とする。
【図面の簡単な説明】
【図1】本発明による光路変換部品の一実施例を示す斜視図である。
【図2】本発明による光路変換部品の一実施例の製造方法を示す斜視図である。
【図3】本発明の光表面実装導波路に用いる光導波路の作製方法の一例を断面を示す工程図である。
【図4】光導波路へホール空間を形成した状態を示す斜視図である。
【図5】本発明の光表面実装導波路の一例を示す断面図である。
【符号の説明】
1・・・光路変換部品
2・・・クラッド
3・・・コア
4・・・反射面
5・・・入射口
6・・・出射口
7・・・スルーホール
8・・・基板
9・・・下部クラッド
10・・・上部クラッド
11・・・光導波路
12・・・光学接着剤
13・・・面発光レーザー(VCSEL)
13’・・・発光面
14・・・フォトダイオード
14’・・・受光面
15・・・金錫ペースト
16・・・電気配線
17・・・電極
33・・・紫外線硬化型エポキシ樹脂組成物
34・・・コアパターン
47・・・ホール空間
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical surface-mounting waveguide used for a switching device, a communication device, and an information processing device for transmitting a signal using light, and particularly to a method for mounting a photoelectric element on a surface of an optical waveguide. The present invention relates to an optical path conversion component useful for an optical device and an optical surface mount waveguide using the same.
[0002]
[Prior art]
In recent years, with the development of information communication devices, the shortage of the capacity of signal wiring in these devices has become a problem, and in order to solve this, a part of the electrical wiring made of copper on the printed circuit board inside the device is replaced by optical fiber or The use of optical signals instead of electrical signals in place of optical waveguides has been studied.
Unlike the connection between the devices inside the device, it is necessary to accommodate high-density optical wiring in a limited space. Therefore, in general, a laser diode or a photo diode is used like an IC or a multi-chip module. A method of mounting a photoelectric element of a diode on the surface of a substrate and laminating an optical wiring on the same substrate as an electric wiring board has been studied.
[0003]
An optical / electrical wiring board in which an optical waveguide is laminated on the same substrate as an electric wiring can be mounted at a high density, and is a desirable structure from the viewpoint of miniaturization, but the optical waveguide is a photoelectric element such as a laser diode or a photodiode. In order to optically couple with the optical path, an optical path conversion technique for converting the optical path by 90 ° is required.
[0004]
Regarding the 90 ° optical path conversion, a method of forming an oblique 45 ° cut into the optical waveguide itself using a mechanical processing device, and forming a 90 ° total reflection surface using a difference in refractive index with air is known, for example, in the market. Mura et al .: “Polymer waveguide with 45 ° mirror for optical surface mounting”, Journal of Circuit Packaging Society, Vol. 13, No. 2, pp. 97-102, 1998. Has been proposed.
However, it has been pointed out that the formation of the 45 ° surface by the cut is disadvantageous for high-density mounting because the cutting area to the optical waveguide is relatively wide.
[0005]
As a means for solving this problem, a method of locally installing a prism-like 45 ° mirror at an arbitrary position on an optical printed circuit board or a method of using a pin with a micromirror are described in, for example, Sato et al .: “ 90.degree. Optical path conversion by a micromirror pin for optical SMT ", Optics Japan" 99, 23pB18, 1999.
In the latter, the end face of the finely cut optical fiber is processed at 45 °, and this is used as a pin with a micromirror for coupling with a photoelectric element. These methods are thought to solve the problem of high-density mounting on the surface, but the signal in data transmission such as input signal loss of 50% or more due to signal leakage light on the 45 ° plane, etc. Problems remain in practical use in terms of reliability such as errors.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the situation of the related art, and enables high-density mounting or miniaturization, and can easily mount a photoelectric element with low coupling loss, and can reduce a signal error in data transmission. It is an object of the present invention to provide a highly reliable optical path conversion component without any problem.
It is another object of the present invention to provide an optical surface mount waveguide using the optical path conversion component.
[0007]
[Means for Solving the Problems]
The present invention is an optical path conversion component used when mounting a photoelectric element on an optical waveguide configured by a core and a clad, the core of the transmission path of the optical path conversion component, light entrance, exit, and, It has a reflective surface, except for the light entrance, exit, and reflection surface, which is covered with a clad having a lower refractive index than the core, and utilizes the reflection on the reflection surface to transmit light from the entrance. An optical path conversion component for converting an optical path to a predetermined angle and emitting light from an emission port.
[0008]
Further, the present invention provides the optical path conversion component according to the above invention, wherein the material of the core and the cladding of the transmission line is an inorganic material, a metal material, an organic polymer material, or a material combining these materials. An optical path conversion component, wherein a refractive index of each of the claddings substantially coincides with a refractive index of each of the core and the cladding of the optical waveguide.
[0009]
Further, the present invention is the optical path conversion component according to the above invention, wherein a single layer of a metal thin film or a multilayer of two or more metal thin films is provided on the reflection surface.
[0010]
Further, according to the present invention, a hole space is formed at a predetermined position of an optical waveguide composed of a core and a clad, any one of the above-described optical path conversion components is buried in the hole space, and a photoelectric conversion device is provided above the optical path conversion component. This is an optical surface-mounted waveguide on which an element is mounted.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an optical path conversion component and an optical surface mount waveguide according to the present invention will be described based on the embodiments.
FIG. 1 is a perspective view showing one embodiment of an optical path conversion component according to the present invention. The optical path conversion component shown in FIG. 1 is an optical path conversion component that converts the optical path by 90 degrees.
As shown in FIG. 1, in the optical path conversion component 1, the core 3 of the transmission path has the light entrance 5, the exit 6, and the reflection surface 4, and the light entrance 5, the exit 6, and the reflection. Except for the surface 4, it is covered with a cladding 2 having a lower refractive index than the core, and by utilizing the reflection on the reflecting surface 4, the optical path of the light from the entrance 5 is converted into a predetermined angle and converted to a predetermined angle. Out of the light.
[0012]
That is, a cylindrical core 3 having a high refractive index for transmitting light is provided in a clad 2 having a low refractive index, and a reflection surface 4 is formed on a part of the core 3. In order to totally reflect the optical signal, the reflecting surface 4 has a reflecting film made of a metal film such as Au, Ag, Cu, Al, Cr, Rh, Pt, Ti, or Si, SiO 2 , SiN, Al 2 O 3 , It is preferable to form a dielectric film such as TiO 2 or Ta 2 O 5 alone or in combination thereof.
[0013]
The optical path conversion component 1 includes an entrance 5 for inputting an optical signal from an external photoelectric element to the core 3 and an exit 6 for emitting light whose optical path has been converted by 90 ° in the optical path conversion component 1. 5 is connected to a semiconductor laser such as a VCSEL, and an emission port 6 is connected to an optical waveguide.
The optical signal in the core 3 of the transmission path incident from the entrance 5 is converted into an optical path by 90 ° by the reflection surface 4, propagates through the transmission path again, and enters the optical waveguide from the exit 6. With this structure, the optical signal of the photoelectric element mounted on the optical waveguide can be connected to the optical waveguide while being confined in the optical path conversion component. Therefore, it is possible to convert the optical path between the surface-mounted photoelectric element and the optical signal propagating in the optical waveguide in the vertical direction at 90 ° with high coupling efficiency. Although the optical path conversion of 90 ° is taken up in this embodiment, the angle of the optical path conversion can be set arbitrarily.
[0014]
Optical path conversion parts according to the present invention for optically connecting an optical waveguide and a photoelectric element include inorganic materials such as glass, quartz, and ceramics, metal materials such as iron, aluminum, and stainless steel, and organic materials such as epoxy resin, polyimide, and polymethyl methacrylate. It is a structure of a transmission line made of a polymer material or a combination thereof. It is preferable that the refractive index of each of the core and the clad constituting the transmission path is approximately equal to the refractive index of each of the core and the clad of the optical waveguide in which the optical path conversion component is embedded.
[0015]
In general, given the structure of a transmission path such as a core diameter, a refractive index, and a relative refractive index difference and the wavelength of light of a signal source, light cannot take an arbitrary propagation angle in the transmission path, and It will take the corner. This mode is called a mode, and if the refractive indices are substantially the same, signals in the optical path conversion component and in the optical waveguide can be transmitted in the same mode.
[0016]
Examples of the inorganic material include lead potassium soda, soda lime, alkali zinc borosilicate, aluminosilicate, glass ceramic, borosilicate, soda zinc, soda barium, barium borosilicate, high lead, soda barium silicate, 96% silicate, and quartz glass. , Titanium silicic acid, lead potassium, lead silicic acid and the like.
Examples of the metal material include iron, aluminum, stainless steel, carbon steel, copper, titanium, cobalt and the like. If necessary, ceramic materials such as alumina, silicon carbide, silicon nitride, aluminum nitride, altic, calcium titanate, barium titanate, zirconium titanate, zirconia, macor, photoveil, cordierite, boron nitride, forsterite, etc. It is also possible to use.
[0018]
As the organic polymer material in the present invention, epoxy resin, polyimide, polycarbonate, (meth) acrylic resin, deuterated polyfluoromethacrylate, deuterated polymethyl methacrylate which is excellent in transparency and whose refractive index can be freely controlled. Examples thereof include fluorinated polyimide, aliphatic cyclic epoxy resin, epoxy acrylate resin, and deuterated polymethyl methacrylate.
[0019]
In the 90 ° optical path conversion, the specific shape of the optical path conversion component is, for example, a square pillar, a circular cylinder, or a polygonal pillar having an outer size of several tens μm to several hundred μm depending on the thickness, the core size, and the core pitch of the embedded optical waveguide. It can be.
Reference numerals 2 and 3 in FIG. 1 denote inorganic materials such as glass, quartz, and ceramic, metal materials such as iron, aluminum, and stainless steel, fluorinated polyimide resins, aliphatic cyclic epoxy resins, epoxy acrylate resins, and deuterated polymethyl. It is made of a polymer material such as methacrylate.
[0020]
As a method of manufacturing an optical path conversion component, for example, a micro glass column is processed by polishing or heat molding to obtain a desired size. Next, the inside of the micro glass pillar is irradiated with laser, for example, a femtosecond laser having a wavelength of 800 nm is irradiated from the biaxial direction in accordance with the conversion direction of the optical path to directly increase the refractive index of the glass so as to have a diameter of 5 to 100 μm. A transmission path is provided.
Alternatively, as another method, for example, a through-hole is formed in a biaxial direction by drilling, laser irradiation of CO 2 , excimer, or the like on a micro glass column, and a high-refractive index glass material, a metal material, or And a polymer material such as fluorinated polyimide resin, aliphatic cyclic epoxy resin, and deuterated polymethyl methacrylate. After forming the transmission path in this way, there is a method of forming the inclined surface of the micro glass column again by polishing.
[0021]
FIG. 2 is a perspective view showing a manufacturing method of an embodiment of an optical path conversion component according to the present invention. As shown in FIG. 2A, first, for example, borosilicate glass having a refractive index of 1.512, which corresponds to the cladding 2 of the optical waveguide, is cut and polished to a size of 100 μm in length × 120 μm in width × 700 μm in height. . Next, a through hole 7 having a diameter of 40 μm is formed with a diamond drill having a diameter of 40 μm from two directions horizontal and vertical to the direction of the transmission path of the optical waveguide (FIG. 2B).
Thereafter, an epoxy-based ultraviolet curable resin having a refractive index of 1.533 is filled as the core 3 into the through hole under a reduced pressure environment of 1 × 10 −3 torr (FIG. 2C). Further, after curing by irradiation with ultraviolet rays for 5 minutes, heat treatment is performed at 70 ° C. for 60 minutes to stabilize the epoxy resin to obtain a core 3.
Thereafter, a 45 ° inclined surface is formed at the intersection of the cores 3 by polishing, and for example, an Au-based film is vapor-deposited on the inclined surface to form the reflecting surface 4 (FIG. 2D).
[0022]
The optical intensity modulation signal obtained by turning on / off the semiconductor laser of the surface-mounted photoelectric element, if loss is large in the transmission / reception system, causes waveform deterioration and distortion, and erroneously determines the on / off signal, and the entire system Affect the operation stability and reliability.
In the conventional optical conversion method in which a 45 ° cut is simply made in the optical waveguide, the semiconductor laser is provided on the surface of the optical waveguide several tens of microns away from the reflection surface, so that the optical signal spreads and the light other than the reflection surface becomes light. There were extremely many leaks. In addition, since a cladding layer having a low refractive index is formed between the reflection surface and the semiconductor laser, mode conversion cannot be avoided.
[0023]
In the system using the optical path conversion component of the present invention, mode conversion can be eliminated because the optical path conversion component itself has a transmission path structure adapted to the refractive index of the waveguide. Further, since the entrance 5 and the exit 6 are in contact with the photoelectric device and the end face of the optical waveguide, respectively, mounted on the surface, the signal from the semiconductor laser can be optically converted 90 ° without leakage and introduced into the optical waveguide.
When the signal transmitted through the optical waveguide is received by the photodiode, the light path can be similarly converted by 90 ° without leakage and received by the photodiode. As a result, excellent transmission / reception characteristics can be realized.
[0024]
The optical waveguide on the side where the optical path conversion component is embedded is an inorganic material-based quartz optical waveguide that achieves 0.1 dB / cm or less at a wavelength of 1.3 μm, as demonstrated with an optical fiber, or a low-temperature process. It is possible to use various polymer material-based optical waveguides that can be manufactured.
The material of the optical waveguide may be either an inorganic material or a polymer material. In the present invention, the material is made of a polymer, the refractive index difference between the core and the clad is 0.3 to 2.0%, and the total film thickness is 10 μm or more. Is preferred. The shape of the core constituting the optical waveguide is circular or rectangular, and preferably has a size of 5 to 100 μm. When the thickness is other than 5 to 100 μm, it is difficult to satisfy the phase condition for propagation of an optical signal having a single reflection angle (single mode) and propagation of an optical signal having a plurality of reflection angles (multimode). Because. On the other hand, the thickness of the cladding is preferably 5 μm or more for both the upper and lower parts. If the film thickness is 5 μm or less, an optical signal propagating in the core is easily radiated to the clad, which is likely to cause a loss.
[0025]
As a material of the optical waveguide, for example, an epoxy resin whose core is deuterated polymethyl methacrylate (d-PMMA) or fluorinated polymethyl methacrylate and whose cladding has a lower refractive index than the core is preferable. When d-PMMA is used for the core, the propagation loss of the infrared laser of the optical signal becomes large due to the light absorption loss in the 1.55 μm band due to the CH group contained in the d-PMMA in a large amount. This is because the loss at both wavelengths can be reduced by deuteration.
[0026]
On the other hand, the epoxy resin used as the clad is a condensation product of bisphenol A and epichlorohydrin, or a resin based on bisphenol F or polyglycol instead of bisphenol A. By using an epoxy resin for the clad, it is possible to design so as to satisfy various required characteristics for the optical waveguide, such as control of the refractive index difference between the core and the clad, environmental resistance, solder heat resistance, and applicability of the clad itself. In the present embodiment, the present invention is not necessarily limited to the above polymer material, and other polymer materials having a small absorption loss can be used.
[0027]
Examples of the method for producing a polymer optical waveguide include, for example, a method of applying and patterning a photoresist to form an optical waveguide pattern, using reactive ion etching, and an aliphatic cyclic epoxy resin having a functional group that is cured by ultraviolet rays. And a method of performing curing by irradiation with ultraviolet rays and direct patterning. The structure of the optical waveguide is preferably an embedded type, but is not particularly limited.
[0028]
The hole space formed for embedding the optical path conversion component in a predetermined position in the optical waveguide is formed by using a mechanical drill, irradiating a laser (CO 2 , excimer, femtosecond, etc.) or applying a photoresist to the surface of the optical waveguide. A known method such as patterning and reactive ion etching can be used.
[0029]
As the photoelectric device mounted on the optical waveguide of the present invention, for example, a VCSEL (surface emitting laser) having a wavelength of 0.85 mm, a semiconductor laser having a wavelength of 0.65 mm, and a laser for communication having a wavelength of 1.3 mm having high frequency characteristics and low voltage characteristics. Can be used. These convert an electric signal into an optical signal, and transmit the optical signal into the optical waveguide via the optical path conversion component.
Further, a photodiode that converts an optical signal into an electric signal again includes, for example, a pn junction photodiode, a pin photodiode, a Schottky barrier photodiode, an avalanche amplification photodiode, which is detected by a photoconductive effect or a photovoltaic effect. And a phototransistor can be used. These can also be mounted on an optical waveguide similarly to various lasers, and can receive an optical signal in the optical waveguide via an optical path conversion component. In some cases, an optical sensor using a photoconductive effect such as a phototransistor or a CdS cell (cadmium sulfide cell) may be used.
[0030]
FIG. 3 is a process diagram showing a cross section of an example of a method for manufacturing an optical waveguide used for an optical surface-mounted waveguide according to the present invention. An epoxy resin composition liquid for a lower clad of a polymer optical waveguide is applied on an arbitrary substrate, for example, a ceramic substrate 8 to which electric wiring is applied by a method such as spin coating, and is cured by ultraviolet irradiation to form a lower clad 9. The film is formed to a thickness of 30 μm (FIG. 3A).
Next, an ultraviolet curable epoxy resin composition 33 having a higher refractive index than the polymer used as the lower clad is applied and dried by the same method as that used to form the lower clad 9 to form a film having a thickness of 40 μm (FIG. 3). (B)). Next, after exposing the core layer to a desired portion in the form of a light transmission path with an ultra-high pressure mercury lamp under a nitrogen gas flow, directly developing with an organic solvent to remove a region other than the desired portion, and further performing a heat treatment To obtain a core pattern 34 (FIG. 3C).
Thereafter, the composition used as the lower clad is applied by a spin coat method, and is cured by ultraviolet rays to form the upper clad 10 (FIG. 3D).
[0031]
The hole space for embedding the optical path conversion component in the optical waveguide is a KrF excimer laser, for example, a beam output of 15 W, an oscillation frequency of 600 pps (Pulse Per Second), a pulse energy of 30 mJ / pulse, and an irradiation energy density of 1 J / cm 2 (imaging). A hole space 47 having a hole diameter of 150 μm is formed on an optical waveguide having a core size of 40 μm square and upper and lower cladding thicknesses of 30 μm under the condition of a lens (0.385 ×). FIG. 4 is a perspective view showing a state in which a hole space 47 is formed in the optical waveguide by a KrF excimer laser.
[0032]
FIG. 5 shows that the optical path conversion component 1 is embedded in the hole space 47 of the optical waveguide 11 using the optical adhesive 12, and a vertical cavity surface emitting laser (VCSEL) 13 having a wavelength of 850 nm for data transmission and a light receiving element are provided on this surface. The state where the 80 μm-diameter InGaAs-Pin photodiode 14 is mounted is shown.
The VCSEL 13 and the photodiode 14 are mounted in a package in the form of a chip component and face down in the package, and the electrodes 17 are joined to the electric wiring 16 of the ceramic substrate 8 with gold tin paste 15 or the like.
[0033]
Since the optical path conversion component 1 is directly inserted into the hole space 47 formed by providing an appropriate clearance at a predetermined location of the optical waveguide 11, a plurality of alignment marks are formed on the side surface, the upper surface, and the like of the optical path conversion component 1. Thus, the optical path deviation in the vertical, horizontal, and depth directions of the optical waveguide 11 can be easily adjusted so as to be minimized when the optical waveguide 11 is buried.
Further, in the method of performing the 90 ° optical path conversion, the optical path conversion component 1 has a transmission path structure as compared with the conventional mirror reflection only method, so that the optical signal can be kept in a confined state. . As a result, even when the loss of the optical path conversion component itself and the loss due to connection are combined, the output signal is greatly improved to 80% or more of the input signal, and it is confirmed that there is a great effect for practical use. Was. This is because unnecessary light radiation from the reflection surface of the optical path conversion component and radiation at the connection surface with the photoelectric conversion element and the optical waveguide are significantly reduced.
[0034]
In the present invention, when the optical waveguide in which the optical path conversion component is embedded is composed of a plurality of lines, the optical path conversion component can be installed corresponding to each line, but the component size itself is enlarged, and the optical signal conversion direction is increased. There is no particular problem even if an array having a plurality of transmission paths along the line is used.
[0035]
As described above, in the present invention, in addition to reducing the loss of the component itself, the optical path conversion component can be accurately positioned in the hole space of the optical waveguide formed locally, so that the coupling loss due to the optical path shift is reduced. It can be minimized. Therefore, it is possible to realize a high-density and highly reliable optical surface-mounted waveguide or an optical / electrical wiring board.
[0036]
【The invention's effect】
According to the present invention, the core of the transmission path has an entrance, an exit, and a reflection surface for light, and is covered with a clad having a lower refractive index than the core except for the entrance, exit, and reflection surface for light. It is an optical path conversion component that converts the optical path of the light from the entrance to a predetermined angle and emits the light from the exit using the reflection on the reflection surface, so that high-density mounting or miniaturization is possible. In addition, the mounting of the photoelectric element can be easily performed with low coupling loss, and a highly reliable optical path conversion component can be obtained.
[0037]
In addition, the present invention can accurately position an optical path conversion component in a hole space of a locally formed optical waveguide, thereby minimizing a coupling loss due to an optical path shift, and achieving high density and high reliability. Enables surface mount waveguides.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of an optical path conversion component according to the present invention.
FIG. 2 is a perspective view illustrating a method of manufacturing an optical path conversion component according to an embodiment of the present invention.
FIG. 3 is a process drawing showing a cross section of an example of a method for manufacturing an optical waveguide used for an optical surface-mounted waveguide according to the present invention.
FIG. 4 is a perspective view showing a state in which a hole space is formed in the optical waveguide.
FIG. 5 is a cross-sectional view showing an example of the optical surface mount waveguide of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Optical path conversion component 2 ... Cladding 3 ... Core 4 ... Reflection surface 5 ... Inlet 6 ... Outlet 7 ... Through hole 8 ... Substrate 9 ... Lower cladding 10 Upper cladding 11 Optical waveguide 12 Optical adhesive 13 Surface emitting laser (VCSEL)
13 ′: Light-emitting surface 14: Photodiode 14 ′: Light-receiving surface 15: Gold-tin paste 16: Electric wiring 17: Electrode 33: UV-curable epoxy resin composition 34 ... Core pattern 47 ... Hall space

Claims (4)

コアとクラッドで構成された光導波路に光電素子を実装する際に用いられる光路変換部品であって、該光路変換部品の伝送路のコアが、光の入射口、出射口、及び反射面を有し、光の入射口、出射口、及び反射面を除いて、コアより屈折率の低いクラッドで覆われており、該反射面における反射を利用して、入射口からの光の光路を所定の角度に変換して出射口から光を出射させることを特徴とする光路変換部品。An optical path conversion component used when mounting a photoelectric element on an optical waveguide composed of a core and a clad, wherein a core of a transmission path of the optical path conversion component has a light entrance port, a light exit port, and a reflection surface. Except for the light entrance, exit, and reflection surface, the core is covered with a clad having a lower refractive index than the core, and the reflection on the reflection surface is used to set the optical path of the light from the entrance to a predetermined value. An optical path conversion component for converting light into an angle to emit light from an emission port. 前記伝送路のコア及びクラッドの材料が、無機材料、金属材料、有機高分子材料、或いはこれらを組み合わせた材料であり、伝送路のコア及びクラッドの各々の屈折率が、前記光導波路のコア及びクラッドの各々の屈折率と概ね一致していることを特徴とする請求項1記載の光路変換部品。The material of the core and the cladding of the transmission line is an inorganic material, a metal material, an organic polymer material, or a material combining these, and the refractive index of each of the core and the cladding of the transmission line is the core of the optical waveguide and 2. The optical path-changing component according to claim 1, wherein the refractive index of each of the claddings is substantially the same. 前記反射面に、金属薄膜の単層、或いは2種以上の金属薄膜の多層が設けられていることを特徴とする請求項1、又は請求項2記載の光路変換部品。The optical path conversion component according to claim 1, wherein a single layer of a metal thin film or a multilayer of two or more metal thin films is provided on the reflection surface. コアとクラッドで構成された光導波路の所定の位置にホール空間を形成し、該ホール空間へ、請求項1〜請求項3のいずれか1項に記載の光路変換部品を埋設し、該光路変換部品の上部へ光電素子を実装したことを特徴とする光表面実装導波路。A hole space is formed at a predetermined position of an optical waveguide constituted by a core and a clad, and the optical path conversion component according to any one of claims 1 to 3 is buried in the hole space, and the optical path conversion is performed. An optical surface mount waveguide, wherein a photoelectric element is mounted on an upper part of a component.
JP2002257383A 2002-09-03 2002-09-03 Optical path converting parts and optical surface mounted waveguide using the parts Pending JP2004094070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002257383A JP2004094070A (en) 2002-09-03 2002-09-03 Optical path converting parts and optical surface mounted waveguide using the parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002257383A JP2004094070A (en) 2002-09-03 2002-09-03 Optical path converting parts and optical surface mounted waveguide using the parts

Publications (1)

Publication Number Publication Date
JP2004094070A true JP2004094070A (en) 2004-03-25

Family

ID=32062292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002257383A Pending JP2004094070A (en) 2002-09-03 2002-09-03 Optical path converting parts and optical surface mounted waveguide using the parts

Country Status (1)

Country Link
JP (1) JP2004094070A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006059510A1 (en) * 2004-12-02 2006-06-08 Mitsui Chemicals, Inc. Optical wiring substrate and optical and electric combined substrate
WO2006115248A1 (en) * 2005-04-25 2006-11-02 Kyocera Corporation Optical coupling structure, substrate with built-in optical transmission function and method for manufacturing such substrate
JP2007264312A (en) * 2006-03-28 2007-10-11 Furukawa Electric Co Ltd:The Optical coupler
DE112008000727T5 (en) 2007-03-22 2010-01-14 Ngk Insulators, Ltd. Method for producing an optical waveguide substrate for surface mounting
US8376633B2 (en) 2007-05-31 2013-02-19 Fujikara Ltd. Optical path changer component, optical connector and optical device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006059510A1 (en) * 2004-12-02 2006-06-08 Mitsui Chemicals, Inc. Optical wiring substrate and optical and electric combined substrate
US7603005B2 (en) 2004-12-02 2009-10-13 Mitsui Chemicals, Inc. Optical circuit board and optical and electric combined board
WO2006115248A1 (en) * 2005-04-25 2006-11-02 Kyocera Corporation Optical coupling structure, substrate with built-in optical transmission function and method for manufacturing such substrate
JP2007264312A (en) * 2006-03-28 2007-10-11 Furukawa Electric Co Ltd:The Optical coupler
JP4728857B2 (en) * 2006-03-28 2011-07-20 古河電気工業株式会社 Optical coupler
DE112008000727T5 (en) 2007-03-22 2010-01-14 Ngk Insulators, Ltd. Method for producing an optical waveguide substrate for surface mounting
US8062449B2 (en) 2007-03-22 2011-11-22 Ngk Insulators, Ltd. Method for manufacturing optical surface mounting waveguide substrate
DE112008000727B4 (en) 2007-03-22 2021-08-26 Ngk Insulators, Ltd. Method of manufacturing an optical waveguide substrate for surface mounting
US8376633B2 (en) 2007-05-31 2013-02-19 Fujikara Ltd. Optical path changer component, optical connector and optical device

Similar Documents

Publication Publication Date Title
US7421858B2 (en) Optical transmission substrate, method for manufacturing optical transmission substrate and optoelectronic integrated circuit
US8827572B2 (en) Side coupling optical fiber assembly and fabrication method thereof
US7590315B2 (en) Optical waveguide and optical module using the same
US20050259927A1 (en) Optical transmission module and manufacturing method therefor
JP2003207694A (en) Optical module
US20080131050A1 (en) Manufacturing method of optical-electrical substrate and optical-electrical substrate
JP2005275405A (en) Optical structure and method for connecting optical circuit board components
US6579398B1 (en) Method of manufacturing optical waveguide
US7986862B2 (en) Optical transmission substrate, method for fabricating the same, and optoelectronic hybrid substrate
JP2005195651A (en) Optical connection substrate, optical transmission system, and manufacturing method
JPH08264748A (en) Optical waveguide integrated circuit device and its manufacture
US7519243B2 (en) Substrate, substrate adapted for interconnecting optical elements and optical module
JP2008102283A (en) Optical waveguide, optical module and method of manufacturing optical waveguide
JP2001100063A (en) Optical switching device and optical transmission and reception device, and manufacturing method thereof
JP2006259730A (en) Apparatus and method for coupling optical element
JP4967803B2 (en) Method for manufacturing photoelectric composite substrate
JP2004094070A (en) Optical path converting parts and optical surface mounted waveguide using the parts
JP2007086367A (en) Optical pin, optical pin connector and optical path conversion module
KR20030007311A (en) Architecture of optical interconnection using optical connection rods in waveguide-embedded multi-layer circuit board
JP2004233687A (en) Optical waveguide substrate and optical module
JP2004191903A (en) Optical path conversion component and its manufacturing method, and optical surface mounting waveguide using the same
JP4290065B2 (en) Optical module and manufacturing method thereof
JP4427646B2 (en) Optical device provided with optical connecting means and method for manufacturing the same
JP2000321453A (en) Optical switching device and optical transmitter and manufacture of these
JP2005084203A (en) Optical wiring board and manufacturing method of optical module using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051108