JP2004093640A - Electrophotographic photoreceptor and process cartridge and electrophotographic apparatus having the electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor and process cartridge and electrophotographic apparatus having the electrophotographic photoreceptor Download PDF

Info

Publication number
JP2004093640A
JP2004093640A JP2002251106A JP2002251106A JP2004093640A JP 2004093640 A JP2004093640 A JP 2004093640A JP 2002251106 A JP2002251106 A JP 2002251106A JP 2002251106 A JP2002251106 A JP 2002251106A JP 2004093640 A JP2004093640 A JP 2004093640A
Authority
JP
Japan
Prior art keywords
electrophotographic
electrophotographic photoreceptor
pigment
layer
charge generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002251106A
Other languages
Japanese (ja)
Other versions
JP3840161B2 (en
Inventor
Kumiko Takizawa
滝沢 久美子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002251106A priority Critical patent/JP3840161B2/en
Publication of JP2004093640A publication Critical patent/JP2004093640A/en
Application granted granted Critical
Publication of JP3840161B2 publication Critical patent/JP3840161B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrophotographic photoreceptor having high sensitivity, little changes in the potential for repeated use and little image defects by memory characteristics or irregular coating, and to provide an electrophotographic apparatus and an electrophotographic apparatus unit using the electrophotographic photoreceptor. <P>SOLUTION: In the electrophotographic photoreceptor having a charge generating layer and a charge transfer layer on a conductive supporting body, the charge generating layer contains at least one kind of azo pigment and an oxytitanium phthalocyanine pigment showing a clear peak at 27.1° diffraction angle 2θ±0.2° in the CuKα characteristic X-ray diffraction spectrum. The layer is formed by using a coating material prepared by dispersing the above pigments in a mixture solvent of water and an organic solvent and controlling the water content to the range of ≥1 mass% and <3 mass%. The process cartridge and the electrophotographic apparatus are produced by using the above electrophotographic photoreceptor. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はアゾ顔料及びオキシチタニウムフタロシアニン顔料を含有する積層型電子写真感光体並びに該電子写真感光体を備えたプロセスカートリッジ及び電子写真装置に関する。
【0002】
【従来の技術】
近年、電子写真方式を用いた複写機、レーザープリンター等に用いられる電子写真感光体としては、安全性が高い、量産に適している、またコストが安い等の利点から、有機光導電体材料から形成される感光体が多く用いられている。有機感光体の構成としては、導電性支持体上に電荷発生物質、電荷輸送物質及び結着樹脂を主成分とする感光層を設けた単層感光体と、導電性支持体上に電荷発生物質と結着樹脂を主成分とする電荷発生層と電荷輸送物質と結着樹脂を主成分とする電荷輸送層を積層した積層型電子写真感光体に大別される。中でも、積層型感光体は、より感度の向上を図ることができるため、現在は有機電子写真感光体の主流となっている。
【0003】
また、電子写真方式の画像形成において、高画質な画像を得るためや入力画像を記憶したり自由に編集したりするために、画像形成のデジタル化が急速に進行している。デジタル的に画像形成を行う際、デジタル電気信号は光信号に変換され、感光体に入力される。この光源としては主としてレーザー光やLED光が用いられており、現在、最も良く使用される光源の発信波長は790±20nmである。デジタル化の進行に伴い、この波長域に十分な感度を有する電荷発生材料の需要頻度が高くなっている。代表的な電荷発生材料としてはフタロシアニン化合物が挙げられ、その中でも高感度なオキシチタニウムフタロシアニンが数多く研究されている。オキシチタニウムフタロシアニンは例えば、特開昭61−239248号公報、特開昭62−67094号公報、特開平1−17066号公報、特開平3−54264号公報および特開平3−128973号公報等で報告されているように多くの結晶形が知られており、X線回折スペクトルにおいてブラック角(2θ±0.2°)の27.1°に明瞭な回折ピークを有するオキシチタニウムフタロシアニンが非常に感度が高いことが明らかになっている。また、その結晶型は準安定形であり、感光体作製過程において電荷発生層を塗布するための分散液を調整する際、分散条件により他の安定な結晶型に変化しやすく、感度特性が損なわれやすい。そこで、特開平6−289628号公報ではオキシチタニウムフタロシアニン結晶を等量以上の水を含む溶剤で分散処理することで、結晶型を安定に保ったまま分散液を作製でき、高感度を達成できる方法を開示している。
【0004】
【発明が解決しようとする課題】
しかしながら、これらのオキシチタニウムフタロシアニンを用いた電子写真感光体は高感度であるがゆえに帯電、露光、現像及び転写等の画像形成プロセスを繰り返すことによる帯電電位の低下や明部電位の変動が起こったり、電荷発生層中に電荷が滞留することにより一種のメモリーが生じ、本来無いパターンが画像上に現れるゴースト現象が発生したりするという欠点があった。
【0005】
さらに、水を含有する塗料を導電性支持体上に塗布する際には、塗工ムラによる画像欠陥が発生することがあった。
【0006】
従って本発明の目的は、オキシチタニウムフタロシアニン顔料を用いた積層型電子写真感光体において高感度を維持しつつ、画像欠陥が少なく耐久による電位変動やメモリー特性に優れた電子写真感光体を提供すること、さらに該電子写真感光体を有するプロセスカートリッジ並びに電子写真感光体を提供することである。
【0007】
【課題を解決するための手段】
本発明者らが検討を行った結果、電荷発生層にCuKα特性X線回折スペクトルにおける回折角2θ±0.2°の27.1°に明瞭なピークを有するオキシチタニウムフタロシアニン顔料を用いた電荷発生層用塗料調整の際、該顔料を水と有機溶媒の混合溶媒で分散しかつ該塗料中の含水率を1質量%以上3質量%未満に調整し、かつ少なくとも1種のアゾ顔料を同時に含有させることにより、高感度を維持しつつメモリー特性や塗工ムラによる画像欠陥を良化でき、さらに繰り返し使用における電位変動が小さく抑えられることを見出した。
【0008】
メモリー特性や電位変動が小さく抑えられる理由については明らかではないが、アゾ顔料と水が同時に電荷発生層中に存在することにより、オキシチタニウムフタロシアニン顔料のみの場合より、露光で発生したキャリア(エレクトロン)の再結合や基体側への注入が円滑に行われるようになるためではないかと考えられる。
【0009】
すなわち本発明の電子写真感光体は、導電性支持体上に電荷発生層、電荷輸送層を有する電子写真感光体において、該電荷発生層が、少なくとも1種のアゾ顔料とX線回折スペクトルにおける回折角2θ±0.2°の27.1°に明瞭なピークを有するオキシチタニウムフタロシアニン顔料を含有し、かつ該顔料を水と有機溶媒の混合溶媒で分散し、含水率を1質量%以上3質量%未満に調整した塗料を用いて形成されたことを特徴とする。
【0010】
また、本発明に用いるアゾ顔料は下記一般式(1)〜(5)に示される中心骨格を有するアゾ顔料からなる群から選ばれることが望ましい。
【0011】
一般式(1)
【0012】
【化6】

Figure 2004093640
一般式(2)
【0013】
【化7】
Figure 2004093640
一般式(3)
【0014】
【化8】
Figure 2004093640
一般式(4)
【0015】
【化9】
Figure 2004093640
一般式(5)
【0016】
【化10】
Figure 2004093640
一般式(1)〜(5)におけるA、A、Aはカプラー残基を表す。
【0017】
また、本発明に用いるオキシチタニウムフタロシアニン顔料は、CuKα特性X線回折における回折角2θ±0.2°の9.0°、14.2°、23.9°及び27.1°に強いピークを有することが好ましい。
【0018】
また、本発明のプロセスカートリッジは、前記電子写真感光体並びに、帯電手段、現像手段及びクリーニング手段からなる群より選ばれる少なくともひとつの手段を一体に支持し、電子写真装置本体に着脱自在であることを特徴とする。
【0019】
また、本発明の電子写真装置は、前記電子写真感光体、帯電手段、像露光手段、現像手段及び転写手段を有することを特徴とする。
【0020】
【発明の実施の形態】
以下に本発明を詳細に説明する。
【0021】
本発明における電子写真感光体は、導電性支持体上に電荷発生層と電荷輸送層を形成した積層型感光体である。代表的な層構成を図1に示す。感光層1が電荷発生材料を含有する電荷発生層2と、電荷輸送材料を含有する電荷輸送層3の積層構造である例を示す。なお、4は導電性支持体である。
【0022】
電荷発生層は、電荷発生材料であるオキシチタニウムフタロシアニン顔料及びアゾ顔料をバインダー樹脂及び分散溶媒に分散した電荷発生塗料を導電性支持体上に塗布して形成される。
【0023】
オキシチタニウムフタロシアニンは、少なくともCuKα特性X線回折ピークにおける回折角で27.1°±0.2°にメインピークを持つオキシチタニウムフタロシアニンであり、下記構造式で示される。
【0024】
【化11】
Figure 2004093640
更には、CuKα特性X線回折ピークにおける回折角(2θ±0.2)の9.0°、14.2°、23.9°、27.1°に強いピークを有するオキシチタニウムフタロシアニンがより高感度で、本発明が有効に作用し、特に好ましい。
【0025】
本発明におけるX線回折の測定は、CuKα線を用いて次の条件で行ったものである。
【0026】
使用測定機:マック・サイエンス社製、全自動X線回折装置MXP18
X線管球:Cu
管電圧:50kV
管電流:300mA
スキャン方法:2θ/θスキャン
スキャン速度:4deg./min
サンプリング間隔:0.020deg.
スタート角度(θ):3deg.
ストップ角度(θ):40deg.
ダイバージェンススリット:0.5deg.
スキャッタリングスリット:0.5deg.
レシービングスリット:0.3mm
湾曲モノクロメータ使用
【0027】
アゾ顔料としては、搭載する電子写真装置の光源の波長に高い感度を有するものが、高感度を維持する上で好ましく、一般式(1)〜(5)で表されるものが好ましい。
【0028】
一般式(1)
【0029】
【化12】
Figure 2004093640
一般式(2)
【0030】
【化13】
Figure 2004093640
一般式(3)
【0031】
【化14】
Figure 2004093640
一般式(4)
【0032】
【化15】
Figure 2004093640
一般式(5)
【0033】
【化16】
Figure 2004093640
一般式(1)〜(5)におけるA、A、Aはカプラー残基をあらわす。一般式(1)〜(3)中、A、A、Aで表されるカプラー残基としては、下記カプラー残基(1)〜(3)で示される基の中から選択され、1種あるいは2種以上を組み合わせてもよい。
【0034】
カプラー残基(1)
【0035】
【化17】
Figure 2004093640
カプラー残基(2)
【0036】
【化18】
Figure 2004093640
カプラー残基(3)
【0037】
【化19】
Figure 2004093640
カプラー残基(1)〜(3)中のXは、水素原子、ハロゲン原子またはアルキル基を示す。
【0038】
オキシチタニウムフタロシアニン顔料とアゾ顔料の比率は、99/1〜50/50の範囲であることが好ましい。
【0039】
電荷発生層を形成するにあたって、電荷発生材料を混合する場合は、各材料を上記範囲の比率で適当なバインダー樹脂と溶剤に分散するか、あるいは個々に分散した液を所定の比率になるように混合する。個々に分散する場合は、バインダー樹脂や溶剤はそれぞれ別のものでも良い。
【0040】
バインダー樹脂としては、例えば、ポリアミド樹脂、ポリビニルブチラール樹脂、ポリエステル樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリビニルアセタール樹脂、ポリスチレン樹脂、ポリアリレート樹脂、ポリビニルベンザール樹脂、ポリウレタン、エポキシ樹脂及びフェノール樹脂等が挙げられる。顔料と結着樹脂の割合は、重量比で10:1〜1:5、好ましくは、5:1から1:4の範囲である。また、顔料の分散液における濃度は0.5〜10質量%の範囲で分散を行うことが、分散や後処理の効率等を鑑みて好ましい。
【0041】
分散溶媒は、有機溶剤と水の混合溶媒であればよいが、分散時の水の添加量は、顔料に対して1質量%以上、100質量%未満とすることが好ましい。
【0042】
有機溶剤としては親水性のものが好ましく例えば、テトラヒドロフラン、n−プロピルエーテル、n−ブチルエーテル及び1,4−ジオキサン等のエーテル系溶剤、エタノール、プロパノール及び2−メトキシエタノール等のアルコール系溶剤、アセトン、メチルエチルケトン及びシクロヘキサノン等のケトン系溶剤等が挙げられる。
【0043】
分散処理は、例えば、ガラスビーズ、スチールビーズ及びアルミナボール等の分散メディアと共に、ペイントシェーカー、サンドミル、ボールミル等のミリング装置や、ホモジナイザー、超音波分散又は高圧液衝突分散装置等を用いて行うことができ、分散粒径が0.5μm以下、より好ましくは0.2μm以下になるまで顔料を分散することが、ぽちやかぶり等の画像欠陥を抑制するために好ましい。
【0044】
分散後の塗料はこの分散液をそのまま電荷発生層用の塗布液として用いて、有機溶剤または有機溶剤と水の混合溶剤で濃度調整してもよいが、塗工時の固形分濃度が、0.5〜5.0質量%、好ましくは1〜4質量%とすることが好ましい。また、塗料中の含水率が1質量%以上3質量%以下になるように調整する。含水率が1質量%未満の場合、メモリー特性を十分向上することができず、3質量%以上の場合、該塗料を導電性支持体上に塗布する際にぽちやムラ等の画像欠陥が発生してしまう。
【0045】
さらには、塗料中に添加剤等を加えても良い。
【0046】
電荷発生層の膜厚は、0.05〜5μmの範囲が好ましい。
【0047】
本発明で用いる導電性支持体は導電性を有するものであれば、いずれのものでもよく、例えばアルミニウム、銅、クロム、ニッケル、亜鉛、ステンレス等の金属をドラムまたはシート状に成型したもの、アルミニウムや銅等の金属箔をプラスチックフィルムにラミネートしたもの、アルミニウム、酸化インジウム、酸化スズ等をプラスチックフィルムに蒸着したもの、導電性物質を単独またはバインダー樹脂とともに塗布して導電層を設けた金属、プラスチックフィルム、紙等が挙げられる。
【0048】
また、支持体上には、レーザービームプリンターなど画像入力がレーザー光の場合は、散乱による干渉縞防止、または基板の傷を被覆することを目的とした導電層を設けても良い。これは、カーボンブラック、金属粒子などの導電性粉体をバインダー樹脂に分散させて形成することができる。導電層の膜厚は5〜40μm、好ましくは、10〜30μmである。
【0049】
さらに、導電性支持体上または上記導電層の上に、下引き層を設けることもできる。下引層は、ポリアミド、ポリビニルアルコール、ポリエチレンオキシド、カゼイン、エチルセルロース、ポリウレタン、ポリエーテルウレタン等によって形成できる。下引層の膜厚は0.05〜5μm、好ましくは0.3〜1μmが適当である。
【0050】
電荷輸送層は、電荷輸送物質及びバインダー樹脂から構成される。電荷輸送物質としては、トリアリールアミン系化合物、ヒドラゾン化合物、スチルベン化合物、ピラゾリン系化合物、オキサゾール系化合物、トリアリルメタン系化合物、チアゾール系化合物等が挙げられる。
【0051】
バインダー樹脂としてはポリカーボネート、ポリアリレート等の芳香族ポリエステル樹脂、飽和アルキルポリエステル樹脂、ポリメタクリレート、スチレン−アクリル共重合体等のアクリル樹脂、ポリスチレン、スチレンーブタジエンゴム、エチレン−酢酸ビニル共重合体、酢酸ビニル及びそれらの共重合体、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリアセタール、ポリエーテルスルホン、ポリスルホン、ポリフェニレンサルファイド、ポリエーテルケトン、シリコーン樹脂、アクリル樹脂、ポリウレタン樹脂等を挙げることができる。バインダー樹脂が電荷輸送機能を兼ね備えてもよい。
【0052】
電荷輸送層の厚さは5〜40μm、好ましくは10〜35μmである。
【0053】
さらに、感光体の表面保護のため、感光層の上に保護層を設けることもできる。保護層に用いることのできるバインダー樹脂としては、ポリカーボネート樹脂、ポリエステル樹脂、ポリアリレート樹脂、ポリスチレン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリウレタン樹脂、アクリル樹脂、エポキシ樹脂、シリコーン樹脂、セルロース樹脂、ポリ塩化ビニル樹脂、ホスファゼン樹脂、メラミン樹脂および塩化ビニル−酢酸ビニル共重合体等が挙げられる。また、保護層中には、導電性粒子として金属、金属酸化物およびカーボンブラック等を分散しても良い。金属としては、アルミニウム、亜鉛、銅、クロム、ニッケル、ステンレス、および銀等、またはこれらの金属をプラスチックの粒子の表面に蒸着したもの等が挙げられる。金属酸化物としては、酸化亜鉛、酸化チタン、酸化スズ、酸化アンチモン、酸化インジウム、酸化ビスマス、スズをドープした酸化インジウム、アンチモンをドープした酸化スズおよびアンチモンをドープした酸化ジルコニウム等が挙げられる。これらは単独で用いることも、2種以上を組み合わせて用いることもできる。
【0054】
保護層に適する膜厚は0.2〜10μm、より好ましくは0.5〜6μmである。
【0055】
また、電荷輸送層や保護層には耐久性を向上させるために潤滑剤として無機フィラー、ポリエチレン、ポリフルオロエチレン、シリカ等や、添加剤として分散剤、紫外線吸収剤や酸化防止剤、シリコーンオイル、レベリング剤等を添加させたりしても良い。
【0056】
各層を塗工するコーティング法としては、浸漬コーティング法、スプレーコーティング法、ロールコーターコーティング法、グラビアコーティング法が使用できる。
【0057】
次に本発明の電子写真感光体を用いた電子写真装置について説明する。
【0058】
図2に本発明の電子写真感光体を有するプロセスカートリッジを備えた電子写真装置の概略構成を示す。
【0059】
図2において、11はドラム状の本発明の電子写真感光体であり、軸12を中心に矢印方向に所定の周速度で回転駆動される。電子写真感光体11は、回転過程において、一次帯電手段13によりその周面に正又は負の所定電位の均一帯電を受け、次いで、スリット露光やレーザービーム走査露光等の露光手段(不図示)から出力される目的の画像情報の時系列電気デジタル画像信号に対応して強調変調された露光光14を受ける。こうして電子写真感光体11の周面に対し、目的の画像情報に対応した静電潜像が順次形成されていく。
【0060】
形成された静電潜像は、次いで現像手段15によりトナー現像され、不図示の給紙部から電子写真感光体11と転写手段16との間に電子写真感光体11の回転と同期して取り出されて給送された転写材17に、電子写真感光体11の表面に形成担持されているトナー画像が転写手段16により順次転写されていく。
【0061】
トナー画像の転写を受けた転写材17は、電子写真感光体面から分離されて像定着手段18へ導入されて像定着を受けることにより画像形成物(プリント、コピー)として装置外へプリントアウトされる。
【0062】
像転写後の電子写真感光体11の表面は、クリーニング手段19によって転写残りトナーの除去を受けて清浄面化され、繰り返し画像形成に使用される。
【0063】
本発明においては、上述の電子写真感光体11並びに、一次帯電手段13、現像手段15及びクリーニング手段19等の構成要素のうち、複数のものを容器に納めてプロセスカートリッジとして一体に結合して構成し、このプロセスカートリッジを複写機やレーザービームプリンター等の電子写真装置本体に対して着脱自在に構成してもよい。例えば、一次帯電手段13、現像手段15及びクリーニング手段19の少なくとも一つを電子写真感光体11と共に一体に支持してカートリッジ化して、装置本体のレール等の案内手段22を用いて装置本体に着脱自在なプロセスカートリッジ21とすることができる。
【0064】
また、露光光14は、電子写真装置が複写機やプリンターである場合には、原稿からの反射光や透過光、あるいは、センサーで原稿を読取り、信号化し、この信号に従って行われるレーザービームの走査、LEDアレイの駆動又は液晶シャッターアレイの駆動等により照射される光である。
【0065】
本発明の電子写真感光体は、電子写真複写機に利用するのみならず、レーザービームプリンター、CRTプリンター、LEDプリンター、FAX、液晶プリンター及びレーザー製版等の電子写真応用分野にも広く用いることができる。
【0066】
【実施例】
以下に本発明の実施例を説明する。なお、実施例中、「部」は質量部を示す。
【0067】
(実施例1)
φ30mm、長さ260mmのアルミニウムシリンダーを支持体とし、それに以下の材料より構成される塗料を支持体上に浸漬法で導電層、下引き層、電荷発生層、電荷輸送層の順に順次塗布し、感光体を作製した。
【0068】
導電層塗料として、
【0069】
導電性顔料:SnOコート処理硫酸バリウム         10部
抵抗調整用顔料:酸化チタン                 2部
バインダー樹脂:フェノール樹脂               6部
レベリング剤:シリコーンオイル           0.001部
溶剤:メタノール/メトキシプロパノール=0.2/0.8  20部
【0070】
を、1mmΦガラスビーズ入りサンドミル装置で2時間分散したものを調整した。この塗料を支持体上に浸漬法で塗布し、140℃で30分熱硬化させ、膜厚15μmの導電層を形成した。
【0071】
次にこの上に、N−メトキシメチル化ナイロン5部および共重合ナイロン1部をメタノール65部、nブタノール30部の混合溶媒に溶解した溶液を浸漬法により塗布し、膜厚0.5μmの下引き層を形成した。
【0072】
電荷発生塗料の調整は以下のように行った。電荷発生材料として、CuKαのX線回折スペクトルにおける回折角2θ±0.2°の9.0°、14.2°、23.9°、27.1°に強いピークを有するオキシチタニウムフタロシアニン顔料11部、下記アゾ顔料(化20)4部、ポリビニルブチラール(商品名BX−1、積水化学(株)製)10部、分散溶媒として特級テトラヒドロフラン294部、及び蒸留水6部をそれぞれ共に1mmφガラスビーズ(GB201M、東芝バロティーニ(株)製)400部を用いたサンドミル装置で、20℃下、8時間分散した。得られた分散液を特級シクロヘキサノン300部で希釈して塗布液を調整した。得られた塗布液の含水率をカールフィッシャー測定装置(AQV−200、平沼産業製)で測定したところ、1.1質量%であった。
【0073】
【化20】
Figure 2004093640
【0074】
この塗料を下引き層の上に浸漬法で塗布し、80℃で10分乾燥して膜厚0.2μmの電荷発生層を形成した。
電荷輸送用塗料の調整は以下のように行った。初めにフッ素系樹脂粒子分散液を調製するために、
【0075】
ビスフェノールZ型ポリカーボネート
(商品名:Z−800、三菱ガス化学製)           2部
四フッ化エチレン樹脂微粒子
(ルブロンL−2、ダイキン工業(株)製)          2部
フッ素系クシ型グラフトポリマー
(商品名GF300、東亜合成化学(株)製)      0.06部
モノクロロベンゼン                    20部
【0076】
を充分に混合した後、ガラスビーズを用いたサンドグラインダー((株)アイメックス製)にて分散し、4−フッ化エチレン樹脂粒子分散液を調製した。電荷輸送材料として下記構造式で示す化合物を9部、
【0077】
【化21】
Figure 2004093640
下記構造式で示す化合物を1部、
【0078】
【化22】
Figure 2004093640
ビスフェノールZ型ポリカーボネート(商品名:Z−800、三菱ガス化学製)8部、及び上記4−フッ化エチレン樹脂粒子分散液24部をジクロロメタン40部とモノクロロベンゼン60部の混合溶液に溶解した。この液を上記電荷発生層上に浸漬コーティング法で塗布し、115℃で60分間乾燥し、膜厚が30μmの電荷輸送層を形成し、電子写真感光体を作製した。
【0079】
このようにして作製した電子写真感光体は、ヒュ−レット・パッカ−ド(株)製プリンタ−Laser Jet 4000の像露光装置を光量可変となるよう改造した装置で評価した。作製した電子写真感光体をこの装置で、暗部電位(Vd)が−700Vになるように帯電し、これに波長780nmのレーザー光を照射して明部電位(Vl)が−150Vになるのに必要な光量を測定し感度とした。電子写真感光体の表面電位は、評価機から、現像用カートリッジを抜き取り、そこに電位測定装置を挿入し測定を行った。電位測定装置は、現像用カートリッジの現像位置に電位測定プローブを配置する事で構成されており、電子写真感光体に対する電位測定プローブの位置は、ドラム軸方向のほぼ中央、ドラム表面からのギャップを3mmとした。さらに印字比率6%の画像を23℃/55%RHの雰囲気環境においてプリント1枚ごとに1回停止する間欠モードで10,000枚の通紙耐久をおこない、耐久前後での電位差△Vd(=10,000枚耐久後のVd−初期Vd)、△Vl(=10,000枚耐久後のVl−初期Vl)を求めた。
【0080】
また、画像評価は次のように行った。まず、電子写真感光体の1周目部分に適当なパターンとその後全面ハーフトーンのある画像を出力し、ハーフトーン部分における1周目のパターン(ゴースト)の有無及びハーフトーンムラ等を目視で確認した。また、べた黒画像を出力し白ぽち等の画像欠陥の有無を確認した。結果を表1に示す。
【0081】
(実施例2)
実施例1の電荷発生層の形成において、オキシチタニウムフタロシアニン顔料を7.5部、アゾ顔料を7.5部としたほかは、実施例1と同様にして電子写真感光体を作製し、評価した。結果を表1に示す。
【0082】
(実施例3)
実施例1の電荷発生層の形成において、オキシチタニウムフタロシアニン顔料を11部、実施例1で用いたアゾ顔料(化20)を3部、下記構造式のアゾ顔料(化23)を1部としたほかは、実施例1と同様にして電子写真感光体を作製し、評価した。結果を表1に示す。
【0083】
【化23】
Figure 2004093640
【0084】
(実施例4)
電荷発生層に含有するアゾ顔料を下記構造式(化24)のものに代えたほかは、実施例1と同様にして電子写真感光体を作製し、評価した。結果を表1に示す。
【0085】
【化24】
Figure 2004093640
(実施例5)
電荷発生層に含有するアゾ顔料を下記構造式(化25)のものに代えたほかは、実施例1と同様にして電子写真感光体を作製し、評価した。結果を表1に示す。
【0086】
【化25】
Figure 2004093640
【0087】
(実施例6)
電荷発生層に含有するアゾ顔料を下記構造式(化26)のものに代えたほかは、実施例1と同様にして電子写真感光体を作製し、評価した。結果を表1に示す。
【0088】
【化26】
Figure 2004093640
【0089】
(実施例7)
実施例1の電荷発生層塗料において、以下のように作製方法を変更した以外は、実施例1と同様にして電子写真感光体を作製し、評価した。
【0090】
CuKαのX線回折スペクトルにおける回折角2θ±0.2°の9.0°、14.2°、23.9°、27.1°に強いピークを有するオキシチタニウムフタロシアニン顔料10部、ポリビニルブチラール(商品名BX−1、積水化学(株)製)10部、分散溶媒として特級テトラヒドロフラン192部及び蒸留水8部をそれぞれ共に1mmφガラスビーズ(GB201M、東芝バロティーニ(株)製)300部を用いたサンドミル装置で、20℃下、4時間分散した。次に実施例1で用いたアゾ顔料(化20)5部、分散溶媒として特級テトラヒドロフラン96部及び蒸留水4部を、1mmφガラスビーズ(GB201M、東芝バロティーニ(株)製)200部を用いた別のサンドミル装置で、20℃下、20時間分散した。得られた分散液を混合し、特級シクロヘキサノン300部で希釈して塗布液を調整した。得られた塗布液の含水率をカールフィッシャー測定装置(AQV−200、平沼産業製)で測定したところ、2.1質量%であった。
【0091】
(実施例8)
実施例1の電荷発生層塗料において、分散液の希釈をシクロヘキサノン290部及び蒸留水10部に変えたほかは、実施例1と同様にして電子写真感光体を作製し、評価した。
【0092】
このときの電荷発生層用塗料の含水率は、2.8質量%であった。
【0093】
(比較例1)
実施例1の電荷発生層において、アゾ顔料を用いなかったこと以外は、実施例1と同様にして電子写真感光体を作製し、評価した。
【0094】
(比較例2)
実施例1の電荷発生層において、アゾ顔料を用いず、更に分散溶媒を特級テトラヒドロフラン300部に変えたほかは、実施例1と同様にして電子写真感光体を作製し、評価した。
このときの電荷発生層用塗料の含水率は0.3質量%であり、分散後のオキシチタニウムフタロシアニン顔料の結晶形はX線結晶形スペクトル図4に示す結晶形に変化していた。
【0095】
(比較例3)
電荷発生層に含有するオキシチタニウムフタロシアニン顔料をCuKαのX線回折スペクトルにおける回折角2θ±0.2°の7.6°及び28.6°に強いピークを有するもの(X線回折スペクトル図5)に代えたほかは、実施例1と同様にして電子写真感光体を作製し、評価した。結果を表1に示す。
【0096】
(比較例4)
実施例1の電荷発生層において、分散溶媒を特級テトラヒドロフラン282部及び蒸留水18部に変えたほかは、実施例1と同様にして電子写真感光体を作製し、評価した。
【0097】
このときの電荷発生層用塗料の含水率は、3.0質量%であった。
【0098】
(比較例5)
実施例1の電荷発生層塗料において、分散溶媒を特級テトラヒドロフラン300部に変えたほかは、実施例1と同様にして電子写真感光体を作製し、評価した。
【0099】
このときの電荷発生層用塗料の含水率は、0.3質量%であった。
【0100】
【表1】
Figure 2004093640
【0101】
【発明の効果】
以上のように本発明によれば、高感度でかつ繰り返し使用における電位変動が小さく、メモリー特性や塗工ムラによる画像欠陥が少ない電子写真感光体、この電子写真感光体を用いた電子写真装置及び電子写真装置ユニットを提供することができる。
【図面の簡単な説明】
【図1】本発明の電子写真感光体の層構成を示す図である。
【図2】本発明の電子写真感光体を有するプロセスカートリッジを備えた電子写真装置の概略構成の例を示す図である。
【図3】本発明実施例のオキシチタニウムフタロシアニンの特性X線回折図である。
【図4】本発明比較例のオキシチタニウムフタロシアニンの特性X線回折図である。
【図5】本発明比較例のオキシチタニウムフタロシアニンの特性X線回折図である。
【符号の説明】
1 感光層
2 電荷発生層
3 電荷輸送層
4 導電性支持体
11 電子写真感光体
12 軸
13 帯電手段
14 露光光
15 現像手段
16 転写手段
17 転写材
18 定着手段
19 クリーニング手段
21 プロセスカートリッジ
22 案内手段[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a laminated electrophotographic photosensitive member containing an azo pigment and an oxytitanium phthalocyanine pigment, a process cartridge provided with the electrophotographic photosensitive member, and an electrophotographic apparatus.
[0002]
[Prior art]
In recent years, electrophotographic photoreceptors used in copiers, laser printers, and the like using electrophotography have been developed from organic photoconductor materials because of their advantages such as high safety, suitability for mass production, and low cost. The formed photoreceptor is widely used. The configuration of the organic photoreceptor includes a single-layer photoreceptor having a photosensitive layer mainly composed of a charge generating substance, a charge transporting substance and a binder resin on a conductive support, and a charge generating substance on a conductive support. And a charge transport layer mainly composed of a binder resin, a charge transport material and a charge transport layer mainly composed of a binder resin. Above all, the stacked type photoreceptor can be further improved in sensitivity, and is currently the mainstream of the organic electrophotographic photoreceptor.
[0003]
Further, in electrophotographic image formation, digitization of image formation is rapidly progressing in order to obtain high-quality images and to store and freely edit input images. When digitally forming an image, a digital electric signal is converted into an optical signal and input to a photoconductor. As this light source, laser light or LED light is mainly used. At present, the emission wavelength of the most frequently used light source is 790 ± 20 nm. With the progress of digitization, the frequency of demand for charge generation materials having sufficient sensitivity in this wavelength range has been increasing. As a typical charge generation material, a phthalocyanine compound can be mentioned, and among them, many sensitive oxytitanium phthalocyanines have been studied. Oxytitanium phthalocyanine has been reported in, for example, JP-A-61-239248, JP-A-62-67094, JP-A-1-17066, JP-A-3-54264, and JP-A-3-128973. Many crystal forms are known as described above, and oxytitanium phthalocyanine having a clear diffraction peak at 27.1 ° at a black angle (2θ ± 0.2 °) in the X-ray diffraction spectrum is very sensitive. It is clear that it is high. Further, its crystal form is a metastable form, and when preparing a dispersion for applying a charge generation layer in the process of producing a photoreceptor, it is likely to change to another stable crystal form depending on the dispersion conditions, and sensitivity characteristics are impaired. Easy to be. Therefore, Japanese Patent Application Laid-Open No. 6-289628 discloses a method of dispersing an oxytitanium phthalocyanine crystal with a solvent containing an equal amount or more of water so that a dispersion can be produced while maintaining a stable crystal form, and high sensitivity can be achieved. Is disclosed.
[0004]
[Problems to be solved by the invention]
However, the electrophotographic photoreceptor using these oxytitanium phthalocyanines has high sensitivity, so that the charging potential is reduced and the light portion potential fluctuates due to repeated image forming processes such as charging, exposure, development and transfer. In addition, there is a defect that a kind of memory is generated due to the accumulation of electric charges in the electric charge generating layer, and a ghost phenomenon in which an originally non-existent pattern appears on an image occurs.
[0005]
Further, when a water-containing paint is applied on the conductive support, image defects may occur due to uneven coating.
[0006]
Accordingly, an object of the present invention is to provide an electrophotographic photoreceptor that has low image defects and has excellent potential fluctuation due to durability and excellent memory characteristics while maintaining high sensitivity in a laminated electrophotographic photoreceptor using an oxytitanium phthalocyanine pigment. Another object of the present invention is to provide a process cartridge having the electrophotographic photosensitive member and an electrophotographic photosensitive member.
[0007]
[Means for Solving the Problems]
As a result of investigations by the present inventors, charge generation using an oxytitanium phthalocyanine pigment having a distinct peak at 27.1 ° at a diffraction angle of 2θ ± 0.2 ° in the CuKα characteristic X-ray diffraction spectrum in the charge generation layer was performed. In preparing the coating composition for the layer, the pigment is dispersed in a mixed solvent of water and an organic solvent, the water content in the coating composition is adjusted to 1% by mass or more and less than 3% by mass, and at least one azo pigment is simultaneously contained. By doing so, it was found that image defects due to memory characteristics and coating unevenness can be improved while maintaining high sensitivity, and furthermore, potential fluctuations during repeated use can be suppressed.
[0008]
It is not clear why the memory characteristics and the potential fluctuation can be kept small, but the presence of azo pigment and water in the charge generation layer at the same time makes the carrier (electrons) generated by exposure less than that of the oxytitanium phthalocyanine pigment alone. It is considered that the recombination and injection into the substrate side are smoothly performed.
[0009]
That is, in the electrophotographic photoreceptor of the present invention, in an electrophotographic photoreceptor having a charge generation layer and a charge transport layer on a conductive support, the charge generation layer comprises at least one kind of azo pigment and a light-transmissive X-ray diffraction spectrum. It contains an oxytitanium phthalocyanine pigment having a clear peak at 27.1 ° with a bending angle of 2 ± 0.2 °, and the pigment is dispersed in a mixed solvent of water and an organic solvent, and the water content is 1% by mass or more and 3% by mass. % Is formed using a paint adjusted to less than%.
[0010]
The azo pigment used in the present invention is desirably selected from the group consisting of azo pigments having a central skeleton represented by the following general formulas (1) to (5).
[0011]
General formula (1)
[0012]
Embedded image
Figure 2004093640
General formula (2)
[0013]
Embedded image
Figure 2004093640
General formula (3)
[0014]
Embedded image
Figure 2004093640
General formula (4)
[0015]
Embedded image
Figure 2004093640
General formula (5)
[0016]
Embedded image
Figure 2004093640
A 1 , A 2 and A 3 in the general formulas (1) to (5) represent coupler residues.
[0017]
The oxytitanium phthalocyanine pigment used in the present invention has strong peaks at 9.0 °, 14.2 °, 23.9 ° and 27.1 ° at diffraction angles 2θ ± 0.2 ° in CuKα characteristic X-ray diffraction. It is preferred to have.
[0018]
Further, the process cartridge of the present invention integrally supports the electrophotographic photoreceptor and at least one unit selected from the group consisting of a charging unit, a developing unit and a cleaning unit, and is detachable from an electrophotographic apparatus main body. It is characterized.
[0019]
Further, an electrophotographic apparatus according to the present invention includes the electrophotographic photosensitive member, a charging unit, an image exposing unit, a developing unit, and a transfer unit.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0021]
The electrophotographic photoreceptor of the present invention is a laminated photoreceptor having a charge generation layer and a charge transport layer formed on a conductive support. FIG. 1 shows a typical layer configuration. An example in which the photosensitive layer 1 has a laminated structure of a charge generation layer 2 containing a charge generation material and a charge transport layer 3 containing a charge transport material will be described. Reference numeral 4 denotes a conductive support.
[0022]
The charge generation layer is formed by applying a charge generation paint in which an oxytitanium phthalocyanine pigment and an azo pigment, which are charge generation materials, are dispersed in a binder resin and a dispersion solvent on a conductive support.
[0023]
Oxytitanium phthalocyanine is an oxytitanium phthalocyanine having a main peak at a diffraction angle of at least 27.1 ° ± 0.2 ° in a CuKα characteristic X-ray diffraction peak, and is represented by the following structural formula.
[0024]
Embedded image
Figure 2004093640
Furthermore, oxytitanium phthalocyanine having strong peaks at 9.0 °, 14.2 °, 23.9 ° and 27.1 ° of the diffraction angle (2θ ± 0.2) in the CuKα characteristic X-ray diffraction peak is higher. With sensitivity, the present invention works effectively and is particularly preferred.
[0025]
The measurement of X-ray diffraction in the present invention was performed using CuKα radiation under the following conditions.
[0026]
Measuring machine used: manufactured by Mac Science, fully automatic X-ray diffractometer MXP18
X-ray tube: Cu
Tube voltage: 50 kV
Tube current: 300 mA
Scan method: 2θ / θ scan Scan speed: 4 deg. / Min
Sampling interval: 0.020 deg.
Start angle (θ): 3 deg.
Stop angle (θ): 40 deg.
Divergence slit: 0.5 deg.
Scattering slit: 0.5 deg.
Receiving slit: 0.3mm
Use of curved monochromator
As the azo pigment, those having high sensitivity to the wavelength of the light source of the electrophotographic device to be mounted are preferable for maintaining high sensitivity, and those represented by general formulas (1) to (5) are preferable.
[0028]
General formula (1)
[0029]
Embedded image
Figure 2004093640
General formula (2)
[0030]
Embedded image
Figure 2004093640
General formula (3)
[0031]
Embedded image
Figure 2004093640
General formula (4)
[0032]
Embedded image
Figure 2004093640
General formula (5)
[0033]
Embedded image
Figure 2004093640
A 1 , A 2 and A 3 in the general formulas (1) to (5) represent coupler residues. In the general formulas (1) to (3), the coupler residues represented by A 1 , A 2 and A 3 are selected from groups represented by the following coupler residues (1) to (3); One type or a combination of two or more types may be used.
[0034]
Coupler residue (1)
[0035]
Embedded image
Figure 2004093640
Coupler residue (2)
[0036]
Embedded image
Figure 2004093640
Coupler residue (3)
[0037]
Embedded image
Figure 2004093640
X in the coupler residues (1) to (3) represents a hydrogen atom, a halogen atom or an alkyl group.
[0038]
The ratio between the oxytitanium phthalocyanine pigment and the azo pigment is preferably in the range of 99/1 to 50/50.
[0039]
In forming the charge generation layer, when mixing the charge generation materials, the respective materials are dispersed in an appropriate binder resin and a solvent at a ratio in the above range, or the individually dispersed liquid is adjusted to a predetermined ratio. Mix. When dispersed individually, the binder resin and the solvent may be different from each other.
[0040]
Examples of the binder resin include polyamide resin, polyvinyl butyral resin, polyester resin, acrylic resin, polycarbonate resin, polyvinyl acetal resin, polystyrene resin, polyarylate resin, polyvinyl benzal resin, polyurethane, epoxy resin, and phenol resin. . The ratio of the pigment to the binder resin is in the range of 10: 1 to 1: 5, preferably 5: 1 to 1: 4 by weight. In addition, it is preferable to perform dispersion in a concentration of the pigment in the dispersion of 0.5 to 10% by mass in view of the efficiency of dispersion and post-treatment.
[0041]
The dispersion solvent may be a mixed solvent of an organic solvent and water, but the amount of water added during dispersion is preferably 1% by mass or more and less than 100% by mass based on the pigment.
[0042]
As the organic solvent, hydrophilic solvents are preferable, for example, tetrahydrofuran, n-propyl ether, ether solvents such as n-butyl ether and 1,4-dioxane, alcohol solvents such as ethanol, propanol and 2-methoxyethanol, acetone, Examples thereof include ketone solvents such as methyl ethyl ketone and cyclohexanone.
[0043]
The dispersion treatment can be performed using a milling device such as a paint shaker, a sand mill, or a ball mill, a homogenizer, an ultrasonic dispersion or a high-pressure liquid collision dispersion device, together with a dispersion medium such as glass beads, steel beads, and alumina balls. It is preferable to disperse the pigment until the dispersion particle size becomes 0.5 μm or less, more preferably 0.2 μm or less, in order to suppress image defects such as dust and fog.
[0044]
After the dispersion, the dispersion may be used as it is as a coating solution for the charge generation layer, and the concentration may be adjusted with an organic solvent or a mixed solvent of an organic solvent and water. It is preferably from 0.5 to 5.0% by mass, more preferably from 1 to 4% by mass. Further, the water content in the paint is adjusted so as to be 1% by mass or more and 3% by mass or less. When the water content is less than 1% by mass, the memory characteristics cannot be sufficiently improved. When the water content is 3% by mass or more, image defects such as spots and unevenness occur when the paint is applied on a conductive support. Resulting in.
[0045]
Further, additives and the like may be added to the paint.
[0046]
The thickness of the charge generation layer is preferably in the range of 0.05 to 5 μm.
[0047]
The conductive support used in the present invention may be any as long as it has conductivity, for example, aluminum, copper, chromium, nickel, zinc, a metal such as stainless steel, formed into a drum or sheet, aluminum Metal foil, such as copper or copper, laminated on a plastic film, aluminum, indium oxide, tin oxide, etc. deposited on a plastic film, or a metal or plastic with a conductive layer applied by applying a conductive substance alone or with a binder resin Film, paper and the like can be mentioned.
[0048]
When the image input is a laser beam, such as a laser beam printer, a conductive layer may be provided on the support for the purpose of preventing interference fringes due to scattering or covering a scratch on the substrate. This can be formed by dispersing conductive powder such as carbon black and metal particles in a binder resin. The thickness of the conductive layer is 5 to 40 μm, preferably 10 to 30 μm.
[0049]
Further, an undercoat layer may be provided on the conductive support or on the conductive layer. The undercoat layer can be formed of polyamide, polyvinyl alcohol, polyethylene oxide, casein, ethyl cellulose, polyurethane, polyether urethane, or the like. The thickness of the undercoat layer is suitably from 0.05 to 5 μm, preferably from 0.3 to 1 μm.
[0050]
The charge transport layer is composed of a charge transport material and a binder resin. Examples of the charge transport material include a triarylamine compound, a hydrazone compound, a stilbene compound, a pyrazoline compound, an oxazole compound, a triallylmethane compound, and a thiazole compound.
[0051]
As the binder resin, aromatic polyester resin such as polycarbonate and polyarylate, saturated alkyl polyester resin, polymethacrylate, acrylic resin such as styrene-acryl copolymer, polystyrene, styrene butadiene rubber, ethylene-vinyl acetate copolymer, acetic acid Examples include vinyl and their copolymers, polyethylene terephthalate resin, polybutylene terephthalate resin, polyacetal, polyether sulfone, polysulfone, polyphenylene sulfide, polyether ketone, silicone resin, acrylic resin, and polyurethane resin. The binder resin may also have a charge transport function.
[0052]
The thickness of the charge transport layer is 5 to 40 μm, preferably 10 to 35 μm.
[0053]
Further, a protective layer may be provided on the photosensitive layer for protecting the surface of the photosensitive member. Examples of the binder resin that can be used for the protective layer include polycarbonate resin, polyester resin, polyarylate resin, polystyrene resin, polyethylene resin, polypropylene resin, polyurethane resin, acrylic resin, epoxy resin, silicone resin, cellulose resin, and polyvinyl chloride resin. , A phosphazene resin, a melamine resin, and a vinyl chloride-vinyl acetate copolymer. Further, a metal, a metal oxide, carbon black, or the like may be dispersed as conductive particles in the protective layer. Examples of the metal include aluminum, zinc, copper, chromium, nickel, stainless steel, silver, and the like, and those obtained by vapor-depositing these metals on the surfaces of plastic particles. Examples of the metal oxide include zinc oxide, titanium oxide, tin oxide, antimony oxide, indium oxide, bismuth oxide, tin-doped indium oxide, antimony-doped tin oxide, and antimony-doped zirconium oxide. These can be used alone or in combination of two or more.
[0054]
The film thickness suitable for the protective layer is 0.2 to 10 μm, more preferably 0.5 to 6 μm.
[0055]
In addition, the charge transport layer and the protective layer include inorganic fillers, polyethylene, polyfluoroethylene, silica, and the like as lubricants to improve durability, and dispersants, ultraviolet absorbers, antioxidants, and silicone oils as additives. A leveling agent or the like may be added.
[0056]
As a coating method for coating each layer, a dip coating method, a spray coating method, a roll coater coating method, and a gravure coating method can be used.
[0057]
Next, an electrophotographic apparatus using the electrophotographic photosensitive member of the present invention will be described.
[0058]
FIG. 2 shows a schematic configuration of an electrophotographic apparatus provided with a process cartridge having the electrophotographic photosensitive member of the present invention.
[0059]
In FIG. 2, reference numeral 11 denotes a drum-shaped electrophotographic photosensitive member of the present invention, which is driven to rotate around an axis 12 in a direction of an arrow at a predetermined peripheral speed. The electrophotographic photoreceptor 11 receives a uniform charge of a predetermined positive or negative potential on its peripheral surface by the primary charging means 13 during the rotation process, and then receives light from exposure means (not shown) such as slit exposure or laser beam scanning exposure. It receives exposure light 14 that is enhanced and modulated according to the time-series electric digital image signal of the target image information to be output. In this way, an electrostatic latent image corresponding to the target image information is sequentially formed on the peripheral surface of the electrophotographic photosensitive member 11.
[0060]
The formed electrostatic latent image is then developed with toner by a developing unit 15 and taken out from a paper feeding unit (not shown) between the electrophotographic photoconductor 11 and the transfer unit 16 in synchronization with the rotation of the electrophotographic photoconductor 11. The toner images formed and carried on the surface of the electrophotographic photosensitive member 11 are sequentially transferred by the transfer means 16 to the transfer material 17 fed and fed.
[0061]
The transfer material 17 to which the toner image has been transferred is separated from the surface of the electrophotographic photoreceptor, introduced into the image fixing means 18 and subjected to image fixing to be printed out as an image formed product (print, copy) outside the apparatus. .
[0062]
The surface of the electrophotographic photoreceptor 11 after the image transfer is cleaned and cleaned to remove the untransferred toner by the cleaning means 19, and is repeatedly used for image formation.
[0063]
In the present invention, a plurality of components among the above-described electrophotographic photoreceptor 11 and components such as the primary charging unit 13, the developing unit 15, and the cleaning unit 19 are housed in a container and integrally combined as a process cartridge. However, the process cartridge may be configured to be detachable from a main body of an electrophotographic apparatus such as a copying machine or a laser beam printer. For example, at least one of the primary charging unit 13, the developing unit 15, and the cleaning unit 19 is integrally supported with the electrophotographic photosensitive member 11 to form a cartridge, and the cartridge is attached to and detached from the apparatus main body using the guide means 22 such as a rail of the apparatus main body. A flexible process cartridge 21 can be provided.
[0064]
When the electrophotographic apparatus is a copying machine or a printer, the exposure light 14 is reflected light or transmitted light from the original, or the original is read by a sensor, converted into a signal, and scanned by a laser beam performed in accordance with the signal. , Light emitted by driving an LED array or driving a liquid crystal shutter array.
[0065]
The electrophotographic photoreceptor of the present invention can be widely used not only for electrophotographic copying machines but also for electrophotographic applications such as laser beam printers, CRT printers, LED printers, faxes, liquid crystal printers, and laser plate making. .
[0066]
【Example】
Hereinafter, examples of the present invention will be described. In the examples, "parts" indicates parts by mass.
[0067]
(Example 1)
An aluminum cylinder having a diameter of 30 mm and a length of 260 mm is used as a support, and a coating composed of the following materials is sequentially applied to the support by a dipping method in the order of a conductive layer, an undercoat layer, a charge generation layer, and a charge transport layer. A photoreceptor was prepared.
[0068]
As conductive layer paint,
[0069]
Conductive pigment: SnO 2 coated barium sulfate 10 parts Resistance adjusting pigment: titanium oxide 2 parts Binder resin: phenol resin 6 parts Leveling agent: silicone oil 0.001 parts Solvent: methanol / methoxypropanol = 0.2 / 0. 8 20 copies
Was dispersed in a sand mill containing 1 mmφ glass beads for 2 hours. This coating material was applied on a support by a dipping method, and thermally cured at 140 ° C. for 30 minutes to form a conductive layer having a thickness of 15 μm.
[0071]
Next, a solution prepared by dissolving 5 parts of N-methoxymethylated nylon and 1 part of copolymerized nylon in a mixed solvent of 65 parts of methanol and 30 parts of n-butanol was applied thereon by a dipping method. A pull layer was formed.
[0072]
Adjustment of the charge generation paint was performed as follows. Oxytitanium phthalocyanine pigment 11 having a strong peak at 9.0 °, 14.2 °, 23.9 °, 27.1 ° at a diffraction angle of 2θ ± 0.2 ° in the X-ray diffraction spectrum of CuKα as a charge generating material 11 Parts, the following azo pigment (Chemical Formula 20), 4 parts of polyvinyl butyral (trade name: BX-1, manufactured by Sekisui Chemical Co., Ltd.), 294 parts of special grade tetrahydrofuran as a dispersing solvent, and 6 parts of distilled water were each 1 mmφ glass beads. (GB201M, manufactured by Toshiba Barotini Co., Ltd.) The dispersion was carried out at 20 ° C. for 8 hours with a sand mill using 400 parts. The resulting dispersion was diluted with 300 parts of special grade cyclohexanone to prepare a coating solution. The water content of the obtained coating liquid was measured by a Karl Fischer measuring apparatus (AQV-200, manufactured by Hiranuma Sangyo) and found to be 1.1% by mass.
[0073]
Embedded image
Figure 2004093640
[0074]
This paint was applied on the undercoat layer by an immersion method, and dried at 80 ° C. for 10 minutes to form a 0.2 μm-thick charge generation layer.
The preparation of the charge transport coating was performed as follows. First, to prepare a fluororesin particle dispersion,
[0075]
Bisphenol Z-type polycarbonate (trade name: Z-800, manufactured by Mitsubishi Gas Chemical) 2 parts fine particles of ethylene tetrafluoride resin (Rublon L-2, manufactured by Daikin Industries, Ltd.) 2 parts fluorinated comb type graft polymer (trade name: GF300) , Manufactured by Toa Gosei Chemical Co., Ltd.) 0.06 parts Monochlorobenzene 20 parts
Was thoroughly mixed and dispersed by a sand grinder (manufactured by Imex Co., Ltd.) using glass beads to prepare a dispersion of 4-fluoroethylene resin particles. 9 parts of a compound represented by the following structural formula as a charge transport material,
[0077]
Embedded image
Figure 2004093640
1 part of a compound represented by the following structural formula,
[0078]
Embedded image
Figure 2004093640
8 parts of bisphenol Z-type polycarbonate (trade name: Z-800, manufactured by Mitsubishi Gas Chemical) and 24 parts of the above 4-fluoroethylene resin particle dispersion were dissolved in a mixed solution of 40 parts of dichloromethane and 60 parts of monochlorobenzene. This solution was applied on the charge generation layer by dip coating, and dried at 115 ° C. for 60 minutes to form a charge transport layer having a thickness of 30 μm, thereby producing an electrophotographic photoreceptor.
[0079]
The electrophotographic photoreceptor thus manufactured was evaluated with an apparatus obtained by modifying an image exposing apparatus of a printer, Laser Jet 4000, manufactured by Hewlett-Packard Co., Ltd. so as to make the light amount variable. The prepared electrophotographic photoreceptor is charged by this apparatus so that the dark part potential (Vd) becomes -700 V, and the laser light having a wavelength of 780 nm is irradiated to the charged part, so that the light part potential (Vl) becomes -150 V. The required amount of light was measured and used as the sensitivity. The surface potential of the electrophotographic photoreceptor was measured by extracting the developing cartridge from the evaluator and inserting a potential measuring device therein. The potential measuring device is configured by arranging a potential measuring probe at a developing position of a developing cartridge.The position of the potential measuring probe with respect to the electrophotographic photosensitive member is substantially the center in the drum axis direction, and a gap from the drum surface is set. 3 mm. Further, in an intermittent mode in which an image having a printing ratio of 6% is stopped once for each print in an atmosphere environment of 23 ° C./55% RH, 10,000 sheets of paper are passed, and the potential difference ΔVd (= Vd after 10,000 sheets durability-initial Vd) and ΔVl (= Vl after 10,000 sheets durability-initial Vl) were determined.
[0080]
The image evaluation was performed as follows. First, an image having an appropriate pattern on the first lap of the electrophotographic photoreceptor and a halftone image thereafter is output, and the presence or absence of the first lap pattern (ghost) and halftone unevenness in the halftone portion are visually checked. did. Further, a solid black image was output, and the presence or absence of image defects such as white spots was confirmed. Table 1 shows the results.
[0081]
(Example 2)
An electrophotographic photosensitive member was prepared and evaluated in the same manner as in Example 1, except that the oxytitanium phthalocyanine pigment was 7.5 parts and the azo pigment was 7.5 parts in forming the charge generation layer of Example 1. . Table 1 shows the results.
[0082]
(Example 3)
In the formation of the charge generation layer of Example 1, 11 parts of the oxytitanium phthalocyanine pigment, 3 parts of the azo pigment (Chemical Formula 20) used in Example 1, and 1 part of the azo pigment of the following structural formula (Chemical Formula 23) were used. Otherwise, an electrophotographic photosensitive member was prepared and evaluated in the same manner as in Example 1. Table 1 shows the results.
[0083]
Embedded image
Figure 2004093640
[0084]
(Example 4)
An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 1, except that the azo pigment contained in the charge generation layer was changed to that of the following structural formula (Formula 24). Table 1 shows the results.
[0085]
Embedded image
Figure 2004093640
(Example 5)
An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 1, except that the azo pigment contained in the charge generation layer was changed to that of the following structural formula (Formula 25). Table 1 shows the results.
[0086]
Embedded image
Figure 2004093640
[0087]
(Example 6)
An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 1, except that the azo pigment contained in the charge generation layer was changed to that of the following structural formula (Formula 26). Table 1 shows the results.
[0088]
Embedded image
Figure 2004093640
[0089]
(Example 7)
An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 1 except that the preparation method was changed as follows in the charge generation layer coating material of Example 1.
[0090]
10 parts of an oxytitanium phthalocyanine pigment having strong peaks at 9.0 °, 14.2 °, 23.9 ° and 27.1 ° at diffraction angles 2θ ± 0.2 ° in the X-ray diffraction spectrum of CuKα, 10 parts of polyvinyl butyral ( Sand mill using 10 parts of BX-1 (trade name, manufactured by Sekisui Chemical Co., Ltd.), 192 parts of special grade tetrahydrofuran and 8 parts of distilled water as dispersion solvents, each using 300 parts of 1 mmφ glass beads (GB201M, manufactured by Toshiba Barotini Co., Ltd.). The mixture was dispersed at 20 ° C. for 4 hours using an apparatus. Next, 5 parts of the azo pigment (Chemical Formula 20) used in Example 1, 96 parts of special grade tetrahydrofuran and 4 parts of distilled water as dispersion solvents, and 200 parts of 1 mmφ glass beads (GB201M, manufactured by Toshiba Barotini Co., Ltd.) were used. Was dispersed at 20 ° C. for 20 hours using a sand mill. The obtained dispersion was mixed and diluted with 300 parts of special grade cyclohexanone to prepare a coating liquid. The water content of the obtained coating solution was measured by a Karl Fischer measuring apparatus (AQV-200, manufactured by Hiranuma Sangyo) and found to be 2.1% by mass.
[0091]
(Example 8)
An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 1 except that the dispersion of the charge generation layer coating material of Example 1 was changed to 290 parts of cyclohexanone and 10 parts of distilled water.
[0092]
At this time, the water content of the charge generation layer coating material was 2.8% by mass.
[0093]
(Comparative Example 1)
An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 1 except that no azo pigment was used in the charge generation layer of Example 1.
[0094]
(Comparative Example 2)
An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 1, except that the azo pigment was not used in the charge generation layer of Example 1 and the dispersion solvent was changed to 300 parts of special grade tetrahydrofuran.
At this time, the water content of the coating material for the charge generation layer was 0.3% by mass, and the crystal form of the oxytitanium phthalocyanine pigment after dispersion had changed to the crystal form shown in X-ray crystal form spectrum diagram FIG.
[0095]
(Comparative Example 3)
Oxytitanium phthalocyanine pigment contained in the charge generation layer having strong peaks at 7.6 ° and 28.6 ° at a diffraction angle of 2θ ± 0.2 ° in the X-ray diffraction spectrum of CuKα (X-ray diffraction spectrum FIG. 5) An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 1 except for changing the above. Table 1 shows the results.
[0096]
(Comparative Example 4)
An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 1 except that the dispersion solvent in the charge generation layer of Example 1 was changed to 282 parts of special grade tetrahydrofuran and 18 parts of distilled water.
[0097]
At this time, the water content of the coating for the charge generation layer was 3.0% by mass.
[0098]
(Comparative Example 5)
An electrophotographic photoreceptor was prepared and evaluated in the same manner as in Example 1 except that the dispersion solvent in the charge generation layer coating material of Example 1 was changed to 300 parts of special grade tetrahydrofuran.
[0099]
At this time, the water content of the charge generation layer coating material was 0.3% by mass.
[0100]
[Table 1]
Figure 2004093640
[0101]
【The invention's effect】
As described above, according to the present invention, an electrophotographic photoreceptor having high sensitivity and a small potential fluctuation in repeated use, and having few image defects due to memory characteristics and coating unevenness, an electrophotographic apparatus using the electrophotographic photoreceptor, An electrophotographic apparatus unit can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram showing a layer configuration of an electrophotographic photosensitive member of the present invention.
FIG. 2 is a diagram showing an example of a schematic configuration of an electrophotographic apparatus provided with a process cartridge having an electrophotographic photosensitive member of the present invention.
FIG. 3 is a characteristic X-ray diffraction diagram of the oxytitanium phthalocyanine of the example of the present invention.
FIG. 4 is a characteristic X-ray diffraction diagram of oxytitanium phthalocyanine of a comparative example of the present invention.
FIG. 5 is a characteristic X-ray diffraction diagram of oxytitanium phthalocyanine of a comparative example of the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 photosensitive layer 2 charge generation layer 3 charge transport layer 4 conductive support 11 electrophotographic photosensitive member 12 shaft 13 charging means 14 exposure light 15 developing means 16 transfer means 17 transfer material 18 fixing means 19 cleaning means 21 process cartridge 22 guide means

Claims (5)

導電性支持体上に電荷発生層、電荷輸送層を有する電子写真感光体において、該電荷発生層が、少なくとも1種のアゾ顔料とCuKα特性X線回折スペクトルにおける回折角2θ±0.2°の27.1°に明瞭なピークを有するオキシチタニウムフタロシアニン顔料を含有し、かつ該顔料を水と有機溶媒の混合溶媒で分散し、含水率を1質量%以上3質量%未満に調整した塗料を用いて形成されたことを特徴とする電子写真感光体。In an electrophotographic photoreceptor having a charge generation layer and a charge transport layer on a conductive support, the charge generation layer has at least one azo pigment and a diffraction angle 2θ ± 0.2 ° in a CuKα characteristic X-ray diffraction spectrum. A paint containing an oxytitanium phthalocyanine pigment having a clear peak at 27.1 °, and dispersing the pigment in a mixed solvent of water and an organic solvent, and adjusting the water content to 1% by mass or more and less than 3% by mass. An electrophotographic photosensitive member characterized by being formed by: 前記アゾ顔料が、下記一般式(1)〜(5)
一般式(1)
Figure 2004093640
一般式(2)
Figure 2004093640
一般式(3)
Figure 2004093640
一般式(4)
Figure 2004093640
一般式(5)
Figure 2004093640
(一般式(1)〜(5)におけるA、A、Aはカプラー残基を表す。)
に示される中心骨格を供えたアゾ顔料からなる群より選択されることを特徴とする請求項1記載の電子写真感光体。
The azo pigment is represented by the following general formulas (1) to (5)
General formula (1)
Figure 2004093640
General formula (2)
Figure 2004093640
General formula (3)
Figure 2004093640
General formula (4)
Figure 2004093640
General formula (5)
Figure 2004093640
(A 1 , A 2 , and A 3 in the general formulas (1) to (5) represent coupler residues.)
The electrophotographic photoreceptor according to claim 1, wherein the electrophotographic photoreceptor is selected from the group consisting of azo pigments having a central skeleton shown in (1).
前記オキシチタニウムフタロシアニン顔料が、X線回折スペクトルにおける回折角2θ±0.2°の9.0°、14.2°、23.9°、27.1°に強いピークを有することを特徴とする請求項1又は2記載の電子写真感光体。The oxytitanium phthalocyanine pigment has a strong peak at 9.0 °, 14.2 °, 23.9 °, and 27.1 ° at a diffraction angle of 2θ ± 0.2 ° in an X-ray diffraction spectrum. The electrophotographic photosensitive member according to claim 1. 請求項1〜3のいずれかに記載の電子写真感光体並びに、帯電手段、現像手段、及びクリーニング手段からなる群より選択される少なくとも1つの手段を一体に支持し、電子写真装置本体に着脱自在であることを特徴とするプロセスカートリッジ。An electrophotographic photosensitive member according to any one of claims 1 to 3, and at least one unit selected from the group consisting of a charging unit, a developing unit, and a cleaning unit are integrally supported and detachably attached to an electrophotographic apparatus main body. A process cartridge. 請求項1〜3のいずれかに記載の電子写真感光体、帯電手段、現像手段、及び転写手段を有することを特徴とする電子写真装置。An electrophotographic apparatus comprising the electrophotographic photosensitive member according to claim 1, a charging unit, a developing unit, and a transfer unit.
JP2002251106A 2002-08-29 2002-08-29 Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus having electrophotographic photosensitive member, and method of manufacturing electrophotographic photosensitive member Expired - Fee Related JP3840161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002251106A JP3840161B2 (en) 2002-08-29 2002-08-29 Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus having electrophotographic photosensitive member, and method of manufacturing electrophotographic photosensitive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002251106A JP3840161B2 (en) 2002-08-29 2002-08-29 Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus having electrophotographic photosensitive member, and method of manufacturing electrophotographic photosensitive member

Publications (2)

Publication Number Publication Date
JP2004093640A true JP2004093640A (en) 2004-03-25
JP3840161B2 JP3840161B2 (en) 2006-11-01

Family

ID=32057774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002251106A Expired - Fee Related JP3840161B2 (en) 2002-08-29 2002-08-29 Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus having electrophotographic photosensitive member, and method of manufacturing electrophotographic photosensitive member

Country Status (1)

Country Link
JP (1) JP3840161B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008009114A (en) * 2006-06-29 2008-01-17 Ricoh Co Ltd Electrophotographic apparatus
JP2009009037A (en) * 2007-06-29 2009-01-15 Canon Inc Method for manufacturing electrophotographic photoreceptor, electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2013200418A (en) * 2012-03-23 2013-10-03 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge, and image forming apparatus
EP3413133A1 (en) * 2017-06-06 2018-12-12 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008009114A (en) * 2006-06-29 2008-01-17 Ricoh Co Ltd Electrophotographic apparatus
JP2009009037A (en) * 2007-06-29 2009-01-15 Canon Inc Method for manufacturing electrophotographic photoreceptor, electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2013200418A (en) * 2012-03-23 2013-10-03 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge, and image forming apparatus
EP3413133A1 (en) * 2017-06-06 2018-12-12 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
CN109001962A (en) * 2017-06-06 2018-12-14 佳能株式会社 Electrophotographic photosensitive element, handle box and electronic photographing device
US10303085B2 (en) 2017-06-06 2019-05-28 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
CN109001962B (en) * 2017-06-06 2022-05-31 佳能株式会社 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus

Also Published As

Publication number Publication date
JP3840161B2 (en) 2006-11-01

Similar Documents

Publication Publication Date Title
KR0151322B1 (en) Electro-photographic photosensitive member, electrophotographic apparatus including same and electrophotographic apparatus unit
JP2000310871A (en) Electrophotographic photoreceptor, its production, process cartridge and electrophotographic device
JP3840161B2 (en) Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus having electrophotographic photosensitive member, and method of manufacturing electrophotographic photosensitive member
WO2010029877A1 (en) Electrophotographic photosensitive body, image-forming method and image-forming apparatus
JP4100815B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JPH10186696A (en) Electrophotographic photoreceptor, process cartridge having that electrophotographic photoreceptor and electrophotographic device
JP4458319B2 (en) Method for producing electrophotographic photosensitive member
JP3492125B2 (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2008076809A (en) Organic photoreceptor, image forming method, image forming apparatus and process cartridge
JP2008026481A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP3848195B2 (en) Method for producing electrophotographic photosensitive member
JP2008026479A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2013011885A (en) Electrophotographic photoreceptor, process cartridge, electrophotographic apparatus and laminated film
JPH08179542A (en) Electrophotographic photoreceptor and process cartridge having same and electrophotographic apparatus
JP4853272B2 (en) Method for producing dispersion of surface protective layer of organic photoreceptor, organic photoreceptor, image forming apparatus, and image forming unit
JP2000310872A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP3684043B2 (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus having the electrophotographic photoreceptor
JP2008250084A (en) Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, process cartridge, and electrophotographic equipment
JP2007017876A (en) Electrophotographic apparatus
JP2004037475A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP3471873B2 (en) Image forming method
JP2003186232A (en) Electrophotographic photoreceptor, process cartridge having this electrophotographic photoreceptor and electrophotographic device
JP2002296812A (en) Method for producing electrophotographic photoreceptor, electrophotographic photoreceptor and electrophotographic apparatus
JPH06250413A (en) Electrophotographic sensitive body and electrophotographic device having the same
JP3969882B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060804

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees