JP2004087694A - Electric connector - Google Patents

Electric connector Download PDF

Info

Publication number
JP2004087694A
JP2004087694A JP2002245390A JP2002245390A JP2004087694A JP 2004087694 A JP2004087694 A JP 2004087694A JP 2002245390 A JP2002245390 A JP 2002245390A JP 2002245390 A JP2002245390 A JP 2002245390A JP 2004087694 A JP2004087694 A JP 2004087694A
Authority
JP
Japan
Prior art keywords
conductive
conductive contact
contact element
insulating substrate
electrical connector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002245390A
Other languages
Japanese (ja)
Other versions
JP4215468B2 (en
Inventor
Takeshi Imai
今井 剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2002245390A priority Critical patent/JP4215468B2/en
Publication of JP2004087694A publication Critical patent/JP2004087694A/en
Application granted granted Critical
Publication of JP4215468B2 publication Critical patent/JP4215468B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric connector wherein a heat sink is unnecessary to be made large and the consumption power of an electronic device can be suppressed. <P>SOLUTION: The connector is provided with an insulation substrate 20 interposed between a circuit board 1 and a semiconductor package 10, and a plurality of conductive contacts 22 that are placed side by side on the insulation substrate 20 and are penetrated and held thereon and are in contact with the electrodes 11 of the circuit board 1 and the semiconductor package 10. Each of the conductive contacts 22 is made nearly hexagonal, octagonal or like a abacus-bead by using a conductive elastomer 30, and its thermal conductivity is set to 1.5-3.5W/m°C. The conductive contact 22 demonstrates electric connector function and heat radiation function, thereby conveying a heat of the semiconductor package 10 to the circuit board 1, so that it becomes unnecessary to make a heat sink large or increase the volume of feed air for the heat sink. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、回路基板や半導体パッケージ等からなる各種の電気電子部品を電気的に接続する電気コネクタに関するものである。
【0002】
【従来の技術】
従来の電気コネクタは、例えばUS6,348,659B1に開示されているように、回路基板と半導体パッケージとの間に介在する絶縁基板と、この絶縁基板に並べて貫通支持され、回路基板と半導体パッケージの電極に接触する複数の導電接点素子とから構成されている。各導電接点素子は、上記公報に開示されているように、導電ゴムを用いて円錐台形、樽形、円柱形、断面略八角形等に成形されている。
【0003】
【発明が解決しようとする課題】
ところで、消費電力や発熱量の大きい半導体素子を使用する場合には、何らかの放熱部材を設けなければ、半導体素子の性能に悪影響を及ぼすこととなる。特に、半導体パッケージの半導体素子が発熱し、70℃を超えて使用されるときには、半導体素子が誤動作したり、故障するおそれがある。
そこで、従来においては、半導体素子にヒートシンクを直接取り付けたり、ヒートシンクに空気を送風して冷却するようにしている。
【0004】
しかしながら、半導体素子は、近年さらに高性能化して発熱量がますます増大する傾向にあり、中には消費電力が10Wを超えるタイプも出現してきている。これに対処するには、ヒートシンクを大型化せざるを得ず、その分大きなスペースを確保しなければならないことになる。また、ヒートシンクに対する送風量を増やすと、電子機器の消費電力の増大を招くおそれが少なくない。
【0005】
本発明は、上記に鑑みなされたもので、ヒートシンクを大型化する必要がなく、電子機器の消費電力を抑制することのできる電気コネクタを提供することを目的としている。
【0006】
【課題を解決するための手段】
本発明においては、上記課題を達成するため、複数の電気接合物間を電気的に接続するものであって、
電気接合物の電極に接触する導電接点素子を備え、この導電接点素子を導電性エラストマーにより形成してその熱伝導率を1.5〜3.5W/m・℃としたことを特徴としている。
【0007】
なお、複数の電気接合物間に、導電接点素子を貫通支持する絶縁基板を介在し、導電接点素子を、絶縁基板からそれぞれ露出する一対の錐台と、この一対の錐台間を接続して絶縁基板を貫通する貫通接続部とから一体形成し、一対の錐台間の長さを0.5〜2.2mmとし、各錐台の拡幅部の幅を0.3〜0.8mmとするとともに、各錐台の縮幅部の幅を0.2〜0.6mmとし、貫通接続部の幅を0.2〜0.6mmとすることが好ましい。
【0008】
ここで特許請求の範囲における電気接合物には、少なくとも各種の回路基板(例えば、プリント配線板、フレキシブル基板、検査基板等)、半導体パッケージ(例えば、BGAやLGA等)、電気音響部品、電子部品等が含まれる。導電接点素子は、電気接合物の数に応じて単数複数いずれでも良い。この導電接点素子は、円錐台形、角錐台形、多角形の錐台形、樽形、円柱形、断面略六角形、断面略八角形、断面略小判形等に適宜形成される。また、絶縁基板は、可撓性の有無を特に問うものではない。
【0009】
本発明によれば、複数の電気接合物の間に電気コネクタを配置してその導電接点素子を電気接合物にそれぞれ電気的に接続し、導電接点素子を圧縮すれば、複数の電気接合物を電気コネクタを介して電気的に接続することができる。熱伝導率の良い導電接点素子がコネクタ機能と放熱機能とを発揮するので、一の電気接合物の熱を他の電気接合物側に伝熱することができる。
【0010】
また、本発明によれば、絶縁基板に単数複数の導電接点素子を支持させるので、導電接点素子の姿勢の安定や位置決めの容易化等を図ることができる。また、導電接点素子を構成する一対の錐台間の長さが0.5〜2.2mmの範囲なので、少なくとも低抵抗を得ることができる。また、錐台の拡幅部の幅が0.3〜0.8mmの範囲なので、少なくとも狭ピッチを得ることができる。さらに、縮幅部の幅が0.2〜0.6mmの範囲であるから、最低限抵抗を低く安定させることが可能になる。さらにまた、貫通接続部25の幅が0.2〜0.6mmの範囲であるから、低抵抗化が期待できる。
【0011】
【発明の実施の形態】
以下、図面を参照して本発明の好ましい実施形態を説明すると、本実施形態における電気コネクタは、図1ないし図3に示すように、回路基板1と半導体パッケージ10との間に介在する絶縁基板20と、この絶縁基板20に並べて貫通支持され、回路基板1と半導体パッケージ10の電極2・11に接触する複数の導電接点素子22とを備え、各導電接点素子22を導電性エラストマー30により形成してその熱伝導率を1.5〜3.5W/m・℃とするようにしている。
【0012】
回路基板1は、例えば積層板からなる絶縁基板を備え、この絶縁基板の内外に、導電性を有する複数の配線パターンや電極2が適宜形成される。また、半導体パッケージ10としては、図1に示すように、例えば下面に複数の電極11が格子形に配列された表面実装用エリアアレイ型のLGAが使用される。
【0013】
絶縁基板20は、図2に示すように、所定の材料を使用して可撓性の平面矩形に形成され、XYの厚さ方向に複数の貫通孔21が所定の間隔で規則的に配列穿孔される。この絶縁基板20の材料としては、ポリイミド、ガラスエポキシ、PET、PEN、PEI、PPS、PEEK、液晶ポリマー等があげられる。これらの中でも、熱膨張係数が小さく、耐熱性に優れるポリイミドが最適である。
【0014】
各導電接点素子22は、図2や図3に示すように、導電性エラストマー30を使用して断面略八角形の縦長に形成され、上下の端部周縁の丸みが除去されており、絶縁基板20の貫通孔21に一体的に設けられる。導電性エラストマー30は、所定の絶縁性エラストマーに導電粒子が配合された導電性組成物からなる。絶縁性エラストマーとしては、硬化前に流動性を有し、硬化により架橋構造を有する各種のエラストマー(常温付近でゴム状弾性を有するものの総称)が使用される。
【0015】
具体的には、シリコーンゴム、フッ素ゴム、ポリウレタンゴム、ポリブタジエンゴム、ポリイソプロピレンゴム、クロロプレンゴム、ポリエステル系ゴム、スチレン・ブタジエン共重合体ゴム、天然ゴム等があげられる。また、これらの独立・連泡の発泡体等も該当する。これらの中でも、電気絶縁性、耐熱性、圧縮永久歪み、加工性等に優れるシリコーンゴムが最適である。
【0016】
導電粒子としては、粒状あるいはフレーク状のタイプがあげられる。具体的には、金、銀、銅、プラチナ、パラジウム、ニッケル、アルミニウム等の金属単体、あるいはこれらの合金からなる粒子の他、フェノール樹脂、エポキシ樹脂、シリコーン樹脂、ウレタン樹脂等の熱可塑性樹脂や熱硬化性樹脂、これらの焼成品、カーボン、セラミックス、シリカ等の無機材料を核として表面が上記金属によりメッキ、蒸着、スパッタ等の方法で被覆された粒子があげられる。
【0017】
導電粒子は、粒状あるいはフレーク状のものを単体で、あるいは混合して使用することが可能である。この導電粒子は、抵抗やコストの観点から、粒状の銀粒子を、絶縁性エラストマー材料100質量部に対して410〜590質量部の範囲で配合するのが好ましい。また、熱伝導率を向上させるため、補助的にアルミナ(酸化アルミ)粉末や酸化チタン粉末を添加することができる。
【0018】
各導電接点素子22は、図3に示すように、絶縁基板20の表裏両面からそれぞれ突出する一対の円錐台23と、この一対の円錐台23間を接続して絶縁基板20の貫通孔21を貫通する円柱形の貫通接続部24とから一体形成される。上下一対の円錐台23間の長さである高さ23Hは、0.5〜2.2mmの範囲、より好ましくは0.8〜1.2mmの範囲が良い。これは、かかる範囲から逸脱すると、低抵抗を得ることができなくなるおそれがあり、又圧縮許容範囲を考慮したものである。
【0019】
各円錐台23は、その拡径部の径23A(幅)が0.3〜0.8mmの範囲、より好ましくは0.7mmが最適であり、平坦な縮径部の径23M(幅)が0.2〜0.6mmの範囲、好ましくは0.5mmが良い。拡径部の径23Aが0.3〜0.8mmの範囲なのは、この範囲から外れると、狭ピッチを得られなくなるからであり、又絶縁基板20や導電接点素子22の接合強度を考慮したものである。また、縮径部の径23Mが0.2〜0.6mmの範囲なのは、この範囲ならば、抵抗を低く安定させ、狭ピッチを確保することができるという理由に基づく。また、貫通孔21の径、換言すれば、貫通接続部24の径24A(幅)は、0.2〜0.6mm、より好ましくは0.5mmが良い。これは、低抵抗化や絶縁基板20と導電接点素子22の接合強度を考慮したものである。
【0020】
さらに、各導電接点素子22の熱伝導率は1.5〜3.5W/m・℃の範囲が好ましい。これは、熱伝導率が1.5W/m・℃未満の場合には、熱伝導性が十分ではないので、半導体素子が70℃以上に発熱することがあり、半導体素子が誤動作したり、故障するおそれがあるからである。逆に、熱伝導率が3.5W/m・℃を超える場合には、熱伝導性には問題がないものの、導電粒子を高充填しなければならないので、導電性組成物の可塑度が上昇し、加工性が悪化するからである。また、硬化物の硬度が高くなって荷重が増大したり、導電粒子の高充填に伴い、コストアップを招くからである。
【0021】
このような電気コネクタを製造する場合には、先ず、絶縁基板20に複数の貫通孔21を穿孔し、この絶縁基板20上に導電性シリコーンゴムからなる導電性エラストマー30を重ねて金型31にセットする(図4参照)。こうして準備が完了したら、金型31を型締めして加圧加熱成形(図5参照)し、絶縁基板20と導電接点素子22とが一体化した電気コネクタを製造し、その後、金型31を型開きすれば、電気コネクタを取り出して使用することができる(図6参照)。
【0022】
上記構成において、回路基板1と半導体パッケージ10との間に電気コネクタを介在してその複数の導電接点素子22における上下両端部を回路基板1と半導体パッケージ10の電極2・11にそれぞれ導通可能に弾接し、半導体パッケージ10を圧下押圧して複数の導電接点素子22を圧縮させれば、回路基板1と半導体パッケージ10とを電気コネクタを介して電気的に導通接続することができる(図1参照)。
【0023】
上記構成によれば、導電接点素子22が電気コネクタ機能と放熱機能とを発揮するので、半導体パッケージ10の熱を回路基板1側に伝熱することができる。したがって、ヒートシンクの大型化やヒートシンクに対する送風量の増加を図る必要が全くない。特に、2.5W以上の電力を消費する半導体素子の場合には、きわめて有意義である。また、導電接点素子22の上下両端部の周縁が図3のように角張っているので、導電接点素子22の端面面積の拡大に伴い電極接触部分が拡大し、半導体パッケージ10と導電接点素子22の接触面積が小さくなることがない。したがって、初期接続を安定させ、抵抗値の上昇を抑制することができる。さらに、導電接点素子22を圧縮して接触面積を拡大する必要がないから、接続時に大きな荷重が必要になることがない。
【0024】
次に、図7は本発明の第2の実施形態を示すもので、この場合には、各導電接点素子22をストレートで拡径の円柱形に成形するようにしている。その他の部分については、上記実施形態と同様であるので説明を省略する。
本実施形態においても上記実施形態と同様の作用効果が期待でき、しかも、導電接点素子22の形状の多様化を図ることができるのは明らかである。
【0025】
次に、図8は本発明の第3の実施形態を示すもので、この場合には、各導電接点素子22をストレートで縮径の円柱形に成形するようにしている。その他の部分については、上記実施形態と同様であるので説明を省略する。
本実施形態においても上記実施形態と同様の作用効果が期待でき、しかも、導電接点素子22の形状の多様化を図ることができるのは明らかである。
【0026】
次に、図9は本発明の第4の実施形態を示すもので、この場合には、各導電接点素子22を基本的には円柱形に成形してその上下両端部をそれぞれ半球形に湾曲形成するようにしている。その他の部分については、上記実施形態と同様であるので説明を省略する。
本実施形態においても上記実施形態と同様の作用効果が期待でき、しかも、導電接点素子22の形状の多様化を図ることができるのは明白である。
【0027】
次に、図10は本発明の第5の実施形態を示すもので、この場合には、各導電接点素子22を略球形に形成するようにしている。その他の部分については、上記実施形態と同様であるので説明を省略する。
本実施形態においても上記実施形態と同様の作用効果が期待でき、しかも、導電接点素子22の設計の自由度を大幅に向上させることができるのは明白である。
【0028】
次に、図11は本発明の第6の実施形態を示すもので、この場合には、各導電接点素子22を基本的には円柱形に成形してその上下両端部をそれぞれ円錐台形に形成するようにしている。その他の部分については、上記実施形態と同様であるので説明を省略する。
本実施形態においても上記実施形態と同様の作用効果が期待でき、しかも、導電接点素子22の設計の自由度を大幅に向上させることができる。
【0029】
次に、図12は本発明の第7の実施形態を示すもので、この場合には、各導電接点素子22を基本的には円錐台形に成形してその周面を凹ませながら湾曲させるようにしている。その他の部分については、上記実施形態と同様であるので説明を省略する。
本実施形態においても上記実施形態と同様の作用効果が期待でき、しかも、導電接点素子22の形状の多様化を図ることが可能になる。
【0030】
【実施例】
実施例1、実施例2、比較例1、比較例2に示す電気コネクタをそれぞれ作製し、これらを図13に示すように、回路基板と測定用熱電対を搭載したヒータの間に介在し、ヒータ表面温度を測定・評価した。
実施例1の電気コネクタ
電気コネクタを、厚さ0.1mmのポリイミドからなる絶縁基板と、この絶縁基板に1mmピッチで並べて貫通支持される1156個の導電接点素子(34個×34個)とから構成し、各導電接点素子を熱伝導率2.6W/m・℃の導電性シリコーンゴム組成物により成形した(図2参照)。
【0031】
導電性シリコーンゴム組成物は、メチルビニルポリシロキサン100質量部、及び粒状銀粉末500質量部と、これらの混合物100質量部に対してジクミルパーオキサイド0.5質量部配合することにより調製した。この導電性シリコーンゴム組成物は厚み6mm、幅50mm、長さ100mmに加工し、熱伝導率は京都電子工業株式会社製の測定装置〔商品名QTM‐D3〕で測定した。また、各導電接点素子を形成する一対の円錐台間の高さを1.0mmとし、円錐台の拡径部の径を0.7mmとするとともに、縮径部の径を0.5mmとし、貫通孔の径を0.5mmとした(図14参照)。
【0032】
実施例2の電気コネクタ
基本的には実施例1と同様だが、メチルビニルポリシロキサン100質量部、及び粒状銀粉末550質量部と、これらの混合物100質量部に対してジクミルパーオキサイド0.5質量部配合して熱伝導率が3.1W/m・℃の導電性シリコーンゴム組成物を調製した。
本実施例の電気コネクタは、3.1W/m・℃という良好な熱伝導率を得ることができたが、粒状銀粉末の増加に伴い実施例1の電気コネクタに比べてゴムの硬度が上昇し、加工性の低下を招いた。
【0033】
比較例1の電気コネクタ
基本的には実施例1と同様だが、メチルビニルポリシロキサン100質量部、及び粒状銀粉末400質量部と、これらの混合物100質量部に対してジクミルパーオキサイド0.5質量部配合して熱伝導率が1.4W/m・℃の導電性シリコーンゴム組成物を調製した。
本実施例の電気コネクタは、1.4W/m・℃という不十分な熱伝導率しか得ることができず、半導体パッケージの半導体素子が誤動作した。
【0034】
比較例2の電気コネクタ
基本的には実施例1と同様だが、メチルビニルポリシロキサン100質量部、及び粒状銀粉末600質量部と、これらの混合物100質量部に対してジクミルパーオキサイド0.5質量部配合して熱伝導率が3.6W/m・℃の導電性シリコーンゴム組成物を調製した。
本実施例の電気コネクタは、3.6W/m・℃という良好な熱伝導率を得ることができたものの、導電性シリコーンゴム組成物の可塑度が必要以上に上昇し、加工性が悪化した。さらに、ゴム硬さ(JISK6253:デュロメータ硬さ タイプA)が80を越えてしまい、圧縮荷重が増大し、回路基板が損傷した。
【0035】
【表1】

Figure 2004087694
【0036】
実施例1の電気コネクタと比較例1の電気コネクタに関し、ヒータ表面温度を測定して図15のグラフにまとめた。このグラフからも明らかなように、実施例1の電気コネクタを使用した場合には、ヒータ表面温度の温度上昇が少なく、良好な放熱効果を得ることができた。
【0037】
【発明の効果】
以上のように本発明によれば、ヒートシンクを大型化する必要がなく、しかも、電子機器の消費電力を抑制することができるという効果がある。
【図面の簡単な説明】
【図1】本発明に係る電気コネクタの実施形態を示す説明図である。
【図2】本発明に係る電気コネクタの実施形態を示す斜視説明図である。
【図3】本発明に係る電気コネクタの実施形態における導電接点素子を示す模式断面説明図である。
【図4】本発明に係る電気コネクタの実施形態における絶縁基板に貫通孔を設け、絶縁基板上に導電エラストマーを重ねて金型にセットした状態を示す模式断面説明図である。
【図5】図4の金型を型締めして成形する状態を示す模式断面説明図である。
【図6】図5の金型を型開きして電気コネクタを取り出す状態を示す模式断面説明図である。
【図7】本発明に係る電気コネクタの第2の実施形態を示す模式断面説明図である。
【図8】本発明に係る電気コネクタの第3の実施形態を示す模式断面説明図である。
【図9】本発明に係る電気コネクタの第4の実施形態を示す模式断面説明図である。
【図10】本発明に係る電気コネクタの第5の実施形態を示す模式断面説明図である。
【図11】本発明に係る電気コネクタの第6の実施形態を示す模式断面説明図である。
【図12】本発明に係る電気コネクタの第7の実施形態を示す模式断面説明図である。
【図13】本発明に係る電気コネクタの実施例を示す全体説明図である。
【図14】図13の電気コネクタの導電接点素子を示す模式断面説明図である。
【図15】本発明に係る電気コネクタの実施例におけるヒータ表面温度と時間の関係を示すグラフである。
【符号の説明】
1     回路基板(電気接合物)
10    半導体パッケージ(電気接合物)
20    絶縁基板
21    貫通孔
22    導電接点素子
23    円錐台(錐台)
23A   円錐台の拡径部の径(錐台の拡幅部の幅)
23H   一対の円錐台間の高さ(一対の錐台間の長さ)
23M   円錐台の縮径部の径(錐台の縮幅部の幅)
24    貫通接続部
24A   貫通接続部の径(貫通接続部の幅)
30    導電性エラストマー[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrical connector for electrically connecting various electrical and electronic components such as a circuit board and a semiconductor package.
[0002]
[Prior art]
2. Description of the Related Art As disclosed in, for example, US Pat. No. 6,348,659B1, a conventional electrical connector includes an insulating substrate interposed between a circuit board and a semiconductor package, and a penetrating support provided side by side with the insulating substrate. And a plurality of conductive contact elements in contact with the electrodes. As disclosed in the above publication, each conductive contact element is formed into a truncated cone, barrel, column, substantially octagonal cross section, or the like using conductive rubber.
[0003]
[Problems to be solved by the invention]
By the way, when a semiconductor element having large power consumption and heat generation is used, the performance of the semiconductor element is adversely affected unless some heat radiation member is provided. In particular, when the semiconductor element of the semiconductor package generates heat and is used at a temperature exceeding 70 ° C., the semiconductor element may malfunction or break down.
Therefore, conventionally, a heat sink is directly attached to the semiconductor element, or air is blown to the heat sink to cool the semiconductor element.
[0004]
However, in recent years, the performance of semiconductor devices has been further improved, and the amount of heat generation has tended to increase further. Some types of semiconductor devices have a power consumption exceeding 10 W. To cope with this, the size of the heat sink must be increased, and a larger space must be secured. Also, increasing the amount of air blown to the heat sink often increases the power consumption of the electronic device.
[0005]
The present invention has been made in view of the above, and an object of the present invention is to provide an electrical connector that does not require a large heat sink and can suppress power consumption of an electronic device.
[0006]
[Means for Solving the Problems]
In the present invention, in order to achieve the above object, electrically connecting a plurality of electrical joints,
It is provided with a conductive contact element which is in contact with the electrode of the electric joint, and the conductive contact element is formed of a conductive elastomer and has a thermal conductivity of 1.5 to 3.5 W / m · ° C.
[0007]
Note that, between the plurality of electrical joints, an insulating substrate that penetrates and supports the conductive contact element is interposed, and the conductive contact element is connected between the pair of frustums respectively exposed from the insulating substrate and the pair of frustums. Integrally formed with a through connection portion penetrating the insulating substrate, the length between the pair of frustums is 0.5 to 2.2 mm, and the width of the widened portion of each frustum is 0.3 to 0.8 mm. At the same time, the width of the reduced width portion of each frustum is preferably set to 0.2 to 0.6 mm, and the width of the through connection portion is preferably set to 0.2 to 0.6 mm.
[0008]
Here, the electrical joint in the claims includes at least various types of circuit boards (eg, printed wiring boards, flexible boards, inspection boards, etc.), semiconductor packages (eg, BGA, LGA, etc.), electroacoustic components, and electronic components. Etc. are included. One or more conductive contact elements may be used depending on the number of electrical joints. The conductive contact element is appropriately formed into a truncated cone, a truncated pyramid, a polygonal truncated cone, a barrel, a cylinder, a substantially hexagonal cross section, a substantially octagonal cross section, a substantially oval cross section, or the like. Further, the insulating substrate does not particularly matter whether or not it has flexibility.
[0009]
According to the present invention, a plurality of electric joints can be formed by disposing an electric connector between the plurality of electric joints, electrically connecting the conductive contact elements to the electric joints, and compressing the conductive contact elements. It can be electrically connected via an electrical connector. Since the conductive contact element having good thermal conductivity exhibits a connector function and a heat radiation function, the heat of one electric joint can be transferred to the other electric joint.
[0010]
Further, according to the present invention, since one or more conductive contact elements are supported on the insulating substrate, it is possible to stabilize the posture of the conductive contact elements, facilitate positioning, and the like. Further, since the length between the pair of frustums constituting the conductive contact element is in the range of 0.5 to 2.2 mm, at least low resistance can be obtained. Further, since the width of the widened portion of the frustum is in the range of 0.3 to 0.8 mm, at least a narrow pitch can be obtained. Further, since the width of the reduced width portion is in the range of 0.2 to 0.6 mm, it is possible to stabilize the resistance at a minimum. Furthermore, since the width of the through connection portion 25 is in the range of 0.2 to 0.6 mm, a reduction in resistance can be expected.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. As shown in FIGS. 1 to 3, an electric connector according to the present embodiment includes an insulating substrate interposed between a circuit board 1 and a semiconductor package 10. 20; and a plurality of conductive contact elements 22 which are arranged side by side on the insulating substrate 20 and which are in contact with the circuit boards 1 and the electrodes 2 and 11 of the semiconductor package 10. The conductive contact elements 22 are formed of a conductive elastomer 30. Then, the thermal conductivity is set to 1.5 to 3.5 W / m · ° C.
[0012]
The circuit board 1 includes an insulating substrate made of, for example, a laminated plate, and a plurality of conductive wiring patterns and electrodes 2 are appropriately formed inside and outside the insulating substrate. As the semiconductor package 10, as shown in FIG. 1, for example, a surface mounting area array type LGA in which a plurality of electrodes 11 are arranged in a lattice pattern on the lower surface is used.
[0013]
As shown in FIG. 2, the insulating substrate 20 is formed in a flexible flat rectangular shape using a predetermined material, and a plurality of through holes 21 are regularly arranged at predetermined intervals in the XY thickness direction. Is done. Examples of the material of the insulating substrate 20 include polyimide, glass epoxy, PET, PEN, PEI, PPS, PEEK, and liquid crystal polymer. Among them, polyimide having a small coefficient of thermal expansion and excellent heat resistance is most suitable.
[0014]
As shown in FIGS. 2 and 3, each conductive contact element 22 is formed in a vertically long shape having a substantially octagonal cross section using a conductive elastomer 30, and the roundness of the upper and lower ends is removed. 20 are provided integrally with the through holes 21. The conductive elastomer 30 is made of a conductive composition in which conductive particles are mixed with a predetermined insulating elastomer. As the insulating elastomer, various elastomers having fluidity before curing and having a cross-linked structure by curing (general name of those having rubber-like elasticity at around normal temperature) are used.
[0015]
Specific examples include silicone rubber, fluorine rubber, polyurethane rubber, polybutadiene rubber, polyisopropylene rubber, chloroprene rubber, polyester rubber, styrene / butadiene copolymer rubber, and natural rubber. In addition, these closed-cell foams and the like also correspond. Among these, silicone rubber, which is excellent in electrical insulation, heat resistance, compression set, workability and the like, is most suitable.
[0016]
Examples of the conductive particles include a granular or flake type. Specifically, gold, silver, copper, platinum, palladium, nickel, aluminum and other simple metals or particles of these alloys, as well as phenolic resins, epoxy resins, silicone resins, thermoplastic resins such as urethane resins and Examples thereof include particles of a thermosetting resin, a baked product thereof, or an inorganic material such as carbon, ceramics, or silica as a nucleus and the surface of which is coated with the above metal by plating, vapor deposition, sputtering, or the like.
[0017]
As the conductive particles, granular or flake-like particles can be used alone or as a mixture. From the viewpoint of resistance and cost, the conductive particles preferably contain granular silver particles in a range of 410 to 590 parts by mass with respect to 100 parts by mass of the insulating elastomer material. In order to improve the thermal conductivity, alumina (aluminum oxide) powder or titanium oxide powder can be added in an auxiliary manner.
[0018]
As shown in FIG. 3, each conductive contact element 22 has a pair of truncated cones 23 protruding from the front and back surfaces of the insulating substrate 20, and connects between the pair of truncated cones 23 to form a through hole 21 of the insulating substrate 20. It is formed integrally with a cylindrical through connection portion 24 that penetrates. The height 23H, which is the length between the pair of upper and lower truncated cones 23, is preferably in the range of 0.5 to 2.2 mm, more preferably 0.8 to 1.2 mm. This is because, if it deviates from such a range, a low resistance may not be obtained, and the allowable compression range is taken into consideration.
[0019]
Each of the truncated cones 23 has a diameter 23A (width) of the enlarged diameter portion in the range of 0.3 to 0.8 mm, more preferably 0.7 mm, and a diameter 23M (width) of the flat reduced diameter portion. The range is 0.2 to 0.6 mm, preferably 0.5 mm. The reason why the diameter 23A of the enlarged diameter portion is in the range of 0.3 to 0.8 mm is that if it is out of this range, a narrow pitch cannot be obtained, and the bonding strength of the insulating substrate 20 and the conductive contact element 22 is taken into consideration. It is. Further, the reason why the diameter 23M of the reduced diameter portion is in the range of 0.2 to 0.6 mm is based on the reason that if the diameter is within this range, the resistance can be reduced and stabilized and a narrow pitch can be secured. Further, the diameter of the through hole 21, in other words, the diameter 24 A (width) of the through connection portion 24 is preferably 0.2 to 0.6 mm, more preferably 0.5 mm. This takes into account the reduction in resistance and the bonding strength between the insulating substrate 20 and the conductive contact element 22.
[0020]
Further, the thermal conductivity of each conductive contact element 22 is preferably in the range of 1.5 to 3.5 W / m · ° C. This is because when the thermal conductivity is less than 1.5 W / m · ° C., the thermal conductivity is not sufficient, and the semiconductor element may generate heat at 70 ° C. or more, causing the semiconductor element to malfunction or fail. This is because there is a risk of doing so. Conversely, when the thermal conductivity exceeds 3.5 W / m · ° C., there is no problem in the thermal conductivity, but the conductive particles must be highly filled, and the plasticity of the conductive composition increases. This is because workability deteriorates. In addition, the hardness of the cured product increases, the load increases, and the cost increases due to the high filling of the conductive particles.
[0021]
In the case of manufacturing such an electrical connector, first, a plurality of through holes 21 are formed in the insulating substrate 20, and a conductive elastomer 30 made of conductive silicone rubber is superimposed on the insulating substrate 20 to form a mold 31. Set (see FIG. 4). When the preparation is completed in this way, the mold 31 is clamped and pressurized and heated (see FIG. 5) to manufacture an electrical connector in which the insulating substrate 20 and the conductive contact element 22 are integrated. When the mold is opened, the electrical connector can be taken out and used (see FIG. 6).
[0022]
In the above-described configuration, the upper and lower ends of the plurality of conductive contact elements 22 are electrically connected to the circuit board 1 and the electrodes 2 and 11 of the semiconductor package 10 by interposing an electrical connector between the circuit board 1 and the semiconductor package 10. When the plurality of conductive contact elements 22 are compressed by pressing the semiconductor package 10 downwardly by elastic contact, the circuit board 1 and the semiconductor package 10 can be electrically conductively connected via an electrical connector (see FIG. 1). ).
[0023]
According to the above configuration, since the conductive contact element 22 exhibits an electric connector function and a heat dissipation function, the heat of the semiconductor package 10 can be transferred to the circuit board 1 side. Therefore, there is no need to increase the size of the heat sink or increase the amount of air blown to the heat sink. In particular, in the case of a semiconductor device consuming power of 2.5 W or more, it is extremely significant. Further, since the peripheral edges of the upper and lower ends of the conductive contact element 22 are angular as shown in FIG. 3, the electrode contact portion increases as the end face area of the conductive contact element 22 increases, and the semiconductor package 10 and the conductive contact element 22 are separated. The contact area is not reduced. Therefore, it is possible to stabilize the initial connection and suppress an increase in the resistance value. Furthermore, since it is not necessary to expand the contact area by compressing the conductive contact element 22, a large load is not required at the time of connection.
[0024]
Next, FIG. 7 shows a second embodiment of the present invention. In this case, each conductive contact element 22 is formed into a straight, large-diameter cylindrical shape. The other parts are the same as those in the above-described embodiment, and a description thereof will be omitted.
In this embodiment, it is apparent that the same operation and effect as those of the above embodiment can be expected, and that the shape of the conductive contact element 22 can be diversified.
[0025]
Next, FIG. 8 shows a third embodiment of the present invention. In this case, each conductive contact element 22 is formed into a straight, reduced-diameter cylindrical shape. The other parts are the same as those in the above-described embodiment, and a description thereof will be omitted.
In this embodiment, it is apparent that the same operation and effect as those of the above embodiment can be expected, and that the shape of the conductive contact element 22 can be diversified.
[0026]
Next, FIG. 9 shows a fourth embodiment of the present invention. In this case, each conductive contact element 22 is basically formed into a cylindrical shape, and the upper and lower ends thereof are each bent into a hemispherical shape. To form. The other parts are the same as those in the above-described embodiment, and a description thereof will be omitted.
In this embodiment, it is apparent that the same operation and effect as those in the above embodiment can be expected, and that the shape of the conductive contact element 22 can be diversified.
[0027]
Next, FIG. 10 shows a fifth embodiment of the present invention. In this case, each conductive contact element 22 is formed in a substantially spherical shape. The other parts are the same as those in the above-described embodiment, and a description thereof will be omitted.
In this embodiment, it is apparent that the same operation and effect as those of the above embodiment can be expected, and that the degree of freedom in designing the conductive contact element 22 can be greatly improved.
[0028]
Next, FIG. 11 shows a sixth embodiment of the present invention. In this case, each conductive contact element 22 is basically formed into a cylindrical shape, and the upper and lower ends thereof are each formed into a truncated cone. I am trying to do it. The other parts are the same as those in the above-described embodiment, and a description thereof will be omitted.
In this embodiment, the same operation and effect as those in the above embodiment can be expected, and the degree of freedom in designing the conductive contact element 22 can be greatly improved.
[0029]
Next, FIG. 12 shows a seventh embodiment of the present invention. In this case, each conductive contact element 22 is basically formed into a truncated conical shape, and is curved while depressing its peripheral surface. I have to. The other parts are the same as those in the above-described embodiment, and a description thereof will be omitted.
In this embodiment, the same operation and effect as those in the above embodiment can be expected, and the shape of the conductive contact element 22 can be diversified.
[0030]
【Example】
The electrical connectors shown in Example 1, Example 2, Comparative Example 1, and Comparative Example 2 were respectively manufactured, and these were interposed between a circuit board and a heater equipped with a measuring thermocouple as shown in FIG. The heater surface temperature was measured and evaluated.
The electrical connector of the first embodiment is composed of an insulating substrate made of polyimide having a thickness of 0.1 mm, and 1156 conductive contact elements (34 × 34) that are penetrated and supported on the insulating substrate at a pitch of 1 mm. Each conductive contact element was formed from a conductive silicone rubber composition having a thermal conductivity of 2.6 W / m · ° C. (see FIG. 2).
[0031]
The conductive silicone rubber composition was prepared by blending 100 parts by mass of methylvinylpolysiloxane, 500 parts by mass of granular silver powder, and 0.5 part by mass of dicumyl peroxide with 100 parts by mass of these mixtures. This conductive silicone rubber composition was processed into a thickness of 6 mm, a width of 50 mm, and a length of 100 mm, and the thermal conductivity was measured with a measuring device (trade name: QTM-D3) manufactured by Kyoto Electronics Industry Co., Ltd. Also, the height between the pair of truncated cones forming each conductive contact element is 1.0 mm, the diameter of the enlarged portion of the truncated cone is 0.7 mm, and the diameter of the reduced diameter portion is 0.5 mm, The diameter of the through hole was 0.5 mm (see FIG. 14).
[0032]
Electrical connector of Example 2 Basically the same as Example 1, except that 100 parts by mass of methylvinylpolysiloxane, 550 parts by mass of granular silver powder, and 100 parts by mass of the mixture thereof were mixed with 0.5 parts of dicumyl peroxide. A conductive silicone rubber composition having a thermal conductivity of 3.1 W / m · ° C. was prepared by blending parts by mass.
Although the electrical connector of the present embodiment was able to obtain a good thermal conductivity of 3.1 W / m · ° C., the hardness of the rubber was higher than that of the electrical connector of the first embodiment due to the increase of the granular silver powder. As a result, the workability was reduced.
[0033]
Electrical connector of Comparative Example 1 Basically the same as in Example 1, except that 100 parts by mass of methylvinylpolysiloxane, 400 parts by mass of granular silver powder, and 100 parts by mass of a mixture thereof were mixed with 0.5 parts of dicumyl peroxide. A conductive silicone rubber composition having a thermal conductivity of 1.4 W / m · ° C. was prepared by blending parts by mass.
The electrical connector of this example could only obtain an insufficient thermal conductivity of 1.4 W / m · ° C., and the semiconductor element of the semiconductor package malfunctioned.
[0034]
Electrical connector of Comparative Example 2 Basically the same as in Example 1, except that 100 parts by mass of methylvinylpolysiloxane, 600 parts by mass of granular silver powder, and 100 parts by mass of these mixtures were mixed with 0.5 parts of dicumyl peroxide. A conductive silicone rubber composition having a thermal conductivity of 3.6 W / m · ° C. was prepared by blending parts by mass.
In the electrical connector of this example, although a good thermal conductivity of 3.6 W / m · ° C. was obtained, the plasticity of the conductive silicone rubber composition was increased more than necessary, and the processability was deteriorated. . Further, the rubber hardness (JIS K6253: durometer hardness type A) exceeded 80, the compressive load increased, and the circuit board was damaged.
[0035]
[Table 1]
Figure 2004087694
[0036]
With respect to the electrical connector of Example 1 and the electrical connector of Comparative Example 1, the surface temperatures of the heaters were measured and summarized in the graph of FIG. As is clear from this graph, when the electrical connector of Example 1 was used, the temperature rise of the heater surface temperature was small, and a good heat radiation effect could be obtained.
[0037]
【The invention's effect】
As described above, according to the present invention, there is an effect that it is not necessary to increase the size of the heat sink and the power consumption of the electronic device can be suppressed.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an embodiment of an electric connector according to the present invention.
FIG. 2 is a perspective explanatory view showing an embodiment of the electric connector according to the present invention.
FIG. 3 is a schematic sectional view showing a conductive contact element in the embodiment of the electrical connector according to the present invention.
FIG. 4 is a schematic cross-sectional explanatory view showing a state in which a through hole is provided in an insulating substrate, a conductive elastomer is overlaid on the insulating substrate, and set in a mold in the embodiment of the electrical connector according to the present invention.
FIG. 5 is a schematic cross-sectional explanatory view showing a state in which the mold of FIG. 4 is clamped and molded.
FIG. 6 is a schematic cross-sectional explanatory view showing a state in which the mold shown in FIG. 5 is opened to take out an electrical connector.
FIG. 7 is a schematic sectional view showing a second embodiment of the electric connector according to the present invention.
FIG. 8 is a schematic sectional view showing a third embodiment of the electric connector according to the present invention.
FIG. 9 is a schematic sectional view showing a fourth embodiment of the electrical connector according to the present invention.
FIG. 10 is a schematic sectional explanatory view showing a fifth embodiment of the electrical connector according to the present invention.
FIG. 11 is a schematic cross-sectional explanatory view showing a sixth embodiment of the electrical connector according to the present invention.
FIG. 12 is a schematic sectional view showing a seventh embodiment of the electrical connector according to the present invention.
FIG. 13 is an overall explanatory view showing an embodiment of the electric connector according to the present invention.
FIG. 14 is a schematic sectional explanatory view showing a conductive contact element of the electrical connector of FIG.
FIG. 15 is a graph showing a relationship between a heater surface temperature and time in an embodiment of the electrical connector according to the present invention.
[Explanation of symbols]
1 circuit board (electrical joint)
10. Semiconductor package (electrical joint)
Reference Signs List 20 insulating substrate 21 through hole 22 conductive contact element 23 truncated cone (frustum)
23A Diameter of the widened part of the truncated cone (width of the widened part of the frustum)
23H Height between a pair of frustums (length between a pair of frustums)
23M Diameter of reduced diameter part of truncated cone (width of reduced diameter part of frustum)
24 Through connection portion 24A Diameter of through connection portion (width of through connection portion)
30 conductive elastomer

Claims (2)

複数の電気接合物間を電気的に接続する電気コネクタであって、
電気接合物の電極に接触する導電接点素子を備え、この導電接点素子を導電性エラストマーにより形成してその熱伝導率を1.5〜3.5W/m・℃としたことを特徴とする電気コネクタ。
An electrical connector for electrically connecting a plurality of electrical joints,
An electric contact element which is in contact with an electrode of the electric joint, wherein the electric contact element is formed of a conductive elastomer and has a thermal conductivity of 1.5 to 3.5 W / m · ° C. connector.
複数の電気接合物間に、導電接点素子を貫通支持する絶縁基板を介在し、
導電接点素子を、絶縁基板からそれぞれ露出する一対の錐台と、この一対の錐台間を接続して絶縁基板を貫通する貫通接続部とから一体形成し、一対の錐台間の長さを0.5〜2.2mmとし、各錐台の拡幅部の幅を0.3〜0.8mmとするとともに、各錐台の縮幅部の幅を0.2〜0.6mmとし、貫通接続部の幅を0.2〜0.6mmとした請求項1記載の電気コネクタ。
An insulating substrate that penetrates and supports the conductive contact element is interposed between the plurality of electrical joints,
The conductive contact element is integrally formed from a pair of frustums exposed from the insulating substrate and a through connection portion that connects the pair of frustums and penetrates the insulating substrate, and reduces the length between the pair of frustums. 0.5 to 2.2 mm, the width of the widened portion of each frustum is 0.3 to 0.8 mm, and the width of the narrowed portion of each frustum is 0.2 to 0.6 mm. The electrical connector according to claim 1, wherein the width of the portion is 0.2 to 0.6 mm.
JP2002245390A 2002-08-26 2002-08-26 Electrical connector Expired - Fee Related JP4215468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002245390A JP4215468B2 (en) 2002-08-26 2002-08-26 Electrical connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002245390A JP4215468B2 (en) 2002-08-26 2002-08-26 Electrical connector

Publications (2)

Publication Number Publication Date
JP2004087694A true JP2004087694A (en) 2004-03-18
JP4215468B2 JP4215468B2 (en) 2009-01-28

Family

ID=32053587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002245390A Expired - Fee Related JP4215468B2 (en) 2002-08-26 2002-08-26 Electrical connector

Country Status (1)

Country Link
JP (1) JP4215468B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008524583A (en) * 2004-12-16 2008-07-10 インターナショナル・ビジネス・マシーンズ・コーポレーション Metallized elastomer probe structure
US8832936B2 (en) 2007-04-30 2014-09-16 International Business Machines Corporation Method of forming metallized elastomeric electrical contacts
WO2019035392A1 (en) * 2017-08-14 2019-02-21 ソニー株式会社 Electronic component module, manufacturing method therefor, endoscopic device, and mobile camera

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008524583A (en) * 2004-12-16 2008-07-10 インターナショナル・ビジネス・マシーンズ・コーポレーション Metallized elastomer probe structure
US8832936B2 (en) 2007-04-30 2014-09-16 International Business Machines Corporation Method of forming metallized elastomeric electrical contacts
WO2019035392A1 (en) * 2017-08-14 2019-02-21 ソニー株式会社 Electronic component module, manufacturing method therefor, endoscopic device, and mobile camera
CN110999550A (en) * 2017-08-14 2020-04-10 索尼公司 Electronic component module, method of manufacturing the same, endoscope apparatus, and mobile camera
US11444049B2 (en) 2017-08-14 2022-09-13 Sony Corporation Electronic component module, method for producing the same, endoscopic apparatus, and mobile camera

Also Published As

Publication number Publication date
JP4215468B2 (en) 2009-01-28

Similar Documents

Publication Publication Date Title
KR100476488B1 (en) Wire segment based interposer for high frequency electrical connection
EP1810329B1 (en) Nanotube-based substrate for integrated circuits
KR100756707B1 (en) Anisotropic conductivity connector, conductive paste composition, probe member, and wafer inspecting device
JP2000200636A (en) Conductive elastomer mutual connector
JPH0234156B2 (en)
US6180221B1 (en) Conductive elastomer for grafting to thermoplastic and thermoset substrates
KR20050027251A (en) Anis0tropic conductivity connector, conductive paste composition, probe member, wafer inspecting device, and wafer inspecting method
TWI285009B (en) Conductive elastomeric contact system with anti-overstress columns
EP3866269A1 (en) Electrical connection sheet, and glass sheet structure with terminal
US7645512B1 (en) Nano-structure enhancements for anisotropic conductive adhesive and thermal interposers
JP5402525B2 (en) Connection member, method for manufacturing connection member, and electronic apparatus
CN107453104B (en) Connector, power supply module and terminal equipment
JP2004087694A (en) Electric connector
EP0909118A2 (en) Conductive elastomer for grafting to an elastic substrate
US20050233620A1 (en) Anisotropic conductive sheet and its manufacturing method
JP2018010974A (en) Heat conduction connector and electronic apparatus including the same
JP2004079277A (en) Electric connector
TW550985B (en) Solder-free PCB assembly
US7436057B2 (en) Elastomer interposer with voids in a compressive loading system
JP2002056908A (en) Electrical connector and its manufacturing method
JP2004259488A (en) Composite member and aggregate of the same
JPH10135591A (en) Heat conductive substrate and wiring substrate
JP2004047268A (en) Insulation displacement connector
JP2004128156A (en) Electric connector
CN213880389U (en) Antistatic circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4215468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141114

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees