JP2004092965A - Structure for preventing excess deformation of refractory material structure - Google Patents

Structure for preventing excess deformation of refractory material structure Download PDF

Info

Publication number
JP2004092965A
JP2004092965A JP2002252717A JP2002252717A JP2004092965A JP 2004092965 A JP2004092965 A JP 2004092965A JP 2002252717 A JP2002252717 A JP 2002252717A JP 2002252717 A JP2002252717 A JP 2002252717A JP 2004092965 A JP2004092965 A JP 2004092965A
Authority
JP
Japan
Prior art keywords
refractory material
excessive deformation
preventing excessive
refractory
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002252717A
Other languages
Japanese (ja)
Other versions
JP3897664B2 (en
Inventor
Yasuharu Chuma
中馬 康晴
Tomomitsu Yokoyama
横山 知充
Junichi Azuma
東 準市
Toshihiko Yoshioka
吉岡 利彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002252717A priority Critical patent/JP3897664B2/en
Publication of JP2004092965A publication Critical patent/JP2004092965A/en
Application granted granted Critical
Publication of JP3897664B2 publication Critical patent/JP3897664B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Cyclones (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure for preventing excess deformation of a refractory material structure capable of preventing excess deformation and the like of the refractory material structure with a simple structure. <P>SOLUTION: A cyclone 3 of a circulation fluidized layer boiler is applied to an inner wall of a steel plate casing 10 as a so-called refractory material structure supported by a stainless anchor 12 via a heat insulating material 11 composed of glass fiber and the like, and adhered by a joint 14 for absorbing heat elongation between adjacent multiple plate-like refractory materials 13 composed of ceramics and the like. In the joint 14, a horizontal joint part is arranged diagonally downwards as a structure for preventing excess deformation due to thermal elongation of the refractory material 13. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、循環流動層ボイラのサイクロン等耐火材構造物の過大変形防止構造に関する。
【0002】
【従来の技術】
従来より石炭、脱水汚泥、都市ごみ等の燃焼若しくは燃焼ボイラとして循環流動層ボイラ(CFB)が多く用いられている。かかる循環流動層ボイラは、流動床熱交換器(ボイラ)等を付設した流動床炉(コンバスタ)出口側に、燃焼ガスと流動砂等を分離するサイクロンを設け、該サイクロンで分離した流動砂をシールポット等を介して前記流動床熱交換器若しくは流動床炉に戻しながら都市ごみ等の焼却若しくは燃焼ボイラとして機能させるものである。
【0003】
そして、前記サイクロンは、図5に示すように、ケーシング100 の内壁に断熱材101 を介しかつアンカー102 で支持させて多数の板状耐火材103 を互いに隣接する耐火材103 間に熱伸び吸収用の目地104 を配して張り付けた所謂耐火材構造物として施工される。
【0004】
【発明が解決しようとする課題】
ところが、上述したような従来のサイクロン(耐火材構造物)にあっては、循環流動層ボイラの高温運転中などにおいて、燃焼ガスと分離された流動砂等が目地104 内に侵入し、これが次第に堆積すると耐火材103 の熱伸びを吸収することが出来なくなり、最終的には、サイクロン下部に設置したエキスパンジョン部の許容値を超えるなどして、サイクロンが過大変形したり支持鉄骨が過大撓みするような損傷が生じるという問題点があった。
【0005】
そこで、本発明の目的は、簡単な構造で耐火材構造物の過大変形等を防止することができる耐火材構造物の過大変形防止構造を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を解決するための本発明に係る耐火材構造物の過大変形防止構造は、ケーシング内壁に断熱材を介しかつアンカーで支持させて多数の板状耐火材を互いに隣接する耐火材間に熱伸び吸収用の目地を配して張り付けた耐火材構造物において、前記耐火材の熱伸びによる過大変形防止構造を施したことを特徴とする。
【0007】
また、前記耐火材の熱伸びによる過大変形防止構造として、前記目地の内、水平目地部を斜め下向きに施工したことを特徴とする。
【0008】
また、前記耐火材の熱伸びによる過大変形防止構造として、前記アンカーを耐火材の熱伸び方向に対し、斜めに傾けて設置したことを特徴とする。
【0009】
また、前記耐火材の熱伸びによる過大変形防止構造として、前記断熱材に部分的に非変形部を設けたことを特徴とする。
【0010】
また、前記耐火材構造物は、循環流動層ボイラのサイクロンであることを特徴とする。
【0011】
【発明の実施の形態】
以下、本発明に係る耐火材構造物の過大変形防止構造を実施例により図面を用いて詳細に説明する。
【0012】
[第1実施例]
図1は本発明の第1実施例を示す循環流動層ボイラの概略構成図、図2は同じく図1のA部(サイクロン内壁部)拡大断面図である。
【0013】
図1に示すように、循環流動層ボイラにおいては、ボイラ水と熱交換を行う流動床熱交換器1を付設した流動床炉(コンバスタ)2は下方より一次空気を導入してけい砂等の流動砂と燃焼物を流動混合して一次燃焼を行った後、その上方のフリーボード部2aに二次空気を導入して二次燃焼を行い、可燃性ガスの燃焼完結を図っている。
【0014】
そして、前記燃焼により高温加熱された燃焼ガスは流動砂とともに、サイクロン3に導かれ、該サイクロン3で燃焼ガスと流動砂とに分離した後、該燃焼ガスは、後部煙通4に導かれて後部熱交換器5内で前記した流動床炉(コンバスタ)2に導入する一次空気と二次空気に対して熱交換を行った後、図示しないバグフィルタを通して飛灰等を除去した後、図示しない煙突等により大気に放出される。一方、サイクロン3で分離した流動砂は、シールポット6により流動床炉(コンバスタ)2にホットリサイクル管7aを介して直接返入するものと流動床熱交換器1にコールドリサイクル管7bを介して返入するものとに分配制御される。
【0015】
前記サイクロン3は、図2に示すように、鋼板製ケーシング10の内壁にガラス繊維等からなる断熱材11を介しかつステンレス製のアンカー12で支持させてセラミックス等からなる多数の板状耐火材13を互いに隣接する耐火材13間に熱伸び吸収用の目地14を配して張り付けた所謂耐火材構造物として施工されている。
【0016】
そして、前記耐火材13の熱伸びによる過大変形防止構造として、前記目地14の内、水平目地部が斜め下向きに施工されている。
【0017】
従って、循環流動層ボイラの高温運転中などにおいて、サイクロン3内で燃焼ガスと分離された流動砂等が目地14内に侵入しても、振動等で落下するなど堆積しにくく、耐火材13の熱伸びを長期間に亙って良好に吸収することが出来る。この結果、従来のように、耐火材13の熱伸びがサイクロン3下部に設置したエキスパンジョン部(図示せず)の許容値を超えるなどして、サイクロン3が過大変形したり支持鉄骨が過大撓みするような損傷は生じない。
【0018】
[第2実施例]
図3は本発明の第2実施例を示すサイクロン内壁部の断面図である。
【0019】
これは、耐火材13の熱伸びによる過大変形防止構造として、第1実施例におけるアンカー12を耐火材13の熱伸び方向(図中矢印参照)に対し、斜め上向きに傾けてケーシング10に溶接等した例である。
【0020】
これによれば、アンカー12の剛性がアップして耐火材13の下方への熱伸びが抑制され、第1実施例と同様の効果が得られる。
【0021】
[第3実施例]
図4は本発明の第3実施例を示すサイクロン内壁部の断面図である。
【0022】
これは、耐火材13の熱伸びによる過大変形防止構造として、第1実施例における断熱材11に部分的に非変形部11aを設けた例である。非変形部11aとしては硬い断熱材11を用いても良いし、リング状の金属板でも良い。
【0023】
これによれば、断熱材11の取付強度がアップして耐火材13の下方への熱伸びが抑制され、第1実施例と同様の効果が得られる。
【0024】
尚、本発明は上記各実施例に限定されず、本発明の要旨を逸脱しない範囲で各種変更が可能であることはいうまでもない。例えば、本発明の過大変形防止構造をサイクロン内壁部だけでなく、シールポット6やホットリサイクル管7a及びコールドリサイクル管7bの内壁にも適用しても良い。また、循環流動層ボイラに限らず、他の設備等の耐火材構造体にも本発明は適用することができる。
【0025】
【発明の効果】
以上、実施例により具体的に説明したように、請求項1の発明によれば、ケーシング内壁に断熱材を介しかつアンカーで支持させて多数の板状耐火材を互いに隣接する耐火材間に熱伸び吸収用の目地を配して張り付けた耐火材構造物において、前記耐火材の熱伸びによる過大変形防止構造を施したので、簡単な構造で耐火材構造物の過大変形等を防止することができる。
【0026】
請求項2の発明によれば、前記耐火材の熱伸びによる過大変形防止構造として、前記目地の内、水平目地部を斜め下向きに施工したので、流動砂等が目地内に侵入しても、振動等で落下するなど堆積しにくく、耐火材の熱伸びを長期間に亙って良好に吸収することが出来、請求項1の発明と同様の効果が得られる。
【0027】
請求項3の発明によれば、前記耐火材の熱伸びによる過大変形防止構造として、前記アンカーを耐火材の熱伸び方向に対し、斜めに傾けて設置したので、耐火材の下方への熱伸びが抑制され、請求項1の発明と同様の効果が得られる。
【0028】
請求項4の発明によれば、前記耐火材の熱伸びによる過大変形防止構造として、前記断熱材に部分的に非変形部を設けたので、断熱材の取付強度がアップして耐火材の下方への熱伸びが抑制され、請求項1の発明と同様の効果が得られる。
【0029】
請求項5の発明によれば、前記耐火材構造物は、循環流動層ボイラのサイクロンであるので、ケーシングが60℃程度に対し850℃程度の高温となる耐火材の熱伸びを効果的に吸収又は抑制することができ、有効である。
【図面の簡単な説明】
【図1】本発明の第1実施例を示す循環流動層ボイラの概略構成図である。
【図2】同じく図1のA部(サイクロン内壁部)拡大断面図である。
【図3】本発明の第2実施例を示すサイクロン内壁部の断面図である。
【図4】本発明の第3実施例を示すサイクロン内壁部の断面図である。
【図5】従来のサイクロン内壁部の断面図である。
【符号の説明】
1 流動床熱交換器
2 流動床炉(コンバスタ)
3 サイクロン
4 後部煙通
5 後部熱交換器
6 シールポット
10 ケーシング
11 断熱材
12 アンカー
13 耐火材
14 目地
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a structure for preventing excessive deformation of a refractory structure such as a cyclone of a circulating fluidized bed boiler.
[0002]
[Prior art]
Conventionally, a circulating fluidized bed boiler (CFB) has been widely used as a combustion or boiler for burning coal, dewatered sludge, municipal solid waste, and the like. Such a circulating fluidized-bed boiler is provided with a cyclone for separating a combustion gas and fluidized sand at the outlet side of a fluidized-bed furnace (combustor) provided with a fluidized-bed heat exchanger (boiler) and the like. It returns to the fluidized-bed heat exchanger or the fluidized-bed furnace via a seal pot or the like, and functions as an incinerator or a combustion boiler for municipal solid waste.
[0003]
As shown in FIG. 5, the cyclone is provided on the inner wall of the casing 100 with the heat insulating material 101 interposed therebetween and supported by the anchor 102 so that a large number of plate-like refractory materials 103 are interposed between the refractory materials 103 adjacent to each other. Is constructed as a so-called refractory material structure in which joints 104 are arranged and attached.
[0004]
[Problems to be solved by the invention]
However, in the conventional cyclone (refractory material structure) as described above, fluidized sand separated from the combustion gas enters the joints 104 during the high-temperature operation of the circulating fluidized-bed boiler and the like, and this gradually increases. When deposited, the thermal expansion of the refractory material 103 cannot be absorbed, and eventually the cyclone is excessively deformed or the supporting steel frame is excessively bent due to, for example, exceeding the allowable value of the expansion section installed below the cyclone. There is a problem that damage is caused.
[0005]
Therefore, an object of the present invention is to provide a structure for preventing excessive deformation of a refractory material structure that can prevent excessive deformation of the refractory material structure with a simple structure.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the structure for preventing excessive deformation of a refractory material structure according to the present invention has a structure in which a large number of plate-like refractory materials are thermally supported between adjacent refractory materials by supporting an inner wall of a casing with a heat insulating material and an anchor. In a refractory material structure attached with stretch joints for absorbing elongation, a structure for preventing excessive deformation due to thermal elongation of the refractory material is provided.
[0007]
In addition, as a structure for preventing excessive deformation due to thermal expansion of the refractory material, a horizontal joint portion of the joint is constructed obliquely downward.
[0008]
Further, as the structure for preventing excessive deformation due to thermal expansion of the refractory material, the anchor is installed obliquely to the direction of thermal expansion of the refractory material.
[0009]
Further, as a structure for preventing excessive deformation due to thermal expansion of the refractory material, a non-deformable portion is partially provided in the heat insulating material.
[0010]
Further, the refractory material structure is a cyclone of a circulating fluidized bed boiler.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the structure for preventing excessive deformation of a refractory material structure according to the present invention will be described in detail with reference to the drawings using examples.
[0012]
[First embodiment]
FIG. 1 is a schematic configuration diagram of a circulating fluidized-bed boiler showing a first embodiment of the present invention, and FIG. 2 is an enlarged sectional view of a portion A (cyclone inner wall portion) of FIG.
[0013]
As shown in FIG. 1, in a circulating fluidized bed boiler, a fluidized bed furnace (combustor) 2 provided with a fluidized bed heat exchanger 1 for exchanging heat with boiler water introduces primary air from below to remove silica sand and the like. After the primary combustion is performed by fluidly mixing the fluidized sand and the burned material, secondary air is introduced into the freeboard section 2a above the primary sand to perform secondary combustion, thereby completing the combustion of the combustible gas.
[0014]
Then, the combustion gas heated to a high temperature by the combustion is guided to the cyclone 3 together with the fluidized sand. After being separated into the combustion gas and the fluidized sand by the cyclone 3, the combustion gas is guided to the rear smoke passage 4. After heat exchange is performed between the primary air and the secondary air introduced into the fluidized bed furnace (combustor) 2 in the rear heat exchanger 5, fly ash and the like are removed through a bag filter (not shown), and then not shown. Released to the atmosphere by chimneys. On the other hand, the fluidized sand separated by the cyclone 3 is directly returned to the fluidized-bed furnace (combustor) 2 by the seal pot 6 via the hot recycle pipe 7a, and the fluidized sand separated by the cyclone 3 to the fluidized-bed heat exchanger 1 via the cold recycle pipe 7b. Distribution control is performed for returning items.
[0015]
As shown in FIG. 2, the cyclone 3 has a large number of plate-like refractory materials 13 made of ceramic or the like supported on an inner wall of a steel plate casing 10 through a heat insulating material 11 made of glass fiber or the like and supported by an anchor 12 made of stainless steel. Are constructed as a so-called refractory material structure in which joints 14 for absorbing thermal expansion are arranged between refractory materials 13 adjacent to each other.
[0016]
And, as the structure for preventing excessive deformation due to thermal expansion of the refractory material 13, a horizontal joint part of the joints 14 is obliquely directed downward.
[0017]
Therefore, even when the fluidized sand separated from the combustion gas in the cyclone 3 enters the joint 14 during high-temperature operation of the circulating fluidized-bed boiler or the like, it hardly accumulates by falling due to vibration or the like, and the refractory material 13 Thermal elongation can be favorably absorbed over a long period of time. As a result, as in the conventional case, the thermal expansion of the refractory material 13 exceeds the allowable value of the expansion section (not shown) installed below the cyclone 3, and the cyclone 3 is excessively deformed or the supporting steel frame is excessively large. No bending damage occurs.
[0018]
[Second embodiment]
FIG. 3 is a sectional view of a cyclone inner wall showing a second embodiment of the present invention.
[0019]
This is because the anchor 12 in the first embodiment is inclined obliquely upward with respect to the direction of thermal expansion of the refractory material 13 (see the arrow in the figure) as a structure for preventing excessive deformation due to thermal expansion of the refractory material 13 and welding to the casing 10. This is an example.
[0020]
According to this, the rigidity of the anchor 12 is increased, and the downward thermal expansion of the refractory material 13 is suppressed, and the same effect as in the first embodiment can be obtained.
[0021]
[Third embodiment]
FIG. 4 is a sectional view of a cyclone inner wall showing a third embodiment of the present invention.
[0022]
This is an example in which a non-deformed portion 11a is partially provided in the heat insulating material 11 in the first embodiment as a structure for preventing excessive deformation due to thermal expansion of the refractory material 13. As the non-deformed portion 11a, a hard heat insulating material 11 may be used, or a ring-shaped metal plate may be used.
[0023]
According to this, the mounting strength of the heat insulating material 11 is increased, and the thermal expansion downward of the refractory material 13 is suppressed, and the same effect as in the first embodiment can be obtained.
[0024]
It should be noted that the present invention is not limited to the above embodiments, and various changes can be made without departing from the scope of the present invention. For example, the excessive deformation prevention structure of the present invention may be applied not only to the inner wall of the cyclone but also to the inner walls of the seal pot 6, the hot recycle pipe 7a and the cold recycle pipe 7b. In addition, the present invention is not limited to the circulating fluidized bed boiler, and can be applied to a refractory material structure such as another facility.
[0025]
【The invention's effect】
As described above in detail with the embodiment, according to the first aspect of the present invention, a large number of plate-like refractory materials are supported between the refractory materials adjacent to each other by supporting the inner wall of the casing with the heat insulating material and the anchor. In the refractory material structure bonded with stretch joints for absorbing elongation, since the structure for preventing excessive deformation due to thermal expansion of the refractory material is applied, it is possible to prevent excessive deformation of the refractory material structure with a simple structure. it can.
[0026]
According to the invention of claim 2, as the structure for preventing excessive deformation due to thermal expansion of the refractory material, of the joints, the horizontal joint is constructed obliquely downward, so that even if liquid sand or the like enters the joints, It hardly accumulates when dropped due to vibrations or the like, and the thermal expansion of the refractory material can be favorably absorbed over a long period of time, and the same effect as the first aspect of the invention can be obtained.
[0027]
According to the third aspect of the present invention, as the structure for preventing excessive deformation due to thermal expansion of the refractory material, the anchor is installed obliquely with respect to the direction of thermal expansion of the refractory material. Is suppressed, and the same effect as the first aspect of the invention can be obtained.
[0028]
According to the invention of claim 4, as the structure for preventing excessive deformation due to thermal elongation of the refractory material, the heat insulating material is partially provided with a non-deformed portion, so that the mounting strength of the heat insulating material is increased and the heat insulating material is positioned below the refractory material. Is suppressed, and the same effect as the first aspect of the invention can be obtained.
[0029]
According to the fifth aspect of the present invention, since the refractory material structure is a cyclone of a circulating fluidized bed boiler, the casing effectively absorbs the thermal elongation of the refractory material, which is about 850 ° C. higher than about 60 ° C. Or it can be suppressed and is effective.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a circulating fluidized bed boiler showing a first embodiment of the present invention.
FIG. 2 is an enlarged sectional view of a portion A (cyclone inner wall portion) of FIG.
FIG. 3 is a sectional view of an inner wall of a cyclone showing a second embodiment of the present invention.
FIG. 4 is a sectional view of a cyclone inner wall showing a third embodiment of the present invention.
FIG. 5 is a cross-sectional view of a conventional cyclone inner wall portion.
[Explanation of symbols]
1 fluidized bed heat exchanger 2 fluidized bed furnace (combustor)
3 Cyclone 4 Rear smoke vent 5 Rear heat exchanger 6 Seal pot 10 Casing 11 Insulation material 12 Anchor 13 Refractory material 14 Joint

Claims (5)

ケーシング内壁に断熱材を介しかつアンカーで支持させて多数の板状耐火材を互いに隣接する耐火材間に熱伸び吸収用の目地を配して張り付けた耐火材構造物において、前記耐火材の熱伸びによる過大変形防止構造を施したことを特徴とする耐火材構造物の過大変形防止構造。In a refractory material structure in which a large number of plate-like refractory materials are adhered to the inner wall of a casing with an insulating material interposed therebetween and anchored with thermal expansion-absorbing joints between adjacent refractory materials, the heat of the refractory material A structure for preventing excessive deformation of a refractory material structure, which is provided with a structure for preventing excessive deformation due to elongation. 前記耐火材の熱伸びによる過大変形防止構造として、前記目地の内、水平目地部を斜め下向きに施工したことを特徴とする請求項1記載の耐火材構造物の過大変形防止構造。2. The structure for preventing excessive deformation of a fire-resistant material structure according to claim 1, wherein a horizontal joint portion of the joint is obliquely downwardly directed as the structure for preventing excessive deformation due to thermal expansion of the fire-resistant material. 前記耐火材の熱伸びによる過大変形防止構造として、前記アンカーを耐火材の熱伸び方向に対し、斜めに傾けて設置したことを特徴とする請求項1記載の耐火材構造物の過大変形防止構造。2. The structure for preventing excessive deformation of a refractory material structure according to claim 1, wherein the anchor is installed at an angle to the direction of thermal expansion of the refractory material as the structure for preventing excessive deformation due to thermal expansion of the refractory material. . 前記耐火材の熱伸びによる過大変形防止構造として、前記断熱材に部分的に非変形部を設けたことを特徴とする請求項1記載の耐火材構造物の過大変形防止構造。2. The structure for preventing excessive deformation of a fire-resistant material structure according to claim 1, wherein the heat-insulating material is partially provided with a non-deformable portion as the structure for preventing excessive deformation due to thermal expansion of the fire-resistant material. 前記耐火材構造物は、循環流動層ボイラのサイクロンであることを特徴とする請求項1,2,3又は4記載の耐火材構造物の過大変形防止構造。5. The structure according to claim 1, wherein the refractory material structure is a cyclone of a circulating fluidized bed boiler.
JP2002252717A 2002-08-30 2002-08-30 Structure to prevent excessive deformation of refractory material structures Expired - Fee Related JP3897664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002252717A JP3897664B2 (en) 2002-08-30 2002-08-30 Structure to prevent excessive deformation of refractory material structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002252717A JP3897664B2 (en) 2002-08-30 2002-08-30 Structure to prevent excessive deformation of refractory material structures

Publications (2)

Publication Number Publication Date
JP2004092965A true JP2004092965A (en) 2004-03-25
JP3897664B2 JP3897664B2 (en) 2007-03-28

Family

ID=32058922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002252717A Expired - Fee Related JP3897664B2 (en) 2002-08-30 2002-08-30 Structure to prevent excessive deformation of refractory material structures

Country Status (1)

Country Link
JP (1) JP3897664B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009180420A (en) * 2008-01-30 2009-08-13 Mitsubishi Heavy Ind Ltd Refractory material supporting structure
JP2014066450A (en) * 2012-09-26 2014-04-17 Nichias Corp Lining material for combustion appliance, and combustion furnace
JP6441530B1 (en) * 2018-07-13 2018-12-19 三菱日立パワーシステムズ株式会社 Wall surface structure and its assembling method
CN113324243A (en) * 2021-05-31 2021-08-31 浙江物产环能浦江热电有限公司 Protection plate for coal dropping port of circulating fluidized bed boiler and preparation device and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009180420A (en) * 2008-01-30 2009-08-13 Mitsubishi Heavy Ind Ltd Refractory material supporting structure
JP2014066450A (en) * 2012-09-26 2014-04-17 Nichias Corp Lining material for combustion appliance, and combustion furnace
JP6441530B1 (en) * 2018-07-13 2018-12-19 三菱日立パワーシステムズ株式会社 Wall surface structure and its assembling method
WO2020013145A1 (en) * 2018-07-13 2020-01-16 三菱日立パワーシステムズ株式会社 Wall surface structure and method for assembling same
CN113324243A (en) * 2021-05-31 2021-08-31 浙江物产环能浦江热电有限公司 Protection plate for coal dropping port of circulating fluidized bed boiler and preparation device and preparation method thereof

Also Published As

Publication number Publication date
JP3897664B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
TW571049B (en) Circulating fluidized bed boiler
JP3897664B2 (en) Structure to prevent excessive deformation of refractory material structures
JP5473228B2 (en) Refractory support structure
JP2004053166A (en) Air-cooled type refractory wall
JPS61195208A (en) Incinerator
WO2020013145A1 (en) Wall surface structure and method for assembling same
JP4323638B2 (en) High temperature air heater
WO2011063613A1 (en) Sealing structure of water cooling screen passing through water wall
JP3950349B2 (en) Water-cooled wall structure of stoker-type incinerator
JP4015409B2 (en) Furnace wall structure to prevent clinker adhesion in a waste combustion furnace
JP6653186B2 (en) Refractory structures
JP2007057113A (en) Vertical refuse incinerator provided with water tube wall
JPS5824721A (en) Energy-conservation type combustion method
JP6691834B2 (en) Heat transfer tube of fluidized bed boiler
JPS6026241Y2 (en) Structure of bulkhead heat transfer surface of fluidized bed boiler
JP3586599B2 (en) Waste incinerator with boiler
JP3848887B2 (en) Boiler water cooling wall structure
CN210219794U (en) Multilayer fireproof heat insulation structure of incinerator
JP2005224734A (en) High-temperature dust collector
JP2005069575A (en) Heat exchanger
JP4921009B2 (en) Circulating fluid furnace
JP3221855B2 (en) High temperature fluid piping
JP2008209030A (en) Sealing device and boiler including it
RU23188U1 (en) BOILER WITH A BOILER
RU2238480C2 (en) Low-power steel water boiler for fuel-bed firing of solid fuel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20061128

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20061219

Free format text: JAPANESE INTERMEDIATE CODE: A61

LAPS Cancellation because of no payment of annual fees