JP2004092184A - Drill unit and drilling method for embedded pipe branching portion, and drilling tool - Google Patents

Drill unit and drilling method for embedded pipe branching portion, and drilling tool Download PDF

Info

Publication number
JP2004092184A
JP2004092184A JP2002254453A JP2002254453A JP2004092184A JP 2004092184 A JP2004092184 A JP 2004092184A JP 2002254453 A JP2002254453 A JP 2002254453A JP 2002254453 A JP2002254453 A JP 2002254453A JP 2004092184 A JP2004092184 A JP 2004092184A
Authority
JP
Japan
Prior art keywords
pipe
drilling
branch
tool
buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002254453A
Other languages
Japanese (ja)
Other versions
JP3737994B2 (en
Inventor
Shuichi Yagi
八木 秀一
Seita Shimizu
清水 精太
Makoto Hattori
服部 誠
Yuji Hosoda
細田 祐司
Takeshi Araya
荒谷 猛
Hirokazu Kondo
近藤 弘和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Gas Co Ltd
Hitachi Information Technology Co Ltd
Original Assignee
Hitachi Ltd
Tokyo Gas Co Ltd
Hitachi Hybrid Network Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Tokyo Gas Co Ltd, Hitachi Hybrid Network Co Ltd filed Critical Hitachi Ltd
Priority to JP2002254453A priority Critical patent/JP3737994B2/en
Publication of JP2004092184A publication Critical patent/JP2004092184A/en
Application granted granted Critical
Publication of JP3737994B2 publication Critical patent/JP3737994B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drill unit for drilling and opening a branch pipe branching portion which is blocked by lining at the time of repairing a small-diameter pipe by a lining method without excavating the ground, and to provide a drilling method and a drilling tool for the same. <P>SOLUTION: The drill unit 1000 for the embedded pipe branching portion is formed of a machining mechanism 10 for drilling a liner at the branching portion, a rotating mechanism 20 for rotating the machining mechanism 10 around a pipe axis, and a moving mechanism 30 for moving the machining mechanism 10 and the rotating mechanism 20 along a pipe axial direction. Further a sensor for detecting the branching portion from inside the pipe, and a sensor for detecting the position of the machining mechanism are installed in the machining mechanism 10, and the machining mechanism 10, the rotating mechanism 20, and the moving mechanism 30 are connected to each other via foldable universal joints. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、埋設された上下水道管及びガス管を管内部から保守、点検作業を行うロボットの構成、運用方法に関し、特に老朽化した鉄製の配管にシール材、樹脂材料等でライニング補修した後の配管分岐部のライナーの穿孔加工を行う装置とその運用方法に関する。
【0002】
【従来の技術】
従来の非開削で埋設配管ライニングを内部から穿孔する装置については、特開平6−306923号公報に開示されている。この公報では、地下埋設配管内面の分岐部のライニング材に配管分岐部の開口部形状と同様な開口を形成するために、本体を支持する走行脚と固定用支持脚とを備えた本体内に開口ユニットとこれを主軸の周りに動かす回動手段と主軸に沿って動かす移動手段とを設け、開口ユニットは動力により回動し起倒する台座と台座上に設けて動力により旋回可能な旋回盤と旋回盤上に設けて旋回盤軸と平行な回転軸を有する開口カッタと該開口カッタの旋回盤軸より最も離れた刃先位置と配管分岐部内壁との距離を検出するセンシング手段とを備え、台座の起倒により開口カッタが設定角度をとるよう本体から出没するとともにセンシング手段により回動手段と移動手段とを制御するように菅壁開口機を構成することが記載されている。
【0003】
【発明が解決しようとする課題】
特開平6−306923号公報では配管の内径が小さい場合、例えばガス配管に見られるような50mm以下の配管径の場合についての考慮が十分でなかった。すなわち、公報にも記載されているように本管側の配管内径として200mm、分岐管内径として150mmを前提として薄いライナー部分に穿孔する装置となっており、特に開口カッタを分岐管方向に移動させる自由度を持っていなかった。ライニング工法によってはライナーが厚いことも考えられ、例えば内径50mm程度の配管に公報記載の装置を適用した場合、開口カッタを枝管方向に移動させる自由度がないため、厚いライナーの切削が困難となる可能性がある。
【0004】
本発明の目的は、前記課題を解決するためになされたもので、配管内径が50mm程度の小口径の老朽化鉄製配管をライナーにより内張りを施し補修した配管の分岐部を、非開削で配管内部から穿孔を実施し、非開削で老朽管を補修するライニング工法を実現する埋設配管分岐部穿孔装置を提供することにある。
【0005】
【課題を解決するための手段】
前記課題を解決するために、本発明に係る埋設配管分岐部穿孔装置の構成は、樹脂を用いライニング補修された埋設配管分岐部の穿孔を行う埋設配管分岐部穿孔装置において、
前記配管分岐部のライナーを穿孔する加工機構と、該加工機構を配管軸回りに回転させる旋回機構と、前記加工機構、旋回機構を配管軸方向に移動させる移動機構と、制御装置を備え、前記加工機構と旋回機構と移動機構とをそれぞれ自在継ぎ手で連結し、前記配管の曲折部に対応するようにしたことを特徴とするものである。
【0006】
前記記載の埋設配管分岐部穿孔装置において、制御装置は、前記姿勢検出センサにより前記加工機構の傾き角を検出し、該加工機構の傾き角が所定値となるよう前記旋回装置を制御することを特徴とするものである。
【0007】
さらに、前記記載の埋設配管分岐部穿孔装置の構成において、旋回機構として二重円筒状の固定部に対し同軸上に配置した旋回シャフトを設け、二重円筒の外筒と内筒間の空間に移動機構から加工機構に渡される配線、チューブを二重円筒中心軸から放射状に配列するような仕切り板で配線、チューブを保持した構成としたものである。
【0008】
さらに、前記記載の埋設配管分岐部穿孔装置の構成において、穿孔ツールとして回転式の切削工具を用い、切削工具駆動用モータと、切削工具駆動用モータを切削工具ごと昇降させる昇降駆動用モータとを、切削工具回転軸を中心として配管軸方向の前後に振り分けて配置したものである。
【0009】
さらに、前記記載の埋設配管分岐部穿孔装置の構成において、加工機構の中心軸より少なくとも3方向に放射状に等距離繰り出されるロッドから構成され、分岐位置センシング時に加工機構中心軸を配管中心軸にほぼ一致させる中心位置決め機構と、穿孔時に加工機構を挿入した分岐配管の穿孔ツール押し出し方向と反対方向にロッドを繰り出し、加工機構を枝管分岐方向に押し付けるための反力支持クランプと、穿孔ツールの押し出し方向と同一方向に繰り出され、反力支持クランプで加工機構を配管内壁面に押し付けたときに加工機構と配管が平行になるように穿孔時の姿勢を保持する姿勢支持クランプとを加工機構に備えた構成としたものである。
さらに、前記記載の埋設配管分岐部穿孔装置の構成において、穿孔ツールとして用いる回転式切削工具において、所望の穿孔径を切削工具の外径とし、さらに、切削工具端面の穿孔径より工具の回転軸側に凸部を設けた形状としたものである。
【0010】
さらに、前記記載の埋設配管分岐部穿孔装置の構成において、配管内での穿孔装置の移動はワイヤ牽引装置及びケーブル巻き取り装置により工事区間両端の開口部から牽引して実施し、牽引中に加工機構に搭載した姿勢センサの信号により加工機構の姿勢を検出し、検出結果から旋回機構を用いて分岐部検出センサが常に分岐管の存在する方向に向くよう制御し、ワイヤ牽引装置及びケーブル巻き取り装置による移動で分岐部を検出した後は、分岐部検出センサの信号を監視しながら移動機構、旋回機構を用いて正確に位置決めし、配管分岐部ライナーへの穿孔を行うものとした。
【0011】
【発明の実施の形態】
本発明に係る一実施形態である埋設配管分岐部穿孔装置の構成を図1及び図2を参照して説明する。図1は、本発明に係る埋設配管分岐部穿孔装置の一実施形態の説明図である。先ず、図1によりライニングされた配管内に挿入される装置の構成を説明する。本発明の一実施例である埋設配管分岐部穿孔装置1000は、分岐部のライナー(図示せず)に穿孔を行う加工機構10と、該加工機構10をライニングされた配管軸周りに回転させる旋回機構20と、前記加工機構10と旋回機構20をライニングされた配管軸方向に移動させる移動機構30とにより構成されている。前記加工機構10と旋回機構20と移動機構30との間はそれぞれ二つの自在継ぎ手40により連結されている。これらの加工機構10、旋回機構20、移動機構30の順で埋設配管(図示せず)に後述するワイヤ牽引装置60(図2を参照、ワイヤ牽引装置60側を前方という)側から後述のケーブル巻き取り装置90(図2を参照、ケーブル巻き取り装置90側を後方という)側へと配置されている。
【0012】
図2を参照して、埋設配管分岐部穿孔装置1000を説明する。
図2は、本発明に係る埋設配管分岐部穿孔装置の一実施形態の全体説明図である。埋設配管分岐部穿孔装置1000において、加工機構10の先端には、牽引ワイヤ50が設けられており、該牽引ワイヤ50がワイヤ牽引装置60に接続されている。移動機構30の後方側端部からは、加工の際に生ずる切り屑を前方側に吹き飛ばすエアーノズル320等(図示せず)にエアーを供給するエアーパイプ、加工機構10の駆動モータ220等(図示せず)に電力を供給する電源ライン、加工機構10等を制御するための制御装置100からの制御信号ライン等を纏めたケーブル70が接続されている。
【0013】
この接続されたケーブル70は、エアーパイプの分岐、加工機構10の各種検出センサ等からの信号処理を行う中継器80を介して、ケーブル巻き取り装置90に巻き取られている。また、ケーブル巻き取り装置90から引き出された制御信号ライン、電源ラインは、制御装置100に、エアーパイプはエアーコンプレッサ110にそれぞれ接続されている。このように、埋設配管分岐部穿孔装置1000は上記説明の如く、全体として構成されている。
【0014】
次に、図3から図5を用いて配管内に挿入される加工機構10、旋回機構20、移動機構30のそれぞれの構成を説明する。図3は、本発明に係る埋設配管分岐部穿孔装置の一実施形態における加工機構の説明図、図4は、本発明に係る埋設配管分岐部穿孔装置の一実施形態における旋回機構の説明図、図5は、本発明に係る埋設配管分岐部穿孔装置の一実施形態における移動機構の説明図である。
【0015】
加工機構10は、埋設配管分岐部(枝管分岐部という)P1(図2参照)のライナー(図示せず)に対して穿孔を行う穿孔ツール200と、該穿孔ツール200を駆動する切削工具駆動用アクチュエータ(アクチュエータをモータという、以下同じ)220と、該切削工具駆動モータ220からの動力を前記穿孔ツール200に伝えるL字型伝達機構210と、枝管分岐部方向に穿孔ツール200、L字型伝達機構210、切削工具駆動モータ220を一体で移動させる切削工具昇降機構230と、当該加工機構10の中心軸を埋設配管(配管という)中心軸近傍にほぼ一致させる中心位置決め機構240とからなっている。
【0016】
さらに、埋設配管分岐部穿孔装置1000の進行方向である前方配管内を監視する前方監視カメラ250と、枝管の分岐方向を監視する側面監視カメラ260と、該側面監視カメラに具備されたプリズム270と、前方監視カメラ250、側面監視カメラ260用の照明280と、穿孔ツール200による穿孔時の反力を支持すると共に、加工機構10を枝管方向に押し付ける反力支持クランプ290と、前記加工機構10の配管軸周りの角度を検出する姿勢検出センサ300と、枝管のエッジの有無を磁気的に検出する分岐部検出センサ310と、穿孔時の切粉を前方へ吹き飛ばして除去するエアーノズル320と、穿孔時の加工機構10の姿勢を配管と平行にするための姿勢支持クランプ330と、穿孔状況を監視するための加工監視カメラ340と、工具昇降機構230により穿孔ツール200を昇降駆動する昇降駆動モータ350と加工機構10の外側ケーシングであるアウターボディ360とから構成されている。
【0017】
図12を参照して、L字型伝達機構210を説明する。図12は、図3の加工機構におけるL字型伝達機構の説明図である。
図12に示すように、L字型伝達機構210は、二つのかさ歯車212a、212b及びコレットチャック214から構成されており、工具駆動モータ220の回転軸から二つのかさ歯車212a、212bにより前記回転軸と直交する穿孔ツール200の回転軸に駆動力を伝達する。前記穿孔ツール200側のかさ歯車212bの軸はコレットチャック214で把持するように設けられており、該コレットチャック214にて穿孔ツール200を固定する構成となっている。
【0018】
図13を参照して工具昇降機構230を説明する。図13は、図3の加工機構における工具昇降機構の説明図である。
工具昇降機構230は、工具昇降機構駆動モータ350のシャフトの回転を、カップリング352、歯車354、かさ歯車355を介して駆動用ボールねじ356に伝達し、該駆動用ボールねじ356及び2本のガイド用ボールねじ358のこま359に固定された穿孔ツール200、L字型伝達機構210、工具駆動モータ220を一体で昇降させることができる。
【0019】
再び、図3を参照してまた図8及び図9を参照して中心位置決め機構240を説明する。図8は、図3の加工機構における中心位置決め機構の不動作時の説明図、図9は図3の加工機構における中心位置決め機構の動作時の説明図である。中心位置決め機構240は、ピストン242を備えた3本のエアーシリンダを用いており、該3本の内、二本のピストン242がそれぞれ反対方向で且つ平行に、残りの一本のピストン242が前記二本のピストン242と直交して一定距離張り出すように構成されており、3本のピストン242の先端ボール244が全て配管600内壁面に接触した場合に、加工機構10の中心軸と配管600の中心軸をほぼ一致させる構成となっている。
【0020】
姿勢支持クランプ330は、エアーシリンダ330aを用いており、加工機構10のアウターボディ360の最大径部分と、当該姿勢支持クランプ330のエアーシリンダの両方が管内壁面に接触したときに加工機構10の中心軸が配管600とほぼ平行になる位置に前記ピストンの繰り出し終了位置が設定されている。
反力支持クランプ290は複数個設けられ、エアーシリンダ290aが用いられており、該エアーシリンダ290aを動作させることにより加工機構10を分岐管P1方向(図2参照)に押し付け、ライナーの穿孔時の反力を対抗するようになっている。
【0021】
図4を参照して旋回機構20の構成を説明する。
旋回機構20は、加工機構10を旋回させる旋回シャフト400と、該旋回シャフト400をピニオン410a、スパーギヤ410bを介して回転させる旋回駆動モータ410と、前記旋回駆動モータ410を覆う内部ケーシング420と、加工機構10の工具駆動モータ220等に電力やエアーノズル320のためのエアーを伝達するケーブル・エアーチューブ430とからなっている。
【0022】
さらに、ケーブル・エアーチューブ430を内蔵する外部ケーシング440と、外部ケーシング440に固定され、ケーブル・エアーチューブ430を旋回シャフト400回りに整列させる固定仕切り板450と、前記旋回シャフト400に固定され、当該旋回機構20の動作時にケーブル・エアーチューブ430の配列が乱れないように支持するための旋回仕切り板460とから構成されている。
【0023】
次に、図5を参照して移動機構30を説明する。図5(a)は、本発明に係る埋設配管分岐部穿孔装置における移動機構の平面図、図5(b)は、本発明に係る埋設配管分岐部穿孔装置における移動機構の側面図である。
【0024】
移動機構30は、配管内壁面(図示せず)に接触し配管軸方向へ走行する走行輪500と、カップリング502、ウォームギヤ504、二段の歯車506a、bを介して前記走行輪500を駆動する走行輪駆動モータ510と、常に配管内壁面に接触して受動的に回転可能な4個の副車輪520と、加工機構10を埋設配管分岐部へ正確に位置決めするとき走行輪500を配管内壁面に押し付けるための走行輪押し付け機構530と、これらの部材を搭載する走行機構ボディ540から構成されている。なお、加工機構10を埋設配管分岐部へ位置決めしないときはエアーシリンダ532を収納状態として、走行輪500を管内壁面から離した状態とする。
【0025】
走行輪押し付け機構530には、作動空気が供給・駆動されるエアーシリンダ532と、該エアーシリンダ532によりリフトアップされることで走行輪500を管内壁面方向に動作させるレバー534、ヒンジ536から構成されている。ワイヤ牽引装置60によるワイヤ50の牽引時には図5に示すように前記エアーシリンダ532を下降した状態で移動し、配管分岐部へ正確な位置決め時にはワイヤ牽引装置60を停止し、前記エアーシリンダ532を動作させることにより、ヒンジ536を支点にしてレバー534を持ち上げ、レバー534に設置された走行輪500を管内壁面に接触させて前記走行輪500を駆動することで移動できる。すなわち、レバー534をシリンダ532でリフトアップさせると、ヒンジ536を支点(中心)として走行輪500から走行輪駆動モータ510までの部材が一体で持ち上げられ、その結果、走行輪500が管内壁面に押し付けられる。
【0026】
次に、埋設配管分岐部穿孔装置の制御装置の構成について図6を参照して説明する。図6は、本発明に係る埋設配管分岐部穿孔装置の一実施形態における制御系のブロック図である。制御装置100は、加工機構10の複数のTVカメラ、即ち前方監視カメラ250、側面監視カメラ260、加工監視カメラ340等の映像を切り替えるビデオセレクタ600と、該セレクタ600で選択されたTVカメラ画像を映し出す液晶モニタ610と、前記TVカメラ、照明LEDに電源を供給する電源装置620と、工具駆動モータ220を駆動するための定電流源630と、各工具昇降モータ等を制御する制御装置640と、エアー駆動・ノズル240、330、290、320等にエアーを供給するエアーバルブの制御、枝管分岐部検出センサ310、加工機構姿勢検出センサ300の検出信号の取り込み・信号処理及び図示しないがセレクタの切り替えにより前記信号値の液晶モニタ610への表示を行うと共に、旋回機構20の旋回モータ410等や、移動機構30の走行モータ510、車輪押し付け機構530にケーブル送り機構90のケーブル、エアーコンプレッサ110を介して電力や空気源の供給を制御する制御用PC650と、オペレータとの操作インターフェース660とを備えた構成とした。
【0027】
ここで、加工機構10、旋回機構20、移動機構30をそれぞれ接続する2つの自在継ぎ手40は該加工機構10、旋回機構20、移動機構30を埋設配管の軸方向の形状に沿って曲折するように構成したものであり、二軸の交わる角度が自由に変化しても二軸を結合し得る部材組みである。
【0028】
枝管分岐部検出センサ310は、詳細な図示を省略するが、検出コイルを有するヘッドと、該ヘッドに接続した発振回路とを備え、前記ヘッドと被検出物との距離による発振回路の出力信号の変化を利用したものであり、実際には枝管の円周部と検出コイルの位置により分岐部検出センサ310の出力が切り替わる。この切り替わる位置を枝管の分岐部のエッジと判断し、二つのエッジを検出し、そのときの走行距離から枝管分岐部中心位置を検出する。
【0029】
加工機構の姿勢検出センサ300は、加速度センサを用いた公知のものであり、例えば2軸の加速度センサを単一ICチツプ上に搭載した市販品が用いられております。この姿勢検出センサ300は、加工機構10の内部に搭載され、加速度センサの1軸が加工装置10の穿孔ツール200の軸方向と一致するように配置し、加速度センサのもう1軸が加工装置の旋回方向に一致するよう配置する。これにより傾斜方向の極性を判定し傾斜角を得るものである。
【0030】
次に、埋設配管分岐部穿孔装置の概略の動作と各部の機能について図7を用いて説明する。図7は、本発明に係る埋設配管分岐部穿孔装置の一実施形態における運用説明図である。すなわち、埋設配管分岐部穿孔装置1000を配管内に挿入し、該埋設配管分岐部穿孔装置1000を位置決めするまでの状態を示す説明図である。
【0031】
本埋設配管分岐部穿孔装置1000を使用する前提として、図7(a)に示すように老朽化した鉄製配管600の両端部の地面を予め掘削し、該掘削で両端露出した鉄製配管600を所定の長さに切断しておき、樹脂等のライニング工法で鉄製配管600の内面に内張りが実施されているものとする。埋設配管分岐部穿孔装置1000は、掘削されて切断した配管部分から配管内部に挿入され、この内張りにより塞がれた枝管分岐部に穿孔を実施する装置である。掘削されて切断した配管600内の長い移動は、牽引ワイヤ50により移動し、詳細な位置決めのための移動は移動機構30により行うものとして説明する。
【0032】
まず、ライニング実施後の配管600内に、牽引ワイヤ50を通す。通常配管工事では、エアーとピグを用いて配管600内にロープを通すのは容易であり、そのロープにワイヤ50を結んで引っ張り込むことでワイヤ牽引装置60のワイヤ50を配管600内に通すことができる。
【0033】
次に、ワイヤ50を埋設配管分岐部穿孔装置1000に結合する。ここで、穿孔装置1000を挿入する配管600の切断長さは、地面を掘削する範囲を小さくするため、短いほうが良い。このため、埋設配管分岐部穿孔装置1000は、ライニング工法を実施するのに必要な配管切断長さで挿入できる必要がある。そこで、加工機構10、旋回機構20、移動機構30を2重の自在継ぎ手40で結合し、配管600への挿入時には、作業者が自在継ぎ手40で埋設配管分岐部穿孔装置1000を折り曲げ可能としたものである。
【0034】
さらに、埋設配管工事の施工経路により、埋設配管600に多少の曲がりが存在する場合があるが、2重の自在継ぎ手の柔軟な湾曲により加工機構10、旋回機構20、移動機構30が埋設配管600に受動的に沿うことが可能となり、スムーズな通過が可能となっている。
【0035】
次に、図7(b)に示すように、埋設配管分岐部穿孔装置1000の加工機構10から移動機構30までの各部が配管内に挿入された後に、さらにワイヤ牽引装置60によりワイヤ50を牽引し、ワイヤ牽引装置60側の開口部まで移動させる。
これは、ワイヤ牽引後でも説明するが、枝管分岐部における穿孔時の切粉が、埋設配管分岐部穿孔装置1000の進行方向に存在し、走行輪500と配管内壁面に挟まれると、微小位置決め時に誤差の要因となるため、進行方向に切粉を進入させないためである。
【0036】
次に、加工機構10の中心位置決め機構240を動作させ、配管600の中心軸と加工機構10の中心軸をほぼ一致させる。図8に示すように、中心位置決め機構240は、非動作時には3本のエアーシリンダ242が収納されているが、図9に示すように、分岐位置検出時には、図示では下方向と左右方向に張り出すように構成されており、加工機構10の埋設配管600の径方向における中心軸と埋設配管600の中心軸とをほぼ一致させることができる。
【0037】
次に、加工機構10の中心位置決め機構240を動作させた状態で、埋設配管分岐部穿孔装置1000はケーブル巻き取り装置90に併設されたワイヤ牽引装置(図示せず)により牽引されながら前記ケーブル巻き取り装置90側にゆっくりと移動していく。このときケーブル巻き取り装置60は、ワイヤ牽引装置の巻き取り速度と同等のゆっくりした速度でケーブルを巻き取っていく。
【0038】
ここで、埋設配管分岐部穿孔装置1000は牽引ワイヤ50のねじれにより埋設配管600内を移動中に配管軸回りに回転する可能性があり、枝管分岐部検出センサ310の検出範囲及び、側面監視カメラ260の監視範囲が枝管分岐方向からずれる可能性がある。
【0039】
このため、オペレータは、加工機構10の配管軸回りの傾きを姿勢検出センサ300で検出し、制御用PC650に具備されたモニタ(図示しない)に測定値を表示させ(図6参照)、傾きの表示値が設計上の既知のデータと比較して所定値を超えた場合には、操作インターフェース660より操作することにより制御用PCが旋回機構20を動作させ、枝管分岐部検出センサ310の検出範囲及び側面監視カメラ260の監視範囲が常に枝管分岐部の存在する方向に向かせるようにする。
【0040】
このように、オペレータは、埋設配管分岐部穿孔装置1000が埋設配管600内を移動中には、制御装置100の液晶モニタ610で埋設配管600の内壁面の映像を、制御用PC650に具備されたモニタで分岐部検出センサ310の出力を監視する。ここで、枝管分岐部P1が埋設配管600内の側面監視カメラ260の映像で確認できた場合は、その位置でワイヤ牽引装置およびケーブル巻き取り装置90を停止させる。また、前記カメラ映像で確認できない場合でも分岐部検出センサ310の出力が変化したことが確認されたときは停止させる。前記埋設配管分岐部穿孔装置1000は、ケーブル巻き取り装置90側にゆっくりと移動させたが、いわゆる寸動を繰り返し、該寸動ごとに、枝管分岐部検出センサ310の検出範囲及び姿勢検出センサ300で検出しても差し支えない。
【0041】
次に、走行輪押し付け機構530により走行輪500を管内壁面に押し付け、分岐部検出センサ310の出力を監視しながら移動機構30により加工機構10を寸動させながら埋設配管600の軸方向に移動させ、分岐部検出センサ310の出力が切り替わる位置、すなわち配管軸方向に検出された埋設配管分岐部円周の二個のエッジ位置中央で移動機構30を停止する。
【0042】
次に、分岐部検出センサ310の出力を監視しながら旋回機構20を動作させ、分岐部検出センサ310の出力が切り替わる位置、すなわち円周方向に検出された埋設配管分岐部円周の二個のエッジ位置の中央で旋回機構20を停止する。次に、設計上既知の分岐部検出センサの検出中心位置から穿孔ツール200の中心軸までの距離を移動機構30により移動し、穿孔ツール200の位置決めを終了する。この状態を図7(c)に示しているが、図10には加工機構10の詳細を示している。図10は、本発明に係る埋設配管分岐部穿孔装置の一実施形態における加工機構の加工動作準備完了時説明図である。
【0043】
図10に示す如く、姿勢支持クランプ330は、そのエアーシリンダのピストンの繰り出し終了位置を固定させて動作させ、次に、反力支持クランプ290を動作させて加工機構10をリフトアップし、前記加工機構10の穿孔ツール200近傍最大径部分のアウターボディ360と姿勢支持クランプ330を埋設配管600側の内壁面に接触させ、埋設配管600の分岐部の中心軸と加工機構10の中心軸を平行な状態にする。
【0044】
これにより、穿孔ツール200の回転軸と分岐管P1の中心軸を一致させ、さらに、加工時の反力を支持することが可能となる。さらに、反力支持クランプ290で穿孔ツール200の加工方向に押し付けることで、加工時の所要昇降ストロークを小さくすることが可能となるため、装置をコンパクトにすることが可能となる。
【0045】
次に、穿孔ツール200を回転させ工具昇降機構230を動作させて上昇させてライナーLの穿孔を実施する。穿孔時は、エアーノズル320からエアーを噴出しながらライナーLの切粉を前方に排出する。これは、これから埋設配管穿孔装置1000が進行する方向へのライナーLの切粉の侵入を阻止し、移動をスムーズにし、さらに、ライナーLの切粉を走行輪500及び副車輪520が踏みつけることによる埋設配管分岐位置の検出動作時の誤差を減らす効果がある。
【0046】
さらに、オペレータは加工監視カメラ340を用いて加工状況を監視する。この場合、加工監視カメラ340は穿孔ツール200によるライナーLの加工状況をプリズム270を介して撮像する。照明280は、この撮像を明確にするため、ライナーLの加工域を照射する。穿孔の完了は、工具昇降機構230の昇降駆動モータ350の電流を監視し、前記穿孔の貫通を検出する。
【0047】
穿孔ツール200のL字型伝達機構210及び工具駆動モータ220を穿孔ツール200の中心軸の前方に配置し、前記穿孔ツール200を昇降させる工具昇降機構230を穿孔ツール200の中心軸の後方に配置したことにより埋設配管分岐部穿孔装置の占有スペースを小型化することが可能となる。
【0048】
穿孔終了後は、穿孔ツール200を降下させ、反力支持クランプ290、姿勢支持クランプ330を非動作時の状態に収納し、走行輪押し付け機構530を非動作時の収納状態とし、走行輪500の管内壁面への接触を解除し、ワイヤ牽引装置60によりさらに後退して、側面監視カメラ260により加工状態を確認してから次の穿孔位置へ移動する。これらの動作を繰り返し、複数の分岐部の穿孔を実施する。
【0049】
最後に、埋設配管分岐部穿孔装置1000に好適な穿孔ツール200の一例を図11に示す。図11は、図3の加工機構における穿孔ツールの説明図である。穿孔ツール200は、ライナーLに接触する端面に2つの凸部を持ち、外径を所望の穿孔径と一致させた形状とした。通常のドリルのような先端形状では、切れ味を鋭くするには尖らせる必要があるが、先端を尖らせると、所望の穿孔径にするためには工具を長くする必要があり、その結果、工具を昇降させるストロークが大きくなり装置をコンパクトにすることが困難となる。
【0050】
そこで、工具の回転軸から離れた位置に凸部を設け、ある速度をもって凸部がライナーに接触するようにし、切削能力を確保した。本工具を回転させながらライニング部に押し付けて切削を実施し、貫通時は、この凸部により最初に貫通させ、さらに穿孔ツール200を送ることで凸部より外側の斜面で穿孔径を広げて、所定の穿孔を実施する。
このように、穿孔ツール200を本形状とすることで、穿孔後に穴をふさぐような切れ残りが発生することなく信頼性の高い穿孔を実施することができる。
上記操作はオペレータがインターフェース660に入力することにより行うことを説明したが、制御用PC650により自動的に行わせるようにもすることができる。
【0051】
上記に説明したように、本発明に係る埋設配管分岐部穿孔装置の実施形態によれば、次のごとき優れた効果を有する。
1)老朽化した鉄製の埋設配管の中で、特に配管径が50mm程度の管路を樹脂等でライニングして補修した分岐部分を非開削で管路内部から穿孔可能なため、分岐部毎に地面を掘削する必要がなく、交通遮断時間の短縮、掘削残土の処理の削減、掘削位置の最舗装の削減が可能となり、管路補修のための工事が簡素化できる。
【0052】
2)また、切削工具駆動用アクチュエータと、切削工具駆動用アクチュエータを切削工具ごと昇降させる昇降駆動用アクチュエータとを、切削工具回転軸を中心として配管軸方向の前後に振り分けて配置することで、装置を構成する部品を配管の軸方向に配置することが可能となり、装置を細い棒のような形状とすることができ、小口径配管への挿入が可能となる。
【0053】
3)さらに、旋回機構の構成を、二重円筒状の固定部に対し同軸上に配置した旋回シャフトを設け、二重円筒の外筒と内筒の間の空間に加工機構から移動機構に渡される配線、チューブを二重円筒中心軸から放射状に配列するような仕切り板で配線、チューブを保持した構成とすることで、加工機構へ接続される配線、チューブを旋回の動作を妨げることなく処理でき、かつ旋回装置の直径を小口径化できる。
【0054】
4)さらに、加工機構の中心軸より少なくとも3方向に放射状に等距離繰り出されるロッドから構成され、分岐位置センシング時に加工機構中心軸を配管中心軸にほぼ一致させる中心位置決め機構と、穿孔加工時に加工機構を挿入した配管の穿孔ツール押し出し方向と反対方向にロッドを繰り出し、加工機構を枝管分岐方向に押し付けるための反力支持クランプと、穿孔ツール押し出し方向と同一方向に繰り出され、反力支持クランプで加工機構を配管内壁面に押し付けたときに加工機構と配管が平行になるように穿孔時の姿勢を保持する姿勢支持クランプとを加工機構に備えた構成とすることにより、加工機構が穿孔する壁面に密着するため、切削工具昇降用アクチュエータの動作範囲を小さくすることが可能となり、棒状の加工装置の直径を小口径化できる。
【0055】
5)埋設配管分岐部穿孔装置をこのように構成し、運用することで、老朽化した鉄製小口径配管をライニングして補修した後に、ライニングされた配管の分岐部を非開削で配管内部から穿孔することが可能となる。
【0056】
【発明の効果】
以上、詳細に説明したごとく、本発明の構成によると、従来200mm以上の配管径において実施されていた分岐部の地面を非開削で補修するライニング工法を、200mm以下、例えば50mm程度の配管に対しても実施することが可能となり、従来のように小口径の配管にライニング工法を適用する場合に分岐部を掘削して穿孔を行う必要がなくなるという効果がある。
【図面の簡単な説明】
【図1】本発明に係る埋設配管分岐部穿孔装置の一実施形態の説明図である。
【図2】本発明に係る埋設配管分岐部穿孔装置の一実施形態のシステム説明図である。
【図3】本発明に係る埋設配管分岐部穿孔装置の一実施形態の加工機構の説明図である。
【図4】本発明に係る埋設配管分岐部穿孔装置の一実施形態の旋回機構の説明図である。
【図5】本発明に係る埋設配管分岐部穿孔装置の一実施形態における移動機構の説明図である。
【図6】本発明に係る埋設配管分岐部穿孔装置の一実施形態における制御系のブロック図である。
【図7】本発明に係る埋設配管分岐部穿孔装置の一実施形態における運用説明図である。
【図8】図3の加工機構の中心位置決め機構の非動作状態の説明図である。
【図9】図3の加工機構の中心位置決め機構の動作状態の説明図である。
【図10】図3の加工機構の加工準備完了説明図である。
【図11】図3の加工機構における穿孔ツール説明図である。
【図12】図3の加工機構におけるL字型伝達機構の説明図である。
【図13】図3の加工機構における工具昇降機構の説明図である。
【符号の説明】
10…加工機構、20…旋回機構、30…移動機構、40…自在継ぎ手、
60…ワイヤ牽引装置、90…ケーブル巻き取り装置、100…制御装置、
200…穿孔ツール、230…工具昇降機構、240…中心位置決め機構、
290…反力支持クランプ、300…姿勢検出センサ、
310…分岐部検出センサ、330…姿勢支持クランプ、400…旋回シャフト、
410…旋回駆動モータ、420…内部ケーシング、
430…ケーブル・エアーチューブ、440…外部ケーシング、
固定仕切り板…450,旋回仕切り板460、500…走行輪、
510…走行輪モータ、520…副車輪、530…走行輪押し付け機構、
1000…埋設配管分岐部穿孔装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a configuration and operation method of a robot that performs maintenance and inspection work on buried water and sewage pipes and gas pipes from inside the pipes, particularly after repairing lining of aged iron pipes with sealing material, resin material, etc. The present invention relates to an apparatus for perforating a liner at a pipe branch portion and a method of operating the same.
[0002]
[Prior art]
A conventional apparatus for perforating a buried pipe lining from the inside without cutting is disclosed in JP-A-6-306923. In this gazette, in order to form an opening similar to the shape of the opening of the pipe branch portion in the lining material of the branch portion on the inner surface of the underground buried pipe, the inside of the main body having a traveling leg for supporting the main body and a fixing support leg is provided. An opening unit, a rotating means for moving the opening unit around the main axis, and a moving means for moving the main unit along the main axis are provided. The opening unit is provided on the pedestal and turned on the pedestal. And an opening cutter provided on the turning table and having a rotation axis parallel to the turning table axis, and a sensing means for detecting a distance between a cutting edge position of the opening cutter farthest from the turning table axis and a pipe branch inner wall, It is described that a tube wall opening machine is configured so that the opening cutter moves up and down from the main body so as to take a set angle by raising and lowering the pedestal, and controls the rotating unit and the moving unit by the sensing unit.
[0003]
[Problems to be solved by the invention]
In Japanese Patent Application Laid-Open No. 6-306923, when the inner diameter of a pipe is small, for example, a pipe diameter of 50 mm or less as seen in a gas pipe is not sufficiently considered. That is, as described in the official gazette, the apparatus is configured to pierce a thin liner portion on the premise that the inner diameter of the main pipe is 200 mm and the inner diameter of the branch pipe is 150 mm. In particular, the opening cutter is moved in the direction of the branch pipe. He did not have the freedom. It is also conceivable that the liner is thick depending on the lining method.For example, when the apparatus described in the publication is applied to a pipe with an inner diameter of about 50 mm, there is no freedom to move the opening cutter in the direction of the branch pipe, so it is difficult to cut a thick liner. Could be.
[0004]
An object of the present invention is to solve the above-mentioned problem, and a pipe branch having a small-diameter pipe made of a small-diameter pipe having an inner diameter of about 50 mm, which is lined with a liner and repaired, is not cut into the pipe. It is an object of the present invention to provide a buried pipe branching section drilling device which realizes a lining method for repairing an aging pipe without drilling.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the configuration of the buried pipe branch portion punching device according to the present invention is a buried pipe branch portion punching device for punching a buried pipe branch portion that has been lining-repaired using a resin,
A processing mechanism for perforating the liner of the pipe branch portion, a turning mechanism for rotating the processing mechanism around the pipe axis, a moving mechanism for moving the processing mechanism and the turning mechanism in the pipe axis direction, and a control device, The processing mechanism, the turning mechanism, and the moving mechanism are connected by a universal joint, respectively, so as to correspond to the bent portion of the pipe.
[0006]
In the buried pipe branch portion drilling device described above, the control device may detect an inclination angle of the processing mechanism with the posture detection sensor, and control the turning device such that the inclination angle of the processing mechanism becomes a predetermined value. It is a feature.
[0007]
Furthermore, in the configuration of the buried pipe branch portion drilling device described above, a swivel shaft is provided as a swivel mechanism coaxially disposed with respect to the double cylindrical fixed portion, in the space between the outer cylinder and the inner cylinder of the double cylinder. The configuration is such that the wires and tubes are held by a partition plate that arranges the wires and tubes passed from the moving mechanism to the processing mechanism radially from the central axis of the double cylinder.
[0008]
Further, in the configuration of the buried pipe branch portion drilling device described above, using a rotary cutting tool as a drilling tool, a cutting tool drive motor, a lifting drive motor for raising and lowering the cutting tool drive motor together with the cutting tool. , Which are arranged before and after the cutting tool rotation axis in the pipe axis direction.
[0009]
Furthermore, in the configuration of the buried pipe branch portion punching device described above, the rod is configured to be extended radially and equidistantly in at least three directions from the center axis of the machining mechanism, and the machining mechanism center axis is substantially aligned with the pipe center axis at the time of branch position sensing. A center positioning mechanism to match, a reaction force support clamp for pushing out the machining mechanism in the branch pipe branch direction by extending the rod in the direction opposite to the pushing direction of the drilling tool for the branch pipe into which the machining mechanism was inserted during drilling, and pushing out the drilling tool The processing mechanism is equipped with a posture support clamp that is extended in the same direction as the direction and holds the posture during drilling so that the processing mechanism and the piping are parallel when the processing mechanism is pressed against the inner wall of the pipe by the reaction force support clamp. The configuration is as follows.
Further, in the configuration of the buried pipe branch portion drilling device described above, in the rotary cutting tool used as a drilling tool, the desired drilling diameter is set as the outer diameter of the cutting tool, and further, the rotation axis of the tool is determined based on the drilling diameter of the cutting tool end face. The shape has a convex portion on the side.
[0010]
Further, in the configuration of the buried pipe branch part drilling device described above, the movement of the drilling device in the pipe is performed by pulling the wire pulling device and the cable winding device from the openings at both ends of the construction section, and processing during the pulling. The attitude of the machining mechanism is detected by the signal of the attitude sensor mounted on the mechanism, and based on the detection result, the turning mechanism is used to control the branch detection sensor so that it always faces the direction in which the branch pipe exists. After detecting the bifurcation by the movement of the apparatus, the position of the bifurcation is accurately determined by using the moving mechanism and the turning mechanism while monitoring the signal of the bifurcation detection sensor, and perforating the pipe bifurcation liner.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
A configuration of a buried pipe branching portion drilling device according to one embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is an explanatory view of an embodiment of a buried pipe branching portion drilling device according to the present invention. First, the configuration of the device inserted into the lined pipe will be described with reference to FIG. An apparatus 1000 for piercing a buried pipe branch according to an embodiment of the present invention includes a processing mechanism 10 for piercing a liner (not shown) of a branch, and a swivel for rotating the processing mechanism 10 around a lined pipe axis. It comprises a mechanism 20, and a moving mechanism 30 for moving the processing mechanism 10 and the turning mechanism 20 in the direction of the lined pipe axis. The processing mechanism 10, the turning mechanism 20, and the moving mechanism 30 are connected by two universal joints 40, respectively. In the order of the processing mechanism 10, the turning mechanism 20, and the moving mechanism 30, a wire pulling device 60 (see FIG. 2, the wire pulling device 60 side is referred to as a front side) is connected to a buried pipe (not shown) from a cable described later. The winding device 90 (see FIG. 2; the cable winding device 90 side is referred to as a rear side).
[0012]
With reference to FIG. 2, the buried piping branch part drilling device 1000 will be described.
FIG. 2 is an overall explanatory view of an embodiment of a buried pipe branching portion drilling device according to the present invention. In the buried piping branch portion punching device 1000, a pulling wire 50 is provided at the tip of the processing mechanism 10, and the pulling wire 50 is connected to the wire pulling device 60. From the rear end of the moving mechanism 30, an air pipe for supplying air to an air nozzle 320 or the like (not shown) for blowing chips generated at the time of processing toward the front side, a drive motor 220 of the processing mechanism 10, etc. (Not shown), a power supply line for supplying power, a control signal line from the control device 100 for controlling the processing mechanism 10 and the like are connected to the cable 70.
[0013]
The connected cable 70 is taken up by a cable take-up device 90 via a relay 80 that branches the air pipe and performs signal processing from various detection sensors of the processing mechanism 10 and the like. A control signal line and a power supply line drawn from the cable winding device 90 are connected to the control device 100, and an air pipe is connected to the air compressor 110. As described above, the buried piping branch portion punching device 1000 is configured as a whole as described above.
[0014]
Next, the respective configurations of the processing mechanism 10, the turning mechanism 20, and the moving mechanism 30 inserted into the pipe will be described with reference to FIGS. FIG. 3 is an explanatory diagram of a processing mechanism in one embodiment of the buried pipe branch portion punching device according to the present invention. FIG. 4 is an explanatory diagram of a turning mechanism in one embodiment of the buried pipe branch portion punching device according to the present invention. FIG. 5 is an explanatory diagram of a moving mechanism in one embodiment of the buried pipe branch portion punching device according to the present invention.
[0015]
The processing mechanism 10 includes a drilling tool 200 for drilling a liner (not shown) of a buried pipe branch (referred to as a branch pipe branch) P1 (see FIG. 2), and a cutting tool drive for driving the drilling tool 200. Actuator (motor is referred to as an actuator hereinafter) 220, an L-shaped transmission mechanism 210 for transmitting the power from the cutting tool drive motor 220 to the drilling tool 200, a drilling tool 200 in the branch pipe branch direction, an L-shaped The mold transmission mechanism 210, a cutting tool lifting mechanism 230 for integrally moving the cutting tool drive motor 220, and a center positioning mechanism 240 for making the center axis of the processing mechanism 10 substantially coincide with the vicinity of the center axis of the buried pipe (called pipe). ing.
[0016]
Further, a front monitoring camera 250 for monitoring the inside of the front pipe, which is the traveling direction of the buried pipe branching portion drilling device 1000, a side monitoring camera 260 for monitoring the branch direction of the branch pipe, and a prism 270 provided in the side monitoring camera A lighting 280 for the front monitoring camera 250 and the side monitoring camera 260, a reaction force support clamp 290 for supporting the reaction force at the time of drilling by the drilling tool 200, and pressing the processing mechanism 10 in the branch pipe direction; An attitude detection sensor 300 for detecting an angle around the pipe axis of No. 10, a branch detection sensor 310 for magnetically detecting the presence or absence of an edge of a branch pipe, and an air nozzle 320 for blowing and removing chips when drilling forward. A posture support clamp 330 for making the posture of the machining mechanism 10 at the time of drilling parallel to the pipe, and a machining monitoring card for monitoring the drilling situation. And La 340, and a outer body 360. a outer casing of the lifting drive motor 350 and the processing mechanism 10 for vertically driving the drilling tool 200 by the tool elevating mechanism 230.
[0017]
The L-shaped transmission mechanism 210 will be described with reference to FIG. FIG. 12 is an explanatory diagram of an L-shaped transmission mechanism in the machining mechanism of FIG.
As shown in FIG. 12, the L-shaped transmission mechanism 210 includes two bevel gears 212a and 212b and a collet chuck 214, and the rotation is performed by the two bevel gears 212a and 212b from the rotation axis of the tool driving motor 220. The driving force is transmitted to the rotation axis of the drilling tool 200 orthogonal to the axis. The shaft of the bevel gear 212b on the side of the drilling tool 200 is provided so as to be gripped by a collet chuck 214, and the collet chuck 214 fixes the drilling tool 200.
[0018]
The tool lifting mechanism 230 will be described with reference to FIG. FIG. 13 is an explanatory diagram of a tool elevating mechanism in the machining mechanism of FIG.
The tool elevating mechanism 230 transmits the rotation of the shaft of the tool elevating mechanism driving motor 350 to the driving ball screw 356 via the coupling 352, the gear 354, and the bevel gear 355, and the driving ball screw 356 and the two The drilling tool 200, the L-shaped transmission mechanism 210, and the tool drive motor 220 fixed to the frame 359 of the guide ball screw 358 can be integrally moved up and down.
[0019]
Referring again to FIG. 3, and with reference to FIGS. 8 and 9, the center positioning mechanism 240 will be described. 8 is an explanatory diagram of the processing mechanism in FIG. 3 when the center positioning mechanism is not operating, and FIG. 9 is an explanatory diagram of the processing mechanism in FIG. 3 when the center positioning mechanism is operating. The center positioning mechanism 240 uses three air cylinders provided with pistons 242. Of the three air cylinders, two pistons 242 are in opposite directions and parallel to each other, and the remaining one piston 242 is The two pistons 242 are perpendicular to each other so as to protrude by a predetermined distance. When all the tip balls 244 of the three pistons 242 come into contact with the inner wall surface of the pipe 600, the center axis of the machining mechanism 10 and the pipe 600 Are arranged so that the central axes thereof substantially coincide with each other.
[0020]
The attitude support clamp 330 uses an air cylinder 330a, and the center of the processing mechanism 10 when both the maximum diameter portion of the outer body 360 of the processing mechanism 10 and the air cylinder of the attitude support clamp 330 contact the inner wall surface of the pipe. The feed-out end position of the piston is set at a position where the axis is substantially parallel to the pipe 600.
A plurality of reaction force support clamps 290 are provided, and an air cylinder 290a is used. By operating the air cylinder 290a, the processing mechanism 10 is pressed in the direction of the branch pipe P1 (see FIG. 2), so that the drilling of the liner is performed. It is designed to counter reaction.
[0021]
The configuration of the turning mechanism 20 will be described with reference to FIG.
The turning mechanism 20 includes a turning shaft 400 for turning the processing mechanism 10, a turning drive motor 410 for rotating the turning shaft 400 via a pinion 410a and a spur gear 410b, an inner casing 420 covering the turning drive motor 410, A cable / air tube 430 for transmitting electric power and air for the air nozzle 320 to the tool drive motor 220 and the like of the mechanism 10.
[0022]
Further, an outer casing 440 containing the cable / air tube 430, a fixed partition plate 450 fixed to the outer casing 440 and aligning the cable / air tube 430 around the turning shaft 400, and fixed to the turning shaft 400, And a turning partition plate 460 for supporting the arrangement of the cable / air tubes 430 during operation of the turning mechanism 20 so as not to be disturbed.
[0023]
Next, the moving mechanism 30 will be described with reference to FIG. FIG. 5 (a) is a plan view of a moving mechanism in the buried pipe branching device according to the present invention, and FIG. 5 (b) is a side view of a moving mechanism in the buried piping branching device according to the present invention.
[0024]
The moving mechanism 30 drives the traveling wheel 500 through a coupling 502, a worm gear 504, and two-stage gears 506a and 506b, while the traveling wheel 500 contacts an inner wall surface of the piping (not shown) and travels in the axial direction of the piping. Running wheel drive motor 510, four sub-wheels 520 that are always in contact with the inner wall surface of the pipe and can be passively rotated, and the running wheel 500 is positioned inside the pipe when the machining mechanism 10 is accurately positioned at the buried pipe branch. It is composed of a traveling wheel pressing mechanism 530 for pressing against a wall surface, and a traveling mechanism body 540 on which these members are mounted. When the processing mechanism 10 is not positioned at the buried pipe branch portion, the air cylinder 532 is in the housed state, and the traveling wheel 500 is separated from the inner wall surface of the pipe.
[0025]
The traveling wheel pressing mechanism 530 includes an air cylinder 532 to which working air is supplied and driven, a lever 534 for moving the traveling wheel 500 toward the inner wall surface of the pipe by being lifted up by the air cylinder 532, and a hinge 536. ing. When the wire 50 is pulled by the wire pulling device 60, the air cylinder 532 is moved in a lowered state as shown in FIG. 5, and the wire pulling device 60 is stopped and the air cylinder 532 is operated at the time of accurate positioning at the pipe branch. By doing so, the lever 534 is lifted with the hinge 536 as a fulcrum, and the traveling wheel 500 installed on the lever 534 is brought into contact with the inner wall surface of the pipe to drive the traveling wheel 500 to move. That is, when the lever 534 is lifted up by the cylinder 532, the members from the traveling wheel 500 to the traveling wheel drive motor 510 are integrally lifted with the hinge 536 as a fulcrum (center), and as a result, the traveling wheel 500 is pressed against the inner wall surface of the pipe. Can be
[0026]
Next, the configuration of the control device of the buried pipe branching portion drilling device will be described with reference to FIG. FIG. 6 is a block diagram of a control system in an embodiment of a buried pipe branch portion drilling device according to the present invention. The control device 100 converts a plurality of TV cameras of the processing mechanism 10, that is, a video selector 600 for switching images of the front monitoring camera 250, the side monitoring camera 260, the processing monitoring camera 340, and the like, and a TV camera image selected by the selector 600. A liquid crystal monitor 610 for projecting, a power supply 620 for supplying power to the TV camera and the illumination LED, a constant current source 630 for driving the tool driving motor 220, a control device 640 for controlling each tool elevating motor and the like, Air drive, control of air valves for supplying air to nozzles 240, 330, 290, 320, etc., capture and signal processing of detection signals from branch pipe branch detection sensor 310, processing mechanism posture detection sensor 300, and selector (not shown) The signal value is displayed on the liquid crystal monitor 610 by switching, and the turning mechanism 0, a turning motor 410, a traveling motor 510 of the moving mechanism 30, a cable of the cable feeding mechanism 90 to the wheel pressing mechanism 530, a control PC 650 for controlling supply of electric power and an air source via the air compressor 110, and an operator. And an operation interface 660.
[0027]
Here, the two universal joints 40 that connect the processing mechanism 10, the turning mechanism 20, and the moving mechanism 30, respectively, bend the processing mechanism 10, the turning mechanism 20, and the moving mechanism 30 along the axial shape of the buried pipe. This is a member assembly capable of connecting the two axes even if the angle at which the two axes intersect freely changes.
[0028]
Although not shown in detail, the branch pipe branch detection sensor 310 includes a head having a detection coil, and an oscillation circuit connected to the head, and an output signal of the oscillation circuit based on a distance between the head and an object to be detected. In practice, the output of the branch detection sensor 310 is switched depending on the position of the circumferential portion of the branch pipe and the position of the detection coil. This switching position is determined as the edge of the branch portion of the branch pipe, two edges are detected, and the branch pipe center position is detected from the traveling distance at that time.
[0029]
The posture detection sensor 300 of the machining mechanism is a known sensor using an acceleration sensor, and for example, a commercially available product having a two-axis acceleration sensor mounted on a single IC chip is used. The posture detection sensor 300 is mounted inside the machining mechanism 10 and is arranged so that one axis of the acceleration sensor coincides with the axial direction of the drilling tool 200 of the machining device 10, and the other axis of the acceleration sensor is Arrange to match the turning direction. Thereby, the polarity in the inclination direction is determined, and the inclination angle is obtained.
[0030]
Next, the schematic operation of the buried pipe branching portion punching device and the function of each portion will be described with reference to FIG. FIG. 7 is an operation explanatory diagram of one embodiment of the buried pipe branching portion drilling device according to the present invention. That is, it is an explanatory view showing a state in which the buried pipe branch part drilling device 1000 is inserted into the pipe and the buried pipe branch part drilling device 1000 is positioned.
[0031]
As a prerequisite for using the buried pipe branch part drilling device 1000, as shown in FIG. 7A, the ground at both ends of the aged iron pipe 600 is excavated in advance, and the iron pipe 600 exposed at both ends by the excavation is subjected to a predetermined process. It is assumed that the inner surface of the iron pipe 600 has been lined by a lining method of resin or the like. The buried pipe branch part drilling device 1000 is a device that is inserted into a pipe from a pipe part that has been excavated and cut, and drills a branch pipe branch part that is closed by this lining. It is assumed that the long movement in the excavated and cut pipe 600 is moved by the pulling wire 50, and the movement for detailed positioning is performed by the movement mechanism 30.
[0032]
First, the pulling wire 50 is passed through the piping 600 after the lining. In ordinary piping work, it is easy to pass a rope through the pipe 600 using air and a pig, and the wire 50 of the wire pulling device 60 is passed through the pipe 600 by connecting and pulling the wire 50 to the rope. Can be.
[0033]
Next, the wire 50 is connected to the buried piping branch part punching device 1000. Here, the cut length of the pipe 600 into which the drilling device 1000 is inserted is preferably shorter in order to reduce the range of excavating the ground. For this reason, it is necessary that the buried pipe branch part punching device 1000 can be inserted with a pipe cutting length necessary for performing the lining method. Therefore, the processing mechanism 10, the turning mechanism 20, and the moving mechanism 30 are connected by the double universal joint 40, and when inserted into the pipe 600, the worker can bend the buried pipe branch part punching device 1000 with the universal joint 40. Things.
[0034]
Further, depending on the construction route of the buried piping work, the buried piping 600 may have some bends. However, due to the flexible bending of the double universal joint, the processing mechanism 10, the turning mechanism 20, and the moving mechanism 30 are connected to the buried piping 600. It is possible to pass along passively, and smooth passage is possible.
[0035]
Next, as shown in FIG. 7 (b), after each part from the processing mechanism 10 to the moving mechanism 30 of the buried pipe branch part drilling device 1000 is inserted into the pipe, the wire 50 is further pulled by the wire pulling device 60. Then, it is moved to the opening on the wire pulling device 60 side.
This will be described even after the wire is pulled, but when chips at the time of drilling at the branch pipe branch are present in the traveling direction of the buried pipe branch drilling device 1000 and are caught between the traveling wheel 500 and the pipe inner wall surface, minute This is because it does not allow chips to enter in the traveling direction because it causes an error at the time of positioning.
[0036]
Next, the center positioning mechanism 240 of the processing mechanism 10 is operated to make the center axis of the pipe 600 substantially coincide with the center axis of the processing mechanism 10. As shown in FIG. 8, the center positioning mechanism 240 accommodates three air cylinders 242 when it is not operating. However, as shown in FIG. The center axis in the radial direction of the buried pipe 600 of the processing mechanism 10 and the center axis of the buried pipe 600 can be substantially matched.
[0037]
Next, in a state where the center positioning mechanism 240 of the processing mechanism 10 is operated, the buried pipe branch portion punching device 1000 is pulled by the wire pulling device (not shown) attached to the cable winding device 90 while winding the cable. It slowly moves to the picking device 90 side. At this time, the cable winding device 60 winds the cable at a slow speed equivalent to the winding speed of the wire pulling device.
[0038]
Here, there is a possibility that the buried pipe branch part drilling apparatus 1000 may rotate around the pipe axis while moving in the buried pipe 600 due to the twisting of the pulling wire 50, and the detection range of the branch pipe branch detection sensor 310 and the side surface monitoring. The monitoring range of the camera 260 may deviate from the branch pipe branch direction.
[0039]
For this reason, the operator detects the inclination of the machining mechanism 10 around the pipe axis with the posture detection sensor 300, displays the measured value on a monitor (not shown) provided in the control PC 650 (see FIG. 6), and When the displayed value exceeds a predetermined value as compared with known data on design, the control PC operates the turning mechanism 20 by operating the operation interface 660, and the detection of the branch pipe branch detection sensor 310 is performed. The surveillance range of the range and side surveillance camera 260 is always directed to the direction in which the branch pipe branch exists.
[0040]
As described above, the operator provided the control PC 650 with the image of the inner wall surface of the buried pipe 600 on the liquid crystal monitor 610 of the control device 100 while the buried pipe branch part perforating apparatus 1000 was moving inside the buried pipe 600. The output of the branch detection sensor 310 is monitored by a monitor. Here, when the branch pipe branch part P1 can be confirmed by the image of the side monitoring camera 260 in the buried pipe 600, the wire pulling device and the cable winding device 90 are stopped at that position. Further, even when the output cannot be confirmed by the camera image, it is stopped when it is confirmed that the output of the branch detection sensor 310 has changed. The buried pipe branch part punching device 1000 is slowly moved to the cable winding device 90 side, but repeats so-called jogging, and the detecting range and the posture detecting sensor of the branch pipe branch detecting sensor 310 for each such jogging. There is no problem even if it is detected at 300.
[0041]
Next, the traveling wheel 500 is pressed against the inner wall surface of the pipe by the traveling wheel pressing mechanism 530, and the processing mechanism 10 is moved in the axial direction of the buried pipe 600 while the processing mechanism 10 is slightly moved while monitoring the output of the branch portion detection sensor 310. Then, the moving mechanism 30 is stopped at the position where the output of the branch part detection sensor 310 switches, that is, at the center of two edge positions of the circumference of the buried pipe branch part detected in the pipe axis direction.
[0042]
Next, the turning mechanism 20 is operated while monitoring the output of the branch portion detection sensor 310, and the two positions of the position where the output of the branch portion detection sensor 310 switches, that is, the circumference of the buried pipe branch portion detected in the circumferential direction. The turning mechanism 20 is stopped at the center of the edge position. Next, the distance from the detection center position of the branch detection sensor known in design to the center axis of the drilling tool 200 is moved by the moving mechanism 30, and the positioning of the drilling tool 200 ends. FIG. 7C shows this state, and FIG. 10 shows details of the processing mechanism 10. FIG. 10 is an explanatory view of the embodiment of the buried pipe branch portion punching device according to the present invention at the time when the processing mechanism is ready for the processing operation.
[0043]
As shown in FIG. 10, the posture support clamp 330 is operated by fixing the extension end position of the piston of the air cylinder, and then the reaction force support clamp 290 is operated to lift up the processing mechanism 10 and perform the processing. The outer body 360 and the posture support clamp 330 of the largest diameter portion near the drilling tool 200 of the mechanism 10 are brought into contact with the inner wall surface on the side of the buried pipe 600, and the central axis of the branch part of the buried pipe 600 and the central axis of the processing mechanism 10 are parallel. State.
[0044]
Thereby, it becomes possible to make the rotation axis of the drilling tool 200 coincide with the center axis of the branch pipe P1, and to support the reaction force at the time of machining. Further, by pressing the drilling tool 200 in the processing direction by the reaction force support clamp 290, the required vertical stroke during the processing can be reduced, so that the apparatus can be made compact.
[0045]
Next, the drilling tool 200 is rotated and the tool lifting / lowering mechanism 230 is operated to raise the tool, thereby performing the drilling of the liner L. At the time of perforation, the chips of the liner L are discharged forward while blowing air from the air nozzle 320. This is because the chipping of the liner L is prevented from entering in the direction in which the buried pipe perforating apparatus 1000 is to be advanced, the movement is smooth, and the chipping of the liner L is further trampled by the traveling wheel 500 and the auxiliary wheel 520. This has the effect of reducing errors during the operation of detecting the buried pipe branch position.
[0046]
Further, the operator monitors the processing status using the processing monitoring camera 340. In this case, the processing monitoring camera 340 captures an image of the processing state of the liner L by the drilling tool 200 via the prism 270. The illumination 280 illuminates the processing area of the liner L to clarify this imaging. Completion of the perforation is monitored by monitoring the current of the elevating drive motor 350 of the tool elevating mechanism 230 to detect penetration of the perforation.
[0047]
The L-shaped transmission mechanism 210 and the tool drive motor 220 of the drilling tool 200 are arranged in front of the center axis of the drilling tool 200, and the tool lifting mechanism 230 for raising and lowering the drilling tool 200 is arranged behind the central axis of the drilling tool 200. As a result, it is possible to reduce the space occupied by the buried pipe branching portion drilling device.
[0048]
After the drilling is completed, the drilling tool 200 is lowered, the reaction force support clamp 290 and the posture support clamp 330 are stored in a non-operating state, the running wheel pressing mechanism 530 is stored in a non-operating state, and The contact with the inner wall surface of the pipe is released, the wire is further retracted by the wire pulling device 60, the processing state is confirmed by the side monitoring camera 260, and the pipe is moved to the next drilling position. These operations are repeated to perforate a plurality of branch portions.
[0049]
Finally, FIG. 11 shows an example of a drilling tool 200 suitable for the buried piping branch portion drilling device 1000. FIG. 11 is an explanatory diagram of a drilling tool in the machining mechanism of FIG. The piercing tool 200 has two convex portions on the end surface that comes into contact with the liner L, and has a shape whose outer diameter matches the desired piercing diameter. With a regular drill-like tip shape, it is necessary to sharpen the sharpness, but if the tip is sharpened, it is necessary to lengthen the tool to obtain the desired drilling diameter, and as a result, the tool The stroke for raising and lowering the device becomes large, making it difficult to make the device compact.
[0050]
Therefore, a convex portion is provided at a position distant from the rotation axis of the tool, and the convex portion is brought into contact with the liner at a certain speed, thereby ensuring cutting performance. The tool is pressed against the lining part while rotating, and cutting is performed.When penetrating, the penetrating part is first penetrated, and the drilling tool 200 is further fed to increase the drilling diameter on the slope outside the convex part, Carry out a predetermined drilling.
In this way, by forming the drilling tool 200 in the main shape, it is possible to perform highly reliable drilling without generating a cutout that blocks a hole after drilling.
Although the above-described operation has been described to be performed by the operator inputting to the interface 660, the operation may be automatically performed by the control PC 650.
[0051]
As described above, according to the embodiment of the buried pipe branch portion drilling device according to the present invention, the following excellent effects are obtained.
1) Among the deteriorated iron buried pipes, especially the pipes with a pipe diameter of about 50 mm repaired by lining with resin or the like can be drilled from inside the pipes without cutting, so every branch There is no need to excavate the ground, which makes it possible to reduce the time required to cut off traffic, reduce the amount of excavated soil, and reduce the amount of pavement at the excavation position, thereby simplifying the work for repairing pipelines.
[0052]
2) In addition, the cutting tool drive actuator and the lifting drive actuator that raises and lowers the cutting tool drive actuator together with the cutting tool are arranged separately in front and rear in the pipe axis direction about the cutting tool rotation axis. Can be arranged in the axial direction of the pipe, the device can be shaped like a thin rod, and can be inserted into a small-diameter pipe.
[0053]
3) Further, the structure of the turning mechanism is provided by providing a turning shaft coaxially arranged with respect to the fixed portion of the double cylinder, and passing the machining mechanism to the moving mechanism in the space between the outer cylinder and the inner cylinder of the double cylinder. The wiring and tubes are held by a partition plate that arranges the wiring and tubes radially from the central axis of the double cylinder, so that the wiring and tubes connected to the processing mechanism can be processed without hindering the turning operation. And the diameter of the turning device can be reduced.
[0054]
4) Further, a center positioning mechanism which is composed of a rod which is extended radially and equidistantly in at least three directions from the center axis of the machining mechanism and which makes the center axis of the machining mechanism substantially coincide with the center axis of the pipe at the time of branch position sensing, and machining at the time of drilling The rod is pulled out in the direction opposite to the direction in which the drilling tool is pushed out of the pipe in which the mechanism is inserted, and a reaction force support clamp for pressing the machining mechanism in the branch pipe branch direction, and the reaction force support clamp is drawn out in the same direction as the drilling tool extrusion direction. When the processing mechanism is provided with a posture support clamp that holds a posture at the time of drilling so that the processing mechanism and the pipe are parallel when the processing mechanism is pressed against the inner wall surface of the pipe, the processing mechanism drills. The close contact with the wall surface makes it possible to reduce the operating range of the actuator for raising and lowering the cutting tool. It can be a small-diameter.
[0055]
5) By constructing and operating the buried pipe branch part drilling device in this way, after lining and repairing an old small-diameter steel pipe, the branch part of the lined pipe is drilled from inside the pipe without cutting. It is possible to do.
[0056]
【The invention's effect】
As described above in detail, according to the configuration of the present invention, the lining method of repairing the ground of the branch portion without cutting without being cut in the conventional 200 mm or more pipe diameter is used for pipes of 200 mm or less, for example, about 50 mm. It is also possible to carry out even when the lining method is applied to a small-diameter pipe as in the related art, and there is an effect that it is not necessary to excavate and drill a branch portion.
[Brief description of the drawings]
FIG. 1 is an explanatory view of an embodiment of a buried piping branch portion drilling device according to the present invention.
FIG. 2 is a system explanatory diagram of an embodiment of a buried pipe branch portion punching device according to the present invention.
FIG. 3 is an explanatory view of a processing mechanism of an embodiment of a buried pipe branch portion punching device according to the present invention.
FIG. 4 is an explanatory view of a turning mechanism of the embodiment of the buried pipe branch portion punching device according to the present invention.
FIG. 5 is an explanatory view of a moving mechanism in an embodiment of a buried pipe branch portion punching device according to the present invention.
FIG. 6 is a block diagram of a control system in an embodiment of a buried pipe branch portion drilling device according to the present invention.
FIG. 7 is an operation explanatory view of one embodiment of a buried pipe branch part drilling device according to the present invention.
FIG. 8 is an explanatory view of a non-operating state of a center positioning mechanism of the processing mechanism of FIG. 3;
FIG. 9 is an explanatory diagram of an operation state of a center positioning mechanism of the processing mechanism in FIG. 3;
FIG. 10 is an explanatory diagram of processing completion of the processing mechanism of FIG. 3;
11 is an explanatory view of a drilling tool in the machining mechanism of FIG. 3;
FIG. 12 is an explanatory diagram of an L-shaped transmission mechanism in the machining mechanism of FIG. 3;
FIG. 13 is an explanatory diagram of a tool elevating mechanism in the machining mechanism of FIG. 3;
[Explanation of symbols]
10 processing mechanism, 20 turning mechanism, 30 moving mechanism, 40 universal joint,
60: wire pulling device, 90: cable winding device, 100: control device,
200: drilling tool, 230: tool elevating mechanism, 240: center positioning mechanism,
290: reaction force support clamp, 300: posture detection sensor,
310 ... branch part detection sensor, 330 ... posture support clamp, 400 ... revolving shaft,
410: turning drive motor, 420: inner casing,
430: cable / air tube, 440: outer casing,
Fixed partition plate: 450, revolving partition plate 460, 500: running wheels,
510: running wheel motor, 520: auxiliary wheel, 530: running wheel pressing mechanism,
1000 ... buried pipe branching section drilling device

Claims (7)

樹脂を用いライニング補修された埋設配管分岐部の穿孔を行う埋設配管分岐部穿孔装置において、
前記配管分岐部のライナーを穿孔する加工機構と、該加工機構を配管軸回りに回転させる旋回機構と、前記加工機構及び旋回機構を配管軸方向に移動させる移動機構と、制御装置を備え、前記加工機構と旋回機構と移動機構とをそれぞれ自在継ぎ手で連結し、前記配管の曲折部に対応するようにしたことを特徴とする埋設配管分岐部穿孔装置。
In a buried pipe branch part drilling device that drills a buried pipe branch part repaired by lining using resin,
A processing mechanism for perforating the liner of the pipe branch portion, a turning mechanism for rotating the processing mechanism around the pipe axis, a moving mechanism for moving the processing mechanism and the turning mechanism in the pipe axis direction, and a control device, A buried pipe branch part drilling device, wherein a working mechanism, a turning mechanism, and a moving mechanism are respectively connected by universal joints so as to correspond to a bent part of the pipe.
請求項1記載の埋設配管分岐部穿孔装置において、
制御装置は、姿勢検出センサにより加工機構の傾き角を検出させ該加工機構の傾き角が所定値となるよう前記旋回装置を、また、分岐部検出センサにより配管分岐部位置を配管内側より検出させ前記分岐部位置に停止するように前記加工機構を、それぞれ制御することを特徴とする埋設配管分岐部穿孔装置。
The buried piping branch part drilling device according to claim 1,
The control device detects the inclination angle of the machining mechanism with the attitude detection sensor, and detects the turning device so that the inclination angle of the machining mechanism becomes a predetermined value, and also detects the position of the pipe branch from the inside of the pipe by the branch detection sensor. The buried pipe branch part drilling device, wherein each of the processing mechanisms is controlled so as to stop at the branch part position.
請求項1記載の埋設配管分岐部穿孔装置において、
前記旋回機構は、二重円筒状の固定部を設け、該円筒状固定部に対し同軸上に配置した旋回シャフトと、前記二重円筒の外筒と内筒の間隙に当該旋回機構間を経由した前記移動機構と加工機構間の電気配線及び空気供給用チューブを実装し、前記二重円筒の固定部の両端部に前記電気配線及び空気供給用チューブを前記二重円筒の固定部の中心軸から放射状に保持するような複数の仕切り板を設け、前記仕切り板の一つを前記旋回シャフトに固定した構成としたことを特徴とする埋設配管分岐部穿孔装置。
The buried piping branch part drilling device according to claim 1,
The turning mechanism is provided with a double cylindrical fixing portion, and a turning shaft arranged coaxially with the cylindrical fixing portion, and a gap between the outer cylinder and the inner cylinder of the double cylinder passes through the turning mechanism. The electric wiring and the air supply tube between the moving mechanism and the processing mechanism are mounted, and the electric wiring and the air supply tube are provided at both ends of the fixed portion of the double cylinder at the center axis of the fixed portion of the double cylinder. A buried pipe branch part perforation device, wherein a plurality of partition plates are provided so as to be radially held from one another, and one of the partition plates is fixed to the turning shaft.
請求項1、2,3いずれかに記載の埋設配管分岐部穿孔装置において、
前記加工機構は、穿孔ツールとして回転式切削工具を備え、該回転式切削工具駆動用アクチュエータと、該回転式切削工具駆動用アクチュエータを前記切削工具ごと昇降させる昇降駆動用アクチュエータとを、前記回転式切削工具の回転軸を中心として配管軸方向の両側に配設したことを特徴とする埋設配管分岐部穿孔装置。
The buried pipe branch part drilling device according to any one of claims 1, 2, and 3,
The machining mechanism includes a rotary cutting tool as a drilling tool, the rotary cutting tool drive actuator, the lifting drive actuator for raising and lowering the rotary cutting tool drive actuator together with the cutting tool, the rotary type A buried pipe branch part drilling device, which is disposed on both sides in the pipe axis direction around a rotation axis of a cutting tool.
請求項4記載の埋設配管分岐部穿孔装置において、
前記加工機構は、当該加工機構の中心軸より少なくとも3方向へ放射状に等距離に繰り出されるロッドを有し、配管分岐部の検出時には当該加工機構の中心軸を前記配管の中心軸にほぼ一致させる中心位置決め機構と、
穿孔時には前記加工機構が挿入された配管分岐部に対する前記穿孔ツールの押し出し方向と反対方向に繰り出すロッドを有し、前記加工機構を配管分岐部方向に押し付けるための反力支持クランプと、
穿孔時には、穿孔ツールの押し出し方向と同一方向に繰り出すロッドを有し、前記穿孔ツールの昇降方向が配管分岐部にほぼ一致するように前記穿孔ツールの姿勢を保持する姿勢支持クランプとを、備えたことを特徴とする埋設配管分岐部穿孔装置。
The buried pipe branch part drilling device according to claim 4,
The machining mechanism has a rod that is extended radially and equidistantly in at least three directions from the center axis of the machining mechanism, and when the pipe branch portion is detected, the center axis of the machining mechanism substantially coincides with the center axis of the pipe. Center positioning mechanism,
At the time of drilling, the working mechanism has a rod that extends in a direction opposite to the pushing direction of the drilling tool with respect to the inserted pipe branch, and a reaction force support clamp for pressing the working mechanism toward the pipe branch.
At the time of drilling, a posture support clamp having a rod extending in the same direction as the pushing direction of the drilling tool, and holding the posture of the drilling tool so that the elevating direction of the drilling tool substantially coincides with a piping branch portion. An apparatus for piercing a buried pipe branch portion, characterized in that:
請求項4記載の埋設配管分岐部穿孔装置用の穿孔ツールにおいて、
前記加工機構は回転式切削工具として穿孔ツールを備え、該穿孔ツール所望の穿孔径を切削工具の外径とし、該切削工具の切削側端面の穿孔径よりツール回転軸側に凸部を設けたことを特徴とする埋設配管分岐部穿孔装置用穿孔ツール。
A drilling tool for a buried piping branch part drilling device according to claim 4,
The machining mechanism includes a drilling tool as a rotary cutting tool, the drilling tool has a desired drilling diameter as the outer diameter of the cutting tool, and a projection is provided on the tool rotation axis side from the drilling diameter of the cutting side end surface of the cutting tool. A piercing tool for a piercing device for a buried pipe branch part, characterized in that:
請求項1記載の穿孔装置を用いて埋設配管分岐部のライナー穿孔を行う穿孔方法において、
配管内での穿孔装置の移動は、ワイヤ牽引装置及びケーブル巻き取り装置により工事区間両端の開口部から牽引して実施し、牽引中に加工機構に搭載した姿勢センサの信号により加工機構の姿勢を検出し、該検出結果から旋回機構を用いて分岐部検出センサが常に分岐管の存在する方向に向くよう制御し、ワイヤ牽引装置及びケーブル巻き取り装置で移動し分岐部を分岐部検出センサで検出した後は、分岐部検出センサの信号を監視ながら移動機構、旋回機構を用いて正確に位置決めし、ライナーの穿孔を行うことを特徴とする埋設配管分岐部穿孔方法。
A perforation method for perforating a liner in a buried pipe branch using the perforation apparatus according to claim 1,
The drilling device is moved in the pipe by pulling it from the openings at both ends of the construction section using a wire pulling device and a cable winding device. Based on the detection result, the turning section mechanism is used to control the branch detecting sensor to always face the direction in which the branch pipe is present, and move using the wire pulling device and the cable winding device to detect the branch using the branch detecting sensor. A method of piercing a buried pipe branch portion, wherein the positioning is performed accurately using a moving mechanism and a turning mechanism while monitoring the signal of the branch portion detection sensor, and the liner is pierced.
JP2002254453A 2002-08-30 2002-08-30 Embedded pipe branching unit drilling device, drilling method and drilling tool Expired - Fee Related JP3737994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002254453A JP3737994B2 (en) 2002-08-30 2002-08-30 Embedded pipe branching unit drilling device, drilling method and drilling tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002254453A JP3737994B2 (en) 2002-08-30 2002-08-30 Embedded pipe branching unit drilling device, drilling method and drilling tool

Publications (2)

Publication Number Publication Date
JP2004092184A true JP2004092184A (en) 2004-03-25
JP3737994B2 JP3737994B2 (en) 2006-01-25

Family

ID=32060216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002254453A Expired - Fee Related JP3737994B2 (en) 2002-08-30 2002-08-30 Embedded pipe branching unit drilling device, drilling method and drilling tool

Country Status (1)

Country Link
JP (1) JP3737994B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007276100A (en) * 2006-07-26 2007-10-25 Kazuhiro Yamamoto Power drill
JP2011067885A (en) * 2009-09-24 2011-04-07 Fujitsu Ltd Attitude monitoring device of electric screwdriver, and electric screwdriver with attitude monitoring device
JP2011079137A (en) * 2005-07-22 2011-04-21 Kazuhiro Yamamoto Electric drill
KR20110062767A (en) * 2009-12-04 2011-06-10 주식회사 대명엔지니어링 Drill apparatus and drilling system
CN107511506A (en) * 2017-09-30 2017-12-26 重庆市合川区云天机械制造有限公司 Bearing ring inclined oil hole of air processing tool
JP2021025539A (en) * 2019-07-31 2021-02-22 日本電信電話株式会社 Drilling machine
CN112761616A (en) * 2021-02-04 2021-05-07 重庆平山机电设备有限公司 Branch hole drilling angle monitoring device and drilling construction method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011079137A (en) * 2005-07-22 2011-04-21 Kazuhiro Yamamoto Electric drill
JP2012101357A (en) * 2005-07-22 2012-05-31 Kazuhiro Yamamoto Electric drill
JP2007276100A (en) * 2006-07-26 2007-10-25 Kazuhiro Yamamoto Power drill
JP2011067885A (en) * 2009-09-24 2011-04-07 Fujitsu Ltd Attitude monitoring device of electric screwdriver, and electric screwdriver with attitude monitoring device
KR20110062767A (en) * 2009-12-04 2011-06-10 주식회사 대명엔지니어링 Drill apparatus and drilling system
KR101693670B1 (en) * 2009-12-04 2017-01-10 주식회사 대명엔지니어링 Drill apparatus and drilling system
CN107511506A (en) * 2017-09-30 2017-12-26 重庆市合川区云天机械制造有限公司 Bearing ring inclined oil hole of air processing tool
CN107511506B (en) * 2017-09-30 2019-02-26 重庆市合川区云天机械制造有限公司 Bearing ring inclined oil hole of air processing tool
JP2021025539A (en) * 2019-07-31 2021-02-22 日本電信電話株式会社 Drilling machine
JP7206166B2 (en) 2019-07-31 2023-01-17 日本電信電話株式会社 drilling machine
CN112761616A (en) * 2021-02-04 2021-05-07 重庆平山机电设备有限公司 Branch hole drilling angle monitoring device and drilling construction method
CN112761616B (en) * 2021-02-04 2023-11-28 重庆平山机电设备有限公司 Branch hole drilling angle monitoring device and drilling construction method

Also Published As

Publication number Publication date
JP3737994B2 (en) 2006-01-25

Similar Documents

Publication Publication Date Title
US6536539B2 (en) Shallow depth, coiled tubing horizontal drilling system
US9869420B2 (en) System and method for pipeline maintenance
CA2630787C (en) Method and device for positioning a power tong at a pipe joint
KR101993980B1 (en) Endoscope water imaging device using double tube inserter
JP2004092184A (en) Drill unit and drilling method for embedded pipe branching portion, and drilling tool
US20030070841A1 (en) Shallow depth, coiled tubing horizontal drilling system
JP2012087838A (en) Method and device for maintenance of conduit
JP3688981B2 (en) Pipe inner wall processing equipment
CA2798446C (en) Method of inspecting and preparing a pipeline
US20200063906A1 (en) Drilling device and drilling method
JP3817561B2 (en) Embedded pipe bifurcation drilling device
CN112727442A (en) Visual workover operation tubular column and method for coiled tubing
JPS61179724A (en) Hole opening device for detection of ramification hole of lined tube
KR101816510B1 (en) The drilling machine equipped with a detachable swivel unit
KR101577326B1 (en) Trenchless drilling apparatus having an auto-level feature
KR102190561B1 (en) Diagnosis Robot Inserting and Withdraw Apparatus with Robot Holder for Fluid-Crossing
CN114347172B (en) Control method of hydraulic cutting equipment
JP3794516B2 (en) Drilling and sheath tube insertion method and apparatus for natural mountain
JP2004103426A (en) Connecting device
CN218030170U (en) Down-the-hole drill and down-the-hole drill remote control system
JPH02232131A (en) Pipe inside lining material cutting device
JP4134557B2 (en) Supply pipe installation method and centering fixing device
JP2965947B2 (en) Drilling and sheath tube pushing equipment
RU2099627C1 (en) Complex for repair jobs in pipe lines
KR100812152B1 (en) Tap hole drilling machine with drilling function using oxygen

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051028

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees