JP2004091249A - Bzo sintered compact and method for producing the same - Google Patents

Bzo sintered compact and method for producing the same Download PDF

Info

Publication number
JP2004091249A
JP2004091249A JP2002253508A JP2002253508A JP2004091249A JP 2004091249 A JP2004091249 A JP 2004091249A JP 2002253508 A JP2002253508 A JP 2002253508A JP 2002253508 A JP2002253508 A JP 2002253508A JP 2004091249 A JP2004091249 A JP 2004091249A
Authority
JP
Japan
Prior art keywords
powder
bzo
calcined
density
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002253508A
Other languages
Japanese (ja)
Inventor
Itaru Nanjo
南條 至
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2002253508A priority Critical patent/JP2004091249A/en
Publication of JP2004091249A publication Critical patent/JP2004091249A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a BZO (Boron-Zinc-Oxide) sintered compact in which a stable film formation rate can be obtained from the initial stage to the last stage in use, and to provide a method for producing the BZO sintered compact by atmospheric sintering. <P>SOLUTION: The BZO sintered compact comprises, by mass, 2 to 5% boron expressed in terms of B<SB>2</SB>O<SB>3</SB>, and has a density of ≥5.2g/cm<SP>3</SP>. In the method for producing the BZO sintered compact, a powdery mixture obtained by mixing zinc borate powder and zinc oxide powder in a mass ratio of 1: (≤0.2) or zinc borate powder is calcined at 500 to 800°C, the obtained calcined powder and zinc oxide powder are mixed in a mass ratio of 1:2 to 1:30, the mixture is compacted under a pressure of ≥1,500kgf/cm<SP>2</SP>to obtain a compact having a density of ≥3.0g/cm<SP>3</SP>, and the compact is subjected to atmospheric sintering at 800 to 1,200°C while flowing gaseous oxygen to the circumference. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、液晶ディスプレーや太陽電池用電極材などに供される透明導電膜をスパッタリング法によって作製する際に用いられるBZO焼結体、およびその製造方法に関する。
【0002】
【従来の技術】
液晶ディスプレーや太陽電池用電極材などに供される透明導電膜は、比抵抗が2×10−4Ω・cm程度に低いITO(インジウム−すず系)、GZO(ガリウム−亜鉛系)、AZO(アルミニウム−亜鉛系)などの酸化亜鉛系の膜が一般的である。そして、このような透明導電膜は、上記酸化亜鉛系の材料をターゲットとして、加熱した基板上にスパッタリング法により成膜することにより作製することができる。
【0003】
上記酸化亜鉛系の材料のうち、ITO膜はターゲットの主成分であるInが高価であるためにコスト面で問題がある。GZO膜もITO膜と同様にターゲットの添加成分であるGaが高価であるためにコスト面に問題が残る。一方、AZOについては、原料は安価であるが、低抵抗を得る成膜条件の範囲が狭いという生産性の面で問題がある。そこで、このような問題がなく、かつ低抵抗・高透過率を有するBZO(硼素−亜鉛系)膜が、ITO膜、GZO膜、AZO膜に代わって注目されつつある。
【0004】
BZO膜については、BZOターゲット(焼結体)を製造する際に平均粒径を2μm以下とするために850〜1100℃でホットプレスを行う方法が知られている(特開平6−2130号公報)。しかしながら、この方法は、ホットプレスを行うために、ホットプレス装置の制約上、ランニングコストや生産性に問題がある。また、常圧焼結によりBZOターゲットを製造する方法も知られている(特開平11−322332号公報)。しかしながら、この方法で製造したBZOターゲットでは使用初期から使用末期まで長時間安定した成膜速度が得られないという問題がある。
【0005】
【発明が解決しようとする課題】
本発明は、上記事情に鑑み、使用初期から使用末期までに亘って安定した成膜速度が得られるBZO焼結体を提供すること、およびこのようなBZO焼結体を常圧焼結により製造する方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明のBZO焼結体は、0〜20質量%の酸化亜鉛粉末を混合した硼酸亜鉛粉末を仮焼きして得た粉末と、酸化亜鉛を1:2〜1:100の比率で混合して、成形体密度3.0g/cm以上に加圧成形して、焼成することにより作製され、硼素をB換算で0.5〜5質量%含み、密度が5.2g/cm以上である。
【0007】
また、本発明のBZO焼結体の製造方法は、仮焼工程、仮焼粉末混入工程、成形工程および焼結工程を有する。
【0008】
仮焼工程では、硼酸亜鉛粉末と酸化亜鉛粉末とを質量比1:0〜1:0.2で混合して得られた混合粉末または硼酸亜鉛粉末を温度500〜800℃で仮焼して、仮焼粉末を得る。
【0009】
仮焼粉末混入工程では、上記仮焼粉末と酸化亜鉛粉末とを質量比1:2〜1:20で混合して、仮焼粉末混入粉末を得る。
【0010】
成形工程では、上記仮焼粉末混入粉末を圧力1500kgf/cm以上で成形して、密度3.0g/cm以上の成形体を得る。
【0011】
焼結工程では、周囲に酸素ガスを流しながら、温度800〜1200℃で常圧で、上記成形体を焼結した後に冷却して、焼結体を得る。
【0012】
焼結工程で流す酸素ガスは、流速が30〜180cm/分であるのが好ましい。焼結工程では、炉床部と成形体下面との距離および炉天井部と成形体上面との距離をいずれも3〜50mmにするのが好ましい。より好ましい距離はいずれも7〜20mmである。また、成形体下面の通気性をよくするために、焼結工程で採用する温度以上で予め仮焼した下敷き粉の上に成形体を載せるのが好ましい。
【0013】
【発明の実施の形態】
本発明者は、上記課題を達成するために、鋭意検討した。その結果、次のことを見出し、本発明に到達した。すなわち、(1)使用初期から使用末期までに亘って安定した成膜速度を得るためには、BZO焼結体の密度を一層向上させることが必要であること、(2)BZO焼結体の密度を一層向上させるためには、成形体の焼結性を良好に維持しながら、成形体の密度をある程度以上にする必要があること、(3)成形体の焼結性を良好に維持しながら成形体の密度をある程度以上にするためには、仮焼粉末を適量含んだ成形体を焼結することが有効であること、および(4)仮焼粉末は、硼酸亜鉛粉末が酸化亜鉛粉末より好ましいことを見出した。
【0014】
本発明のBZO焼結体において、硼素がB換算で0.5質量%未満では、B添加の効果が薄れ、比抵抗が高くなる。一方、5質量%を超えるとB成分が凝集して異常放電が多発し易く、安定して成膜が行われない。密度が5.2g/cm未満では、安定した成膜速度が使用初期から使用末期までに亘っては得られない。
【0015】
本発明の方法は、上記本発明のBZO焼結体の製造方法である。
【0016】
本発明方法の仮焼工程において、硼酸亜鉛粉末と混合する酸化亜鉛粉末の量が硼酸亜鉛粉末の量の0.2倍(質量)を超えると、成形体も焼結体も密度が上がらない。仮焼温度が500℃より低いと仮焼が十分に起こらない。そのため、成形体も焼結体も密度が上がらない。一方、800℃より高いと、焼結が進行しすぎる。焼結が進行しすぎると、後工程の成形工程で成形体の密度は上がりやすくなるが、成形工程後の焼結工程で焼結体の密度が上がりにくくなる。
【0017】
仮焼粉末混入工程において、仮焼粉末と混合する酸化亜鉛粉末の量が仮焼粉末の量の2倍(質量)未満では、つまり仮焼粉末が多すぎると、成形工程で成形体の密度は上がりやすくなるが、焼結工程で焼結体の密度が上がりにくくなる。また、組成のばらつきが発生しやすくなる。一方、仮焼粉末と混合する酸化亜鉛粉末の量が仮焼粉末の量の20倍(質量)を超えると、つまり仮焼粉末が少なすぎると、成形体も焼結体も密度が上がらない。また、組成のばらつきが発生しやすくなる。
【0018】
なお、バインダーとして、ポリビニルアルコールを添加すると、成形体の形成に好ましい。
【0019】
成形工程において、圧力が1500kgf/cm未満では、密度が3.0g/cm未満になりやすい。密度が3.0g/cm未満では、成形体の強度が弱く焼結工程で割れが発生しやすいばかりでなく、焼結体の密度も上がりにくくなる。
【0020】
焼成工程の典型例として、以下の方法がある。炉床板の上に設置したセッター上に1200℃以上の温度で仮焼きされた敷き粉を敷き、その上に成形体を設置し、炉床板から成形体下面の距離および成形体の上面と天井板の距離を、それぞれ5mm以上50mm以下の距離を設け、成形体の表面、または表面の一部に酸素ガスを30cm/分以上180cm/分以下の流速で流すことにより炉内の酸素を置換しながら焼結を実施する。
【0021】
焼結工程で流す酸素ガスは、酸化亜鉛や硼素成分の揮発を防ぐ。焼結温度が800℃未満では、十分な焼結密度が得られない。一方、1200℃を超えると、硼素成分が蒸発して組成ずれを生じやすくなる。
【0022】
焼結工程で流す酸素ガスの流速が30cm/分未満では、硼素成分が揮発しやすくなって炉材と反応を起こしやすく、焼結割れが起こる場合がある。一方、180cm/分を超えると、成形体表面に温度むらが生じるため、焼結体中で焼結むら(密度むら)を生じたり、得られる焼結体の反り量が著しく増加したりする。また、酸素ガス供給量が多く必要となり、経済的でない。
【0023】
炉床板と成形体下面との距離および炉天井板と成形体上面との距離のうちの少なくとも1つを3mm未満にして焼結を行うと、成形体が炉材と反応しやすいばかりでなく、酸素ガスを成形体全面に行き渡らせるのが困難になる。一方、上記少なくとも1つが50mmを超えると、流す酸素ガス量が多くなるためにコストが高くなる。
【0024】
焼結工程で採用する温度以上(1200℃以上、好ましくは1300℃以上)で予め仮焼した下敷き粉の上に成形体を載せるのは、成形体下面の通気性をよくするためである。焼結工程で採用する温度未満で仮焼したり仮焼していない下敷き粉を用いた場合、焼結時に下敷き粉自体の収縮が進んで成形体の均一な焼結を妨げる。例えば、焼結体の反りが大きくなるなどの不具合を生じやすくなる。下敷き粉とするために予め仮焼する温度は、高いほどより好ましく、例えば1300℃以上がさらに好ましい。下敷き粉の材質としては、酸化亜鉛、アルミナなどを挙げることができる。焼結後、焼結体を冷却することによりBZO焼結体が製造される。
【0025】
【実施例】
[実施例1]
仮焼工程で、硼酸亜鉛粉末を温度500℃で1時間仮焼して、仮焼粉末を得た。
【0026】
仮焼粉末混入工程で、仮焼工程で得られた仮焼粉末と酸化亜鉛粉末とを質量比1:18で混合しバインダーを添加して、仮焼粉末混入粉末を得た。
【0027】
成形工程で、冷間静水圧プレスを用い、仮焼粉末混入工程で得られた仮焼粉末混入粉末を圧力2000kgf/cmで成形して、300mm角の成形体を得た。得られた成形体の密度は3.3g/cmであった。
【0028】
焼結工程で、成形工程で得られた成形体を、周囲に酸素ガスを流しながら、温度1000℃で常圧で5時間焼結した。なお、炉床板と成形体下面との距離および炉天井板と成形体上面との距離をいずれも7mmにした。また、1400℃で予め仮焼した下敷き粉(アルミナ)の上に成形体を載せた。さらに、酸素ガスの流速を50cm/分とした。これらを表1に示す。
【0029】
得られた焼結体は、硼素含有量がB換算で3.0質量%、密度が5.35g/cmであった。また、割れなどの外観を観察した結果、良好であった。これらを表2に示す。
【0030】
[実施例2〜10、比較例1、2]
仮焼工程、仮焼粉末混入工程および成形工程を、実施例1と同様に行った。
【0031】
焼結工程では、成形工程で得られた成形体を、周囲に酸素ガスを流しながら、温度750〜1250℃で常圧で1〜15時間焼結した。なお、炉床板と成形体下面との距離および炉天井板と成形体上面との距離をいずれも3mmおよび7mmにした。また、1400℃で予め仮焼した下敷き粉(アルミナ)の上に成形体を載せた。さらに、酸素ガスの流速を30〜180cm/分とした。これらを表1に示す。
【0032】
得られた焼結体の硼素含有量(B換算した質量%)、密度、および割れなどの外観を観察した結果を表2に示す。
【0033】
[実施例11〜14、比較例3]
仮焼工程では、硼酸亜鉛粉末と酸化亜鉛粉末とを質量比1:(0〜0.30)で混合して、混合粉末を得た。次に、これらの混合粉末を温度500〜850℃で1時間仮焼して、仮焼粉末を得た。これらを表3に示す。
【0034】
仮焼粉末混入工程では、仮焼工程で得られた仮焼粉末と酸化亜鉛粉末とを質量比1:9〜100で混合し、バインダーを添加して、仮焼粉末混入粉末を得た。
【0035】
成形工程では、冷間静水圧プレスを用い、仮焼粉末混入工程で得られた仮焼粉末混入粉末を圧力1000kgf/cmおよび2000kgf/cmで成形して、300mm角の成形体を得た。成形圧力および成形密度を表3に示す。
【0036】
焼結工程は、実施例1と同様に行った。
【0037】
得られた焼結体の硼素含有量(B換算した質量%)、密度、および割れなどの外観を観察した結果を表4に示す。
【0038】
【表1】

Figure 2004091249
【0039】
【表2】
Figure 2004091249
【0040】
【表3】
Figure 2004091249
【0041】
【表4】
Figure 2004091249
【0042】
実施例1〜14では、硼素がB換算で0.5〜5質量%、焼結密度が5.2g/cm以上のBZO焼結体が得られている。
【0043】
比較例1では焼結工程における焼結温度が高すぎたために、焼結密度が低く、焼結割れが起きた。
【0044】
比較例2では焼結工程における焼結温度が低すぎたために、焼結密度が低かった。
【0045】
比較例3では、仮焼前に混合する酸化亜鉛粉末の量が多すぎ、仮焼温度が高すぎ、成形圧力が低すぎたために、成形密度も焼結密度も低かった。
【0046】
【発明の効果】
以上の説明から明らかなように、本発明によれば、焼結密度が一層向上した、ひいては使用初期から使用末期までに亘って安定した成膜速度が得られるBZO焼結体を、形状が大型や厚肉のものでも、常圧焼結により、ひいては低コストで、生産性よく製造して提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a BZO sintered body used when a transparent conductive film provided for a liquid crystal display, a solar cell electrode material, or the like is produced by a sputtering method, and a method for producing the same.
[0002]
[Prior art]
Transparent conductive films provided for liquid crystal displays, electrode materials for solar cells, and the like have specific resistances as low as about 2 × 10 −4 Ω · cm, such as ITO (indium-tin), GZO (gallium-zinc), and AZO ( A film of a zinc oxide type such as aluminum-zinc type is generally used. Then, such a transparent conductive film can be manufactured by forming a film on a heated substrate by a sputtering method using the zinc oxide-based material as a target.
[0003]
Among the zinc oxide-based materials, the ITO film has a problem in cost because In 2 O 3, which is a main component of the target, is expensive. Similar to the ITO film, the GZO film has a problem in cost because Ga 2 O 3, which is an additional component of the target, is expensive. On the other hand, as for AZO, although the raw material is inexpensive, there is a problem in terms of productivity that the range of film forming conditions for obtaining low resistance is narrow. Therefore, a BZO (boron-zinc-based) film which does not have such a problem and has a low resistance and a high transmittance is attracting attention instead of the ITO film, the GZO film, and the AZO film.
[0004]
With respect to the BZO film, a method of performing hot pressing at 850 to 1100 ° C. in order to reduce the average particle size to 2 μm or less when manufacturing a BZO target (sintered body) is known (Japanese Patent Laid-Open No. 6-2130). ). However, this method has a problem in running cost and productivity due to the restriction of the hot press apparatus because hot press is performed. A method of manufacturing a BZO target by normal pressure sintering is also known (JP-A-11-322332). However, the BZO target manufactured by this method has a problem that a stable film formation rate cannot be obtained for a long time from the initial use to the end of use.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and provides a BZO sintered body capable of obtaining a stable film forming rate from an early stage to a final stage of use, and manufactures such a BZO sintered body by normal pressure sintering. It is intended to provide a method for doing so.
[0006]
[Means for Solving the Problems]
The BZO sintered body of the present invention is obtained by calcining zinc borate powder mixed with 0 to 20% by mass of zinc oxide powder and zinc oxide in a ratio of 1: 2 to 1: 100. It is manufactured by pressure molding to a molded body density of 3.0 g / cm 3 or more, followed by firing, containing boron in an amount of 0.5 to 5% by mass in terms of B 2 O 3 and a density of 5.2 g / cm 3. That is all.
[0007]
Further, the method for producing a BZO sintered body of the present invention includes a calcining step, a calcined powder mixing step, a forming step, and a sintering step.
[0008]
In the calcining step, a mixed powder or zinc borate powder obtained by mixing zinc borate powder and zinc oxide powder at a mass ratio of 1: 0 to 1: 0.2 is calcined at a temperature of 500 to 800 ° C. Obtain calcined powder.
[0009]
In the calcined powder mixing step, the calcined powder and the zinc oxide powder are mixed at a mass ratio of 1: 2 to 1:20 to obtain a calcined powder mixed powder.
[0010]
In the compacting step, the calcined powder mixed powder is compacted at a pressure of 1500 kgf / cm 2 or more to obtain a compact having a density of 3.0 g / cm 3 or more.
[0011]
In the sintering step, the molded body is sintered at a temperature of 800 to 1200 ° C. and normal pressure while flowing an oxygen gas around, and then cooled to obtain a sintered body.
[0012]
The oxygen gas flowing in the sintering step preferably has a flow rate of 30 to 180 cm / min. In the sintering step, the distance between the furnace floor and the lower surface of the compact and the distance between the furnace ceiling and the upper surface of the compact are all preferably 3 to 50 mm. More preferably, the distance is 7 to 20 mm. Further, in order to improve the air permeability of the lower surface of the molded body, it is preferable to place the molded body on an underlay powder calcined in advance at a temperature not lower than that employed in the sintering step.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The inventors of the present invention have made intensive studies to achieve the above object. As a result, they have found the following and reached the present invention. That is, (1) it is necessary to further increase the density of the BZO sintered body in order to obtain a stable film forming rate from the early stage to the end of use, and (2) the BZO sintered body In order to further improve the density, it is necessary to increase the density of the molded body to a certain degree or more while maintaining good sinterability of the molded body. (3) To maintain the sinterability of the molded body well In order to increase the density of the green body to a certain level or more, it is effective to sinter a green body containing an appropriate amount of the calcined powder. It has been found more preferable.
[0014]
In the BZO sintered body of the present invention, when the amount of boron is less than 0.5% by mass in terms of B 2 O 3 , the effect of adding B is weakened and the specific resistance is increased. On the other hand, when the content exceeds 5% by mass, the B 2 O 3 component is aggregated, and abnormal discharge is likely to occur frequently, and stable film formation is not performed. If the density is less than 5.2 g / cm 3 , a stable film formation rate cannot be obtained from the beginning of use to the end of use.
[0015]
The method of the present invention is a method for producing the above-described BZO sintered body of the present invention.
[0016]
In the calcining step of the method of the present invention, if the amount of the zinc oxide powder mixed with the zinc borate powder exceeds 0.2 times (mass) the amount of the zinc borate powder, neither the compact nor the sintered body increases in density. If the calcination temperature is lower than 500 ° C., calcination does not occur sufficiently. Therefore, the density of both the molded body and the sintered body does not increase. On the other hand, if it is higher than 800 ° C., sintering proceeds too much. If the sintering proceeds too much, the density of the molded body tends to increase in the subsequent molding step, but it is difficult to increase the density of the sintered body in the sintering step after the molding step.
[0017]
If the amount of the zinc oxide powder mixed with the calcined powder is less than twice (mass) the amount of the calcined powder in the calcined powder mixing step, that is, if the calcined powder is too large, the density of the compact in the molding step is reduced. Although it is easy to increase, the density of the sintered body does not easily increase in the sintering process. Further, the composition tends to vary. On the other hand, if the amount of the zinc oxide powder mixed with the calcined powder exceeds 20 times (mass) the amount of the calcined powder, that is, if the calcined powder is too small, the density of the formed body and the sintered body does not increase. Further, the composition tends to vary.
[0018]
In addition, when polyvinyl alcohol is added as a binder, it is preferable for forming a molded body.
[0019]
If the pressure is less than 1500 kgf / cm 2 in the molding step, the density tends to be less than 3.0 g / cm 3 . When the density is less than 3.0 g / cm 3 , not only the strength of the molded body is weak, cracks are easily generated in the sintering step, but also the density of the sintered body is hardly increased.
[0020]
The following method is a typical example of the firing step. Laying the powder which has been calcined at a temperature of 1200 ° C. or more on a setter placed on a hearth plate, placing a compact thereon, setting a distance from the hearth plate to a lower surface of the compact and an upper surface of the compact and a ceiling plate The distance of 5 mm or more and 50 mm or less is provided, and oxygen gas in the furnace is replaced by flowing oxygen gas at a flow rate of 30 cm / min or more and 180 cm / min or less on the surface of the molded body or a part of the surface. Perform sintering.
[0021]
The oxygen gas flowing in the sintering step prevents the volatilization of zinc oxide and boron components. If the sintering temperature is lower than 800 ° C., a sufficient sintering density cannot be obtained. On the other hand, when the temperature exceeds 1200 ° C., the boron component evaporates and a composition deviation is likely to occur.
[0022]
If the flow rate of the oxygen gas flowing in the sintering step is less than 30 cm / min, the boron component tends to volatilize, easily reacting with the furnace material, and sintering cracks may occur. On the other hand, if it exceeds 180 cm / min, unevenness in temperature occurs on the surface of the molded body, so that unevenness in sintering (unevenness in density) occurs in the sintered body, and the amount of warpage of the obtained sintered body is significantly increased. In addition, a large amount of oxygen gas is required, which is not economical.
[0023]
If sintering is performed with at least one of the distance between the hearth plate and the lower surface of the molded body and the distance between the furnace ceiling plate and the upper surface of the molded body being less than 3 mm, not only the molded body easily reacts with the furnace material, but also It becomes difficult to spread oxygen gas over the entire surface of the compact. On the other hand, if at least one of them exceeds 50 mm, the amount of oxygen gas to be flowed becomes large and the cost becomes high.
[0024]
The reason why the compact is placed on the underlay powder calcined in advance at the temperature employed in the sintering process (1200 ° C. or more, preferably 1300 ° C. or more) is to improve the air permeability of the lower surface of the compact. When the underlay powder calcined at a temperature lower than the temperature employed in the sintering step or not calcined is used, the underlay powder itself shrinks at the time of sintering, thereby preventing uniform sintering of the molded body. For example, problems such as a large warpage of the sintered body are likely to occur. The calcining temperature in advance for forming the underlay powder is preferably as high as possible, for example, more preferably 1300 ° C. or higher. Examples of the material of the underlay powder include zinc oxide and alumina. After sintering, the sintered body is cooled to produce a BZO sintered body.
[0025]
【Example】
[Example 1]
In the calcining step, the zinc borate powder was calcined at a temperature of 500 ° C. for 1 hour to obtain a calcined powder.
[0026]
In the calcined powder mixing step, the calcined powder obtained in the calcining step and the zinc oxide powder were mixed at a mass ratio of 1:18, and a binder was added to obtain a calcined powder mixed powder.
[0027]
In the forming step, the powder mixed with the calcined powder obtained in the step of mixing the calcined powder was molded at a pressure of 2000 kgf / cm 2 using a cold isostatic press to obtain a 300 mm square compact. The density of the obtained molded body was 3.3 g / cm 3 .
[0028]
In the sintering step, the molded body obtained in the molding step was sintered at a temperature of 1000 ° C. under normal pressure for 5 hours while flowing oxygen gas around. The distance between the hearth plate and the lower surface of the compact and the distance between the furnace ceiling plate and the upper surface of the compact were both 7 mm. Further, the molded body was placed on an underlay powder (alumina) calcined in advance at 1400 ° C. Further, the flow rate of the oxygen gas was set to 50 cm / min. These are shown in Table 1.
[0029]
The obtained sintered body had a boron content of 3.0% by mass in terms of B 2 O 3 and a density of 5.35 g / cm 3 . In addition, as a result of observing the appearance such as cracking, it was good. These are shown in Table 2.
[0030]
[Examples 2 to 10, Comparative Examples 1 and 2]
The calcination step, the calcination powder mixing step, and the molding step were performed in the same manner as in Example 1.
[0031]
In the sintering step, the molded body obtained in the molding step was sintered at a temperature of 750 to 1250 ° C. at normal pressure for 1 to 15 hours while flowing oxygen gas around. The distance between the hearth plate and the lower surface of the compact and the distance between the furnace ceiling plate and the upper surface of the compact were 3 mm and 7 mm, respectively. Further, the molded body was placed on an underlay powder (alumina) calcined in advance at 1400 ° C. Further, the flow rate of the oxygen gas was set to 30 to 180 cm / min. These are shown in Table 1.
[0032]
Table 2 shows the results of observing the appearance of the obtained sintered body, such as the boron content (% by mass in terms of B 2 O 3 ), density, and cracks.
[0033]
[Examples 11 to 14, Comparative Example 3]
In the calcination step, zinc borate powder and zinc oxide powder were mixed at a mass ratio of 1: (0 to 0.30) to obtain a mixed powder. Next, these mixed powders were calcined at a temperature of 500 to 850 ° C. for 1 hour to obtain a calcined powder. These are shown in Table 3.
[0034]
In the calcined powder mixing step, the calcined powder obtained in the calcining step and the zinc oxide powder were mixed at a mass ratio of 1: 9 to 100, and a binder was added to obtain a calcined powder mixed powder.
[0035]
In the molding step, using a cold isostatic press, the calcined powder mixed powder obtained by calcination powder mixed step by molding at a pressure 1000 kgf / cm 2 and 2,000 kgf / cm 2, to obtain a molded article of 300mm square . Table 3 shows the molding pressure and the molding density.
[0036]
The sintering step was performed in the same manner as in Example 1.
[0037]
Table 4 shows the results of observing the appearance of the obtained sintered body, such as the boron content (% by mass in terms of B 2 O 3 ), density, and cracks.
[0038]
[Table 1]
Figure 2004091249
[0039]
[Table 2]
Figure 2004091249
[0040]
[Table 3]
Figure 2004091249
[0041]
[Table 4]
Figure 2004091249
[0042]
In Examples 1 to 14, boron is 0.5 to 5 mass% in terms of B 2 O 3, sintered density 5.2 g / cm 3 or more BZO sintered body is obtained.
[0043]
In Comparative Example 1, since the sintering temperature in the sintering step was too high, the sintering density was low, and sintering cracks occurred.
[0044]
In Comparative Example 2, the sintering temperature in the sintering step was too low, so that the sintering density was low.
[0045]
In Comparative Example 3, the amount of zinc oxide powder mixed before calcining was too large, the calcining temperature was too high, and the molding pressure was too low, so that both the molding density and the sintering density were low.
[0046]
【The invention's effect】
As is clear from the above description, according to the present invention, a BZO sintered body having a further improved sintering density, and thus a stable film formation rate from the initial use to the end of use can be obtained. Even thick or thick ones can be manufactured and provided with good productivity by normal pressure sintering, and thus at low cost.

Claims (5)

0〜20質量%の酸化亜鉛粉末を混合した硼酸亜鉛粉末を仮焼きして得た粉末と、酸化亜鉛を1:2〜1:100の比率で混合して、成形体密度3.0g/cm以上に加圧成形して、焼成することにより作製され、硼素をB換算で0.5〜5質量%含み、密度が5.2g/cm以上であるBZO焼結体。A powder obtained by calcining a zinc borate powder mixed with a zinc oxide powder of 0 to 20% by mass and zinc oxide in a ratio of 1: 2 to 1: 100 are mixed to obtain a molded body density of 3.0 g / cm. 3 or more by press molding, is produced by firing, boron containing 0.5 to 5 mass% in terms of B 2 O 3, BZO sintered at density of 5.2 g / cm 3 or more. 硼酸亜鉛粉末と酸化亜鉛粉末とを質量比1:0〜1:0.2で混合して得られた混合粉末または硼酸亜鉛粉末を温度500〜800℃で仮焼して、仮焼粉末を得る仮焼工程、該仮焼粉末と酸化亜鉛粉末とを質量比1:2〜1:20で混合して、仮焼粉末混入粉末を得る仮焼粉末混入工程、該仮焼粉末混入粉末を圧力1500kgf/cm以上で成形して、密度3.0g/cm以上の成形体を得る成形工程、および周囲に酸素ガスを流しながら、温度800〜1200℃で常圧で、該成形体を焼結して、焼結体を得る焼結工程を有するBZO焼結体の製造方法。A mixed powder or a zinc borate powder obtained by mixing zinc borate powder and zinc oxide powder at a mass ratio of 1: 0 to 1: 0.2 is calcined at a temperature of 500 to 800 ° C to obtain a calcined powder. A calcining step, a calcining powder mixing step of mixing the calcined powder and the zinc oxide powder at a mass ratio of 1: 2 to 1:20 to obtain a calcined powder mixed powder, and applying a pressure of 1500 kgf to the calcined powder mixed powder. / Cm 2 or more to obtain a molded body having a density of 3.0 g / cm 3 or more, and sintering the molded body at a temperature of 800 to 1200 ° C. and normal pressure while flowing oxygen gas around the molded body. And a method for producing a BZO sintered body having a sintering step of obtaining a sintered body. 焼結工程で流す酸素ガスは、流速が30〜180cm/分である請求項2に記載のBZO焼結体の製造方法。The method for producing a BZO sintered body according to claim 2, wherein the oxygen gas flowing in the sintering step has a flow rate of 30 to 180 cm / min. 焼結工程は、炉床部と成形体下面との距離および炉天井部と成形体上面との距離をいずれも3〜50mmにして行う請求項2または3に記載のBZO焼結体の製造方法。The method for producing a BZO sintered body according to claim 2, wherein the sintering step is performed by setting the distance between the furnace floor and the lower surface of the formed body and the distance between the furnace ceiling and the upper surface of the formed body to 3 to 50 mm. . 焼結工程は、成形体下面の通気性をよくするために、該焼結工程で採用する温度以上で予め仮焼した下敷き粉の上に成形体を載せて行う請求項2、3または4に記載のBZO焼結体の製造方法。The sintering step is carried out by placing the compact on an underlay powder calcined in advance at a temperature higher than the temperature employed in the sintering step, in order to improve the air permeability of the lower surface of the compact. The method for producing a BZO sintered body according to the above.
JP2002253508A 2002-08-30 2002-08-30 Bzo sintered compact and method for producing the same Pending JP2004091249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002253508A JP2004091249A (en) 2002-08-30 2002-08-30 Bzo sintered compact and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002253508A JP2004091249A (en) 2002-08-30 2002-08-30 Bzo sintered compact and method for producing the same

Publications (1)

Publication Number Publication Date
JP2004091249A true JP2004091249A (en) 2004-03-25

Family

ID=32059488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002253508A Pending JP2004091249A (en) 2002-08-30 2002-08-30 Bzo sintered compact and method for producing the same

Country Status (1)

Country Link
JP (1) JP2004091249A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042822A (en) * 2009-08-20 2011-03-03 Hitachi Metals Ltd Zinc oxide based sintered compact target
JP5704571B2 (en) * 2010-01-15 2015-04-22 株式会社アルバック Method for producing LiCoO2 sintered body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042822A (en) * 2009-08-20 2011-03-03 Hitachi Metals Ltd Zinc oxide based sintered compact target
JP5704571B2 (en) * 2010-01-15 2015-04-22 株式会社アルバック Method for producing LiCoO2 sintered body

Similar Documents

Publication Publication Date Title
US8778234B2 (en) Process for the manufacture of a high density ITO sputtering target
US20130206590A1 (en) Manufacture of High Density Indium Tin Oxide (ITO) Sputtering Target
JPH0971860A (en) Target and its production
WO1994018138A1 (en) Method of manufacturing an ito sintered body, and article produced thereby
JP5376117B2 (en) ZnO sputtering target and manufacturing method thereof
US4962071A (en) Method of fabricating a sintered body of indium tin oxide
TW201630849A (en) Ito sputtering target and method for manufacturing same, ITO transparent electroconductive film, and method for manufacturing ITO transparent electroconductive film
CN111116194B (en) Production method of ultrahigh-density fine-grain ITO target material
JP2000281431A (en) Tin dioxide-based sintered compact, material for thin film formation and electroconductive film
JP3957917B2 (en) Thin film forming materials
JPWO2016136611A1 (en) Oxide sintered body and sputtering target comprising the oxide sintered body
JP2004091249A (en) Bzo sintered compact and method for producing the same
JPH04228466A (en) Production of sintered material of tin oxide
TW201910539A (en) Oxide sintered body and sputtering target
CN110546300A (en) Sputtering target for transparent conductive film
JP2003100154A (en) Transparent conductive film, its manufacturing method and its application
JP7203088B2 (en) Oxide sintered body, sputtering target and transparent conductive film
CN113149614A (en) Sintered body, target material and preparation method thereof
JP2002274956A (en) Method for manufacturing ceramic sintered compact
JP4458692B2 (en) Composite material
KR101135732B1 (en) Fluorine-Containing Indium-Tin-Oxide Sintered Body and the Method of Preparation of the Same
JPH09228036A (en) Production of target for ito sputtering
JPH08246139A (en) Oxide sintered compact
JP2794679B2 (en) Method for producing high-density ITO sintered body
JPH03197366A (en) Preparation of aluminum nitride sintered product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080430