JP2004085224A - Thermal analysis apparatus - Google Patents

Thermal analysis apparatus Download PDF

Info

Publication number
JP2004085224A
JP2004085224A JP2002242947A JP2002242947A JP2004085224A JP 2004085224 A JP2004085224 A JP 2004085224A JP 2002242947 A JP2002242947 A JP 2002242947A JP 2002242947 A JP2002242947 A JP 2002242947A JP 2004085224 A JP2004085224 A JP 2004085224A
Authority
JP
Japan
Prior art keywords
sample
analysis
analyzer
thermomechanical
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002242947A
Other languages
Japanese (ja)
Other versions
JP3918093B2 (en
Inventor
Satoshi Kariya
刈谷 聡
Yosuke Hirata
平田 陽介
Masato Inaoka
稲岡 正人
Shigeru Akimoto
秋本 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2002242947A priority Critical patent/JP3918093B2/en
Publication of JP2004085224A publication Critical patent/JP2004085224A/en
Application granted granted Critical
Publication of JP3918093B2 publication Critical patent/JP3918093B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal analysis apparatus that can improve data matching properties between a thermomechanical analysis and a thermogravimetric analysis and can improve reliability to a thermal analysis. <P>SOLUTION: The thermal analysis apparatus comprises a heat treatment furnace 2 having a heating control section 3 for heat-treating a sample based on a specific temperature and an atmospheric program; a thermomechanical analysis section 4 for measuring the mechanical characteristics of the sample as a function of temperature or time; a thermogravimetric analysis section 5 for measuring a weight change in the sample as a function of temperature or time; and a CPU (recording section) 10 for simultaneously and continuously recording data at the thermomechanical analysis section 4 and data at the thermogravimetric analysis section 5. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、セラミック等の無機材料、鉄鋼等の金属材料、あるいは樹脂等の有機材料の熱機械分析(TMA),熱重量分析(TG)による特性評価試験を行なうようにした熱分析装置に関する。
【0002】
【従来の技術】
この種の熱分析装置として、従来、特開平9−26402号公報に提案されているものがある。この熱分析装置は、加熱炉と膨張収縮測定部を有する熱機械分析部とを基本型とし、この熱機械分析部のアタッチメントを取り外し、熱重量分析部のアタッチメントを取付けることにより、1つの加熱炉で熱機械分析と熱重量分析との両方を行えるようにしたものである。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来公報の熱分析装置では、熱機械分析と熱重量分析とでデータの整合性が低いという問題がある。即ち、熱機械分析と熱重量分析とでそれぞれ個別に同じ試料を測定すると、昇温・雰囲気プロファイルを一致させても試料の重量の増減と試料寸法の膨張収縮温度領域がずれ、各データの整合性が得られない場合がある。これは、炉内容積や試料近辺の雰囲気状態、TG,TMAの各装置の炉内での試料環境条件が異なることから熱挙動データがその影響を受けるためであると考えられる。
【0004】
また上記従来装置では、例えば熱膨張率曲線の傾きが急に変化した場合、その現象が酸化によるものなのか,あるいは転移によるものなのかを判断することが難しく、熱分析に対する信頼性に欠けるという問題がある。
【0005】
本発明は、上記状況に鑑みてなされたもので、熱機械分析と熱重量分析とのデータの整合性を高めることができるとともに、熱分析に対する信頼性を向上できる熱分析装置を提供することを目的としている。
【0006】
【課題を解決するための手段】
請求項1の発明は、試料を所定の温度・雰囲気プログラムに基づいて加熱処理する加熱制御部を備えた熱処理炉と、上記試料の機械的特性を温度又は時間の関数として測定する熱機械分析部と、上記試料の重量変化を温度又は時間の関数として測定する熱重量分析部と、上記熱機械分析部のデータと熱重量分析部のデータとを同時にかつ連続して記録する記録部とを備えたことを特徴とする熱分析装置である。
【0007】
請求項2の発明は、請求項1において、上記記録部は、炉内雰囲気温度、試料温度、炉内雰囲気ガス濃度を同時に並行して記録するように構成されていることを特徴としている。
【0008】
請求項3の発明は、請求項1又は2において、熱重量分析用試料皿が所定間隔をあけて積み重ねられており、該各試料皿を貫通するよう穴が形成され、該穴内に上記熱機械分析部の計測部が挿入配置されていることを特徴としている。
【0009】
請求項4の発明は、請求項3において、上記熱機械分析部及び熱重量分析部は相対的に昇降可能となっていることを特徴としている。
【0010】
請求項5の発明は、請求項3又は4において、上記熱処理炉は、炉内雰囲気ガスの流れを熱重量分析用試料皿の載置面に平行な平行ガス流、あるいは拡散ガス流、もしくは循環ガス流の何れかに設定できる機能を有していることを特徴としている。
【0011】
請求項6の発明は、請求項1ないし5の何れかにおいて、上記熱処理炉によって熱機械分析用試料の線膨張をダイナミックにコントロールし、その際の熱重量分析用試料の質量変化を上記熱重量分析部によって測定することを特徴としている。
【0012】
請求項7の発明は、請求項1ないし5の何れかにおいて、上記熱処理炉によって熱重量分析用試料の質量変化をダンナミックにコントロールし、その際の熱機械分析用試料の線膨張を上記熱機械分析部によって測定することを特徴としている。
【0013】
【発明の作用効果】
請求項1の発明に係る熱分析装置によれば、熱機械分析と熱重量分析とを同時に行い、かつ各データを同時に連続して記録するようにしたので、試料の機械的特性及び重量変化を同一の温度・雰囲気条件で測定することが可能となり、熱機械分析と熱重量分析とのデータの整合性を高めることができる。
【0014】
また各データを同時に測定するので、例えば熱機械分析のデータである熱膨張率曲線の傾きが急に変化した場合には、熱重量分析を同時に行なっていることからこの熱膨張率曲線の急変が酸化によるものか、あるいは転移によるものかを容易に判断することができ、熱分析に対する信頼性を向上できる。
【0015】
請求項2の発明では、炉内雰囲気温度、試料温度、炉内ガス濃度を並行して同時にかつ連続して記録するので、複数種類の異種計測センサによる各パラメータの同時測定が可能となる。
【0016】
請求項3の発明では、熱重量分析用試料皿を複数積み重ねるとともに、各試料皿を貫通する穴を形成し、該穴内に熱機械分析部の計測部を挿入配置したので、熱機械分析用試料と熱重量分析用試料とを近接させた状態で両試料を独立させてかつ同時に測定することができ、データの整合性をより高めることができる。
【0017】
また上記熱機械分析用試料と熱重量分析用試料とが同時に存在する空間内の温度及び雰囲気のばらつきを小さくすることができ、同一の温度・雰囲気条件で熱処理を行なうことができる。
【0018】
請求項4の発明では、熱機械分析部と熱重量分析部とを相対的に昇降可能としたので、加熱条件や雰囲気ガス流条件に応じて熱機械分析用試料,熱重量分析用試料のセッティング位置を自由に設定できる。
【0019】
請求項5の発明では、炉内雰囲気ガスの流れを試料皿の載置面に平行な平行ガス流,拡散ガス流,あるいは循環ガス流の何れかに設定したので、温度・雰囲気プロファイルに応じた最適な雰囲気ガス流に設定することができる。
【0020】
請求項6の発明では、熱機械分析用試料の線膨張をダイナミックにコントロールする際に熱重量分析用試料の質量変化を測定するようにし、また請求項7の発明では、熱重量分析用試料の質量変化をダイナミックにコントロールする際に熱機械分析用試料の線膨張を計測するようにしたので、一方の試料の機械的特性を測定しつつ他方の試料の重量変化を測定することができ、またその逆も行なうことができる。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づいて説明する。
【0022】
図1ないし図4は、本発明の一実施形態による熱分析装置を説明するための図であり、図1は熱分析装置の全体構成図、図2は熱分析装置の熱処理炉の断面平面図、図3,図4は熱分析装置の昇降駆動部の概略図である。
【0023】
図において、1は熱分析装置を示しており、これは熱処理炉2と、該熱処理炉2内に収容された試料を所定の温度・雰囲気プログラムに基づいて加熱処理する加熱制御部(制御盤)3と、試料の機械的特性を温度又は時間の関数として測定する熱機械分析部4と、試料の重量変化を温度又は時間の関数として測定する熱重量分析部5とを備えている。上記熱機械分析部4は、例えば試料に一定荷重を加えた状態で予め決められた温度プログラムに従って温度を変化させたときの試料の寸法変化から試料の熱膨張率や軟化温度を測定したり、あるいはさらに引っ張りや曲げの機械的特性を測定する。また熱重量分析部5は、予め決められた温度プログラムにより温度を変化させたときの試料の重量変化を計測する。
【0024】
上記熱処理炉2の前壁部には引出式の前扉2aが配設され、天壁部には雰囲気ガス供給管6,6が水平方向に向けて挿入され、さらに側壁部には側面ヒータ7,7が配設されている。上記各雰囲気ガス供給管6には炉外に設置された雰囲気ガス供給装置8が接続されている。ここで、雰囲気ガスの炉内供給方法については各種の変形例が採用可能であり、例えば、雰囲気ガス供給管6a,6aを底壁2bから垂直方向に起立させて配置してもよく(図5(a)参照)、また雰囲気ガス供給管6b,6bを側壁2cから天壁2d,底壁2bに平行となるよう水平方向に向けて配置してもよい(図5(b)参照)。さらに雰囲気ガス供給口6c,6cを底壁2bと天壁2dに配置してもよい(図5(c)参照)。
【0025】
上記加熱制御部3は記憶装置を内蔵するCPU10を備えている。このCPU10には、予め設定された所定の温度・雰囲気プログラムを内蔵するシーケンサ11が変換器12,マルチプレクサ13,COM14を介在させて接続されており、また炉内温度を検出する炉内温度センサ15、酸素,炭酸ガス,水素等の炉内雰囲気ガス濃度を検出するガス濃度センサ16がAD変換器17を介在させて接続されている。
【0026】
また上記CPU10には上記熱機械分析部4が上記AD変換器17を介して接続され、上記熱重量分析部5がマルチプレクサ13,COM14を介して接続されている。
【0027】
そして上記CPU10は、各センサ15,16からの検出値及び各熱分析部4,5からのTMA,TGデータに基づいてヒータ出力値を算出し、DA変換器18,マスフローコントローラ19を介して雰囲気ガス供給装置8,側面ヒータ7の出力制御を行なうとともに、上記各検出値及び各TMA,TGデータを同時にかつ連続して記録するように構成されている。
【0028】
上記熱重量分析部5は、熱処理炉2の底壁に挿入配置された電子天秤20と、該電子天秤20にスペーサ22を介在させて上下方向に所定間隔をあけて積み重ねて配置された複数の熱重量分析用試料皿21とを備えている。
【0029】
上記各試料皿21は厚さ0.5〜3mm程度の円板状,矩形又は多角形状のもので、各試料皿21の中心部には15〜30mmφ程度の穴21aが同軸をなすように形成されている。上記各試料皿21には熱重量分析用試料23が載置されている。そして電子天秤20により測定された試料23の重量データとともに、熱電対24により検出された試料23の温度が上記マルチプレクサ13からCPU10に入力される。
【0030】
上記電子天秤20には昇降駆動機構27が配設されており、この昇降駆動機構27により電子天秤20を介して試料皿21が任意の高さ位置にセットされるようになっている。
【0031】
上記熱機械分析部4は、熱処理炉2の天井部に挿入配置され、熱機械分析用試料30が配設されたTMA計測管31と、該TMA計測管31の炉外上端に接続された接触式のTMA本体32とから構成されている。
【0032】
上記TMA計測管31は上記各試料皿21の穴21a内に挿入されている。そして上記試料30に押圧力,引張力を加えることにより試料30の寸法変化等の機械的特性データが上記CPU10に入力される。
【0033】
また上記TMA本体32には昇降駆動機構33が配設されており、この昇降駆動機構33によりTMA計測管31の試料30が任意の高さ位置にセットされるようになっている。
【0034】
本実施形態の熱分析装置1によれば、1つの熱処理炉2で熱機械分析と熱重量分析とを同時に行なうとともに、各TMA,TGデータを連続してCPU10の記録装置により記録するようにしたので、試料30の機械的特性及び各試料23の重量変化を同一の温度・雰囲気条件下で測定することができ、熱機械分析と熱重量分析とのデータの整合性を高めることができる。
【0035】
また各TMA,TGデータを同時に測定するので、熱機械分析部4のTMAデータである熱膨張率曲線の傾きが急に変化した場合には、熱重量分析部5によるTGデータから上記熱膨張率曲線の急変が酸化によるものか、あるいは転移によるものかを容易に判断することができ、熱分析に対する信頼性を向上できる。
【0036】
また上記TMA,TGデータとともに、炉内雰囲気温度,試料温度,炉内雰囲気ガス濃度を並行してかつ同時に連続して記録するので、複数種類の異種計測センサによる各パラメータの同時測定が可能となる。
【0037】
本実施形態では、各熱重量分析用試料皿21の中心部に同軸をなすように穴21aを形成し、該穴21a内にTMA計測部31を挿入配置したので、熱機械分析用試料30と熱重量分析用試料23とを近接させた状態で両試料30,23を独立させてかつ同時に測定することができ、データの整合性をより高めることができる。
【0038】
また上記熱機械分析用試料30と熱重量分析用試料23とが同時に存在する空間内の温度のばらつきを例えば2℃以内と極めて小さくできるとともに、雰囲気のばらつきを小さくすることができ、同一の温度・雰囲気条件で熱処理を行なうことができる。
【0039】
本実施形態では、上記熱機械分析部4及び熱重量分析部5にそれぞれ独立した昇降駆動機構33,27を配設したので、加熱条件や雰囲気ガス流条件に応じて熱機械分析用試料30,熱重量分析用試料23のセッティング位置を自由に設定できる。
【0040】
またTG測定用試料皿21の任意の位置におけるTMA測定が可能となるとともに、熱処理炉2内の雰囲気ガス供給管6に対して最適な位置にTG試料30を位置させることができる。
【0041】
図6は、本実施形態の効果を確認するために行った実験結果を示す特性図である。本実験では、無機物,樹脂,金属成分で構成された電子部品の半製品を採用し、該半製品を1つの熱処理炉にて同一の温度・雰囲気条件下で加熱し、熱重量分析測定と熱機械分析測定とを同時に行った。また比較するために、従来のTG,TMA単独測定装置による測定も行った。図7(a)はTG単独装置による測定データを示す特性図であり、図7(b)はTMA単独装置による測定データを示す特性図である。
【0042】
図6からも明らかなように、本実施形態のTG/TMA同時測定の場合には、同一の温度・雰囲気条件下で測定できることから、TGとTMAとのデータの整合性を得ることができる。これに対して、TG単独測定装置とTMA単独測定装置とでそれぞれ個別に同じ試料を測定した場合には、温度・雰囲気プロファイルを一致させても(TGの)重量の増減と(TMAの)試料寸法の膨張収縮温度領域がずれ易く、TG/TMAデータの整合性が低い。
【0043】
【表1】

Figure 2004085224
【0044】
表1は検出できた樹脂分解挙動の温度幅を表している。表1からも明らかなように、樹脂成分の分解(原料・収縮)挙動完了温度に関して見ると、TG/TMA同時測定におけるTMAとTGとのデータ間の温度差は20℃である。これに対してTG,TMA単独測定装置では両者の間に70℃の開きが生じていることがわかる。
【0045】
【表2】
Figure 2004085224
【0046】
表2は検出できた金属酸化挙動の温度幅を表している。表2からも明らかなように、金属酸化挙動に関して見ると、TG/TMA同時測定を行った場合ではTGの酸化重量増とTMAの膨張挙動の温度域とは430℃で一致している。一方、TG,TMA単独測定装置の場合では両者の間に80℃の開きがあり、温度域が不一致となっている。このように、TG/TMA同時測定を行なうことにより、TMA/TGデータの整合性が改善され、材料の特性評価を行なううえで極めて有効であることがわかる。
【0047】
近年、制御された所定の雰囲気下での熱処理が重要になっている。例えば、卑金属電極材料を用いた積層コンデンサでは、熱処理時の雰囲気コンディションによって特性に大きな影響を受ける。TGとTMAとを別個の装置で測定した場合には、その時の雰囲気が同じ状態になるとは限らない。例えば、ガス投入量等の条件を一致させても諸々の要因の影響でずれてくる可能性がある。このため、全く同じ雰囲気コンディション下でTGとTMAとを同時に測定することは重要な意味があり、測定後にデータ解析する際にも有効である。
【図面の簡単な説明】
【図1】本発明の一実施形態による熱分析装置の全体構成図である。
【図2】上記熱分析装置の熱処理炉の断面平面図である。
【図3】上記熱分析装置の昇降駆動部の概略図である。
【図4】上記熱分析装置の昇降駆動部の概略図である。
【図5】上記実施形態の雰囲気ガス供給管の配置構造の変形例を示す図である。
【図6】上記実施形態のTG/TMA同時測定データを示す特性図である。
【図7】従来のTG,TMA単独測定データを示す特性図である。
【符号の説明】
1      熱分析装置
2      熱処理炉
3      加熱制御部
4      熱機械分析部
5      熱重量分析部
10     CPU(記録部)
21     熱重量分析用試料皿
21a    穴
27,33  昇降駆動機構[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thermal analysis apparatus for performing a characteristic evaluation test by thermomechanical analysis (TMA) and thermogravimetric analysis (TG) on inorganic materials such as ceramics, metal materials such as steel, and organic materials such as resins.
[0002]
[Prior art]
As this type of thermal analyzer, there has been conventionally proposed a thermal analyzer disclosed in Japanese Patent Application Laid-Open No. 9-26402. This thermal analyzer has a heating furnace and a thermomechanical analysis section having an expansion / contraction measurement section as a basic type, and detaches the attachment of the thermomechanical analysis section and attaches the attachment of the thermogravimetric analysis section to form one heating furnace. This makes it possible to perform both thermomechanical analysis and thermogravimetric analysis.
[0003]
[Problems to be solved by the invention]
However, the conventional thermal analysis apparatus described above has a problem that data consistency between thermomechanical analysis and thermogravimetric analysis is low. In other words, when the same sample is measured individually by thermomechanical analysis and thermogravimetric analysis, even if the temperature rise / atmosphere profile is matched, the weight of the sample increases and decreases and the expansion / contraction temperature region of the sample size shifts, and each data matches. May not be obtained. It is considered that this is because the thermal behavior data is affected by the difference in the furnace internal volume, the atmosphere state near the sample, and the sample environmental condition in the furnace of each of the TG and TMA devices.
[0004]
Further, in the above-mentioned conventional apparatus, for example, when the slope of the coefficient of thermal expansion changes abruptly, it is difficult to determine whether the phenomenon is caused by oxidation or transition, and the reliability of thermal analysis is lacking. There's a problem.
[0005]
The present invention has been made in view of the above circumstances, and provides a thermal analyzer capable of improving the consistency of data between thermomechanical analysis and thermogravimetric analysis and improving the reliability of thermal analysis. The purpose is.
[0006]
[Means for Solving the Problems]
The invention according to claim 1 is a heat treatment furnace having a heating control unit for heating a sample based on a predetermined temperature / atmosphere program, and a thermomechanical analysis unit for measuring mechanical properties of the sample as a function of temperature or time. A thermogravimetric analyzer for measuring the change in weight of the sample as a function of temperature or time, and a recording unit for simultaneously and continuously recording data of the thermomechanical analyzer and data of the thermogravimetric analyzer. A thermal analyzer characterized by the following.
[0007]
A second aspect of the present invention is characterized in that, in the first aspect, the recording unit is configured to simultaneously record a furnace atmosphere temperature, a sample temperature, and a furnace atmosphere gas concentration in parallel.
[0008]
According to a third aspect of the present invention, in the first or second aspect, the sample dishes for thermogravimetric analysis are stacked at a predetermined interval, and a hole is formed so as to penetrate each sample dish, and the thermo-mechanical device is formed in the hole. The measurement unit of the analysis unit is inserted and arranged.
[0009]
According to a fourth aspect of the present invention, in the third aspect, the thermomechanical analyzer and the thermogravimetric analyzer are relatively movable up and down.
[0010]
According to a fifth aspect of the present invention, in the heat treatment furnace according to the third or fourth aspect, the flow of the atmosphere gas in the furnace is a parallel gas flow parallel to the mounting surface of the sample plate for thermogravimetric analysis, or a diffusion gas flow or circulation. It is characterized by having a function that can be set to any of the gas flows.
[0011]
According to a sixth aspect of the present invention, in any one of the first to fifth aspects, the linear expansion of the thermomechanical analysis sample is dynamically controlled by the heat treatment furnace, and the mass change of the thermogravimetric analysis sample at that time is measured by the thermogravimetry. It is characterized in that it is measured by an analyzer.
[0012]
According to a seventh aspect of the present invention, in any one of the first to fifth aspects, the mass change of the thermogravimetric analysis sample is controlled in a random manner by the heat treatment furnace, and the linear expansion of the thermomechanical analysis sample at that time is reduced by the thermal expansion. It is characterized in that it is measured by a mechanical analyzer.
[0013]
Operation and Effect of the Invention
According to the thermal analyzer according to the first aspect of the present invention, the thermomechanical analysis and the thermogravimetric analysis are performed simultaneously, and the respective data are simultaneously and continuously recorded. Measurement can be performed under the same temperature and atmosphere conditions, and the data consistency between thermomechanical analysis and thermogravimetric analysis can be improved.
[0014]
In addition, since each data is measured simultaneously, for example, if the slope of the thermal expansion coefficient curve, which is the data of thermomechanical analysis, suddenly changes, the rapid change of the thermal expansion coefficient curve will be Whether it is due to oxidation or due to transition can be easily determined, and the reliability for thermal analysis can be improved.
[0015]
According to the second aspect of the present invention, since the furnace atmosphere temperature, the sample temperature, and the furnace gas concentration are recorded simultaneously and continuously in parallel, it is possible to simultaneously measure each parameter by a plurality of types of different measurement sensors.
[0016]
According to the third aspect of the present invention, a plurality of thermogravimetric analysis sample dishes are stacked, a hole penetrating each sample dish is formed, and the measurement unit of the thermomechanical analysis unit is inserted and arranged in the hole. The two samples can be measured independently and simultaneously in a state where the sample and the thermogravimetric analysis sample are close to each other, and the consistency of data can be further improved.
[0017]
In addition, variations in temperature and atmosphere in the space where the thermomechanical analysis sample and the thermogravimetric analysis sample are simultaneously present can be reduced, and heat treatment can be performed under the same temperature and atmosphere conditions.
[0018]
According to the fourth aspect of the present invention, since the thermomechanical analysis unit and the thermogravimetric analysis unit can be moved up and down relatively, the setting of the thermomechanical analysis sample and the thermogravimetric analysis sample according to the heating conditions and the atmosphere gas flow conditions. The position can be set freely.
[0019]
In the invention of claim 5, the flow of the atmosphere gas in the furnace is set to any of a parallel gas flow, a diffusion gas flow, and a circulating gas flow parallel to the mounting surface of the sample dish. The optimum atmosphere gas flow can be set.
[0020]
According to a sixth aspect of the present invention, the mass change of the thermogravimetric analysis sample is measured when the linear expansion of the thermomechanical analysis sample is dynamically controlled. Since the linear expansion of the thermomechanical analysis sample is measured when dynamically controlling the mass change, the weight change of the other sample can be measured while measuring the mechanical properties of one sample, and The reverse can also be done.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0022]
1 to 4 are views for explaining a thermal analyzer according to an embodiment of the present invention. FIG. 1 is an overall configuration diagram of the thermal analyzer, and FIG. 2 is a cross-sectional plan view of a heat treatment furnace of the thermal analyzer. , FIGS. 3 and 4 are schematic diagrams of the elevation drive unit of the thermal analyzer.
[0023]
In the figure, reference numeral 1 denotes a thermal analyzer, which is a heat treatment furnace 2 and a heating control unit (control panel) for heating a sample contained in the heat treatment furnace 2 based on a predetermined temperature and atmosphere program. 3, a thermomechanical analyzer 4 for measuring the mechanical properties of the sample as a function of temperature or time, and a thermogravimetric analyzer 5 for measuring the change in weight of the sample as a function of temperature or time. The thermomechanical analyzer 4, for example, measures the thermal expansion coefficient and softening temperature of the sample from a dimensional change of the sample when the temperature is changed according to a predetermined temperature program while applying a constant load to the sample, Alternatively, the mechanical properties of tension and bending are measured. Further, the thermogravimetric analyzer 5 measures the weight change of the sample when the temperature is changed by a predetermined temperature program.
[0024]
A draw-out type front door 2a is disposed on a front wall portion of the heat treatment furnace 2, an atmospheric gas supply pipe 6, 6 is inserted in a top wall portion in a horizontal direction, and a side heater 7 is provided on a side wall portion. , 7 are provided. An atmosphere gas supply device 8 installed outside the furnace is connected to each of the atmosphere gas supply pipes 6. Here, various modifications of the method of supplying the atmosphere gas into the furnace can be adopted. For example, the atmosphere gas supply pipes 6a, 6a may be arranged so as to stand vertically from the bottom wall 2b (FIG. 5). (See (a)), and the atmosphere gas supply pipes 6b, 6b may be arranged in the horizontal direction so as to be parallel from the side wall 2c to the top wall 2d and the bottom wall 2b (see FIG. 5B). Further, the atmosphere gas supply ports 6c, 6c may be arranged on the bottom wall 2b and the top wall 2d (see FIG. 5C).
[0025]
The heating control unit 3 includes a CPU 10 having a built-in storage device. The CPU 10 is connected to a sequencer 11 containing a preset temperature / atmosphere program via a converter 12, a multiplexer 13, and a COM 14, and a furnace temperature sensor 15 for detecting a furnace temperature. , Oxygen, carbon dioxide, hydrogen, etc., a gas concentration sensor 16 for detecting the gas concentration in the furnace atmosphere is connected via an AD converter 17.
[0026]
The thermomechanical analyzer 4 is connected to the CPU 10 via the AD converter 17, and the thermogravimetric analyzer 5 is connected via the multiplexer 13 and the COM 14.
[0027]
The CPU 10 calculates the heater output value based on the detection values from the sensors 15 and 16 and the TMA and TG data from the thermal analysis units 4 and 5, and calculates the atmosphere output via the DA converter 18 and the mass flow controller 19. The output of the gas supply device 8 and the side heater 7 is controlled, and the respective detected values and the respective TMA and TG data are recorded simultaneously and continuously.
[0028]
The thermogravimetric analysis unit 5 includes an electronic balance 20 inserted and arranged on the bottom wall of the heat treatment furnace 2 and a plurality of electronic balances 20 stacked and arranged at predetermined intervals in the vertical direction with a spacer 22 interposed between the electronic balance 20 and the electronic balance 20. And a thermogravimetric analysis sample dish 21.
[0029]
Each of the sample dishes 21 is a disk, rectangle or polygon having a thickness of about 0.5 to 3 mm, and a hole 21a of about 15 to 30 mmφ is formed at the center of each sample dish 21 so as to be coaxial. Have been. Each sample dish 21 has a thermogravimetric analysis sample 23 placed thereon. Then, the temperature of the sample 23 detected by the thermocouple 24 is input to the CPU 10 from the multiplexer 13 together with the weight data of the sample 23 measured by the electronic balance 20.
[0030]
The electronic balance 20 is provided with a lifting drive mechanism 27, and the sample tray 21 is set at an arbitrary height position via the electronic balance 20 by the lifting drive mechanism 27.
[0031]
The thermomechanical analyzer 4 is inserted and arranged in the ceiling of the heat treatment furnace 2, and a TMA measuring tube 31 on which the thermomechanical analysis sample 30 is disposed, and a contact connected to the upper end of the TMA measuring tube 31 outside the furnace. And a TMA main body 32 of a formula.
[0032]
The TMA measuring tube 31 is inserted into the hole 21a of each sample dish 21. Then, by applying a pressing force and a tensile force to the sample 30, mechanical characteristic data such as a dimensional change of the sample 30 is input to the CPU 10.
[0033]
An elevation drive mechanism 33 is provided on the TMA main body 32, and the specimen 30 of the TMA measuring tube 31 is set at an arbitrary height position by the elevation drive mechanism 33.
[0034]
According to the thermal analyzer 1 of the present embodiment, the thermomechanical analysis and the thermogravimetric analysis are simultaneously performed in one heat treatment furnace 2, and the TMA and TG data are recorded continuously by the recording device of the CPU 10. Therefore, the mechanical properties of the sample 30 and the weight change of each sample 23 can be measured under the same temperature and atmosphere conditions, and the data consistency between thermomechanical analysis and thermogravimetric analysis can be improved.
[0035]
Further, since the respective TMA and TG data are measured at the same time, if the slope of the thermal expansion coefficient curve which is the TMA data of the thermomechanical analyzer 4 changes suddenly, the thermal expansion coefficient is obtained from the TG data obtained by the thermogravimetric analyzer 5. Whether the sudden change in the curve is due to oxidation or transition can be easily determined, and the reliability of the thermal analysis can be improved.
[0036]
Further, since the furnace atmosphere temperature, the sample temperature, and the furnace atmosphere gas concentration are simultaneously and continuously recorded together with the TMA and TG data, simultaneous measurement of each parameter by a plurality of types of different types of measurement sensors becomes possible. .
[0037]
In the present embodiment, the hole 21a is formed so as to be coaxial with the center of each sample plate 21 for thermogravimetric analysis, and the TMA measuring unit 31 is inserted and arranged in the hole 21a. With the thermogravimetric analysis sample 23 in close proximity, the two samples 30, 23 can be measured independently and simultaneously, and the data consistency can be further improved.
[0038]
In addition, the temperature variation in the space where the thermomechanical analysis sample 30 and the thermogravimetric analysis sample 23 are simultaneously present can be extremely reduced to, for example, 2 ° C. or less, and the variation in atmosphere can be reduced.・ Heat treatment can be performed under atmospheric conditions.
[0039]
In this embodiment, since the thermomechanical analysis unit 4 and the thermogravimetric analysis unit 5 are provided with independent lifting / lowering driving mechanisms 33 and 27, respectively, the thermomechanical analysis sample 30, the thermomechanical analysis sample 30, The setting position of the thermogravimetric analysis sample 23 can be set freely.
[0040]
In addition, TMA measurement can be performed at an arbitrary position on the TG measurement sample dish 21, and the TG sample 30 can be positioned at an optimum position with respect to the atmosphere gas supply pipe 6 in the heat treatment furnace 2.
[0041]
FIG. 6 is a characteristic diagram showing the results of an experiment performed to confirm the effects of the present embodiment. In this experiment, a semi-finished product of an electronic component composed of an inorganic substance, a resin, and a metal component was adopted, and the semi-finished product was heated in one heat treatment furnace under the same temperature and atmosphere conditions, and the thermogravimetric analysis measurement and the thermogravimetric analysis were performed. Mechanical analysis measurements were performed simultaneously. For comparison, measurement was also performed using a conventional TG / TMA single measuring apparatus. FIG. 7A is a characteristic diagram showing measurement data obtained by the TG only device, and FIG. 7B is a characteristic diagram showing measurement data obtained by the TMA only device.
[0042]
As is clear from FIG. 6, in the case of the TG / TMA simultaneous measurement of the present embodiment, since the measurement can be performed under the same temperature and atmosphere conditions, data consistency between TG and TMA can be obtained. On the other hand, when the same sample is individually measured by the TG-only measuring device and the TMA-only measuring device, the increase / decrease of the (TG) weight and the (TMA) sample are obtained even when the temperature / atmosphere profiles are matched. The dimensional expansion / contraction temperature region tends to shift, and the consistency of TG / TMA data is low.
[0043]
[Table 1]
Figure 2004085224
[0044]
Table 1 shows the temperature range of the detected resin decomposition behavior. As is clear from Table 1, the temperature difference between the data of TMA and TG in the simultaneous measurement of TG / TMA is 20 ° C. regarding the completion temperature of the decomposition (raw material / shrinkage) behavior of the resin component. On the other hand, it can be seen that in the TG and TMA single measuring devices, an opening of 70 ° C. occurs between the two.
[0045]
[Table 2]
Figure 2004085224
[0046]
Table 2 shows the temperature range of the detected metal oxidation behavior. As is apparent from Table 2, when the TG / TMA simultaneous measurement is performed, the increase in TG oxidation weight and the temperature range of the expansion behavior of TMA coincide with each other at 430 ° C. in the metal oxidation behavior. On the other hand, in the case of the TG and TMA single measuring devices, there is a difference of 80 ° C. between the two, and the temperature ranges do not match. As described above, by performing the TG / TMA simultaneous measurement, it is found that the consistency of the TMA / TG data is improved, and it is extremely effective in evaluating the characteristics of the material.
[0047]
In recent years, heat treatment in a controlled predetermined atmosphere has become important. For example, in a multilayer capacitor using a base metal electrode material, characteristics are greatly affected by an atmospheric condition during heat treatment. When TG and TMA are measured by different devices, the atmosphere at that time is not always the same. For example, even if the conditions such as the gas input amount are matched, there is a possibility that the values may be shifted due to various factors. For this reason, it is important to measure TG and TMA simultaneously under exactly the same atmospheric conditions, and it is also effective when performing data analysis after measurement.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a thermal analyzer according to one embodiment of the present invention.
FIG. 2 is a sectional plan view of a heat treatment furnace of the thermal analyzer.
FIG. 3 is a schematic view of a lifting drive unit of the thermal analyzer.
FIG. 4 is a schematic diagram of a lifting drive unit of the thermal analyzer.
FIG. 5 is a view showing a modification of the arrangement structure of the atmospheric gas supply pipe of the embodiment.
FIG. 6 is a characteristic diagram showing TG / TMA simultaneous measurement data of the embodiment.
FIG. 7 is a characteristic diagram showing conventional measurement data of TG and TMA alone.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 thermal analyzer 2 heat treatment furnace 3 heating controller 4 thermomechanical analyzer 5 thermogravimetric analyzer 10 CPU (recording unit)
21 Sample pan 21a for thermogravimetric analysis Holes 27, 33 Lifting drive mechanism

Claims (7)

試料を所定の温度・雰囲気プログラムに基づいて加熱処理する加熱制御部を備えた熱処理炉と、上記試料の機械的特性を温度又は時間の関数として測定する熱機械分析部と、上記試料の重量変化を温度又は時間の関数として測定する熱重量分析部と、上記熱機械分析部のデータと熱重量分析部のデータとを同時にかつ連続して記録する記録部とを備えたことを特徴とする熱分析装置。A heat treatment furnace having a heating control unit for heating the sample based on a predetermined temperature / atmosphere program, a thermomechanical analysis unit for measuring the mechanical properties of the sample as a function of temperature or time, and a change in weight of the sample A thermogravimetric analyzer for measuring the temperature or time as a function of time, and a recording unit for simultaneously and continuously recording the data of the thermomechanical analyzer and the data of the thermogravimetric analyzer. Analysis equipment. 請求項1において、上記記録部は、炉内雰囲気温度、試料温度、炉内雰囲気ガス濃度を同時に並行して記録するように構成されていることを特徴とする熱分析装置。2. The thermal analyzer according to claim 1, wherein the recording unit is configured to simultaneously record a furnace atmosphere temperature, a sample temperature, and a furnace atmosphere gas concentration in parallel. 請求項1又は2において、熱重量分析用試料皿が所定間隔をあけて積み重ねられており、該各試料皿を貫通するよう穴が形成され、該穴内に上記熱機械分析部の計測部が挿入配置されていることを特徴とする熱分析装置。3. The thermogravimetric analysis sample dishes according to claim 1 or 2, wherein the thermogravimetric analysis sample dishes are stacked at a predetermined interval, holes are formed through the respective sample dishes, and the measuring section of the thermomechanical analysis section is inserted into the holes. A thermal analyzer, wherein the thermal analyzer is arranged. 請求項3において、上記熱機械分析部及び熱重量分析部は相対的に昇降可能となっていることを特徴とする熱分析装置。4. The thermal analyzer according to claim 3, wherein the thermomechanical analyzer and the thermogravimetric analyzer are relatively movable up and down. 請求項3又は4において、上記熱処理炉は、炉内雰囲気ガスの流れを熱重量分析用試料皿の載置面に平行な平行ガス流、あるいは拡散ガス流、もしくは循環ガス流の何れかに設定できる機能を有していることを特徴とする熱分析装置。The heat treatment furnace according to claim 3 or 4, wherein the flow of the atmosphere gas in the furnace is set to any one of a parallel gas flow parallel to the mounting surface of the sample plate for thermogravimetric analysis, a diffusion gas flow, and a circulation gas flow. A thermal analysis device having a function capable of performing the same. 請求項1ないし5の何れかにおいて、上記熱処理炉によって熱機械分析用試料の線膨張をダイナミックにコントロールし、その際の熱重量分析用試料の質量変化を上記熱重量分析部によって測定することを特徴とする熱分析装置。The method according to any one of claims 1 to 5, wherein the thermal expansion furnace dynamically controls linear expansion of the thermomechanical analysis sample, and measures a mass change of the thermogravimetric analysis sample at that time by the thermogravimetric analysis unit. Characteristic thermal analyzer. 請求項1ないし5の何れかにおいて、上記熱処理炉によって熱重量分析用試料の質量変化をダンナミックにコントロールし、その際の熱機械分析用試料の線膨張を上記熱機械分析部によって測定することを特徴とする熱分析装置。6. The thermomechanical analyzer according to claim 1, wherein a mass change of the thermogravimetric analysis sample is controlled in a random manner by the heat treatment furnace, and a linear expansion of the thermomechanical analysis sample at that time is measured by the thermomechanical analyzer. Thermal analysis device characterized by the above-mentioned.
JP2002242947A 2002-08-23 2002-08-23 Thermal analyzer Expired - Lifetime JP3918093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002242947A JP3918093B2 (en) 2002-08-23 2002-08-23 Thermal analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002242947A JP3918093B2 (en) 2002-08-23 2002-08-23 Thermal analyzer

Publications (2)

Publication Number Publication Date
JP2004085224A true JP2004085224A (en) 2004-03-18
JP3918093B2 JP3918093B2 (en) 2007-05-23

Family

ID=32051835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002242947A Expired - Lifetime JP3918093B2 (en) 2002-08-23 2002-08-23 Thermal analyzer

Country Status (1)

Country Link
JP (1) JP3918093B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100445724C (en) * 2005-05-26 2008-12-24 长沙三德实业有限公司 Assembly line type automatic consecutive technical analysis instrument
JP2009229164A (en) * 2008-03-21 2009-10-08 Ngk Insulators Ltd Oxygen concentration measuring method
CN102062782A (en) * 2010-11-30 2011-05-18 湖南三德科技发展有限公司 Feeding and sampling manipulator for industrial analyzer
KR101302723B1 (en) * 2011-05-04 2013-09-10 울산대학교 산학협력단 Simulator for incineration and thermal decomposition of wastes
KR101758526B1 (en) 2015-12-23 2017-07-14 주식회사 포스코 Method for measuring residual expansion ratio of swelling landfill
JP2019070534A (en) * 2017-10-06 2019-05-09 株式会社Kri Estimation method of coefficient of thermal expansion, and quality control method of calcined coke

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100445724C (en) * 2005-05-26 2008-12-24 长沙三德实业有限公司 Assembly line type automatic consecutive technical analysis instrument
JP2009229164A (en) * 2008-03-21 2009-10-08 Ngk Insulators Ltd Oxygen concentration measuring method
CN102062782A (en) * 2010-11-30 2011-05-18 湖南三德科技发展有限公司 Feeding and sampling manipulator for industrial analyzer
KR101302723B1 (en) * 2011-05-04 2013-09-10 울산대학교 산학협력단 Simulator for incineration and thermal decomposition of wastes
KR101758526B1 (en) 2015-12-23 2017-07-14 주식회사 포스코 Method for measuring residual expansion ratio of swelling landfill
JP2019070534A (en) * 2017-10-06 2019-05-09 株式会社Kri Estimation method of coefficient of thermal expansion, and quality control method of calcined coke

Also Published As

Publication number Publication date
JP3918093B2 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
CN109696362B (en) Mechanical tensile property testing device and method used in high-temperature environment
US7635092B2 (en) Humidity-controlled chamber for a thermogravimetric instrument
CN104280577B (en) Electric connecting apparatus
JP3918093B2 (en) Thermal analyzer
US7048435B2 (en) Humidity-controlled chamber for a thermogravimetric instrument
JP4218816B2 (en) Needle load measuring method, inspection method and inspection apparatus
CN100547754C (en) A kind of device and method that improves detection precision of oxidated layer thickness
JP4096034B2 (en) Creep test method
CN108426914B (en) Measuring instrument for heat conductivity coefficient and specific heat capacity
RU2012103469A (en) SYSTEM AND METHOD FOR DETERMINING THE THICKNESS OF THE STUDYED LAYER IN A MULTI-LAYERED STRUCTURE
CN102226746B (en) Impact-type high-temperature hardness test method
CN105891033A (en) Durometer for measuring variable-temperature hardness of metal material
KR102164075B1 (en) Warm test apparatus
JP2014130898A (en) Test device and test method for electronic device
JPH0754241B2 (en) Weight / displacement measuring device
CN108195712A (en) A kind of test solvent evaporation rate and the test device of temperature, humidity and liquid surface area relationship
CN213632471U (en) High-temperature oil groove for detecting temperature sensor
JP5492945B2 (en) Measuring device for subject under specific temperature
Alves et al. Analysis of the thermal environment inside the furnace of a dynamic mechanical analyser
KR20090050174A (en) Apparatus and method for metalic oxidizing valuation
JP2003121459A (en) Electric characteristic measuring device and measuring method
CN100381601C (en) Apparatus of dynamic testing controlling for carbon potential of vacuum furnace
JPS62148845A (en) Device for simultaneously measuring thermal and temperature conductivity of flat deformable material
CN213632443U (en) Device for accurately detecting furnace temperature uniformity
CN208171734U (en) Metal hose device for detecting mechanical property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070129

R150 Certificate of patent or registration of utility model

Ref document number: 3918093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

EXPY Cancellation because of completion of term