JP2004085936A - カメラ - Google Patents

カメラ Download PDF

Info

Publication number
JP2004085936A
JP2004085936A JP2002247359A JP2002247359A JP2004085936A JP 2004085936 A JP2004085936 A JP 2004085936A JP 2002247359 A JP2002247359 A JP 2002247359A JP 2002247359 A JP2002247359 A JP 2002247359A JP 2004085936 A JP2004085936 A JP 2004085936A
Authority
JP
Japan
Prior art keywords
image
focus adjustment
compression rate
lens
image data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002247359A
Other languages
English (en)
Inventor
Osamu Nonaka
野中 修
Masataka Ide
井出 昌孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2002247359A priority Critical patent/JP2004085936A/ja
Priority to US10/644,646 priority patent/US6895181B2/en
Priority to CN 03155964 priority patent/CN1260951C/zh
Publication of JP2004085936A publication Critical patent/JP2004085936A/ja
Priority to US11/099,402 priority patent/US7450838B2/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】撮影者の意図に従って最適なAF方式、圧縮方式を組合わせ、高速で撮影可能であり、尚かつ、記録媒体の容量を有効に用いることのできるカメラを提供することである。
【解決手段】撮影レンズ3のピント位置は、第1のピント調節としてCPU7によって調節されると共に、上記第1のピント調節よりも精度は低いが高速の第2のピント調節として調節される。撮像素子4により撮影レンズ3を介して被写体像が撮像され、該撮像素子4の出力信号が画像データに変換される。撮像素子4で得られた画像データの圧縮率は画像処理部6にて設定され、この設定された圧縮率に応じて上記画像データが圧縮される。そして、画像処理部6で設定された圧縮率に応じて、上記撮影レンズ3の最終的なピント調節動作を、上記第1のピント調節と第2のピント調節の何れで行うかCPU7が決定する。
【選択図】  図1

Description

【0001】
【発明の属する技術分野】
この発明は、電子カメラのピント合わせの技術に関し、より詳細には、電子画像を記憶する際の圧縮率を変更可能なカメラに於いて、ピント合わせ方法を切換えることが可能なカメラに関するものである。
【0002】
【従来の技術】
電子カメラのピント合わせに於いては、撮影用の撮像素子を利用して特別なセンサを利用しない、いわゆる山登り方式のイメージャAF(オートフォーカス)と称される方式が用いられることが多い。
【0003】
【発明が解決しようとする課題】
しかしながら、イメージャAFでは、撮像素子上の被写体像のコントラストが、撮影レンズのピント位置に従って変化する様子をモニタする必要があり、レリーズ時のタイムラグが問題となることが多いものであった。
【0004】
そのため、異なる方式のピント合わせを具備して、これを改善する試みがなされている。
【0005】
一方、画像圧縮に関しても、種々の改良がなされており、本件出願人は、例えば特許第3115912号等の出願を行っている。これは、上記イメージャAF時に得られた情報を用いて画像記録時の圧縮率を変更する技術であり、同様のものに特開2000−201287号等があった。
【0006】
しかし、こうした公報に開示された技術は、イメージャ情報を用いて圧縮率を自動切換するものであり、異なる方式の複数のAFを効果的に使い分けるものではなかった。
【0007】
したがってこの発明は、撮影者の意図に従って最適なAF方式、圧縮方式を組合わせ、高速で撮影可能であり、尚かつ、記録媒体の容量を有効に用いることのできるカメラを提供することを目的とする。
【0008】
【課題を解決するための手段】
すなわちこの発明は、撮影レンズと、上記撮影レンズのピント位置を調節する第1のピント調節手段と、上記第1のピント調節手段よりも精度は低いが高速に上記撮影レンズのピント位置を調節する第2のピント調節手段と、上記撮影レンズを介して被写体像を撮像する撮像素子を含み、該撮像素子の出力信号を画像データに変換する撮像手段と、上記撮像手段で得られた画像データの圧縮率を設定する圧縮率設定手段と、上記圧縮率設定手段で設定された圧縮率に応じて上記画像データを圧縮する圧縮手段と、上記圧縮率設定手段で設定された圧縮率に応じて、上記撮影レンズの最終的なピント調節動作を上記第1のピント調節手段と上記第2のピント調節手段のどちらで行うかを決定する決定手段と、を具備したことを特徴とする。
【0009】
またこの発明は、撮影レンズと、上記撮影レンズを介して被写体像を撮像する撮像素子を含み、該撮像素子の出力信号を画像データに変換する撮像手段と、上記撮影レンズの移動時に上記撮像手段から出力される画像データのコントラスト変化を検出して、上記撮影レンズのピント位置を調節する第1のピント調節手段と、被写体の距離に依存した信号を出力する手段を含み、該手段の出力結果に従って上記撮影レンズのピント位置を調節する第2のピント調節手段と、上記撮像手段から出力された画像データに対して、所定の処理を施す画像処理手段と、上記画像処理手段の処理内容に応じて、上記第1のピント調節手段と上記第2のピント調節手段の何れか一方に上記撮影レンズの最終的なピント調節動作を実行させる制御手段と、を具備したことを特徴とする。
【0010】
更にこの発明は、撮影レンズと、上記撮影レンズを介して被写体像を撮像する撮像素子を含み、該撮像素子の出力信号を画像データに変換する撮像手段と、上記撮像手段で得られた画像データの圧縮率を設定する圧縮率設定手段と、上記圧縮率設定手段で設定された圧縮率に応じて上記画像データを圧縮する圧縮手段と、上記撮影レンズの移動時に上記撮像手段から出力される画像データのコントラスト変化を検出して、上記撮影レンズのピント位置を調節する第1のピント調節手段と、被写体の距離に依存した信号を出力する手段を含み、該手段の出力結果に従って上記撮影レンズのピント位置を調節する第2のピント調節手段と、上記圧縮率設定手段で設定された圧縮率が第1の圧縮率の場合には上記第2のピント調節手段のみを動作させ、上記圧縮率が上記第1の圧縮率よりも低い第2の圧縮率の場合には上記第2のピント調節手段に続いて上記第1のピント調節手段を動作させる制御手段と、を具備することを特徴とする。
【0011】
この発明のカメラにあっては、撮影レンズのピント位置は、第1のピント調節手段によって調節されると共に、上記第1のピント調節手段よりも精度は低いが高速の第2のピント調節手段によって調節される。撮像素子を有する撮像手段により、上記撮影レンズを介して被写体像が撮像され、該撮像素子の出力信号が画像データに変換される。上記撮像手段で得られた画像データの圧縮率は圧縮率設定手段にて設定され、この圧縮率設定手段で設定された圧縮率に応じて、圧縮手段により上記画像データが圧縮される。そして、上記圧縮率設定手段で設定された圧縮率に応じて、上記撮影レンズの最終的なピント調節動作を上記第1のピント調節手段と上記第2のピント調節手段のどちらで行うかが、決定手段により決定される。
【0012】
またこの発明のカメラにあっては、撮像素子を有する撮像手段により、撮影レンズを介して被写体像が撮像されて、該撮像素子の出力信号が画像データに変換される。そして、上記撮影レンズの移動時に上記撮像手段から出力される画像データのコントラスト変化が検出されて、上記撮影レンズのピント位置が第1のピント調節手段により調節される。また、被写体の距離に依存した信号が出力され、その出力結果に従って上記撮影レンズのピント位置が第2のピント調節手段で調節される。更に、上記撮像手段から出力された画像データに対して、画像処理手段にて所定の処理が施される。そして、上記画像処理手段の処理内容に応じて、制御手段によって、上記第1のピント調節手段と上記第2のピント調節手段の何れか一方に上記撮影レンズの最終的なピント調節動作が実行される。
【0013】
更に、この発明のカメラにあっては、撮影レンズを介して被写体像を撮像する撮像素子を含む撮像手段にて、該撮像素子の出力信号が画像データに変換される。上記撮像手段で得られた画像データの圧縮率は圧縮率設定手段で設定されて、この圧縮率設定手段で設定された圧縮率に応じて圧縮手段で上記画像データが圧縮される。そして、第1のピント調節手段によって、上記撮影レンズの移動時に上記撮像手段から出力される画像データのコントラスト変化が検出されて、上記撮影レンズのピント位置が調節される。また、被写体の距離に依存した信号を出力する手段を含む第2のピント調節手段にて、該手段の出力結果に従って上記撮影レンズのピント位置が調節される。そして、制御手段により、上記圧縮率設定手段で設定された圧縮率が第1の圧縮率の場合には上記第2のピント調節手段のみが動作される。これに対し、上記圧縮率が上記第1の圧縮率よりも低い第2の圧縮率の場合には、上記第2のピント調節手段に続いて上記第1のピント調節手段が制御手段により動作される。
【0014】
【発明の実施の形態】
以下、図面を参照してこの発明の実施の形態を説明する。
【0015】
初めに、図1乃至図9を参照して、この発明の第1の実施の形態について説明する。
【0016】
図1は、この発明の第1の実施の形態を示すもので、AFカメラの概略構成を示すブロック図である。
【0017】
主被写体1からの光は、撮影レンズ3を介してCCD等の撮像素子4に結像される。そして、この撮像素子4で光電変換された像の信号は、A/D変換器5を介して画像処理部6へ出力される。この画像処理部6で処理された信号は、CPU7に供給される。このCPU7は、カメラの全体のシーケンスを制御するマイクロコントローラより成る演算制御手段であり、後述するレリーズスイッチ7a及び圧縮率設定スイッチ7bを備えている。そして、このCPU7は、撮影レンズ3をピント合わせ制御するレンズドライバ(LD)8と、記録部9及びストロボ等の補助光源15を制御する。この補助光源15は、シーンに応じて露出用や測距用の補助として利用される。
【0018】
また、上記主被写体1からの光は、一対の受光レンズ11a及び11bを介してセンサアレイ12a及び12bに入力される。上記センサアレイ12a及び12bからの出力信号は、A/D変換器13、測距演算部14を介して上記CPU7に供給される。
【0019】
このような構成に於いて、主被写体1を撮影する際には、撮影レンズ3を介して撮像素子4に結像された像が、該撮像素子4及びA/D変換器5等によって電気的な像信号に変換される。そして、画像処理部6に於いて、色や階調が整えられ、記録部9に記録しやすいように画像圧縮される。
【0020】
また、図示されない撮影者のレリーズスイッチ7aの操作検出により、受光レンズ11a及び11bを介して入力される主被写体1の像が、センサアレイ12a及び12bに取り込まれる。センサアレイ12a及び12bの出力は、A/D変換器13でA/D変換されてデジタル演算され、測距演算部14にて主被写体1までの距離が算出される。
【0021】
上記距離が算出されると、レンズドライバ8が制御されて撮影レンズ3がピント合わせ制御される。続いて、撮像素子4からの像信号が記録されて、撮影が完了される。
【0022】
図2は、第1の実施の形態に於けるAFカメラの外観構成を示す斜視図である。
【0023】
図2に於いて、カメラ20の上面には、レリーズスイッチ7a及び圧縮率設定スイッチ7bが設けられている。また、カメラ20の前面の中央部には、撮影レンズ3が設けられている。この撮影レンズ3の上方には、測距用の受光レンズ11a、11bが、そして図2に於いてこれら受光レンズ11a、11bの右側には、補助光源15用の発光窓15aが配置されている。
【0024】
また、上記受光レンズ11a、11b及びセンサアレイ12a、12bと、撮影レンズ3及び撮像素子4との関係は、図3に示されるようになる。
【0025】
つまり、同じ主被写体1の像が、外光用のセンサアレイ11a、11b及び撮像素子4で、共に検出可能である。また、センサアレイ11a、11bの異なる領域の像を利用すれば、主被写体1以外の位置の被写体も検出可能となることが、図3に示されている。
【0026】
こうした2つの受光レンズ及びセンサアレイから成る外光式AFを、人間の2つの眼と同様に用いて、三角測距の原理で被写体距離を検出する。
【0027】
また、イメージャAFは、撮影レンズ3のピント位置をずらしながら、そのコントラストを撮像素子4にて検出する。そして、最もコントラストが高くなったレンズ位置がピント合わせにふさわしいピント位置とするものであり、外光AFのように距離データよりピント位置が求められるものとは根本的に異なっている。つまり、レンズ位置制御等に誤差があっても、それを含めてピント位置検出がなされるので、誤差をキャンセルしてのピント合わせが可能となる。
【0028】
但し、図4(a)に示されるように、画面22の中央以外に主被写体1が存在する場合に、人物が手前にあることを検出してこの人物に対して迅速にピントを合わせるのは困難である。それは、画面中央が遠距離であることを判定し、人物(主被写体)1にピントを合わせてピント位置を調べ、次に背景となる木24に対して撮影レンズを動かしピントを合わせてピント位置を調べてからでないと、何れの主被写体が手前にあるか検出できないからである。
【0029】
これらの被写体(人物1と木24)距離が離れている場合は、それぞれに対応するピント位置に於いて撮影レンズ3を止めて画像を取り込み、コントラストを判定するプロセスが必要となるので、時間がかかってしまうのである。
【0030】
一方、外光式のAFでは、撮影レンズの駆動が不要なので、図3に示されるように、センサアレイ各部の像を検出し、受光レンズ11a、11bによる視差を算出するだけである。したがって、図4(a)に示される広いエリア3cに渡って距離分布が検出できるため、各被写体の距離の分布がわかり、何処に主被写体が存在して、どれくらいの距離であるかが高速で判定可能である。
【0031】
例えば、図4(b)に示されるように、距離と位置の関係を求めると、エリア3cのどの位置にどれくらいの距離のものがあるかを判別することができる。但し、像信号が用いられる場合、中央部のコントラストのない領域は距離検出が困難であるので、例えば、カメラの補助光源15を発光させて反射光を検出するようにしてもよい。つまり、遠距離のものからは少ししか反射光が返ってこず、近距離のものからは、多くの反射信号光が返ってくることから、像信号で測距できないポイントについては、こうした反射光量判定によって情報を補うようにしてもよい。もちろん、ローコントラスト域には主被写体は存在しないと判定するようにしても、同様の効果が得られる。
【0032】
次に、図5のブロック図を参照して、図1に示される画像処理部6の詳細な構成について説明する。
【0033】
図5に於いて、画像処理部6は、ノイズリダクション回路26と、ホワイトバランス回路27と、ガンマ(γ)補正回路28と、色調補正回路29と、RGB/YC変換回路30と、JPEG圧縮回路31とを有して構成される。
【0034】
上記ノイズリダクション回路26は、A/D変換器5でA/D変換された3色に対応するデジタルRGB信号の中から、ノイズ成分を取り除くための回路である。ホワイトバランス回路27では、こうして得られたノイズが除去された像信号を用いて、像の白い部分を白くするための処理が行われる。
【0035】
ホワイトバランス回路27の出力は、次段のガンマ補正回路28によって、図示されないモニタ等への表示時の明るさを自然に表現するために、明るさの変化特性が整えられる。次いで、色調補正回路29にて、RGB3色に対応する信号の色調が補正される。
【0036】
RGB/YC変換回路30では、後段での圧縮を容易にするために、輝度情報Yと、色空間の色差情報Cb 、Cr に変換される。こうして、得られたY、Cb 、Cr 信号に対して、JPEG圧縮回路31に於いて次JPEG方式の画像圧縮が行われる。これは、画像の高周波数成分に対し、人間の目が鈍感になることを利用しているもので、低周波成分ほど細かく、高周波成分ほど粗く量子化される。ここでは、スケールファクタ(パラメータ)によって、例えば、どの周波数成分をどのくらいの量子化するかという圧縮率が変えられるようになっている。このパラメータは、図1のCPU7が有するパラメータ設定回路32のテーブルデータによって設定される。
【0037】
CPU7では圧縮率設定スイッチ7bの入力状態(操作状態)が検出され、これにより圧縮率が設定する。圧縮率が高いほど記録される画像は粗くなり、圧縮率が低い程、記録される画像は細かくなるが、これによって、記録部9内に記録される画像数が大きく変化する。すなわち、粗い画像ほど多く記録でき、細かい画像ほど記録枚数は減少する。
【0038】
例えば、限られた記録媒体のみを持って旅行等に出かけたユーザは、その限られた容量の中に、なるべく多くの画像を取り込みたいと考えるが、繊細なディティールを重視するシーンでは、記録容量は大きくなっても圧縮率の小さい画像を残したいと望む。
【0039】
そこで、シーンに合わせて圧縮率を変えたいという要望が反映できるように、本実施の形態のようにカメラにその切換用のスイッチを設ける場合がある。また、シーンを判別して、自動で圧縮率を切換えるカメラに関しても、本発明は適用可能である。
【0040】
次に、図6のフローチャートを参照して、第1の実施の形態に於けるカメラの撮影動作について説明する。
【0041】
この撮影シーケンスに入ると、先ずステップS1にて、外光AF式の測距が行われて、得られた距離LH から、ピント合わせ位置が求められる。次いで、ステップS2に於いて、設定された圧縮率に応じて動作が切換えられるべく圧縮率の判定が行われる。
【0042】
この方式は、上述したように、撮影レンズ3と撮像素子4に対してのフィードバックがなされていないので、使用環境や状態によっては微細な誤差を生じるが、圧縮率が高くてよいシーンでは影響が小さい。したがって、圧縮率が高く設定された場合はステップS3に移行する。
【0043】
このステップS3では、測距結果に対してピント位置が決定され、撮影レンズ3の繰り出しが行われる。次いで、ステップS4にて撮影が実行される。
【0044】
一方、上記ステップS2に於いて、しかし、圧縮率が小さく設定された場合、ユーザは微細なディティールまで再現したいので、ピント制御もそれに合わせて撮像素子4の画素単位まで合わせ込みができるような方法が採用される。つまり、ステップS2からステップS8へ移行して、上記ステップS1に於ける距離LH に対応し、ピント合わせ用の撮影レンズ3の繰り出し方向が決定される。
【0045】
次いで、ステップS9にて、撮影レンズ3が所定位置だけ手前に繰り出されて、ステップS10にて山登りAFが実行される(測距時に得られた被写体位置に対応した像信号が利用される(図3参照)。ここでは、最も撮像素子4上のコントラストが高くなるレンズ位置で停止され、ピント合わせが終了される。
【0046】
その後、ステップS11にて撮影が実行される。そして、ステップS12では、上記ステップS10で得られたピント位置LDH と上記ステップS1での測距結果に基いて、測距とレンズ位置の関係が算出される。
【0047】
この関係が算出されていれば、それに続く次の撮影時には、山登りAFが行われなくとも、測距結果のみより正確なピント合わせが可能となる。
【0048】
上記ステップS4若しくはステップS12の処理が行われた後、ステップS5にて、画像処理部6により、上述した画像処理が実行される。次いで、ステップS6では、上記設定された圧縮率に従って、画像処理部6内のJPEG圧縮回路31によりJPEG圧縮が行われる。そして、ステップS7にて画像記録が行われると、本シーケンスが終了する。
【0049】
図7は、連続撮影を行う場合のカメラの動作を説明するフローチャートである。
【0050】
ここでは、撮影レンズ3の作動、停止が繰り返されるため時間を要する山登りAFは行われなくとも高速で被写体の位置や距離が求められる外光測距が、ステップS21にて行われる。そして、ステップS22にて圧縮率による判定が行われる。
【0051】
このステップS22にて、圧縮率が高い場合には、ステップS23に移行して、その圧縮率の結果で図6のフローチャートと同様、撮影レンズ3の繰り出し方向が決定される。一方、圧縮率が低い場合にはステップS24に移行して、山登りAFは行われずに、図6のフローチャートのステップS12にて算出された距離(L)とピント位置(LD)の関係より、ピント合わせ用の撮影レンズ3の繰り出し位置が決定される。上記ステップS23若しくはS24の後、ステップS25にて撮影動作が実行される。
【0052】
この後のステップS26、S27、S28の画像処理、圧縮、画像記録の各処理動作は、上述した図6のフローチャートに於けるステップS5、S6、S7と同様であるので、説明は省略する。
【0053】
このようなフローチャートにて、粗い画像でも十分な場合(例えば、電子メールに添付して、最終的に小容量ファイルにするようなものを撮影する場合)は、カメラの基本であるレリーズタイムラグを短縮したピント合わせが行われる。
【0054】
また、上述した例では、最初にユーザが圧縮率を設定して撮影するものとして説明したが、例えば、測距用のセンサアレイで検出された像信号や距離データを基に、最適の圧縮率をカメラが設定する方式の技術にも応用可能である。
【0055】
例えば、図4(a)に示されるシーンでは、図4(b)に示される距離分布、図4(c)に示される色分布が得られるが、これらの情報を利用して、例えば主被写体が近距離でその像データが高い周波数を有する場合には、圧縮率を低くするようにすればよい。
【0056】
次に、距離情報からピント合わせ位置を求める方法について説明する。
【0057】
一般に、距離Lの逆数1/Lと、ピント位置LDとの関係は、図8に於ける実線のようになるので、CPU7は、予め下記(1)式のような1/LとLDの関係を記憶しておく。
LD=A×1/L+B                  …(1)
(但し、A、Bは任意の数)
しかし、上述したように、この(1)式の関係は、温度や湿度の変化や姿勢差による各ブロックの変化によって、必ずしも同じ関係ではない。そこで生じる誤差ΔLDは、上述のように条件によって変化するので、図8に破線(実際1)で示されるようになる。
【0058】
そこで本実施の形態では、最初の測距で距離LH でのピント位置LDH0イメージャの出力を用いて求めることによって、理論値からの差であるΔLDを、下記(2)式のようにΔLDとして算出する。そして、再度の測距結果、距離LM の被写体のピント合わせ時には、上記ΔLDを加味して、下記(3)式を用いてLDM のピント位置にピント合わせレンズを制御する。
【0059】
ΔLD=LDH −LDH0                 …(2)
LDM =A×1/LM +B+ΔLD            …(3)
図9(a)〜(c)は、このときの再ピント合わせのスピードの効果を示したタイミングチャートである。
【0060】
図9(a)は、測距の度に山登りを行う場合のタイミングチャートである。この場合、無限遠(∞)位置から測距結果に従って、撮影レンズの繰り出しが行われる。図中、1〜5の数字は5つのピント位置であり、コントラストを検出している様子(山登りAFを実施している様子)を示している。2回目の測距では、再度5つのピント位置で山登りAFを行うが、この例では1回目のレンズ位置をリセットせずにそこから山登り開始位置にまでピント合わせレンズを持って行って山登りAFを行っている。
【0061】
また、図9(b)に示されるタイミングチャートのように、1回の撮影の度にレンズ位置をリセットする形式では、無限遠位置の繰り出し分だけ、更に時間がかかる。
【0062】
図9(c)は、この発明の第1の実施の形態に於ける効果を示すタイミングチャートである。
【0063】
この発明では、上述したように、1回目のレンズ位置(LD)制御の結果を用いて、2回目の測距のピント位置を算出するので、測距のみでピント位置制御を行って、Δt0 の時間だけでピント合わせが可能である。図9(a)の例と比べると、Δt1 もの時間の改善がなされ、図9(b)の例と比べると、Δt2 もの時間の改善がなされることがわかる。
【0064】
また、図9(c)に示されるように、レンズ繰り出し方向から繰り込み方向に動かす時には、繰り出し時と繰り込み時の機構系のガタつきのつまり方の差による、いわゆるバックラッシュについて考慮しなければならない。
【0065】
繰り出し方向の実際の1/LとLDの関係と共に、繰り出し方向から繰り込み方向に動かした時のバックラッシュを考慮した1/LとLDの関係は、図8に於いて、一点鎖線(実際2)で示されている。
【0066】
このバックラッシュ時の差は所定の値ΔLDB であるとすると、下記(4)式のような計算で算出されたピント位置にピント合わせを行えばよいことがわかる。
LDM =A×1/LM +B+ΔLD−ΔLDB        …(4)
したがって、図9(c)のタイミングチャートに於いて、2回目のピント合わせでは、上記ΔLDB を考慮した位置にピント合わせが行われる。2回目の測距結果が近距離を示し、繰り込み動作を伴わなければ、上述した(3)式の計算でよい。
【0067】
また、撮影レンズがズームレンズである場合、ズーミングによってピント位置がシフトするので、これを考慮したピント制御が行われる。
【0068】
このような工夫により、山登りAFを行わずにピント合わせを高速化することができる。
【0069】
次に、この発明の第2の実施の形態について説明する。
【0070】
図10は、この発明の第2の実施の形態を示すもので、いわゆる一眼レフレックスタイプのAFカメラの概略構成を示すブロック図である。
【0071】
尚、以下に述べる実施の形態に於いて、上述した第1の実施の形態と同じ部分には同一の参照番号を付して説明を省略する。
【0072】
図10に於いて、主被写体1からの光は、撮影レンズ3を介して、図示矢印C方向に回動可能で、ハーフミラーで構成されるメインミラー35に導かれる。このメインミラー35が光路より退避(上方に位置)されている場合は、主被写体1からの光は撮像素子4に結像される。一方、メインミラー35が光路内に位置されている場合は、主被写体1からの光は該メインミラー35より反射されて、フォーカシングスクリーン43上に結像される。そして、更にペンタプリズム44及び接眼レンズ45を通して、この結像された像が撮影者の眼46によって観察可能となる。
【0073】
このような光学的な構成の工夫により、撮影レンズ3を通った映像を確認することができる。
【0074】
尚、ペンタプリズム44の前方には、撮像素子4が形成した電子映像を形成するための液晶標示部48及び照明部49が設けられている。
【0075】
また、図11にも示されるように、メインミラー35を透過した被写体像は、該メインミラー35の後方に設けられたサブミラー41にて反射される。そして、該被写体像は、コンデンサレンズ37、ミラー38及びセパレータレンズ39を介して、フォトダイオードアレイ40上に結像される。
【0076】
この像は、撮影レンズ3の異なる瞳位置をにらんでおり、画面内の1点につき、一対の像信号が形成される。これら一対の像信号は、被写体にピントが合った時に所定の位置関係となる。したがってCPU7による撮影レンズ3のピント制御は、上記一対の像信号の位置が所定の位置関係になるように、レンズドライバブ8を介してピント合わせ用の撮影レンズ3を前後させる(TTL位相差AF)。
【0077】
尚、上記サブミラー36をハーフミラーで構成すれば、メインミラー35が光路内に存在しても、撮影レンズ3によるメインの撮像素子4への入射光の一部が上記撮像素子4上に達するので、これを画像処理部6にて画像処理してコントラスト信号を抽出し、撮影レンズ3を微調節することによって、山登りAFを行うこともできる。つまり、この第2の実施の形態に於いても、2つの方式のAFを併用することができる。但し、撮影時に、撮影レンズ3と撮像素子4間の光路内からメインミラー35が退避した状態では、上記TTL位相差AFは実施することができない。
【0078】
また、ペンタプリズム44の前方に設けられた液晶表示部48及び照明部49は、電子ファインダ(EVF)を構成している。この電子ファインダによって、メインミラー350が光路外に退避した後、撮影レンズ3からの像がフォーカシングスクリーン43に投影されない状態でも、撮影レンズ3から撮像素子4に入射された電子画像を、引き続きモニタすることができるようになっている。
【0079】
したがって、従来の一眼レフレックスカメラのように、シャッタが開いている時も視界がブラックアウトすることがない。
【0080】
こうした工夫により、長時間露光や、動体に対して、被写体の動きを確認しながらの撮影を楽しむことができる。
【0081】
図12は、この第2の実施の形態に於けるカメラの撮影シーケンスについて説明する。
【0082】
本シーケンスに入って、先ず、スS31では、上述した位相差方式によるピント合わせが行われる。通常は、このピント合わせで十分であるが、一眼レフレックスカメラを使用しているユーザ層には、画質にこだわるユーザが多い。したがって、この場合は、低い画像圧縮で撮影を行う場合、撮像素子の画素の単位でコントラストを評価する山登りAFによる微調整を加えることにする。
【0083】
そこで、続くステップS32にて圧縮率の判定が行われる。ここで、圧縮率が低い撮影が選択された場合にはステップS33に移行し、圧縮率が高い撮影の場合はステップS34に移行する。
【0084】
ステップS33では、位相差によるピント合わせに加え、山登りAFによる微調整が付加されて、より高い解像力での撮影が行われる。
【0085】
この後、ステップS34にてメインミラー35が光路外に退避(ミラーアップ)され、続くステップS35にて撮影が実行される。そして、ステップS36でメインミラー35が光路内に位置(ミラーダウン)されると、ステップS37にて画像処理が行われる。更に、ステップS38で画像圧縮処理、更にはステップS39にて画像記録が行われて、本シーケンスが終了する。
【0086】
このとき、上述した電子ファインダ機能を作動させて、図14(b)に示されるように、ミラーアップ中も被写体像を確認することができるようにしてもよい。
【0087】
また、連写時には、このEVF機能をより有効に利用することができる。
【0088】
図13は、この連続撮影の動作を説明するフローチャートである。
【0089】
先ず、上述した図12のフローチャートと同様に、ステップS41にて位相差AFによるピント合わせが行われる。この時は、図14(a)に示される位置にメインミラー35が存在している。
【0090】
そして、ステップS42にてミラーアップが行われ、ステップS43に於いて圧縮率の判定が行われる。ここで、圧縮率が低い撮影が選択された場合にはステップS44に移行して山登りAFが実行される。一方、圧縮率が高い撮影の場合はステップS45に移行する。その後、ステップS45で撮影が実行される。
【0091】
すると、ステップS46では、このタイミングで、図14(b)に示されるように、ミラーアップされて撮像された像の表示が行われて、ファインダ内のモニタに表示させて電子ファインダが機能される。
【0092】
そして、ステップS47で画像処理が行われると、続くステップS48で画像圧縮処理、更にはステップS49にて画像記録が行われる。次いで、ステップS50では、山登りAFにてピント合わせが実行される。こうして、ステップS51にて2回目の撮影が実行される。この撮影が実行されると、ステップS52にて再び画像処理が行われ、更にステップS53で画像圧縮処理、ステップS54にて画像記録が行われる。
【0093】
そして、ステップS55に於いて、連写が終了であるか否かが判定される。ここで、まだ撮影(連写)が終了でない場合は上記ステップS50に移行し、終了の場合はステップS56に移行する。
【0094】
ステップS56では、上記ステップS46にて電子ファインダとして機能されていたファインダ内のモニタ表示がオフにされる。その後、ステップS57でミラーダウンが行われると、本シーケンスが終了する。
【0095】
ところで、上述したステップS47〜S49は、画像処理、圧縮、記録のステップであるが、1回の撮影の度にメインミラーをアップダウンさせるとタイムラグが長くなってしまう。したがって、この連写時は、ステップS42でミラーアップされた後は、連写が終わる(ステップS55)までミラーダウン(ステップS57)は行われないようにしている。
【0096】
また、ステップS50以降は、位相差AFは行われず、山登りAFにてピント合わせがなされて、ステップS51〜S54の撮影シーケンスが繰り返されるようにしている。この時のファインダは、図15(a)に示される光学ファインダ(OVF)とは異なり、図15(b)に示されるような表示形態(EVF)にしてもよい。
【0097】
図15(b)に示される例では、主被写体部のみが拡大され、人物の表情がよくわかるようにしている。このファインダ内モニタ表示は、ミラーダウンに先立ってオフされ、消費電流を抑えるようにしているが、圧縮率に応じて、表示時の画素の粗さを切換えて、効果が確認できるようにしてもよい。
【0098】
以上説明したように、第2の実施の形態によれば、いわゆる一眼レフレックスタイプのデジタルカメラに於いて、TTL位相差AFと、山登りAFを効果的に使い分けて、カメラの基本性能であるタイムラグと必要とされる解像力のバランスをとった設計のAF方式を選択することができる。
【0099】
次に、この発明の第3の実施の形態を説明する。
【0100】
一眼レフレックスタイプのカメラの光学系としては、上述した図10のような構成に限る必要はなく、図16のように構成してもよい。
【0101】
すなわち、図16に示されるように、位相差AF用センサ40を、撮影用の撮像素子4と同一チップ上に形成して、上述した第2の実施の形態によるカメラの構成を単純化してもよい。
【0102】
また、上述した第2の実施の形態では、もっぱら圧縮率による切換えについてのみ説明したが、この第3の実施の形態では、図17のフローチャートのように、タイムラグ優先モードを設定できるようにしている。
【0103】
図17は、第3の実施の形態によるカメラの撮影動作を説明するフローチャートである。
【0104】
先ず、ステップS61に於いて、タイムラグ優先モードであるか否かが判定される。ここで、タイムラグ優先モードが選択された場合は、ステップS62に移行して位相差AFが行われる。そして、ステップS63の撮影時は、撮影データの圧縮率が高められて記録されるようにする。
【0105】
上記ステップS61にてタイムラグ優先モードでない場合は、ステップS64に移行して圧縮率が判定される。ここで、圧縮率が低くない場合は、ステップS65へ移行して位相差AFが行われる。次いで、ステップS66に於いて、コントラストのチェックが行われる。
【0106】
その結果、所定コントラスト以上の場合は、ステップS63に移行してそのまま撮影に入り、高圧縮での記録が行われる。一方、上記ステップS66にて所定コントラスト未満ならば、ステップS67へ移行して、山登りAFが行われた後、ステップS63に移行して撮影及び記録が行われる。
【0107】
上記ステップS64に於いて、高い解像力を求めて圧縮率を低くする撮影時には、ステップS68に移行して位相差AFが先ず行われる。続いて、ステップS69にて山登りAFが行われる。この場合、ステップS70にて撮影記録される時には、圧縮率が低くされるようにする。
【0108】
このように、第3の実施の形態によれば、レリーズタイムラグと圧縮率を考慮してAF方式が決定される。
【0109】
次に、この発明の第4の実施の形態を説明する。
【0110】
上述した第1乃至第3の実施の形態では、圧縮率に着目していたが、この発明の考え方を適用すると、圧縮率ばかりでなく、画質を左右する他のパラメータに従ってAF方式を切換えてもよい。
【0111】
例えば、デジタルカメラには、図18(a)に示されるような画素から成る画像を、図18(b)に示されるような4倍の面積の画素に換算する処理(記録画素数切換)が内蔵されている。また、図19(a)に示されるような像パターンに対し、白黒の変化点のエッジを、図19(b)に示されるように検出し、この部分のゲインを大きくして元の像に加算(図19(c)参照)するエッジ強調処理機能が、デジタルカメラには内蔵されていることが多い。このような処理の選択に従って、図20フローチャートのようにカメラのAF方式を切換えてもよい。
【0112】
図20は、この発明の第4の実施の形態によるカメラの撮影動作を説明するフローチャートである。
【0113】
先ず、ステップS81にて位相差AFが行われる(例えば、図1の構成では外光式AF)。次いで、ステップS82に於いて、低画素数か否かが判定される。ここで、低画素数の場合はステップS83へ移行し、そうでない場合はステップS85へ移行する。
【0114】
そして、ステップS83に於いて、エッジ強調か否かが判定される。ここで、エッジ強調の場合はステップS84に移行し、そうでない場合はステップS86へ移行する。
【0115】
上記ステップS84では、コントラストが判定される。その結果、所定コントラスト以上であればステップS86へ移行し、それよりも低ければステップS85へ移行する。また、このステップS85では、山登りAFが行われる。
【0116】
すなわち、低画素数で、且つエッジ強調なしの場合、そのままステップS86、S87、S88の撮影、画像処理、画像記録の処理が行われる。これに対し、画素数が多い場合には、エッジ強調の有無にかかわらず、上記ステップS81の位相差AFに加えてステップS85の山登りAFが行われる。
【0117】
また、低画素数であってもエッジ強調ありの場合は、ステップS84にてコントラストが判定される。その結果、所定コントラスト以上ならば、そのままステップS86の撮影に入るが、所定コントラスト以下ならばステップS85の山登りAFが実行される。
【0118】
このように、第4の実施の形態によれば、画像を構成する画素数サイズや、シャープネスの処理の有無によって、AFの方式を最適化している。つまり、シャープで画素数が多い写真に対しては、画素の単位のコントラストまで考慮した山登りAFを行うが、それ以外は、この方式ではタイムラグが長くなるので山登りAFを行わず、高速のピント合わせを達成するようにしている。
【0119】
以上説明した実施の形態によれば、ピント制御方式と圧縮率の関係を最適化して組み合わせ、レリーズ時のタイムラグと、画像記録媒体のメモリ量のバランスをとったカメラを提供することができる。
【0120】
【発明の効果】
以上のようにこの発明によれば、撮影者の意図に従って最適なAF方式、圧縮方式を組合わせ、高速で撮影可能であり、尚かつ、記録媒体の容量を有効に用いることのできるカメラを提供することができる。
【図面の簡単な説明】
【図1】この発明の第1の実施の形態を示すもので、AFカメラの概略構成を示すブロック図である。
【図2】第1の実施の形態に於けるAFカメラの外観構成を示す斜視図である。
【図3】受光レンズ11a、11b及びセンサアレイ12a、12bと、撮影レンズ3及び撮像素子4との関係を示した図である。
【図4】画面の中央以外に主被写体が存在する場合に於けるピント合わせの例を説明する図である。
【図5】図1の画像処理部6の詳細な構成をシステムブロック図である。
【図6】この発明の第1の実施の形態に於けるカメラの撮影動作について説明するフローチャートである。
【図7】第1の実施の形態に於いて連続撮影を行う場合のカメラの動作を説明するフローチャートである。
【図8】距離Lの逆数1/Lと、ピント位置LDとの関係を示す図である。
【図9】再ピント合わせのスピードの効果を示したタイミングチャートであって、(a)は測距の度に山登りを行う場合のタイミングチャート、(b)は1回の撮影の度にレンズ位置をリセットする形式のタイミングチャート、(c)はこの発明の第1の実施の形態に於ける効果を示すタイミングチャートである。
【図10】この発明の第2の実施の形態を示すもので、いわゆる一眼レフレックスタイプのAFカメラの概略構成を示すブロック図である。
【図11】図10の測距光学系の配置を示す斜視図である。
【図12】この発明の第2の実施の形態に於けるカメラの撮影シーケンスについて説明するフローチャートである。
【図13】第2の実施の形態に於いて連続撮影の動作を説明するフローチャートである。
【図14】(a)は位相差AFによるピント合わせが行われる場合の光学系の状態を示した図、(b)はミラーアップ時の光学系の状態を示した図である。
【図15】連続撮影時のファインダの表示形態の例を示した図である。
【図16】この発明の第3の実施の形態を示すもので、いわゆる一眼レフレックスタイプのAFカメラの光学系の概略構成を示す図である。
【図17】この発明の第3の実施の形態によるカメラの撮影動作を説明するフローチャートである。
【図18】この発明の第4の実施の形態を説明するもので、記録画素数切換えの例を示した図である。
【図19】この発明の第4の実施の形態を示すもので、エッジ強調処理機能について説明する図である。
【図20】この発明の第4の実施の形態によるカメラの撮影動作を説明するフローチャートである。
【符号の説明】
1 主被写体、
3 撮影レンズ、
4 撮像素子、
5、13 A/D変換器、
6 画像処理部、
7 CPU、
8 レンズドライバ(LD)、
9 記録部、
11a、11b 受光レンズ、
12a、12b センサアレイ、
14 測距演算部、
15 補助光源、
20 カメラ、
26 ノイズリダクション回路、
27 ホワイトバランス回路、
28 ガンマ(γ)補正回路、
29 色調補正回路、
30 RGB/YC変換回路、
31 JPEG圧縮回路、
32 パラメータ設定回路。

Claims (9)

  1. 撮影レンズと、
    上記撮影レンズのピント位置を調節する第1のピント調節手段と、
    上記第1のピント調節手段よりも精度は低いが高速に上記撮影レンズのピント位置を調節する第2のピント調節手段と、
    上記撮影レンズを介して被写体像を撮像する撮像素子を含み、該撮像素子の出力信号を画像データに変換する撮像手段と、
    上記撮像手段で得られた画像データの圧縮率を設定する圧縮率設定手段と、
    上記圧縮率設定手段で設定された圧縮率に応じて上記画像データを圧縮する圧縮手段と、
    上記圧縮率設定手段で設定された圧縮率に応じて、上記撮影レンズの最終的なピント調節動作を上記第1のピント調節手段と上記第2のピント調節手段のどちらで行うかを決定する決定手段と、
    を具備したことを特徴とするカメラ。
  2. 上記第1のピント調節手段は、上記撮影レンズの移動時に上記撮像手段から出力される画像データのコントラスト変化を検出して上記撮影レンズのピント位置を調節するものであり、上記第2のピント調節手段は、被写体の距離に依存した信号を出力する手段を含み、該手段の出力結果に従って上記撮影レンズのピント位置を調節するものであることを特徴とする請求項1に記載のカメラ。
  3. 上記決定手段は、上記圧縮率設定手段によって第1の圧縮率が設定された場合には上記第1のピント調節手段を選択し、上記第1の圧縮率よりも圧縮の割合が小さい第2の圧縮率が設定された場合には上記第2のピント調節手段を選択するようにしたことを特徴とする請求項1に記載のカメラ。
  4. 上記第1のピント調節手段はイメージャAF方式によってピント調節を行い、上記第2のピント調節手段は外光AF方式、若しくは、TTL位相差AF方式によってピント調節動作を行うものであることを特徴とする請求項1に記載のカメラ。
  5. 撮影レンズと、
    上記撮影レンズを介して被写体像を撮像する撮像素子を含み、該撮像素子の出力信号を画像データに変換する撮像手段と、
    上記撮影レンズの移動時に上記撮像手段から出力される画像データのコントラスト変化を検出して、上記撮影レンズのピント位置を調節する第1のピント調節手段と、
    被写体の距離に依存した信号を出力する手段を含み、該手段の出力結果に従って上記撮影レンズのピント位置を調節する第2のピント調節手段と、
    上記撮像手段から出力された画像データに対して、所定の処理を施す画像処理手段と、
    上記画像処理手段の処理内容に応じて、上記第1のピント調節手段と上記第2のピント調節手段の何れか一方に上記撮影レンズの最終的なピント調節動作を実行させる制御手段と、
    を具備したことを特徴とするカメラ。
  6. 上記画像処理手段は、上記撮像手段で得られた画像データを所定の圧縮率で圧縮する手段を含み、上記制御手段は上記圧縮率に基いて上記何れか一方のピント調節手段を最終的に動作させるようにしたことを特徴とする請求項5に記載のカメラ。
  7. 上記画像処理手段は、上記撮像手段で得られた画像データを所定の画像サイズに変換する手段を含み、上記制御手段は上記画像サイズに基いて上記何れか一方のピント調節手段を最終的に動作させるようにしたことを特徴とする請求項5に記載のカメラ。
  8. 上記画像処理手段は、上記撮像手段で得られた画像データに対してエッジ強調処理する手段を含み、上記制御手段は上記エッジ強調処理の有無に基いて上記何れか一方のピント調節手段を最終的に動作させるようにしたことを特徴とする請求項5に記載のカメラ。
  9. 撮影レンズと、
    上記撮影レンズを介して被写体像を撮像する撮像素子を含み、該撮像素子の出力信号を画像データに変換する撮像手段と、
    上記撮像手段で得られた画像データの圧縮率を設定する圧縮率設定手段と、
    上記圧縮率設定手段で設定された圧縮率に応じて上記画像データを圧縮する圧縮手段と、
    上記撮影レンズの移動時に上記撮像手段から出力される画像データのコントラスト変化を検出して、上記撮影レンズのピント位置を調節する第1のピント調節手段と、
    被写体の距離に依存した信号を出力する手段を含み、該手段の出力結果に従って上記撮影レンズのピント位置を調節する第2のピント調節手段と、
    上記圧縮率設定手段で設定された圧縮率が第1の圧縮率の場合には上記第2のピント調節手段のみを動作させ、上記圧縮率が上記第1の圧縮率よりも低い第2の圧縮率の場合には上記第2のピント調節手段に続いて上記第1のピント調節手段を動作させる制御手段と、
    を具備することを特徴とするカメラ。
JP2002247359A 2002-08-27 2002-08-27 カメラ Withdrawn JP2004085936A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002247359A JP2004085936A (ja) 2002-08-27 2002-08-27 カメラ
US10/644,646 US6895181B2 (en) 2002-08-27 2003-08-20 Camera and distance measuring method thereof
CN 03155964 CN1260951C (zh) 2002-08-27 2003-08-27 照相机
US11/099,402 US7450838B2 (en) 2002-08-27 2005-04-05 Camera having autofocus adjustment function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002247359A JP2004085936A (ja) 2002-08-27 2002-08-27 カメラ

Publications (1)

Publication Number Publication Date
JP2004085936A true JP2004085936A (ja) 2004-03-18

Family

ID=32055031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002247359A Withdrawn JP2004085936A (ja) 2002-08-27 2002-08-27 カメラ

Country Status (2)

Country Link
JP (1) JP2004085936A (ja)
CN (1) CN1260951C (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012003128A (ja) * 2010-06-18 2012-01-05 Nikon Corp 自動合焦制御装置、電子カメラ及び自動合焦制御方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4599917B2 (ja) * 2004-07-09 2010-12-15 ソニー株式会社 撮像装置
JP4403396B2 (ja) * 2004-07-13 2010-01-27 ソニー株式会社 撮像装置及び撮像素子の集積回路
CN100529944C (zh) * 2004-12-10 2009-08-19 鸿富锦精密工业(深圳)有限公司 自动对焦系统
JP5448715B2 (ja) * 2009-10-22 2014-03-19 キヤノン株式会社 撮像装置及びその制御方法
US8958009B2 (en) * 2010-01-12 2015-02-17 Nikon Corporation Image-capturing device
JP2012163923A (ja) * 2011-02-09 2012-08-30 Ricoh Co Ltd 測距装置と方法とプログラム並びに撮像装置と方法とプログラム
CN103460103B (zh) * 2011-03-31 2015-06-17 富士胶片株式会社 成像装置及其驱动方法
CN103765276B (zh) 2011-09-02 2017-01-18 株式会社尼康 对焦评价装置、摄像装置及程序
CN105934710B (zh) * 2014-01-27 2018-08-03 富士胶片株式会社 图像处理装置、摄像装置及图像处理方法
JP6483432B2 (ja) * 2014-12-22 2019-03-13 オリンパス株式会社 撮影装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012003128A (ja) * 2010-06-18 2012-01-05 Nikon Corp 自動合焦制御装置、電子カメラ及び自動合焦制御方法

Also Published As

Publication number Publication date
CN1260951C (zh) 2006-06-21
CN1487728A (zh) 2004-04-07

Similar Documents

Publication Publication Date Title
KR101613878B1 (ko) 촬상장치, 그 제어방법, 및 전자기기
US6895181B2 (en) Camera and distance measuring method thereof
JP4444927B2 (ja) 測距装置及び方法
JP4127491B2 (ja) オートフォーカス機能付きカメラ
JP4528235B2 (ja) デジタルカメラ
JP3634232B2 (ja) デジタルスチルカメラ
US20010035910A1 (en) Digital camera
US20040061796A1 (en) Image capturing apparatus
JP3823921B2 (ja) 撮像装置
JP2007232793A (ja) 撮像装置
JP2003307669A (ja) カメラ
JP4614143B2 (ja) 撮像装置及びそのプログラム
JP4160205B2 (ja) 電子スチルカメラ
JP2004085936A (ja) カメラ
JP5109659B2 (ja) カメラ
JP2007057974A (ja) 撮影装置
JP4949717B2 (ja) 合焦位置決定装置及び方法
JP2007225897A (ja) 合焦位置決定装置及び方法
JP2009017427A (ja) 撮像装置
JP4859194B2 (ja) 撮像装置及びその制御方法及びプログラム及び記憶媒体
JP2010062987A (ja) 撮像装置及び方法
JP2006261928A (ja) 撮像装置及びデジタルカメラ
JP2009033386A (ja) 撮影装置及び撮影方法
JP5586215B2 (ja) カメラ
JP2001136429A (ja) 電子カメラ

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051101