JP2004087988A - Carbon electrode for electric double-layer capacitor - Google Patents

Carbon electrode for electric double-layer capacitor Download PDF

Info

Publication number
JP2004087988A
JP2004087988A JP2002249730A JP2002249730A JP2004087988A JP 2004087988 A JP2004087988 A JP 2004087988A JP 2002249730 A JP2002249730 A JP 2002249730A JP 2002249730 A JP2002249730 A JP 2002249730A JP 2004087988 A JP2004087988 A JP 2004087988A
Authority
JP
Japan
Prior art keywords
electric double
carbon fiber
electrode
carbon
layer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002249730A
Other languages
Japanese (ja)
Inventor
Yasushi Soneta
曽根田 靖
Masahiro Toyoda
豊田 昌宏
Yukinori Kude
久手 幸徳
Osamu Kato
加藤 攻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Eneos Corp
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Nippon Oil Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002249730A priority Critical patent/JP2004087988A/en
Publication of JP2004087988A publication Critical patent/JP2004087988A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon electrode for an electric double-layer capacitor of high capacity. <P>SOLUTION: In an electric double-layer capacitor, expanded carbon fiber is used as the carbon electrode and sulfuric acid is used as the electrolyte. The expanded carbon fiber is obtained by performing electrolytic treatment for raw material carbon fiber such as pitch-based carbon fiber, by forming a graphite intercalation compound, such as nitric acid-graphite intercalation compound, and by decomposing thereafter the graphite intercalation compound by heat treatment. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電気二重層キャパシタ、電力貯蔵に関し、詳しくは電気二重層キャパシタ用炭素電極に関する。
【0002】
【従来の技術】
電気二重層キャパシタとは、固体と液体の界面に生じる電気二重層を利用したコンデンサで、大電流で充放電でき、電気自動車用や電力貯蔵用として有望視されている。電気二重層キャパシタの構造は、セパレータを介して対向配置された正極及び負極からなる分極性電極と電解液とからなるものが典型的なものである。従来、電気二重層キャパシタの分極性電極としては、高比表面積の炭素材料が用いられており、一般に活性炭粉末や活性炭素繊維がその用途に用いられている(例えば、ク及びシ(D. Qu and H. Shi)、ジャーナル・オブ・パワー・ソース(J. Power Sources)、vol.74,(1998)99、など)。
【0003】
従来は、炭素材料の高比表面積化が、電気二重層キャパシタ電極のキャパシスタンスを高めるとされてきた。高比表面積の炭素材料、すなわち活性炭の製造方法としては、水蒸気賦活、CO賦活、薬品賦活などの手法が確立されている。近年は、含ハロゲン炭素前駆体の脱ハロゲン反応を利用した高比表面積炭素材料の製法も報告されている。しかし、炭素材料の高比表面積化にも限界がある。また、電気二重層キャパシタ電極のキャパシスタンスは、比表面積と完全には比例関係に無いことも明らかにされ、細孔構造の最適化、すなわちキャパシタ電極として好適な細孔構造(平均細孔径、細孔分布、細孔容積)の探索が続けられている。
例えば、特開2002−128514号公報には、窒素吸着等温線から求めた炭素質材料の細孔分布において、細孔半径10Å以下の細孔容積が70%以下である炭素質材料を電気二重層キャパシタの分極性電極に用いることが提案されている。
【0004】
【発明が解決しようとする課題】
しかしながら、近年、電気二重層キャパシタに対しては、より一層の性能向上が求めら、より高容量の電気二重層キャパシタ分極性電極の開発が求められている。本発明は、より高容量の電気二重層キャパシタ用炭素電極の提供を目的とするものである。
【0005】
【課題を解決するための手段】
本発明者らは、鋭意検討した結果、膨張化炭素繊維が電極として典型的な電気二重層的挙動を示すことを見出した。本発明はこの知見に基づきなされるに至ったものである。
【0006】
すなわち、本発明は、
(1)膨張化炭素繊維を用いたことを特徴とする電気二重層キャパシタ用炭素電極、
(2)電解液が硫酸である電気二重層キャパシタに用いることを特徴とする(1)項記載の電気二重層キャパシタ用炭素電極、
(3)膨張化炭素繊維が原料炭素繊維を該黒鉛層間化合物とし、これを分解して得られたことを特徴とする(1)又は(2)記載の電気二重層キャパシタ用炭素電極
を提供するものである。
【0007】
【発明の実施の形態】
本発明において膨張化炭素繊維(Exfoliated Carbon fiber)とは、水銀圧入法により求められる細孔容積が3cm/g以上になるように炭素繊維の積層層間を広げた繊維をいう。窒素ガス吸着法により求められる比表面積としては30m/g以上の炭素繊維である。好ましくは、前記細孔容積が5cm/g以上であり、前記比表面積が100m/g以上の炭素繊維である。このような膨張化炭素繊維は、より具体的には炭素繊維を出発原料として、その炭素積層層間に硫酸分子などを挿入した層間化合物を合成し、これを急激に加熱することによって炭素積層層間を広げた繊維として製造できる。その製造方法については、例えば、特開2001−207376号公報、及び、特開2001−53301号公報に記載がある。
なお、上記水銀圧入法による測定は、室温において市販の水銀ポロシメーター((株)アムコ製、PASCAL240)によって行うことができる。
また、上記窒素ガス吸着法による測定は、市販の定容積ガス吸着装置(日本ベル(株)製、BELSORP28SA)を用いて、77Kにおける窒素吸着等温線を測定し、BET法により比表面積を算出することで行うことができる。
【0008】
本発明に用いることができる膨張化炭素繊維の原料炭素繊維としては、例えば、ピッチ系炭素繊維、ポリアクリルアミド系炭素繊維、レイヨン系炭素繊維等が挙げられる。このうち、焼成時に黒鉛構造が発達しやすためピッチ系炭素繊維が好ましい。
ピッチ系炭素繊維の原料としては、石油系ピッチ、石炭系ピッチ、さらには合成系などが好ましく用いることができる。石油系ピッチの具体例としては、デカントオイルピッチ、エチレンタールピッチがあり、石炭系ピッチの具体例としては、コールタールピッチ、石炭液化ピッチがある。合成系ピッチの具体例としては、ナフタレンピッチ等の各種ピッチがある。
ピッチの紡糸は通常の溶融紡糸法により行うことができる。得られたピッチ繊維は、酸化性ガス雰囲気下で、通常100〜360℃、好ましくは130〜320℃の温度で通常10分〜10時間、好ましくは1〜6時間保持し、不溶化処理を行う。酸化性ガスとしては、酸素、空気、オゾンもしくはこれらに二酸化炭素、塩素等を混合したものが通常用いられる。不溶化処理した繊維は窒素、アルゴン等の不活性化ガス雰囲気下で2000℃以上、好ましくは2600℃以上、より好ましくは2900〜3000℃の温度で黒鉛化処理を行うことでピッチ系炭素繊維を得ることができる。
【0009】
本発明においては、黒鉛層間化合物の形成は、原料炭素繊維を電解処理することによることが好ましい。電解処理によって、黒鉛の平面層の間に原子あるいはイオン、分子などが取り込まれた黒鉛層間化合物を形成することができる。原料炭素繊維の電解処理において使用する電解液は、通常酸性溶液を用いることができ、該酸性溶液は電気分解を起こすものであれば、その種類を特に問わない。酸としては有機酸、無機酸またはこれらの混合物があり、無機酸としては硫酸、濃硫酸、硝酸、濃硝酸、リン酸など、有機酸としては、ギ酸、酢酸などがあるが、濃硝酸、ギ酸および希硫酸(濃度9mol/dm以下)が好ましく、特に、濃硝酸が好ましい。この場合の酸濃度は5〜20mol/dmが好ましく、さらに好ましくは6〜20mol/dmである。濃硝酸を用いた場合には、硝酸−黒鉛層間化合物が合成される。
【0010】
上記の電解処理に用いる電極や装置などは、従来知られた電解酸化に用いられるものを適宜使用できる。例えば、原料炭素繊維を白金両電極の先に固定して、濃硝酸電解液中に浸漬し、定電流電解することで、硝酸−黒鉛層間化合物を合成することができる。
また、電解に用いる原料炭素繊維の量や酸の種類、濃度の選択に応じ、電解時の電流値及び時間を選定する。この条件は、簡単な予備実験により当業者が決めることができる。例えば、3000℃で熱処理したピッチ系炭素繊維0.135gを用い濃硝酸(13mol/dm)を電解液とした場合、0.1〜2.0Aで電気量の増加に伴い電位が飽和に達するまで、すなわち、10〜120分間電気分解することが好ましく、0.5〜1.0Aで、20〜60分間程度電気分解することがさらに好ましい。
電解処理により、黒鉛層間化合物が形成されたことは、X線回折装置を用いて測定した層間距離が電解処理前の炭素繊維の値である0.3〜0.4nmよりも大きい0.65〜0.9nmにあることで確認することができる。
【0011】
黒鉛層間化合物は、その後熱処理によって分解し、層間を拡大し、繊維の膨張化処理を行うことが好ましい。熱処理による分解は、瞬間的に層間が拡大するように、急速熱処理による急速分解であることが好ましく、300〜1200℃で5〜60秒行うことが好ましく、800〜1000℃で5〜10秒行うことがさらに好ましい。熱処理は、通常の電気炉等を使用して行うことができる。
【0012】
膨張化炭素繊維が形成されたことは、膨張化処理によって繊維が綿状に大きく膨らむので、肉眼によって確認することができる。膨張化炭素繊維は、X線回折すると炭素積層構造が回復されており、さらに、走査型電子顕微鏡写真によりフィブリル化が起こり、微細構造に寸断されていることを確認することができる。
また、本発明に用いられる膨張化炭素繊維の嵩密度は、好ましくは0.001〜0.01g/cmである。
【0013】
本発明においては、膨張化炭素繊維を電気二重層キャパシタ用炭素電極の材料として用いる。膨張化炭素繊維から電気二重層キャパシタ用炭素電極を作成する方法は特に限定されるものではなく、活性炭に代えて膨張化炭素繊維を使用することにより、従来知られている電極の製造方法を適宜使用することができる。例えば、膨張化炭素繊維を白金網及びガラス繊維濾紙と共にポリテトラフルオロエチレン板に挟めることにより電極を構成することができる。また、膨張化炭素繊維に、ポリエチレン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等のバインダーを添加して、加圧ロール成形してシート状或いは板状にして電極とすることも可能である。
【0014】
本発明の炭素電極を有する電気二重層キャパシタには、水系電解液又は非水系電解液とも用いることが出来るが、水系電解液を用いることが好ましい。水系電解液としては、例えば塩化ナトリウム水溶液、水酸化ナトリウム水溶液、水酸化カリウム水溶液、塩酸、硫酸等が挙げられる。このうち硫酸が好ましく、特に濃硫酸を用いると著しく大きなキャパシタ容量が得られるのでさらに好ましい。この場合の硫酸濃度は1〜18mol/dmが好ましく、さらに好ましくは5〜18mol/dmである。
【0015】
【実施例】
以下、実施例に基づいて本発明をさらに詳しく説明する。
【0016】
実施例1
膨張化炭素繊維試料
3,000℃で熱処理を施したピッチ系炭素繊維0.135g(長さ約50mm)を13mol/dmの硝酸を電極液として0.5Aで40分間定電流電解を行い、硝酸−黒鉛層間化合物を合成した。
この硝酸−黒鉛層間化合物を1000℃に保持した電気炉に挿入し、5秒間保持することにより、熱処理し、急速分解させて、水銀ポロシメータ(株式会社アムコ製、PASCAL240)を用いた水銀圧入法により測定した細孔容積が10.0cm/g、定容積ガス吸着装置(日本ベル株式会社製、BERSORP28SA)を用いた窒素ガス吸着法により求めた比表面積が292m/gの膨張化炭素繊維を得た。これを試料aとした。
【0017】
図1は、本実施例に用いた原料炭素繊維、硝酸中電解後の黒鉛層間化合物、及び、熱処理後の膨張化炭素繊維のX線回折図である。図中に示されたSiは、内部標準として用いたシリコンによる回折線である。図1によれば、硝酸中電解後には黒鉛層間化合物が形成されて層間距離が0.78nmになり、熱処理後の膨張化炭素繊維には、炭素積層構造が回復されることが示されている。
【0018】
図2は、原料炭素繊維(a)、硝酸中電解後の黒鉛層間化合物(b)、及び、熱処理後の膨張化炭素繊維(c〜e)の形状を示す走査型電子顕微鏡写真である。急速熱処理による膨張化処理した試料は原料炭素繊維や電解後の黒鉛層間化合物とは異なり、炭素繊維のフィブリル構造を反映した微細繊維に寸断されていることが明瞭に示されている。
【0019】
電極
試料a 0.003g(長さ約25mm)を秤量し、白金網(80メッシュ、浸液部13×30×0.08mm)及び孔径1μmのガラス繊維濾紙(ワットマン(Whatman)製、GF/Bグレード、13×30mm)と共にポリテトラフルオロエチレン製ジグに挟み込むことによって図3に示すように作用極を構成した。
【0020】
測定セル
図4に示すように、容量80mlの耐熱ガラス(パイレックス)製容器に電解液として1mol/dm 硫酸約60mlを満たし、前記作用極、並びに、対極(白金板 10×30×0.05mm)、参照極(Hg/HgSO)を浸漬して、3極式電気化学セルの測定セルを構成した。測定セルには常時窒素ガスをバブリングして溶存酸素を除去した。
【0021】
電気化学測定
前述の測定セルを用いて電気化学測定を行った。ポテンショスタット・ガルバノスタット(北斗電工製HA−501G)及び任意関数発生器(北斗電工製HB−105)を用いて10時間程度自然電位測定してから、サイクリックボルタンメトリー(CV測定)を行った。また、定電流充放電装置(北斗電工製HJ−201B)を用いて、定電流充放電測定(GC測定)を行った。
CV測定(走査速度1mV/s)を行った結果を図5に示す。測定の結果得られたサイクリックボルタモグラム上に酸化還元対は認められず、典型的な電気二重層挙動を示している。I=C・dE/dtの式に基づき、Hg/HgSO参照電極に対して0mVにおいて160F/g、200mVにおいて115F/gのキャパシタンスが算出された。
また、充放電電流0.2mAの条件で定電流充放電測定を行った。測定の結果得られた定電流充放電曲線を図6に示す。放電時の曲線を直線とみなし、キャパシタ電圧の時間的変化率から算出した、第6サイクルでの放電容量(0.5〜0V)は117F/gであり、CV測定の結果とよく一致している。
【0022】
実施例2
実施例1の電解液を濃硫酸(18mol/dm)に代えた以外は、実施例1と全く同様にCV測定及びGC測定した。CV測定して得られたサイクリックボルタモグラムを図7に示した。またGC測定によって得られた定電流充放電曲線を図8に示す。CV測定(走査速度1mV/s)では0mVにおいて433F/g、200mVにおいて460F/gのキャパシタンスを示した。定電流充放電測定(0.2mA)から求めたキャパシスタンスは555F/gであった。
【0023】
実施例3
電極に用いる試料aの量を0.0064gに代えた以外は、実施例1と全く同様に200mVにおけるCV測定及び0.5〜0VにおけるGC測定によりキャパシタンスを測定した。
【0024】
実施例4
実施例3の電解液を濃硫酸(18mol/dm)に代えた以外は、実施例3と全く同様にキャパシタンスを測定した。
【0025】
実施例5
3,000℃で熱処理を施したピッチ系炭素繊維0.05gを13mol/dmの硝酸を電極液として0.5Aで40分間定電流電解を行い、硝酸−黒鉛層間化合物を合成した。
この硝酸−黒鉛層間化合物を1000℃に保持した電気炉に挿入し、30秒間保持することにより、熱処理し、急速分解させて、水銀ポロシメータ(株式会社アムコ製、PASCAL240)を用いた水銀圧入法により測定した細孔容積が9.91cm/g、定容積ガス吸着装置(日本ベル株式会社製、BERSORP28SA)を用いた窒素ガス吸着法により求めた比表面積が220m/gの膨張化炭素繊維を得た。これを試料bとした。
この試料b 0.0036gを試料aに代えて用いた以外は、実施例1と同様にCV測定によりキャパシタンスを測定した。
【0026】
実施例6
実施例5の電解液を濃硫酸(18mol/dm)に代えた以外は、実施例5と全く同様にCV測定した。また、GC測定を実施例1と同様に行いキャパシスタンスを測定した。
【0027】
実施例7
電極に用いる試料bの量を0.0076gに代えた以外は、実施例5と全く同様にCV測定した。また、GC測定を実施例1と同様に行いキャパシスタンスを測定した。
【0028】
実施例8
実施例7の電解液を濃硫酸(18mol/dm)に代えた以外は、実施例7と全く同様にキャパシタンスを測定した。
以上の実施例1〜8の測定結果を表1に示す。
【0029】
【表1】

Figure 2004087988
【0030】
従来の活性炭電極を用いた場合の100F/g程度のキャパシスタンスに比べ、表1に示されるように、本発明の炭素電極のキャパシタンスは大きく、特に濃硫酸を電解質として用いた場合に著しく大きなキャパシタンスが得られることがわかる。
【0031】
【発明の効果】
本発明の電気二重層キャパシタ用炭素電極を用いることによって、従来の活性炭電極を利用する電気二重層キャパシタよりも高容量の電気二重層キャパシタを製造することができる。さらに、電解質を硫酸とすることによって非常に高い電気二重層キャパシタを製造することができる。
【図面の簡単な説明】
【図1】原料炭素繊維、硝酸中電解後の黒鉛層間化合物、及び、熱処理後の膨張化炭素繊維のX線回折図である。
【図2】原料炭素繊維(a)、硝酸中電解後の黒鉛層間化合物(b)、及び、熱処理後の膨張化炭素繊維(c〜e)の走査型電子顕微鏡写真である。
【図3】実施例に用いた作用極の説明図である。
【図4】実施例に用いた3極式電気化学セルの説明図である。
【図5】実施例1のサイクリックボルタモグラムを示す図である。
【図6】実施例1の定電流充放電曲線を示す図である。
【図7】実施例2のサイクリックボルタモグラムを示す図である。
【図8】実施例2の定電流充放電曲線を示す図である。
【符号の説明】
1  炭素材料
2  白金網
3  ガラス繊維濾紙
4,5  ポリテトラフルオロエチレン板
6  作用極
7  電解液
8  窒素ガス
9  対極
10  参照極[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electric double layer capacitor and power storage, and more particularly, to a carbon electrode for an electric double layer capacitor.
[0002]
[Prior art]
An electric double layer capacitor is a capacitor that uses an electric double layer generated at an interface between a solid and a liquid, can be charged and discharged with a large current, and is expected to be used for electric vehicles and for power storage. The structure of the electric double layer capacitor is typically composed of a polarizable electrode composed of a positive electrode and a negative electrode opposed to each other with a separator interposed therebetween, and an electrolytic solution. Conventionally, a carbon material having a high specific surface area has been used as a polarizable electrode of an electric double layer capacitor, and activated carbon powder and activated carbon fiber are generally used for the purpose (for example, D and Qu (D. Qu)). and H. Shi), Journal of Power Sources, vol. 74, (1998) 99, etc.).
[0003]
Conventionally, it has been considered that increasing the specific surface area of the carbon material increases the capacitance of the electric double layer capacitor electrode. As a method for producing a carbon material having a high specific surface area, that is, activated carbon, techniques such as steam activation, CO 2 activation, and chemical activation have been established. In recent years, a method for producing a high specific surface area carbon material utilizing a dehalogenation reaction of a halogen-containing carbon precursor has also been reported. However, there is a limit in increasing the specific surface area of the carbon material. It has also been clarified that the capacitance of an electric double layer capacitor electrode is not completely proportional to the specific surface area, and optimization of the pore structure, that is, the pore structure (average pore diameter, The search for pore distribution, pore volume) is continuing.
For example, JP-A-2002-128514 discloses that in a pore distribution of a carbonaceous material obtained from a nitrogen adsorption isotherm, a carbonaceous material having a pore radius of 10 ° or less and a pore volume of 70% or less is used as an electric double layer. It has been proposed to use for polarizable electrodes of capacitors.
[0004]
[Problems to be solved by the invention]
However, in recent years, further improvement in performance has been demanded for electric double layer capacitors, and development of higher capacity electric double layer capacitor polarizable electrodes has been demanded. An object of the present invention is to provide a higher capacity carbon electrode for an electric double layer capacitor.
[0005]
[Means for Solving the Problems]
Means for Solving the Problems As a result of diligent studies, the present inventors have found that expanded carbon fibers exhibit typical electric double layer behavior as an electrode. The present invention has been made based on this finding.
[0006]
That is, the present invention
(1) a carbon electrode for an electric double layer capacitor, characterized by using expanded carbon fibers;
(2) The carbon electrode for an electric double layer capacitor according to (1), wherein the carbon electrode is used for an electric double layer capacitor in which the electrolytic solution is sulfuric acid.
(3) The carbon electrode for an electric double layer capacitor according to (1) or (2), wherein the expanded carbon fiber is obtained by decomposing the raw material carbon fiber as the graphite intercalation compound. Things.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the expanded carbon fiber refers to a fiber in which the carbon fiber lamination layers are expanded so that the pore volume determined by the mercury porosimetry becomes 3 cm 3 / g or more. The carbon fibers have a specific surface area of 30 m 2 / g or more as determined by the nitrogen gas adsorption method. Preferably, the carbon fiber has a pore volume of 5 cm 3 / g or more and a specific surface area of 100 m 2 / g or more. More specifically, such expanded carbon fibers use carbon fibers as a starting material to synthesize an intercalation compound in which sulfuric acid molecules and the like are inserted between the carbon lamination layers, and rapidly heat this to form the carbon lamination layers. Can be manufactured as expanded fiber. The manufacturing method is described in, for example, JP-A-2001-207376 and JP-A-2001-53301.
The measurement by the mercury intrusion method can be performed at room temperature with a commercially available mercury porosimeter (PASCAL240, manufactured by AMC).
In the measurement by the nitrogen gas adsorption method, the nitrogen adsorption isotherm at 77K is measured using a commercially available constant volume gas adsorption device (BELSORP28SA, manufactured by Bell Japan Co., Ltd.), and the specific surface area is calculated by the BET method. That can be done.
[0008]
Examples of the raw carbon fibers of the expanded carbon fibers that can be used in the present invention include pitch-based carbon fibers, polyacrylamide-based carbon fibers, rayon-based carbon fibers, and the like. Among these, pitch-based carbon fibers are preferred because the graphite structure is likely to develop during firing.
As a raw material of the pitch-based carbon fiber, a petroleum-based pitch, a coal-based pitch, and a synthetic system can be preferably used. Specific examples of petroleum pitch include decant oil pitch and ethylene tar pitch, and specific examples of coal pitch include coal tar pitch and coal liquefied pitch. Specific examples of the synthetic pitch include various pitches such as a naphthalene pitch.
The pitch can be spun by a usual melt spinning method. The obtained pitch fiber is kept in an oxidizing gas atmosphere at a temperature of usually 100 to 360 ° C, preferably 130 to 320 ° C for usually 10 minutes to 10 hours, preferably 1 to 6 hours to perform insolubilization treatment. As the oxidizing gas, oxygen, air, ozone or a mixture thereof with carbon dioxide, chlorine or the like is usually used. The insolubilized fiber is subjected to graphitization at a temperature of 2000 ° C. or higher, preferably 2600 ° C. or higher, more preferably 2900 to 3000 ° C. in an atmosphere of an inert gas such as nitrogen or argon to obtain pitch-based carbon fiber. be able to.
[0009]
In the present invention, the formation of the graphite intercalation compound is preferably performed by electrolytically treating the raw carbon fiber. By the electrolytic treatment, a graphite intercalation compound in which atoms, ions, molecules, and the like are taken in between the graphite plane layers can be formed. As the electrolytic solution used in the electrolytic treatment of the raw carbon fiber, an acidic solution can be usually used, and the acidic solution is not particularly limited as long as it causes electrolysis. Acids include organic acids, inorganic acids, and mixtures thereof.Inorganic acids include sulfuric acid, concentrated sulfuric acid, nitric acid, concentrated nitric acid, phosphoric acid, and the like.Organic acids include formic acid and acetic acid. And dilute sulfuric acid (concentration: 9 mol / dm 3 or less) are preferred, and concentrated nitric acid is particularly preferred. Acid concentration in this case is preferably from 5 to 20 mol / dm 3, more preferably from 6~20mol / dm 3. When concentrated nitric acid is used, a nitric acid-graphite intercalation compound is synthesized.
[0010]
As the electrodes and devices used for the above electrolytic treatment, those conventionally used for electrolytic oxidation can be appropriately used. For example, a raw carbon fiber is fixed at the tip of both platinum electrodes, immersed in a concentrated nitric acid electrolytic solution, and subjected to constant current electrolysis to synthesize a nitric acid-graphite intercalation compound.
In addition, the current value and time during electrolysis are selected according to the amount of the raw carbon fiber used for electrolysis, the type of acid, and the selection of the concentration. These conditions can be determined by a person skilled in the art by simple preliminary experiments. For example, when concentrated nitric acid (13 mol / dm 3 ) is used as an electrolytic solution using 0.135 g of pitch-based carbon fiber heat-treated at 3000 ° C., the potential reaches saturation with an increase in the amount of electricity at 0.1 to 2.0 A. , That is, preferably for 10 to 120 minutes, more preferably for 0.5 to 1.0 A for about 20 to 60 minutes.
The formation of the graphite intercalation compound by the electrolytic treatment means that the interlayer distance measured using an X-ray diffractometer is larger than the carbon fiber value before the electrolytic treatment, which is 0.3 to 0.4 nm, which is 0.65 to 0.65 nm. It can be confirmed by being at 0.9 nm.
[0011]
The graphite intercalation compound is then preferably decomposed by heat treatment, the interlayer is expanded, and the fiber is expanded. The decomposition by heat treatment is preferably rapid decomposition by rapid heat treatment so as to instantaneously expand the interlayer, and is preferably performed at 300 to 1200 ° C. for 5 to 60 seconds, and performed at 800 to 1000 ° C. for 5 to 10 seconds. Is more preferable. The heat treatment can be performed using a normal electric furnace or the like.
[0012]
The formation of the expanded carbon fiber can be confirmed by the naked eye, since the fiber is greatly swollen by the expansion treatment. X-ray diffraction of the expanded carbon fiber shows that the carbon laminated structure has been recovered, and further, it can be confirmed by scanning electron micrographs that fibrillation has occurred and that the expanded carbon fiber has been broken into fine structures.
The bulk density of the expanded carbon fiber used in the present invention is preferably 0.001 to 0.01 g / cm 3 .
[0013]
In the present invention, expanded carbon fibers are used as a material for a carbon electrode for an electric double layer capacitor. The method for preparing the carbon electrode for an electric double layer capacitor from the expanded carbon fiber is not particularly limited, and by using the expanded carbon fiber instead of the activated carbon, a conventionally known method for manufacturing an electrode can be appropriately performed. Can be used. For example, an electrode can be formed by sandwiching expanded carbon fibers together with a platinum mesh and glass fiber filter paper on a polytetrafluoroethylene plate. It is also possible to add a binder such as polyethylene, polytetrafluoroethylene, or polyvinylidene fluoride to the expanded carbon fiber, form a pressure roll, and form a sheet or plate to form an electrode.
[0014]
The electric double layer capacitor having the carbon electrode of the present invention can be used with an aqueous electrolyte or a non-aqueous electrolyte, but it is preferable to use an aqueous electrolyte. Examples of the aqueous electrolyte include an aqueous sodium chloride solution, an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, hydrochloric acid, and sulfuric acid. Of these, sulfuric acid is preferred, and concentrated sulfuric acid is particularly preferred, since a remarkably large capacitor capacity can be obtained. Sulfuric acid concentration in this case is preferably 1~18mol / dm 3, more preferably from 5~18mol / dm 3.
[0015]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0016]
Example 1
Expanded carbon fiber sample 0.135 g (length about 50 mm) of pitch-based carbon fiber heat-treated at 3,000 ° C. was subjected to constant-current electrolysis at 0.5 A for 40 minutes using 13 mol / dm 3 of nitric acid as an electrode solution. A nitric acid-graphite intercalation compound was synthesized.
This nitric acid-graphite intercalation compound is inserted into an electric furnace maintained at 1000 ° C., and is heat-treated and rapidly decomposed by holding for 5 seconds. Expanded carbon fibers having a measured pore volume of 10.0 cm 3 / g and a specific surface area of 292 m 2 / g determined by a nitrogen gas adsorption method using a constant volume gas adsorption apparatus (manufactured by Nippon Bell Co., Ltd., BERSORP28SA). Obtained. This was designated as sample a.
[0017]
FIG. 1 is an X-ray diffraction diagram of the raw carbon fiber used in this example, the graphite intercalation compound after electrolysis in nitric acid, and the expanded carbon fiber after heat treatment. Si shown in the figure is a diffraction line by silicon used as an internal standard. According to FIG. 1, after the electrolysis in nitric acid, the graphite intercalation compound is formed, the interlayer distance becomes 0.78 nm, and the carbon laminated structure is restored in the expanded carbon fiber after the heat treatment. .
[0018]
FIG. 2 is a scanning electron micrograph showing the shapes of the raw carbon fiber (a), the graphite intercalation compound (b) after electrolysis in nitric acid, and the expanded carbon fiber (ce) after heat treatment. It is clearly shown that, unlike the raw material carbon fiber and the graphite intercalation compound after electrolysis, the sample subjected to the expansion treatment by the rapid heat treatment is cut into fine fibers reflecting the fibril structure of the carbon fiber.
[0019]
Electrode sample a 0.003 g (length about 25 mm) was weighed, and a platinum mesh (80 mesh, immersion part 13 × 30 × 0.08 mm) and a glass fiber filter paper having a pore diameter of 1 μm (Whatman, GF / B) Grade, 13 × 30 mm) and a jig made of polytetrafluoroethylene to form a working electrode as shown in FIG.
[0020]
Measurement Cell As shown in FIG. 4, a container made of heat-resistant glass (Pyrex) having a capacity of 80 ml was filled with about 60 ml of 1 mol / dm 3 sulfuric acid as an electrolytic solution, and the working electrode and the counter electrode (platinum plate 10 × 30 × 0.05 mm) were filled. ) And a reference electrode (Hg / Hg 2 SO 4 ) were immersed to form a measurement cell of a three-electrode electrochemical cell. Nitrogen gas was always bubbled through the measurement cell to remove dissolved oxygen.
[0021]
Electrochemical measurement An electrochemical measurement was performed using the above-described measurement cell. Using a potentiostat / galvanostat (HA-501G, manufactured by Hokuto Denko) and an arbitrary function generator (HB-105, manufactured by Hokuto Denko), the self potential was measured for about 10 hours, and then the cyclic voltammetry (CV measurement) was performed. In addition, constant current charge / discharge measurement (GC measurement) was performed using a constant current charge / discharge device (HJ-201B manufactured by Hokuto Denko).
FIG. 5 shows the result of the CV measurement (scanning speed 1 mV / s). No redox couple was observed on the cyclic voltammogram obtained as a result of the measurement, indicating typical electric double layer behavior. Based on the equation of I = C · dE / dt, a capacitance of 160 F / g at 0 mV and 115 F / g at 200 mV was calculated for the Hg / Hg 2 SO 4 reference electrode.
In addition, a constant current charge / discharge measurement was performed under the condition of a charge / discharge current of 0.2 mA. FIG. 6 shows a constant current charge / discharge curve obtained as a result of the measurement. The discharge capacity (0.5 to 0 V) in the sixth cycle, calculated from the temporal change rate of the capacitor voltage, was 117 F / g, assuming that the curve at the time of discharging was a straight line, which was in good agreement with the CV measurement result. I have.
[0022]
Example 2
CV measurement and GC measurement were performed in exactly the same manner as in Example 1 except that the electrolytic solution of Example 1 was changed to concentrated sulfuric acid (18 mol / dm 3 ). The cyclic voltammogram obtained by the CV measurement is shown in FIG. FIG. 8 shows a constant current charge / discharge curve obtained by GC measurement. CV measurement (scanning speed 1 mV / s) showed a capacitance of 433 F / g at 0 mV and 460 F / g at 200 mV. The capacity determined from the constant current charge / discharge measurement (0.2 mA) was 555 F / g.
[0023]
Example 3
The capacitance was measured by the CV measurement at 200 mV and the GC measurement at 0.5 to 0 V in exactly the same manner as in Example 1 except that the amount of the sample a used for the electrode was changed to 0.0064 g.
[0024]
Example 4
The capacitance was measured in exactly the same manner as in Example 3, except that the electrolytic solution of Example 3 was replaced with concentrated sulfuric acid (18 mol / dm 3 ).
[0025]
Example 5
0.05 g of pitch-based carbon fiber that had been heat-treated at 3,000 ° C. was subjected to constant current electrolysis at 0.5 A for 40 minutes using 13 mol / dm 3 of nitric acid as an electrode solution to synthesize a nitric acid-graphite intercalation compound.
This nitric acid-graphite intercalation compound is inserted into an electric furnace maintained at 1000 ° C., and is heat-treated and rapidly decomposed by holding it for 30 seconds. The mercury intrusion method using a mercury porosimeter (PASCAL240, manufactured by Amco Corporation) Expanded carbon fibers having a measured pore volume of 9.91 cm 3 / g and a specific surface area of 220 m 2 / g determined by a nitrogen gas adsorption method using a constant-volume gas adsorption apparatus (manufactured by Nippon Bell Co., Ltd., BERSORP28SA). Obtained. This was designated as sample b.
The capacitance was measured by CV measurement in the same manner as in Example 1, except that 0.0036 g of the sample b was used in place of the sample a.
[0026]
Example 6
The CV measurement was performed in exactly the same manner as in Example 5, except that the electrolytic solution of Example 5 was replaced with concentrated sulfuric acid (18 mol / dm 3 ). In addition, GC measurement was performed in the same manner as in Example 1, and the capacitance was measured.
[0027]
Example 7
The CV measurement was performed in exactly the same manner as in Example 5, except that the amount of the sample b used for the electrode was changed to 0.0076 g. In addition, GC measurement was performed in the same manner as in Example 1, and the capacitance was measured.
[0028]
Example 8
The capacitance was measured in exactly the same manner as in Example 7, except that the electrolytic solution of Example 7 was replaced with concentrated sulfuric acid (18 mol / dm 3 ).
Table 1 shows the measurement results of Examples 1 to 8 described above.
[0029]
[Table 1]
Figure 2004087988
[0030]
As shown in Table 1, the capacitance of the carbon electrode of the present invention is larger than the capacitance of about 100 F / g when the conventional activated carbon electrode is used, and particularly when the concentrated sulfuric acid is used as the electrolyte, the capacitance is remarkably large. Is obtained.
[0031]
【The invention's effect】
By using the carbon electrode for an electric double layer capacitor of the present invention, an electric double layer capacitor having a higher capacity than an electric double layer capacitor using a conventional activated carbon electrode can be manufactured. Further, an extremely high electric double layer capacitor can be manufactured by using sulfuric acid as the electrolyte.
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction diagram of a raw carbon fiber, a graphite intercalation compound after electrolysis in nitric acid, and an expanded carbon fiber after heat treatment.
FIG. 2 is a scanning electron micrograph of a raw carbon fiber (a), a graphite intercalation compound (b) after electrolysis in nitric acid, and an expanded carbon fiber (ce) after heat treatment.
FIG. 3 is an explanatory diagram of a working electrode used in an example.
FIG. 4 is an explanatory view of a three-electrode electrochemical cell used in an example.
FIG. 5 is a diagram showing a cyclic voltammogram of Example 1.
FIG. 6 is a diagram showing a constant current charge / discharge curve of Example 1.
FIG. 7 is a diagram showing a cyclic voltammogram of Example 2.
FIG. 8 is a diagram showing a constant current charge / discharge curve of Example 2.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Carbon material 2 Platinum net 3 Glass fiber filter paper 4,5 Polytetrafluoroethylene plate 6 Working electrode 7 Electrolyte solution 8 Nitrogen gas 9 Counter electrode 10 Reference electrode

Claims (3)

膨張化炭素繊維を用いたことを特徴とする電気二重層キャパシタ用炭素電極。A carbon electrode for an electric double layer capacitor, characterized by using expanded carbon fibers. 電解液が硫酸である電気二重層キャパシタに用いることを特徴とする請求項1記載の電気二重層キャパシタ用炭素電極。2. The carbon electrode for an electric double layer capacitor according to claim 1, wherein the carbon electrolyte is sulfuric acid. 膨張化炭素繊維が原料炭素繊維を該黒鉛層間化合物とし、これを分解して得られたことを特徴とする請求項1又は2記載の電気二重層キャパシタ用炭素電極。3. The carbon electrode for an electric double layer capacitor according to claim 1, wherein the expanded carbon fiber is obtained by decomposing the raw material carbon fiber as the graphite intercalation compound.
JP2002249730A 2002-08-28 2002-08-28 Carbon electrode for electric double-layer capacitor Pending JP2004087988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002249730A JP2004087988A (en) 2002-08-28 2002-08-28 Carbon electrode for electric double-layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002249730A JP2004087988A (en) 2002-08-28 2002-08-28 Carbon electrode for electric double-layer capacitor

Publications (1)

Publication Number Publication Date
JP2004087988A true JP2004087988A (en) 2004-03-18

Family

ID=32056762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002249730A Pending JP2004087988A (en) 2002-08-28 2002-08-28 Carbon electrode for electric double-layer capacitor

Country Status (1)

Country Link
JP (1) JP2004087988A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005299040A (en) * 2004-04-14 2005-10-27 Sakai Ovex Co Ltd Expanded carbon fiber, method for producing the same and field emission device and field emission display containing the same
JP2010111990A (en) * 2008-10-06 2010-05-20 Oita Univ Expanded carbon fiber, method for producing the same, and solar cell
KR101268872B1 (en) 2011-06-28 2013-05-29 한국세라믹기술원 Supercapacitor and manufacturing method of the same
JP2021086656A (en) * 2019-11-25 2021-06-03 トヨタ自動車株式会社 Aqueous battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005299040A (en) * 2004-04-14 2005-10-27 Sakai Ovex Co Ltd Expanded carbon fiber, method for producing the same and field emission device and field emission display containing the same
JP4554260B2 (en) * 2004-04-14 2010-09-29 サカイオーベックス株式会社 Expanded carbon fiber, method for producing the same, field emission device including the same, and field emission display
JP2010111990A (en) * 2008-10-06 2010-05-20 Oita Univ Expanded carbon fiber, method for producing the same, and solar cell
KR101268872B1 (en) 2011-06-28 2013-05-29 한국세라믹기술원 Supercapacitor and manufacturing method of the same
JP2021086656A (en) * 2019-11-25 2021-06-03 トヨタ自動車株式会社 Aqueous battery
JP7156258B2 (en) 2019-11-25 2022-10-19 トヨタ自動車株式会社 Aqueous battery

Similar Documents

Publication Publication Date Title
US7923411B2 (en) Activated carbon material, and production method and use thereof
Liu et al. Biowaste-derived 3D honeycomb-like porous carbon with binary-heteroatom doping for high-performance flexible solid-state supercapacitors
JP5473282B2 (en) Carbon material for electric double layer capacitor and manufacturing method thereof
JP5392735B2 (en) Capacitor electrode and manufacturing method thereof
JP2006179697A (en) Coking coal composition of electrode carbon material of electric double-layer capacitor
JP4877441B2 (en) Activated carbon, manufacturing method thereof, polarizable electrode, and electric double layer capacitor
JP2014530502A (en) High voltage electrochemical double layer capacitor
KR20110137388A (en) Carbon material for electric double layer capacitor electrode and method for producing same
JP5004501B2 (en) Activated carbon and electric double layer capacitor using the same
JP4576374B2 (en) Activated carbon, its production method and its use
Wu et al. Atmosphere-free pyrolysis of harakeke fiber: A new chamber-induced activation methodology for porous carbon electrodes in supercapacitors
JP2005129924A (en) Metal collector for use in electric double layer capacitor, and polarizable electrode as well as electric double layer capacitor using it
Yang et al. A bubble-templated approach to holey N/S-codoped carbon nanosheet aerogels with honeycomb-like structure for supercapacitors
JP4941952B2 (en) Activated carbon, its production method and its use
JP2004087988A (en) Carbon electrode for electric double-layer capacitor
JP4916632B2 (en) Vapor grown carbon fiber and its use
JP2008147283A (en) Electric double-layer capacitor, active carbon for electrode of the capacitor, and manufacturing method for the active carbon
JP4179581B2 (en) Activated carbon, its production method and its use
JP2001319837A (en) Activated carbon for electric double-layer capacitor
JP5518828B2 (en) Activated carbon, polarizable electrode and electric double layer capacitor
JP4453174B2 (en) Electric double layer capacitor
Nashiru et al. Molten salt synthesis of nitrogen-doped hierarchical porous carbon from plantain peels for high performance supercapacitor
Laleh Development of High Energy Density Electrochemical Capacitor
JP7130750B2 (en) Manufacturing method of activated carbon for electrode material
CN107170590A (en) A kind of electrode material for super capacitor and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050818

A711 Notification of change in applicant

Effective date: 20050905

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Effective date: 20050906

Free format text: JAPANESE INTERMEDIATE CODE: A821

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20051013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060118

A131 Notification of reasons for refusal

Effective date: 20070522

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20070925

Free format text: JAPANESE INTERMEDIATE CODE: A02