JP2004091854A - Method for forming composite structure - Google Patents

Method for forming composite structure Download PDF

Info

Publication number
JP2004091854A
JP2004091854A JP2002254025A JP2002254025A JP2004091854A JP 2004091854 A JP2004091854 A JP 2004091854A JP 2002254025 A JP2002254025 A JP 2002254025A JP 2002254025 A JP2002254025 A JP 2002254025A JP 2004091854 A JP2004091854 A JP 2004091854A
Authority
JP
Japan
Prior art keywords
mask
brittle material
base material
substrate
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002254025A
Other languages
Japanese (ja)
Other versions
JP3852387B2 (en
Inventor
Hironori Hatono
鳩野 広典
Masakatsu Kiyohara
清原 正勝
Tomokazu Ito
伊藤 朋和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2002254025A priority Critical patent/JP3852387B2/en
Publication of JP2004091854A publication Critical patent/JP2004091854A/en
Application granted granted Critical
Publication of JP3852387B2 publication Critical patent/JP3852387B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form a brittle material structure with its edges (side walls) risen steeply by an aerosol deposition method on a substrate surface. <P>SOLUTION: When brittle material particulate is brought into collision at a high velocity from a nozzle 106 against the substrate surface 108 pasted with a mask 109, the brittle material structures 111 deposited with the brittle material particulate are formed only in the apertures 109a of the mask 109. The composite structure consisting of the substrate surface and the structures 111 is obtained by removing the mask 109 thereafter. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、基材表面にセラミックスや半金属などの脆性材料からなる構造物を一体的に形成した複合構造物の製造方法に関する。
【0002】
【従来の技術】
従来のゾルゲル法、PVDやCVDなどの蒸着法、溶射法或いは特開平8−81774号公報、特開平10−202171号公報、特開平11−21677号公報、特開平11−330577号公報或いは特開2000−212766号公報に開示されるガスデポジション法や静電微粒子コーティング法に代わる被膜形成方法として、本発明者らは特許第3265481号、国際出願特許WO 01/27348A1号等にエアロゾルデポジション法を提案している。
【0003】
ガスデポジション法は、主として金属粒子をガス攪拌にてエアロゾル化し、このエアロゾルを微小なノズルを通して加速せしめて基材に衝突させ、この衝突の際の運動エネルギーの一部を熱エネルギーに変換し、微粒子間あるいは微粒子と基材間を焼結することを基本原理としている。また、静電微粒子コーティング法はガスデポジション法と同様の基本原理で被膜形成を行う方法で、微粒子を帯電させ電場勾配を用いて加速せしめる方法である。
【0004】
これに対し、エアロゾルデポジション法はセラミック粒子などの脆性材料粒子をエアロゾル化して基材に衝突させて、基材表面に脆性材料構造物(膜など)を形成するようにしている。
従来のガスデポジション法と上記エアロゾルデポジション法との大きな違いは、前者が熱を利用して微粒子を焼結させているのに対し、後者のエアロゾルデポジション法は、粒子径、衝突速度、雰囲気、更には必要に応じて微粒子に内部歪を予め付与するなどの条件下で行うことで、室温にて脆性材料構造物の形成を可能とした点である。そして、形成された脆性材料構造物も、多結晶で結晶同士の界面にはガラス層からなる粒界層が実質的に存在しないという特異性を有している。
【0005】
また、ガスデポジション法或いはそれに類似した方法によって基板に所定形状の構造物(膜)を形成するには、マスクを介して微粒子を基板表面に衝突させる手段が考えられる。このことを提案する先行技術として、特開平6−93418号公報および特開平10−202171号公報に開示されるものがある。
【0006】
特開平6−93418号公報に開示される内容は、アルミニウムなどの材料を加熱して蒸発させた後、空中で凝集せしめて超微粒子とし、この超微粒子をマスクを密着させた状態の基板に吹き付けマスクの開口内にガスデポジション法によって超微粒子の膜(配線パターン)を形成するというものであり、特開平10−202171号公報に開示される内容は、セラミックスなどの超微粒子をノズルを通して基板に噴射し、堆積させて微細形状の構造物を形成する際に、基板から所定距離だけ離した位置に所定の開口パターンを有するマスクを配置し、開口を通過した超微粒子を基板上に堆積せしめるようにしている。
【0007】
【発明が解決しようとする課題】
エアロゾルデポジション法によって、基板に所定形状の脆性材料構造物を形成する場合、特開平10−202171号公報と同じ手法を用いると、基板とマスクとが離れることになり、マスクの開口を透過した微粒子に広がりが発生し、マスクの開口形状を正確に基材表面に再現することができず、また構造物の境界部を基板から垂直に切り立ったものとすることができない。
【0008】
また、特開平6−93418号公報のように基板の表面にマスクを密着させれば、マスクの開口に正確に一致した形状の構造物を得ることができる。しかしながら、同公報にも示されているように、開口の周囲には堆積物が付着する。そして、その堆積物はマスクの開口内全部に構造物を形成する場合、開口周囲の堆積物とつながってしまう。この状態でマスクを剥がすと、開口周囲の堆積物が開口内の堆積物側に残ったり、逆に開口内の堆積物の一部を剥がしてしまう。その結果、正確な形状、特に側壁部が垂直に切り立った構造物を形成することができない。
【0009】
【課題を解決するための手段】
上記課題を解決すべく本発明に係る複合構造物の形成方法は、基材の表面に脆性材料微粒子のエアロゾルを衝突させ、衝突による衝撃で前記脆性材料微粒子を変形または破砕し、この変形または破砕にて乗じて微粒子同士を再結合せしめて基材の表面に脆性材料構造物を形成するエアロゾルデポジション法による複合構造物形成方法を実施するに当たり、前記基材の表面には開口を有するマスクを密着せしめ、当該開口から露出する基材表面のみに脆性材料構造物を形成するとともに、前記マスクの材料としてエアロゾルデポジション法による被膜形成がなされないものを選定した。
【0010】
このように、マスクを基材に密着せしめることで、マスク開口に忠実な形状の構造物を形成することができる。特にマスク開口の厚み方向の側面を垂直面としておくことで、形成される構造物の側壁も基材に対して垂直に切り立ったものとすることができる。
【0011】
前記マスクの厚みが厚すぎると構造物の形成段階で、マスクの開口内に脆性材料微粒子の一部が構造物とならず、圧粉体として堆積し構造物の質が劣化する懸念があるため、マスクの厚みは目的とする脆性材料構造物の高さと同じ程度にする。
【0012】
また、マスク材質をエアロゾルデポジション法による被膜形成がなされないもの、具体的にはDHv2(塑性変形分を考慮したダイナミック硬さ)が44以上の樹脂フィルムとすることで、マスクを引き剥がす際の不具合も解消される。
【0013】
ここで、樹脂の硬さを示す指標として、DHv1(材料の塑性変形分を考慮しないダイナミック硬さと、DHv2(材料の塑性変形分を考慮したダイナミック硬さ)があるが、前者の指標では脆性材料構造物を形成できるか否かの判断はできない。
即ち、エアロゾルデポジション法の原理から脆性材料構造物を形成できる基材は金属やセラミックスなどの高硬度の材料に限られると考えていた。事実、エポキシ樹脂やポリプロピレンには脆性材料構造物を形成できない。しかしながら、これらエポキシ樹脂やポリプロピレンよりも低硬度の樹脂には脆性材料構造物を形成できることが判明した。その境界としてはDHv2=44であった。
【0014】
【発明の実施の態様】
図1は本発明に係る複合構造物の製造装置(エアロゾルデポジション装置)の一例を示す図であり、製造装置10は窒素ガスボンベ101がガス搬送管102を通じて、脆性材料微粒子を内蔵するエアロゾル発生器103に接続され、エアロゾル搬送管104を介して形成室105内に設置された縦0.4mm横10mmの開口を持つノズル106に接続されている。ノズル106の先にはXYステージ107に設置された基材108が配置され、この基材108表面には図2(a)に示すように、予めマスク109が貼着され、また、前記形成室105は真空ポンプ110に接続されている。
【0015】
前記マスク109が貼着された基材108にノズル106から脆性材料微粒子を高速で衝突せしめると、図2(b)に示すように、マスク109の開口109aの部分にのみ脆性材料微粒子が堆積した脆性材料構造物111が形成される。そこで、マスク109を除去することで図2(c)に示すように、基材108と脆性材料構造物111からなる複合構造物が得られる。
【0016】
次に、具体的な実施例を示す。
(実施例1)
図1に示した構造物形成装置(エアロゾルデポジション装置)を用いて、ガラス基材上へのチタン酸ジルコン酸鉛(PZT)構造物の形成を試みた。
PZT微粒子には、平均粒子径0.2μmのものを用い、基材には、ソーダライムガラスを用いた。
図3(a)、(b)に示すように、基材108には厚さ0.1mmの硬質プラスチック板(DHv2=155.4)に5mm×5mmの方形の穴109aの空いたマスク109を密着させて貼り付けした。
形成後、マスク109を基材108より取り外し、得られた構造物の、マスクとの接触部であった端の部分について、膜形状プロファイルを日本真空技術株式会社触針式表面形状測定器Dektak3030を用いて測定した。この結果を図4に示す。縦軸が形成高さを表す。
図4では、形成高さ27μmの構造物において、構造物の端の切り立ちが約45°となっている。触針式測定器を使用しているがゆえに垂直に近い切り立ち部がある場合は触針の横移動での測定中、針の側面が切り立ち部に衝突するなどの不具合で、このような切り立ち部に対する測定精度の問題が生じることが懸念されるが、少なくとも実施例1においてはこの角度以上の切り立ち角度を有していると言える。
【0017】
(実施例2)
脆性材料微粒子として酸化アルミニウム微粒子を選定した。具体的には、純度99%以上、平均粒子径0.2μmのα−アルミナを用いた。また、プラスチック基材には、厚みが1〜2mm程度のABS(アクリロニトリルブタジエンスチレン共重合体)、PET(ポリエチレンテレフタレート)、PE(ポリエチレン)、PMMA(ポリメチルメタクリレート)、PP(ポリプロピレン)、PC(ポリカーボネート)、ポリスチレン、PTFE(ポリテトラフルオロエチレン)、エポキシ樹脂ARALDITE XD911、およびステンレス鋼上に厚み数十μmで形成したポリイミド膜、電子回路基板として良く用いられるガラス−エポキシ基板の11種類を用いた。
【0018】
エアロゾルを発生させる高純度窒素ガスの流量は7L/min、形成時間は10分、形成環境は室温で行った。このようにして得られた構造物の形成結果を表1に示す。
【0019】
【表1】

Figure 2004091854
【0020】
表1において、構造物形成状況については、上述の操作によって構造物の形成が見られた場合(形成可能)、形成が見られず目視では基材に何の変化も無かった場合(形成されず)、形成が見られず基材がエッチングされて表面から削り取られていた場合(形成されず・基板削れ)で分けられ、構造物の形成が見られた場合は、その構造物の最大形成厚さを日本真空技術株式会社触針式表面形状測定器Dektak3030を用いて測定した。
【0021】
また基材の硬さを島津製作所製ダイナミック超微小硬度計DUH−W201を用いて、ビッカース圧子、試験力10gf、負荷速度1.350gf/sec、保持時間15秒、測定環境室温の条件で負荷−除荷試験を行い、材料の塑性変形分を考慮しないダイナミック硬さDHv1と、材料の塑性変形分を考慮したダイナミック硬さDHv2の値のそれぞれを示した。
【0022】
この結果より、基材のダイナミック硬さDHv2の値が構造物の形成に大きく影響を及ぼしている様子がわかる。即ち、PP(ポリプロピレン)に着目すると、DHv1=7.423であり、この値はPET(DHv1=9.959)とPTFE(DHv1=2.784)の中間となっている。したがって、DHv1の値から判断すれば、脆性材料構造物が形成されるはずであるが実際は形成できない。一方、PP(ポリプロピレン)のDHv2=47.615であり、DHv2から判断すればPET(DHv2=32.766)やPTFE(DHv2=7.971)よりも高く、DHv2の値が構造物の形成の指標になることが分る。同様に、ガラスエポキシの値もDHv2の値が構造物の形成の指標になることを示している。
【0023】
図5はその状況をわかりやすく示したもので、基材のDHv2を縦軸にとって並べた場合に「形成」、「形成されず」、「形成されず・基板削れ」の3水準で数値的に区分けできる。この結果よりDHv2が5以上44以下更に詳細には7以上33以下のプラスチック基材(有機物材料)を用いた場合において、エアロゾルデポジション法を利用しての脆性材料の構造物が形成が行われると言える。
【0024】
(比較例)
図1に示した構造物形成装置を用いて(実施例1)と同じくガラス基材上へのチタン酸ジルコン酸鉛(PZT)構造物の形成を試みた。PZT微粒子には、平均粒子径0.2μmのものを用い、基材108には、ソーダライムガラスを用いた。
図6(a)、(b)に示すように、基材108には厚さ0.3mmのステンレス板に5mm×5mmの方形の穴109aの空いたマスク109を1mmだけ基板から浮かせて固定した。
構造物形成装置10を用いたPZT構造物の形成手順は(実施例)と同じである。ノズル106より噴射したエアロゾルは一部はマスク109に衝突し、マスク109の開口を通過したエアロゾルは基材108に衝突し、基材108に構造物が形成される。XYステージ107を稼動させて、基材108を揺動させることによりマスク109の開口の面積分におおよそ相当する5mm×5mmへ構造物の形成を行った。形成環境は室温で行った。
形成後、マスク109を基材108より取り外し、得られた構造物の、マスクとの接触部であった端の部分について、膜形状プロファイルを日本真空技術株式会社触針式表面形状測定器Dektak3030を用いて測定した。この結果を図7に示す。
図7では、形成高さ26μmの構造物において、構造物の端の切り立ちが約7°となった。
【0025】
【発明の効果】
以上に説明したように本発明によれば、エアロゾルデポジション法によって基材表面に脆性材料構造物を形成するにあたり、マスクを基材に密着せしめて行うようにしたので、マスク開口に忠実な形状の構造物を形成することができる。そして、マスクの材料としてエアロゾルデポジション法によって脆性材料構造物が形成されないものを選定したので、マスクを剥がす際に形成した脆性材料構造物の形が崩れるなどの心配がない。
【0026】
また、マスクの開口内側壁に沿った形状の構造物、即ち形成される構造物の側壁も基材に対して垂直に切り立ったものとすることができる。例えば誘電体共振器の場合には、誘電体材料を基材表面に円筒状に形成した構造のものがあるが、円筒状誘電体の側壁が基材から垂直に切り立った形状にすることで、特性の向上が図れる。
【0027】
更にマスクには脆性材料構造物が形成されないため、破損などがない限り再度利用することができる。
【図面の簡単な説明】
【図1】本発明に係る複合構造物の製造装置の一例を示す図
【図2】(a)〜(c)は複合構造物の形成過程を説明した図
【図3】(a)は実施例に用いたマスクを貼着した基材の断面図、(b)は斜視図
【図4】実施例で製造した構造物の側壁の形状を示す拡大図
【図5】各種樹脂の硬度(DHv1およびDHv2)と成膜の可否との関係を示すグラフ
【図6】(a)は比較例に用いたマスクを貼着した基材の断面図、(b)は斜視図
【図7】比較例で製造した構造物の側壁の形状を示す拡大図
【符号の説明】
10…複合構造物の製造装置、101…窒素ガスボンベ、102…ガス搬送管、103…エアロゾル発生器、104…エアロゾル搬送管、105…複合構造物形成室、106…ノズル、107…XYステージ、108…基材、109…マスク、109a…マスクの開口、110…真空ポンプ、111…脆性材料構造物。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a composite structure in which a structure made of a brittle material such as ceramics or metalloid is integrally formed on a substrate surface.
[0002]
[Prior art]
Conventional sol-gel method, deposition method such as PVD or CVD, thermal spraying method or JP-A-8-81774, JP-A-10-202171, JP-A-11-21677, JP-A-11-330577 or JP-A-11-330577 As a method of forming a film instead of the gas deposition method or the electrostatic fine particle coating method disclosed in Japanese Patent Application Laid-Open No. 2000-212766, the present inventors have described aerosol deposition method in Japanese Patent No. 3265481, International Patent Application WO 01 / 27348A1, and the like. Has been proposed.
[0003]
The gas deposition method mainly converts metal particles into an aerosol by gas agitation, accelerates the aerosol through a fine nozzle to collide with a substrate, and converts a part of kinetic energy at the time of the collision into thermal energy, The basic principle is to sinter between fine particles or between fine particles and a substrate. Further, the electrostatic fine particle coating method is a method of forming a film based on the same basic principle as the gas deposition method, and is a method of charging fine particles and accelerating them by using an electric field gradient.
[0004]
On the other hand, in the aerosol deposition method, brittle material particles such as ceramic particles are aerosolized and collided with a base material to form a brittle material structure (such as a film) on the base material surface.
The major difference between the conventional gas deposition method and the aerosol deposition method is that the former uses heat to sinter fine particles, whereas the latter aerosol deposition method has a particle diameter, collision speed, The point is that a brittle material structure can be formed at room temperature by performing the treatment in an atmosphere and, if necessary, under conditions such as applying internal strain to the fine particles in advance. Further, the formed brittle material structure also has a peculiarity that a grain boundary layer made of a glass layer does not substantially exist at an interface between polycrystals.
[0005]
In order to form a structure (film) having a predetermined shape on a substrate by a gas deposition method or a method similar thereto, a means for causing fine particles to collide with the substrate surface via a mask can be considered. Prior art that proposes this is disclosed in JP-A-6-93418 and JP-A-10-202171.
[0006]
Japanese Patent Application Laid-Open No. Hei 6-93418 discloses that after heating and evaporating a material such as aluminum, the material is aggregated in the air to form ultrafine particles, and the ultrafine particles are sprayed onto a substrate with a mask adhered thereto. A film (wiring pattern) of ultrafine particles is formed in the opening of the mask by a gas deposition method. The contents disclosed in Japanese Patent Application Laid-Open No. 10-202171 discloses that ultrafine particles such as ceramics are passed through a nozzle to a substrate. When forming a fine-shaped structure by spraying and depositing, a mask having a predetermined opening pattern is arranged at a position separated by a predetermined distance from the substrate, and the ultrafine particles passing through the opening are deposited on the substrate. I have to.
[0007]
[Problems to be solved by the invention]
When a brittle material structure having a predetermined shape is formed on a substrate by the aerosol deposition method, using the same method as in Japanese Patent Application Laid-Open No. 10-202171 will separate the substrate from the mask and transmit the light through the opening of the mask. The particles are spread, so that the opening shape of the mask cannot be accurately reproduced on the surface of the base material, and the boundary of the structure cannot be made to stand vertically from the substrate.
[0008]
Further, if a mask is brought into close contact with the surface of the substrate as in JP-A-6-93418, a structure having a shape exactly matching the opening of the mask can be obtained. However, as shown in the publication, deposits adhere around the openings. When the deposit forms a structure in the entire opening of the mask, the deposit is connected to the deposit around the opening. If the mask is removed in this state, the deposit around the opening remains on the deposit side in the opening, or conversely, a part of the deposit in the opening is peeled off. As a result, it is not possible to form a structure having an accurate shape, particularly a structure in which the side wall portion is vertically steep.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a method for forming a composite structure according to the present invention includes the steps of: impinging an aerosol of brittle material fine particles on a surface of a base material; and deforming or crushing the brittle material fine particles by an impact due to the collision. In performing the composite structure forming method by the aerosol deposition method of forming a brittle material structure on the surface of the substrate by re-bonding the fine particles to each other by multiplying by a mask having an opening on the surface of the substrate A mask was formed so that a brittle material structure was formed only on the surface of the base material exposed from the opening, and a material for which a film was not formed by the aerosol deposition method was selected as a material for the mask.
[0010]
In this manner, by bringing the mask into close contact with the base material, a structure having a shape faithful to the mask opening can be formed. In particular, by setting the side surface in the thickness direction of the mask opening as a vertical surface, the side wall of the structure to be formed can also be made to stand perpendicularly to the base material.
[0011]
If the thickness of the mask is too large, at the stage of forming the structure, a part of the brittle material fine particles will not become a structure in the opening of the mask, and there is a concern that the quality of the structure may be deteriorated by being deposited as a compact. The thickness of the mask should be about the same as the height of the intended brittle material structure.
[0012]
Further, the mask material is not formed with a film by the aerosol deposition method, specifically, a resin film having a DHv2 (dynamic hardness in consideration of plastic deformation) of 44 or more is used to remove the mask when the mask is peeled off. Problems are also eliminated.
[0013]
Here, DHv1 (dynamic hardness not considering the plastic deformation of the material) and DHv2 (dynamic hardness considering the plastic deformation of the material) are indexes indicating the hardness of the resin. It cannot be determined whether a structure can be formed.
That is, based on the principle of the aerosol deposition method, it has been considered that the base material on which the brittle material structure can be formed is limited to high-hardness materials such as metals and ceramics. In fact, a brittle material structure cannot be formed on epoxy resin or polypropylene. However, it has been found that brittle material structures can be formed on resins having a lower hardness than these epoxy resins and polypropylene. The boundary was DHv2 = 44.
[0014]
DESCRIPTION OF THE PREFERRED EMBODIMENTS
FIG. 1 is a view showing an example of a composite structure manufacturing apparatus (aerosol deposition apparatus) according to the present invention. A manufacturing apparatus 10 is an aerosol generator in which a nitrogen gas cylinder 101 incorporates fine particles of a brittle material through a gas transfer pipe 102. The nozzle 103 is connected to a nozzle 106 having an opening of 0.4 mm in length and 10 mm in width and installed in a forming chamber 105 via an aerosol transport pipe 104. A base material 108 placed on an XY stage 107 is disposed in front of the nozzle 106. As shown in FIG. 2A, a mask 109 is attached to the surface of the base material 108 in advance. 105 is connected to the vacuum pump 110.
[0015]
When the brittle material particles were caused to collide with the base material 108 to which the mask 109 was adhered from the nozzle 106 at a high speed, the brittle material particles were deposited only at the opening 109a of the mask 109 as shown in FIG. A brittle material structure 111 is formed. Then, by removing the mask 109, a composite structure including the base material 108 and the brittle material structure 111 is obtained as shown in FIG.
[0016]
Next, specific examples will be described.
(Example 1)
An attempt was made to form a lead zirconate titanate (PZT) structure on a glass substrate using the structure forming apparatus (aerosol deposition apparatus) shown in FIG.
As the PZT fine particles, those having an average particle diameter of 0.2 μm were used, and as the base material, soda lime glass was used.
As shown in FIGS. 3 (a) and 3 (b), a mask 109 having a 5 mm × 5 mm square hole 109a formed on a hard plastic plate (DHv2 = 155.4) having a thickness of 0.1 mm is formed on the base material 108. It was pasted in close contact.
After the formation, the mask 109 is removed from the base material 108, and the film shape profile of the end of the obtained structure, which was the contact portion with the mask, is measured using a Nihon Vacuum Engineering Co., Ltd. stylus type surface profiler Dektak 3030. It measured using. The result is shown in FIG. The vertical axis represents the formation height.
In FIG. 4, in the structure having a height of 27 μm, the edge of the structure has a cut-out of about 45 °. When using a stylus type measuring instrument, if there is a near-vertical notch, there is a problem such as the side of the needle colliding with the notch during measurement by lateral movement of the stylus. There is a concern that a problem may occur in the measurement accuracy for the cut portion, but it can be said that at least the first embodiment has a cut angle greater than this angle.
[0017]
(Example 2)
Aluminum oxide fine particles were selected as brittle material fine particles. Specifically, α-alumina having a purity of 99% or more and an average particle diameter of 0.2 μm was used. Further, the plastic base material includes ABS (acrylonitrile butadiene styrene copolymer), PET (polyethylene terephthalate), PE (polyethylene), PMMA (polymethyl methacrylate), PP (polypropylene), PC (polyethylene terephthalate) having a thickness of about 1 to 2 mm. Polycarbonate), polystyrene, PTFE (polytetrafluoroethylene), epoxy resin ARALITE XD911, polyimide film formed with a thickness of several tens of μm on stainless steel, and 11 types of glass-epoxy substrates often used as electronic circuit boards were used. .
[0018]
The flow rate of the high-purity nitrogen gas for generating an aerosol was 7 L / min, the forming time was 10 minutes, and the forming environment was room temperature. Table 1 shows the results of forming the structure thus obtained.
[0019]
[Table 1]
Figure 2004091854
[0020]
In Table 1, with respect to the structure formation state, the case where the formation of the structure was observed by the above-described operation (formation possible), the case where the formation was not observed, and there was no change in the base material visually (no formation) ), If the formation was not seen and the substrate was etched and scraped off from the surface (not formed / substrate shaved), and if the formation of a structure was seen, the maximum formation thickness of the structure The surface roughness was measured using a stylus type surface profiler Dektak3030 by Japan Vacuum Engineering Co., Ltd.
[0021]
The hardness of the base material was measured using a dynamic ultra-micro hardness tester DUH-W201 manufactured by Shimadzu Corporation under the conditions of a Vickers indenter, a test force of 10 gf, a load speed of 1.350 gf / sec, a holding time of 15 seconds, and a measurement environment room temperature. -An unloading test was performed, and the values of the dynamic hardness DHv1 not considering the plastic deformation of the material and the value of the dynamic hardness DHv2 considering the plastic deformation of the material were shown.
[0022]
From this result, it can be seen that the value of the dynamic hardness DHv2 of the substrate greatly affects the formation of the structure. That is, when paying attention to PP (polypropylene), DHv1 = 7.423, which is an intermediate value between PET (DHv1 = 9.959) and PTFE (DHv1 = 2.784). Therefore, judging from the value of DHv1, a brittle material structure should be formed but cannot be formed. On the other hand, DHv2 of PP (polypropylene) is 47.615, which is higher than PET (DHv2 = 32.766) or PTFE (DHv2 = 7.971) when judged from DHv2, and the value of DHv2 is higher than that of the formation of a structure. It turns out to be an indicator. Similarly, the value of glass epoxy also indicates that the value of DHv2 is an indicator of the formation of a structure.
[0023]
FIG. 5 shows the situation in an easy-to-understand manner. When the DHv2 of the base material is arranged on the vertical axis, the three levels of “formed”, “not formed”, and “not formed / substrate shaved” are numerically expressed. Can be classified. From this result, when a plastic substrate (organic material) having a DHv2 of 5 or more and 44 or less, more specifically, 7 or more and 33 or less, a structure of a brittle material is formed using an aerosol deposition method. It can be said.
[0024]
(Comparative example)
An attempt was made to form a lead zirconate titanate (PZT) structure on a glass substrate in the same manner as in (Example 1) using the structure forming apparatus shown in FIG. As the PZT fine particles, those having an average particle diameter of 0.2 μm were used, and as the base material 108, soda lime glass was used.
As shown in FIGS. 6 (a) and 6 (b), a mask 109 having a square hole 109a of 5 mm × 5 mm was fixed to a base material 108 by floating it by 1 mm on a 0.3 mm thick stainless steel plate. .
The procedure for forming a PZT structure using the structure forming apparatus 10 is the same as that of the embodiment. Part of the aerosol ejected from the nozzle 106 collides with the mask 109, and the aerosol that has passed through the opening of the mask 109 collides with the substrate 108, and a structure is formed on the substrate 108. By operating the XY stage 107 and swinging the base material 108, a structure was formed to a size of 5 mm × 5 mm approximately corresponding to the area of the opening of the mask 109. The formation was performed at room temperature.
After the formation, the mask 109 is removed from the base material 108, and the film shape profile of the end of the obtained structure, which was the contact portion with the mask, is measured using a Nihon Vacuum Engineering Co., Ltd. stylus type surface profiler Dektak 3030. It measured using. The result is shown in FIG.
In FIG. 7, in the structure having a height of 26 μm, the edge of the structure has a cut-out of about 7 °.
[0025]
【The invention's effect】
As described above, according to the present invention, when a brittle material structure is formed on a substrate surface by the aerosol deposition method, the mask is brought into close contact with the substrate, so that a shape faithful to the mask opening is formed. Can be formed. Since a material that does not form a brittle material structure by the aerosol deposition method is selected as a material for the mask, there is no fear that the shape of the brittle material structure formed when the mask is peeled is lost.
[0026]
In addition, the structure having a shape along the inner wall of the opening of the mask, that is, the side wall of the structure to be formed can also be formed so as to be perpendicular to the substrate. For example, in the case of a dielectric resonator, there is a structure in which a dielectric material is formed in a cylindrical shape on the surface of a base material. The characteristics can be improved.
[0027]
Further, since the brittle material structure is not formed on the mask, it can be reused as long as there is no breakage.
[Brief description of the drawings]
FIG. 1 is a view showing an example of an apparatus for manufacturing a composite structure according to the present invention. FIGS. 2 (a) to 2 (c) are diagrams illustrating a process of forming a composite structure. FIG. 3 (a) is an embodiment. FIG. 4B is a perspective view of the base material to which the mask used in the example is attached, FIG. 4B is a perspective view. FIG. 4 is an enlarged view showing the shape of the side wall of the structure manufactured in the example. FIG. 5 is the hardness (DHv1) of various resins. FIG. 6A is a cross-sectional view of a substrate to which a mask used in a comparative example is adhered, and FIG. 6B is a perspective view of the substrate. Enlarged view showing the shape of the side wall of the structure manufactured in [Description of reference numerals]
DESCRIPTION OF SYMBOLS 10 ... Composite structure manufacturing apparatus, 101 ... Nitrogen gas cylinder, 102 ... Gas transport pipe, 103 ... Aerosol generator, 104 ... Aerosol transport pipe, 105 ... Composite structure forming chamber, 106 ... Nozzle, 107 ... XY stage, 108 ... base material, 109 ... mask, 109a ... mask opening, 110 ... vacuum pump, 111 ... brittle material structure.

Claims (2)

基材の表面に脆性材料微粒子のエアロゾルを衝突させ、衝突による衝撃で前記脆性材料微粒子を変形または破砕し、微粒子同士を再結合せしめて基材の表面に脆性材料構造物を形成するエアロゾルデポジション法による複合構造物形成方法において、前記基材の表面には開口を有するマスクを密着せしめ、当該開口から露出する基材表面のみに脆性材料構造物を形成するとともに、前記マスクの材料としてエアロゾルデポジション法による被膜形成がなされないものを選定したことを特徴とする複合構造物の形成方法。Aerosol deposition in which an aerosol of brittle material fine particles collides with the surface of the base material, and the brittle material fine particles are deformed or crushed by the impact of the collision, and the fine particles are recombined to form a brittle material structure on the surface of the base material. In the method for forming a composite structure by the method, a mask having an opening is adhered to the surface of the base material, a brittle material structure is formed only on the surface of the base material exposed from the opening, and aerosol powder is used as a material of the mask. A method for forming a composite structure, wherein a material that does not form a film by the position method is selected. 請求項1に記載の複合構造物の形成方法において、前記マスクはDHv2(塑性変形分を考慮したダイナミック硬さ)が44以上の樹脂フィルムを用いることを特徴とする複合構造物の形成方法。2. The method for forming a composite structure according to claim 1, wherein the mask uses a resin film having a DHv2 (dynamic hardness in consideration of plastic deformation) of 44 or more.
JP2002254025A 2002-08-30 2002-08-30 Method for forming composite structure Expired - Fee Related JP3852387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002254025A JP3852387B2 (en) 2002-08-30 2002-08-30 Method for forming composite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002254025A JP3852387B2 (en) 2002-08-30 2002-08-30 Method for forming composite structure

Publications (2)

Publication Number Publication Date
JP2004091854A true JP2004091854A (en) 2004-03-25
JP3852387B2 JP3852387B2 (en) 2006-11-29

Family

ID=32059872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002254025A Expired - Fee Related JP3852387B2 (en) 2002-08-30 2002-08-30 Method for forming composite structure

Country Status (1)

Country Link
JP (1) JP3852387B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005313160A (en) * 2004-03-30 2005-11-10 Brother Ind Ltd Method for manufacturing film or piezoelectric film
JP2007197828A (en) * 2005-12-30 2007-08-09 Brother Ind Ltd Thin-film forming method and mask used therefor
JP2009185374A (en) * 2008-02-08 2009-08-20 Toto Ltd Composite structure-forming apparatus and composite structure-forming method
JP2010021473A (en) * 2008-07-14 2010-01-28 Shinko Electric Ind Co Ltd Manufacturing method of wiring board
US7670652B2 (en) 2006-02-24 2010-03-02 Fujifilm Corporation Method of manufacturing patterned film
US7955647B2 (en) 2004-03-30 2011-06-07 Brother Kogyo Kabushiki Kaisha Method for manufacturing film or piezoelectric film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005313160A (en) * 2004-03-30 2005-11-10 Brother Ind Ltd Method for manufacturing film or piezoelectric film
US7955647B2 (en) 2004-03-30 2011-06-07 Brother Kogyo Kabushiki Kaisha Method for manufacturing film or piezoelectric film
JP2007197828A (en) * 2005-12-30 2007-08-09 Brother Ind Ltd Thin-film forming method and mask used therefor
US7670652B2 (en) 2006-02-24 2010-03-02 Fujifilm Corporation Method of manufacturing patterned film
JP2009185374A (en) * 2008-02-08 2009-08-20 Toto Ltd Composite structure-forming apparatus and composite structure-forming method
JP2010021473A (en) * 2008-07-14 2010-01-28 Shinko Electric Ind Co Ltd Manufacturing method of wiring board

Also Published As

Publication number Publication date
JP3852387B2 (en) 2006-11-29

Similar Documents

Publication Publication Date Title
TW548726B (en) Process chamber components having textured internal surfaces and method of manufacture
KR101257177B1 (en) Method for forming zirconia film
JP5565673B2 (en) Mist etching apparatus and mist etching method
KR20070029094A (en) Good plasma corrosion resistant spray-coated member, and production method thereof
WO2002016665A1 (en) Sputtering target producing few particles
JP2007105721A (en) Method and apparatus for the application of twin wire arc spray coating
CN108476588B (en) Method for producing a structured coating on a shaped part and device for carrying out the method
CN102105621A (en) Ceramic coating with plasma resistance
KR101385344B1 (en) Tantalum coil for sputtering and method for processing the coil
EP1583162A3 (en) Method for manufacturing piezoelectric film, laminate structure of substrate and piezoelectric film, piezoelectric actuator and method for manufacturing same
JP2004091854A (en) Method for forming composite structure
JP2010129934A (en) Glass circuit board and method of manufacturing the same
Song et al. Deposition of Al2O3 powders using nano-particle deposition system
JP5649026B2 (en) Method for forming zirconia film
WO2007105670A1 (en) Method for fabricating film-formed body by aerosol deposition
JP4258188B2 (en) Manufacturing method of composite structure and composite structure
JP5778373B2 (en) Deposition method
Yao et al. Cold spray processing for micro-nano ceramic coatings
JP2008111154A (en) Method for forming coating film
JP5089874B2 (en) Plasma processing apparatus member and manufacturing method thereof
JP2002079466A (en) Surface roughening method for rolled copper foil
Chun et al. Nano/micro particle beam for ceramic deposition and mechanical etching
JP5649023B2 (en) Method for forming zirconia film
Park et al. Microstructural features correlated with the electrical properties and plasticity-based deposition of silver particles through the vacuum kinetic spray process
CN219470189U (en) Vacuum apparatus and vacuum apparatus component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060828

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees