JP2004090254A - End face type thermal head and its manufacturing process - Google Patents

End face type thermal head and its manufacturing process Download PDF

Info

Publication number
JP2004090254A
JP2004090254A JP2002251208A JP2002251208A JP2004090254A JP 2004090254 A JP2004090254 A JP 2004090254A JP 2002251208 A JP2002251208 A JP 2002251208A JP 2002251208 A JP2002251208 A JP 2002251208A JP 2004090254 A JP2004090254 A JP 2004090254A
Authority
JP
Japan
Prior art keywords
common electrode
thin film
head
heating resistors
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002251208A
Other languages
Japanese (ja)
Inventor
Kiyoshi Sato
佐藤 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2002251208A priority Critical patent/JP2004090254A/en
Publication of JP2004090254A publication Critical patent/JP2004090254A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electronic Switches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an end face type thermal head in which variation (distribution) in the thermal characteristics of a heat insulation layer can be suppressed and the number of thermal heads being produced per one substrate can be increased, and to provide its manufacturing process. <P>SOLUTION: At first, a plurality of thin film modules H each comprising a glaze heat insulation layer 3, a resistive film 4 including a plurality of heating resistors 4a, a common electrode 5a connected with all heating resistors 4a, a plurality of discrete electrodes 5b connected with the heating resistors 4a individually, and a protective layer 6 are formed in parallel on the surface 2a' of a head substrate. The head substrate 2 is then cut in the direction parallel with the layer direction of the thin film module H to produce individual thin film modules H and then the common electrode 5a and the plurality of discrete electrodes 5b are exposed by grinding the cutting face. Thereafter, a common conductor 7a conducting to the common electrode 5a and a plurality of discrete conductors 7b conducting to the plurality of discrete electrodes 5b, respectively, are formed by thin film forming technology on the cut faces exposing the common electrode 5a and the plurality of discrete electrodes 5b thus obtaining the end face type thermal head 1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の技術分野】
本発明は、基板端面に発熱抵抗体を有する端面型サーマルヘッド及びその製造方法に関する。
【0002】
【従来技術およびその問題点】
サーマルヘッドは一般に、保温層を備えたセラミック基板上に、複数の発熱抵抗体と、この発熱抵抗体を通電するための電極層と、これら発熱抵抗体及び電極層の一部を保護する保護層とを有しており、被印字物をプラテンローラに巻きつけた状態で、インクリボンを介して該被印字物に圧接することで印字している。このようなサーマルヘッドでは、電極層を介して選択的に発熱抵抗体を通電させるドライバICを、発熱抵抗体や電極層と同一基板上に設けたタイプがある。このタイプでは、ドライバICやこのドライバICを覆う保護層が印字時にプラテンローラに当たらないよう、発熱抵抗体からドライバICまでの距離を十分に確保する必要があるため、ヘッドの紙送り方向の基板幅を小さくすることができず、1基板あたりに形成可能なヘッド数に限度があった。
【0003】
また近年のサーマルヘッドでは、被印字物が紙だけにとどまらず、例えば樹脂カードのように折り曲げられないものに対しても印字できることが望まれている。そこで最近では、フラット印字が可能な、複数の発熱抵抗体を基板端面に備えた端面型サーマルヘッドが開発されている。
【0004】
端面型サーマルヘッドは、一般に約7mm程度の基板端面上若しくは基板端面に設けられたテーパ部上に、ガラスからなるグレーズ保温層が形成され、このグレーズ保温層上に複数の発熱抵抗体、電極層及び保護層が順次積層されている。上記グレーズ保温層は一般に、スクリーン印刷によって形成される。このため、基板端面のような狭い範囲では、印刷時におけるアライメントやテンションに応じてグレーズ保温層の厚みが変わりやすく、再現性があまり良くない。よって、グレーズ保温層の熱特性にばらつき(分布)が生じやすく、複数の発熱抵抗体の熱制御が非常に難しくなっている。
【0005】
【発明の目的】
本発明は、上記課題に鑑み、保温層の熱特性のばらつき(分布)を抑制でき、且つ、1基板あたりの生産個数を増大可能な端面型サーマルヘッド及びその製造方法を得ることを目的とする。
【0006】
【発明の概要】
本発明は、端面ヘッドであれば基板幅を小さくできること、及び、保温層を含む薄膜モジュールを基板表面に形成してから基板を切断すれば、保温層を基板端面上に安定且つ容易に設けられることに着目してなされたものである。
【0007】
すなわち、本発明の端面型サーマルヘッドは、ヘッド基板の端面上に、保温層;複数の発熱抵抗体;全発熱抵抗体に接続されたコモン電極;各発熱抵抗体に個別に接続された複数の個別電極;及び保護層;を有し、ヘッド基板の互いに略平行をなす両側面にそれぞれ、コモン電極に導通するコモン導体と、複数の個別電極にそれぞれ導通する複数の個別導体とを薄膜形成技術により薄膜として形成したことを特徴としている。
【0008】
上記ヘッド基板の互いに略平行をなす両側面には、保護層、コモン導体及び複数の個別導体を覆う絶縁保護層が備えられていると好ましい。このようにコモン導体及び複数の個別導体が絶縁保護層によって保護されていると、組付工程中にコモン導体及び複数の個別導体を傷つけてしまう虞がない。
【0009】
また本発明の製造方法は、ヘッド基板の表面上に、保温層;複数の発熱抵抗体;全発熱抵抗体に接続されたコモン電極;各発熱抵抗体に個別に接続された複数の個別電極;及び保護層;を有する薄膜モジュールを複数並列に形成する工程と、薄膜モジュールの積層方向と平行な方向にヘッド基板を切断して個々の薄膜モジュールを切り出す工程と、ヘッド基板の切り出した際の切断面を研磨加工してコモン電極及び複数の個別電極を露出させる工程と、コモン電極及び複数の個別電極を露出させた切断面にそれぞれ、コモン電極に導通するコモン導体と、複数の個別電極にそれぞれ導通する複数の個別導体とを薄膜形成技術により薄膜として形成する工程とを有することを特徴としている。この製造方法では、ヘッド基板の切断面に、コモン導体、複数の個別導体及び保護層を覆う絶縁保護層を形成する工程をさらに有することができる。
【0010】
【発明の実施の形態】
図1は、本発明の一実施形態による端面型サーマルヘッドを示す断面図である。本実施形態の端面型サーマルヘッド(端面ヘッド)1は、アルミナやセラミック材料からなるヘッド基板2の端面2a上に、凸状曲面3aを有するグレーズ保温層3、抵抗膜4、電極層5及び保護層6を有している。抵抗膜4は、通電により発熱する発熱抵抗体4aを複数備えており、複数の発熱抵抗体4aは、周知のように、図1の紙面に垂直な方向に微小な間隔をおいて整列している。電極層5は、全発熱抵抗体4aに導通接続されたコモン電極5aと、各発熱抵抗体4aに個別に導通接続された複数の個別電極5bとからなっている。保護層6は、耐摩耗層及び酸化防止層として機能するもので、コモン電極5a、複数の発熱抵抗体4a及び複数の個別電極5bを覆っている。
【0011】
端面ヘッド1の両側面Ha、Hbには、コモン電極5a及び複数の個別電極5bにそれぞれ導通するコモン導体7a及び複数の個別導体7bと、保護層6からコモン導体7aまたは複数の個別導体7bまでを覆って形成された絶縁保護層8とが備えられている。コモン導体7a及び複数の個別導体7bはそれぞれ、ヘッド基板2の後端部2b付近まで延出されていて、基板後端部2b側からプリント基板(PCB)9に接続される。詳細は図示しないが、プリント基板9には、複数の発熱抵抗体4aを選択的に通電するドライバIC10や他の回路部品に導通接続されるコネクタ部11が設けられている。このプリント基板9及び端面ヘッド1は、不図示の接着層を介して、熱遮蔽機能を有する固定板(ヒートシンク)12に取り付けられる。
【0012】
以下では、図3〜図10を参照し、端面ヘッド1の製造工程について説明する。図3〜図5及び図8は、端面ヘッド1の製造工程を示す断面図である。また図6及び図7は図5の工程を示す側面図であり、図9及び図10は図8の工程を示す側面図である。
【0013】
先ず、図3に示すように、偏平なヘッド基板2の表面2a’上に、薄膜モジュールHを複数並列に形成する。この薄膜モジュール形成工程では、最初に、セラミック基板表面2a’上の特定位置に、スクリーン印刷により、凸状曲面を有するグレーズ保温層3を複数形成した後、焼成する。次に、各グレーズ保温層3上に、抵抗膜4及び電極層5を連続成膜する。成膜にはスパッタや蒸着法を用いることができる。続いて、各電極層5のパターン形状を規定した後、各抵抗膜4の発熱抵抗体4a上に位置する電極層5をエッチング処理等により除去する。ここまでの工程で、複数の発熱抵抗体4aと、全発熱抵抗体4aに導通接続されたコモン電極5a及び各発熱抵抗体4aにそれぞれ導通接続された複数の個別電極5bとが形成される。そして最後に、複数の発熱抵抗体4a、コモン電極5a及び複数の個別電極5b上に保護層6を成膜すると、図3に示す薄膜モジュールHが得られる。なお、このとき、複数の発熱抵抗体4aは、図3の紙面に垂直な方向に微少な間隔をおいて整列している。
【0014】
グレーズ保温層3は、断熱性の高いガラスで形成され、抵抗膜4は高抵抗化しやすいTa−Si−O、TaSiONb、Ti−Si−O、Cr−Si−O、CrSiN等の高融点金属のサーメット材料により形成される。電極層5は、Al、Au、Cu、Cr、Moなどの電極材料によって単層または積層形成されることが好ましい。保護層6は、耐酸化性および耐磨耗性を有する材料によって形成され、具体的にはSiAlONやTa等によって形成される。本実施形態では、保護層6の膜厚を6〜10μm程度に設定してある。
【0015】
次に、図3に示すIV−IV切断線(薄膜モジュールHの積層方向と平行な方向
)でヘッド基板2を切断し、図4に示すような個々の薄膜モジュールHに切り分ける。続いて、図5に示すように、切り出したヘッド基板2の切断面にラッピング加工(研磨加工)を施し、互いに略平行をなす両側面Ha、Hbを形成する。このとき、一方の側面Haには図6に示すようにコモン電極5aの側端面5a’を露出させ、他方の側面Hbには図7に示すように複数の個別電極5bの側端面5b’を露出させる。なお、両側面Ha、Hbには、グレーズ保温層3、抵抗膜4及び保護層6の各側端面も露出している。
【0016】
そして、図8に示すように、両側面Ha、Hbに、該側面Ha、Hbに露出したコモン電極5aの側端面5a’及び複数の個別電極5bの側端面5b’にそれぞれ導通接続するコモン導体7a及び複数の個別導体7bを、フォトリソグラフィ技術を用いて薄膜形成する。すなわち、両側面Ha、Hbに全面的に導体膜を成膜してから不要な部分の導体膜を除去する。上記コモン導体7aは、図9に示すようにコモン電極5aの側端面5a’全体を覆って形成され、さらに該コモン電極5aから抵抗膜4、グレーズ保温層3及びヘッド基板2の後端部2b近傍まで延出される。一方、個別導体7bは、図10に示すように各個別電極5b毎に形成され、該個別電極5bから抵抗膜4、グレーズ保温層3及びヘッド基板2の後端部2b近傍まで延出される。
【0017】
上記コモン導体7a及び複数の個別導体7bは、コモン電極5a及び複数の個別電極5bと同様に、Al、Au、Cu、Cr、Moなどの電極材料により、単層または積層形成することができる。なお、コモン導体7a、複数の個別導体7bはどちらを先に形成してもよい。
【0018】
コモン導体7a及び複数の個別導体7bを形成したら、コモン導体7a及び複数の個別導体7bを含むヘッド基板2の全側面上に、例えばSiO、SiON、SiNからなる絶縁保護層8を形成し、この絶縁保護層8によって、保護層6及びコモン導体7a、個別導体7bを覆う。なお、コモン導体7a及び複数の個別導体7bの一部(基板後端部2b側の部分)は、後でプリント基板9に接続されるため、絶縁保護層8に覆われていない。
【0019】
以上により、図1に示す端面ヘッド1が得られる。この端面ヘッド1は、絶縁保護層8が不図示の接着層を介して固定板12に接着され、この接着状態でコモン導体7a及び複数の個別導体7bがドライバIC10を介してプリント基板9にそれぞれ導通されることにより、図2に示すようにプリント基板9に取り付けられる。
【0020】
以上のように本実施形態では、グレーズ保温層3から保護層6までを有する薄膜モジュールHを基板表面2a’に複数形成してから個々の薄膜モジュールHに切り分け、その切断面(側面Ha、Hb)に、コモン電極5a及び複数の個別電極5bの電極引出線となるコモン導体7a及び複数の個別導体7bを薄膜により形成している。このように全体的にフラットな基板表面2a’上にグレーズ保温層3を形成し、後にヘッド基板2を切断すれば、切断された後の基板表面2a’が図1の基板端面2aとなるので、簡単な膜厚制御によりグレーズ保温層3を基板端面2aに備えることができ、グレーズ保温層3の熱特性のばらつき(分布)を良好に抑制することができる。
【0021】
また本実施形態では、ドライバIC10が基板表面2a’(基板端面2a)上になく、さらに、コモン導体7a及び複数の個別導体7bが側面Ha、Hbに形成されていて電極引出線用のスペースを基板表面2a’(基板端面2a)上に設ける必要がないので、端面ヘッド1の紙送り方向の基板幅Wを大幅に短くすることができる。基板幅Wは、発熱抵抗体とドライバICとを同一基板上に備えた従来のサーマルヘッドによれば一般に約7mm程度であったが、本実施形態によれば約1〜2mm程度となる。これにより、1基板あたりのヘッド生産個数を大幅に増やすことができ、低コスト化に貢献できる。
【0022】
さらに本実施形態では、絶縁保護層8によりコモン導体7a及び複数の個別導体7bが保護されているので、ヒートシンク組みつけ工程においてコモン導体7a及び複数の個別導体7bを傷つけてしまう虞がない。これにより、品質の安定したサーマルヘッドを提供することができる。
【0023】
また本実施形態では、コモン導体7aをヘッド基板2の側面のほぼ全体に渡って形成することができ、いわゆるコモンドロップ現象を抑制することができる。
【0024】
本実施形態では、ヘッド基板2上にグレーズ保温層3を部分的に形成した部分グレーズタイプの端面ヘッド1について説明したが、本発明は、全面グレーズやリアルエッジ、ダブルグレーズ、DOS等の他タイプにも適用可能である。また本発明は、シリアルヘッドにもラインヘッドにも適用可能である。
【0025】
【発明の効果】
本発明によれば、保温層の熱特性のばらつき(分布)を抑制でき、且つ、一基板あたりの生産個数を増大可能な端面型サーマルヘッド及びその製造方法を得ることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態による端面型サーマルヘッドの構造を示す断面図である。
【図2】図1の端面型サーマルヘッドをプリント基板に取り付けた状態を示す断面図である。
【図3】図1の端面型サーマルヘッドの製造工程を示す断面図である。
【図4】図3に示す工程の次工程を示す断面図である。
【図5】図4に示す工程の次工程を示す断面図である。
【図6】図5のVI矢視図である。
【図7】図5のVII矢視図である。
【図8】図5に示す工程の次工程を示す断面図である。
【図9】図8のIX矢視図である。
【図10】図8のX矢視図である。
【符号の説明】
1   端面型サーマルヘッド(端面ヘッド)
2   ヘッド基板
2a  端面
2a’ 表面
2b  後端部
3   グレーズ保温層
4   抵抗膜
4a  発熱抵抗体
5   電極層
5a  コモン電極
5b  個別電極
6   保護層
7a  コモン導体
7b  個別導体
8   絶縁保護層
9   プリント基板
10   ドライバIC
11   コネクタ部
12   固定板(ヒートシンク)
Ha   側面(コモン導体側)
Hb   側面(個別導体側)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an end face type thermal head having a heating resistor on an end face of a substrate and a method of manufacturing the same.
[0002]
[Prior art and its problems]
Generally, a thermal head includes a plurality of heating resistors, an electrode layer for supplying current to the heating resistors, and a protective layer for protecting a part of the heating resistors and the electrode layers on a ceramic substrate having a heat insulating layer. The printing is performed by pressing the printing object through the ink ribbon while pressing the printing object around the platen roller. In such a thermal head, there is a type in which a driver IC for selectively energizing a heating resistor via an electrode layer is provided on the same substrate as the heating resistor and the electrode layer. In this type, it is necessary to ensure a sufficient distance from the heating resistor to the driver IC so that the driver IC and the protective layer covering the driver IC do not hit the platen roller during printing. The width cannot be reduced, and the number of heads that can be formed per substrate is limited.
[0003]
In recent years, it has been desired that a thermal head be capable of printing not only on paper but also on a non-bendable material such as a resin card. Therefore, recently, an end surface type thermal head capable of performing flat printing and having a plurality of heating resistors on an end surface of a substrate has been developed.
[0004]
The end-face type thermal head generally has a glaze insulating layer made of glass formed on a substrate end surface of about 7 mm or on a tapered portion provided on the substrate end surface. A plurality of heating resistors and electrode layers are formed on the glaze insulating layer. And a protective layer are sequentially laminated. The glaze insulation layer is generally formed by screen printing. For this reason, in a narrow range such as the end face of the substrate, the thickness of the glaze insulating layer tends to change depending on the alignment and tension during printing, and the reproducibility is not very good. Therefore, variation (distribution) is likely to occur in the thermal characteristics of the glaze insulating layer, and it becomes very difficult to control the heat of the plurality of heating resistors.
[0005]
[Object of the invention]
In view of the above problems, it is an object of the present invention to provide an end face type thermal head capable of suppressing variation (distribution) of thermal characteristics of a heat insulating layer and increasing the number of products per substrate, and a method of manufacturing the same. .
[0006]
Summary of the Invention
According to the present invention, if the end face head is used, the substrate width can be reduced, and if the thin film module including the heat insulating layer is formed on the substrate surface and then the substrate is cut, the heat insulating layer can be stably and easily provided on the substrate end surface. It is made by paying attention to this.
[0007]
That is, the end face type thermal head of the present invention comprises a heat insulating layer; a plurality of heating resistors; a common electrode connected to all the heating resistors; and a plurality of individually connected to each heating resistor on the end face of the head substrate. A thin film forming technique comprising a common conductor conducting to a common electrode and a plurality of individual conductors conducting to a plurality of individual electrodes, respectively, on both side surfaces substantially parallel to each other having an individual electrode; and a protective layer; Is formed as a thin film.
[0008]
It is preferable that a protective layer, an insulating protective layer covering the common conductor and the plurality of individual conductors be provided on both sides of the head substrate that are substantially parallel to each other. When the common conductor and the plurality of individual conductors are protected by the insulating protective layer, there is no possibility that the common conductor and the plurality of individual conductors may be damaged during the assembly process.
[0009]
In addition, the manufacturing method of the present invention includes a method of forming a heat insulating layer, a plurality of heating resistors, a common electrode connected to all the heating resistors, a plurality of individual electrodes individually connected to each heating resistor on the surface of the head substrate; Forming a plurality of thin film modules in parallel with each other, a step of cutting the head substrate in a direction parallel to the laminating direction of the thin film modules to cut out the individual thin film modules, and cutting when the head substrate is cut out A step of polishing the surface to expose the common electrode and the plurality of individual electrodes, and a step of exposing the common electrode and the plurality of individual electrodes to the cut surface exposing the common electrode and the plurality of individual electrodes, respectively. Forming a plurality of conductive individual conductors as a thin film by a thin film forming technique. The manufacturing method may further include a step of forming an insulating protective layer covering the common conductor, the plurality of individual conductors, and the protective layer on the cut surface of the head substrate.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a sectional view showing an end face type thermal head according to an embodiment of the present invention. An end face type thermal head (end face head) 1 of the present embodiment has a glaze heat insulating layer 3, a resistive film 4, an electrode layer 5, and a protection layer 3 having a convex curved surface 3a on an end face 2a of a head substrate 2 made of alumina or ceramic material. It has a layer 6. The resistance film 4 includes a plurality of heating resistors 4a that generate heat when energized. As is well known, the plurality of heating resistors 4a are arranged at minute intervals in a direction perpendicular to the plane of FIG. I have. The electrode layer 5 includes a common electrode 5a electrically connected to all the heating resistors 4a and a plurality of individual electrodes 5b individually electrically connected to each heating resistor 4a. The protective layer 6 functions as a wear-resistant layer and an oxidation preventing layer, and covers the common electrode 5a, the plurality of heating resistors 4a, and the plurality of individual electrodes 5b.
[0011]
On both side surfaces Ha and Hb of the end face head 1, a common conductor 7a and a plurality of individual conductors 7b respectively conducting to the common electrode 5a and the plurality of individual electrodes 5b, and from the protective layer 6 to the common conductor 7a or the plurality of individual conductors 7b. And an insulating protective layer 8 formed so as to cover. The common conductor 7a and the plurality of individual conductors 7b extend to near the rear end 2b of the head substrate 2 and are connected to the printed circuit board (PCB) 9 from the rear end 2b of the substrate. Although not shown in detail, the printed circuit board 9 is provided with a driver IC 10 for selectively energizing the plurality of heating resistors 4a and a connector portion 11 electrically connected to other circuit components. The printed board 9 and the end face head 1 are attached to a fixing plate (heat sink) 12 having a heat shielding function via an adhesive layer (not shown).
[0012]
Hereinafter, the manufacturing process of the end face head 1 will be described with reference to FIGS. 3 to 5 and FIG. 8 are cross-sectional views showing the manufacturing process of the end face head 1. 6 and 7 are side views showing the step of FIG. 5, and FIGS. 9 and 10 are side views showing the step of FIG.
[0013]
First, as shown in FIG. 3, a plurality of thin film modules H are formed in parallel on the surface 2a 'of the flat head substrate 2. In this thin-film module forming step, first, a plurality of glaze insulating layers 3 having a convex curved surface are formed at a specific position on the ceramic substrate surface 2a 'by screen printing, and then fired. Next, a resistance film 4 and an electrode layer 5 are continuously formed on each of the glaze insulating layers 3. Sputtering or vapor deposition can be used for film formation. Then, after defining the pattern shape of each electrode layer 5, the electrode layer 5 located on the heating resistor 4a of each resistance film 4 is removed by etching or the like. In the steps so far, a plurality of heating resistors 4a, a common electrode 5a electrically connected to all the heating resistors 4a, and a plurality of individual electrodes 5b electrically connected to each of the heating resistors 4a are formed. Finally, when the protective layer 6 is formed on the plurality of heating resistors 4a, the common electrode 5a, and the plurality of individual electrodes 5b, the thin film module H shown in FIG. 3 is obtained. Note that, at this time, the plurality of heating resistors 4a are arranged with a small interval in a direction perpendicular to the paper surface of FIG.
[0014]
The glaze insulating layer 3 is formed of glass having a high heat insulating property, and the resistance film 4 is made of a high melting point metal such as Ta-Si-O, TaSiONb, Ti-Si-O, Cr-Si-O, CrSiN, etc. It is formed of a cermet material. The electrode layer 5 is preferably formed as a single layer or a laminated layer using an electrode material such as Al, Au, Cu, Cr, and Mo. The protective layer 6 is formed of a material having oxidation resistance and abrasion resistance, and specifically, is formed of SiAlON, Ta 2 O 5 or the like. In the present embodiment, the thickness of the protective layer 6 is set to about 6 to 10 μm.
[0015]
Next, the head substrate 2 is cut along an IV-IV cutting line (a direction parallel to the laminating direction of the thin film modules H) shown in FIG. 3, and cut into individual thin film modules H as shown in FIG. Subsequently, as shown in FIG. 5, lapping (polishing) is performed on the cut surface of the cut head substrate 2 to form both side surfaces Ha and Hb substantially parallel to each other. At this time, the side end surface 5a 'of the common electrode 5a is exposed on one side surface Ha as shown in FIG. 6, and the side end surfaces 5b' of the plurality of individual electrodes 5b are exposed on the other side surface Hb as shown in FIG. Expose. In addition, on both side surfaces Ha and Hb, the respective end surfaces of the glaze heat insulating layer 3, the resistance film 4, and the protective layer 6 are also exposed.
[0016]
Then, as shown in FIG. 8, common conductors which are conductively connected to both side surfaces Ha and Hb respectively to the side end surfaces 5a 'of the common electrode 5a exposed to the side surfaces Ha and Hb and to the side end surfaces 5b' of the plurality of individual electrodes 5b. The thin film 7a and the plurality of individual conductors 7b are formed by using a photolithography technique. That is, the conductor film is entirely formed on both side surfaces Ha and Hb, and then unnecessary portions of the conductor film are removed. The common conductor 7a is formed so as to cover the entire side end face 5a 'of the common electrode 5a as shown in FIG. 9, and is further connected to the resistive film 4, the glaze insulation layer 3 and the rear end 2b of the head substrate 2 from the common electrode 5a. It is extended to the vicinity. On the other hand, the individual conductor 7b is formed for each individual electrode 5b as shown in FIG. 10, and extends from the individual electrode 5b to the vicinity of the rear end 2b of the resistive film 4, the glaze insulating layer 3, and the head substrate 2.
[0017]
Like the common electrode 5a and the plurality of individual electrodes 5b, the common conductor 7a and the plurality of individual conductors 7b can be formed as a single layer or a laminate using an electrode material such as Al, Au, Cu, Cr, or Mo. Either the common conductor 7a or the plurality of individual conductors 7b may be formed first.
[0018]
After the common conductor 7a and the plurality of individual conductors 7b are formed, the insulating protection layer 8 made of, for example, SiO 2 , SiON, or SiN is formed on all side surfaces of the head substrate 2 including the common conductor 7a and the plurality of individual conductors 7b. The insulating protective layer 8 covers the protective layer 6, the common conductor 7a, and the individual conductor 7b. Note that a part of the common conductor 7a and the plurality of individual conductors 7b (a part on the side of the rear end portion 2b of the substrate) is connected to the printed circuit board 9 later, and thus is not covered with the insulating protective layer 8.
[0019]
Thus, the end face head 1 shown in FIG. 1 is obtained. In the end face head 1, an insulating protective layer 8 is bonded to a fixing plate 12 via an adhesive layer (not shown), and in this bonded state, a common conductor 7a and a plurality of individual conductors 7b are respectively attached to a printed circuit board 9 via a driver IC 10. As a result of conduction, it is attached to the printed circuit board 9 as shown in FIG.
[0020]
As described above, in the present embodiment, a plurality of thin film modules H having the glaze heat insulating layer 3 to the protective layer 6 are formed on the substrate surface 2a 'and then cut into individual thin film modules H, and the cut surfaces (side surfaces Ha, Hb ), A common conductor 7a and a plurality of individual conductors 7b which are electrode lead lines of the common electrode 5a and the plurality of individual electrodes 5b are formed by thin films. If the glaze insulating layer 3 is formed on the overall flat substrate surface 2a 'and the head substrate 2 is subsequently cut, the cut substrate surface 2a' becomes the substrate end surface 2a in FIG. In addition, the glaze insulating layer 3 can be provided on the substrate end face 2a by simple film thickness control, and variation (distribution) of the thermal characteristics of the glaze insulating layer 3 can be suppressed well.
[0021]
Further, in the present embodiment, the driver IC 10 is not on the substrate surface 2a '(substrate end surface 2a), and the common conductor 7a and the plurality of individual conductors 7b are formed on the side surfaces Ha and Hb, so that the space for the electrode lead wire is reduced. Since it is not necessary to provide on the substrate surface 2a '(substrate end surface 2a), the substrate width W of the end surface head 1 in the paper feeding direction can be significantly reduced. The substrate width W is generally about 7 mm according to a conventional thermal head having a heating resistor and a driver IC on the same substrate, but is about 1 to 2 mm according to the present embodiment. As a result, the number of heads produced per substrate can be greatly increased, which can contribute to cost reduction.
[0022]
Further, in the present embodiment, since the common conductor 7a and the plurality of individual conductors 7b are protected by the insulating protection layer 8, there is no possibility that the common conductor 7a and the plurality of individual conductors 7b are damaged in the heat sink assembling step. As a result, a thermal head with stable quality can be provided.
[0023]
Further, in the present embodiment, the common conductor 7a can be formed over substantially the entire side surface of the head substrate 2, so that a so-called common drop phenomenon can be suppressed.
[0024]
In this embodiment, the partial glaze type end face head 1 in which the glaze heat insulating layer 3 is partially formed on the head substrate 2 has been described. However, the present invention is applicable to other types such as full glaze, real edge, double glaze, and DOS. Is also applicable. Further, the present invention is applicable to a serial head and a line head.
[0025]
【The invention's effect】
According to the present invention, it is possible to obtain an end face type thermal head capable of suppressing variation (distribution) of the thermal characteristics of the heat insulating layer and increasing the number of products produced per substrate, and a method of manufacturing the same.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a structure of an end face type thermal head according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a state where the end face type thermal head of FIG. 1 is mounted on a printed circuit board.
FIG. 3 is a sectional view showing a manufacturing process of the end face type thermal head of FIG. 1;
FIG. 4 is a sectional view showing a step subsequent to the step shown in FIG. 3;
FIG. 5 is a sectional view showing a step subsequent to the step shown in FIG. 4;
FIG. 6 is a view taken in the direction of arrow VI in FIG. 5;
FIG. 7 is a view taken in the direction of the arrow VII in FIG. 5;
FIG. 8 is a sectional view showing a step subsequent to the step shown in FIG. 5;
FIG. 9 is a view on arrow IX of FIG. 8;
FIG. 10 is a view as viewed in the direction of the arrow X in FIG. 8;
[Explanation of symbols]
1 End-face type thermal head (end-face head)
2 Head substrate 2a End surface 2a 'Surface 2b Back end 3 Glaze heat insulating layer 4 Resistive film 4a Heating resistor 5 Electrode layer 5a Common electrode 5b Individual electrode 6 Protective layer 7a Common conductor 7b Individual conductor 8 Insulating protective layer 9 Printed circuit board 10 Driver IC
11 Connector 12 Fixing plate (heat sink)
Ha side (common conductor side)
Hb side surface (individual conductor side)

Claims (4)

ヘッド基板の端面上に、保温層;複数の発熱抵抗体;全発熱抵抗体に接続されたコモン電極;前記各発熱抵抗体に個別に接続された複数の個別電極;及び保護層;を有し、
前記ヘッド基板の互いに略平行をなす両側面にそれぞれ、前記コモン電極に導通するコモン導体と、前記複数の個別電極にそれぞれ導通する複数の個別導体とを薄膜形成技術により薄膜として形成したことを特徴とする端面型サーマルヘッド。
A heat insulating layer; a plurality of heating resistors; a common electrode connected to all the heating resistors; a plurality of individual electrodes individually connected to each of the heating resistors; and a protective layer on the end surface of the head substrate. ,
A common conductor conducting to the common electrode and a plurality of individual conductors conducting to the plurality of individual electrodes are formed as thin films on both side surfaces substantially parallel to each other of the head substrate by a thin film forming technique. End-face type thermal head.
請求項1記載の端面型サーマルヘッドにおいて、前記ヘッド基板の互いに略平行をなす両側面に、前記保護層、前記コモン導体及び前記複数の個別導体を覆う絶縁保護層を備えた端面型サーマルヘッド。2. An end face type thermal head according to claim 1, further comprising an insulating protection layer covering the protection layer, the common conductor, and the plurality of individual conductors on both sides of the head substrate substantially parallel to each other. ヘッド基板の表面上に、保温層;複数の発熱抵抗体;全発熱抵抗体に接続されたコモン電極;前記各発熱抵抗体毎に個別に接続された複数の個別電極;及び保護層;を有する薄膜モジュールを複数並列に形成する工程と、前記薄膜モジュールの積層方向と平行な方向に前記ヘッド基板を切断して個々の薄膜モジュールを切り出す工程と、
前記ヘッド基板の切り出した際の切断面を研磨加工して前記コモン電極及び前記複数の個別電極を露出させる工程と、
前記コモン電極及び前記複数の個別電極を露出させた切断面にそれぞれ、前記コモン電極に導通するコモン導体と、前記複数の個別電極にそれぞれ導通する複数の個別導体とを薄膜形成技術により薄膜として形成する工程と、
を有することを特徴とする端面型サーマルヘッドの製造方法。
A heat insulating layer; a plurality of heating resistors; a common electrode connected to all the heating resistors; a plurality of individual electrodes individually connected to each of the heating resistors; and a protective layer on the surface of the head substrate. Forming a plurality of thin film modules in parallel, and cutting the head substrate in a direction parallel to the laminating direction of the thin film modules to cut out individual thin film modules,
A step of polishing the cut surface of the cut out of the head substrate to expose the common electrode and the plurality of individual electrodes,
A common conductor conducting to the common electrode and a plurality of individual conductors conducting to the plurality of individual electrodes, respectively, are formed as thin films on a cut surface exposing the common electrode and the plurality of individual electrodes by a thin film forming technique. The process of
A method for manufacturing an end face type thermal head, comprising:
請求項3記載の端面型サーマルヘッドの製造方法において、前記ヘッド基板の切断面に、前記コモン導体、前記複数の個別導体及び前記保護層を覆う絶縁保護層を形成する工程をさらに有する端面型サーマルヘッドの製造方法。4. The method according to claim 3, further comprising the step of forming an insulating protective layer covering the common conductor, the plurality of individual conductors, and the protective layer on a cut surface of the head substrate. Head manufacturing method.
JP2002251208A 2002-08-29 2002-08-29 End face type thermal head and its manufacturing process Withdrawn JP2004090254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002251208A JP2004090254A (en) 2002-08-29 2002-08-29 End face type thermal head and its manufacturing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002251208A JP2004090254A (en) 2002-08-29 2002-08-29 End face type thermal head and its manufacturing process

Publications (1)

Publication Number Publication Date
JP2004090254A true JP2004090254A (en) 2004-03-25

Family

ID=32057855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002251208A Withdrawn JP2004090254A (en) 2002-08-29 2002-08-29 End face type thermal head and its manufacturing process

Country Status (1)

Country Link
JP (1) JP2004090254A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009132069A (en) * 2007-11-30 2009-06-18 Tdk Corp Thermal head, manufacturing method for thermal head, and printing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009132069A (en) * 2007-11-30 2009-06-18 Tdk Corp Thermal head, manufacturing method for thermal head, and printing apparatus
JP4556991B2 (en) * 2007-11-30 2010-10-06 Tdk株式会社 Thermal head, thermal head manufacturing method and printing apparatus

Similar Documents

Publication Publication Date Title
WO2015111520A1 (en) Thermal print head and thermal printer
US4651168A (en) Thermal print head
JP7413066B2 (en) Thermal print head manufacturing method, thermal print head and thermal printer
JPH029642A (en) Thermal printing head and manufacture thereof
WO1995032867A1 (en) Thermal printing head
JP2004090254A (en) End face type thermal head and its manufacturing process
JP7481337B2 (en) Thermal Printhead
JP3124870B2 (en) Thermal head and method of manufacturing the same
KR20020018125A (en) Thermal head and a method for manufacturing
WO1996041722A1 (en) Method of forming auxiliary electrode layer for common electrode pattern in thermal head
JP2588957B2 (en) Manufacturing method of thermal head
JP7557320B2 (en) Thermal Printhead
WO2021106479A1 (en) Thermal print head and method for manufacturing same
JP7219634B2 (en) thermal print head
US11633959B2 (en) Thermal print head
JP2014141050A (en) Thermal head and thermal printer equipped with thermal head
JP4034143B2 (en) Thermal head and manufacturing method thereof
JP3824246B2 (en) Manufacturing method of thermal head
JPS6189870A (en) Manufacture of thermal head
JP3126874B2 (en) Thermal print head
JP4309700B2 (en) Thermal head substrate, thermal head and manufacturing method thereof
JP2023121322A (en) Thermal print head, method for manufacturing thermal print head, and thermal printer
JPS61211055A (en) Thermal head and its manufacture
JPH079640Y2 (en) Thermal head
JP2022112463A (en) Thermal print head, thermal printer and thermal print head manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050509

A977 Report on retrieval

Effective date: 20070413

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070501

A521 Written amendment

Effective date: 20070620

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A761 Written withdrawal of application

Effective date: 20071113

Free format text: JAPANESE INTERMEDIATE CODE: A761