JP2004085106A - Refrigerator and cold storage - Google Patents

Refrigerator and cold storage Download PDF

Info

Publication number
JP2004085106A
JP2004085106A JP2002247861A JP2002247861A JP2004085106A JP 2004085106 A JP2004085106 A JP 2004085106A JP 2002247861 A JP2002247861 A JP 2002247861A JP 2002247861 A JP2002247861 A JP 2002247861A JP 2004085106 A JP2004085106 A JP 2004085106A
Authority
JP
Japan
Prior art keywords
pressure side
refrigerant
low
cooler
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002247861A
Other languages
Japanese (ja)
Inventor
Hitoshi Aoki
青木 均史
Nobuhisa Koumoto
甲元 伸央
Hirotaka Kakinuma
柿沼 裕貴
Junichi Kubota
久保田 順一
Hiroshi Mukoyama
向山 洋
Akira Sugawara
菅原 晃
Haruhisa Yamazaki
山崎 晴久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002247861A priority Critical patent/JP2004085106A/en
Publication of JP2004085106A publication Critical patent/JP2004085106A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator and a cold storage optimum for using a cooling medium with the state varied at a super-critical region and a subcritical region at a high pressure side of a refrigerating cycle. <P>SOLUTION: The refrigerator is provided with a refrigerating cycle starting from a delivery port (16c) of a compressor (16) and returning to a flowing-in port (16d) of the compressor through an air-cooling heat exchanger (17) in which the gaseous cooling medium compressed by the compressor and becoming high temperature/high pressure is air-cooled, a high pressure side pipe (22a) of an internal heat exchanger (22), a pressure reduction device (23) and a low pressure side pipe (22b) for heat-exchanging a high pressure side pipe of the internal heat exchanger; a cooling medium amount adjustment circuit (26) with one end connected to a low pressure side cooling medium circuit of the refrigerating cycle and the other end connected to a high pressure side cooling medium circuit; a low pressure side valve (V1) provided at one end of the cooling medium amount adjustment circuit; and a high pressure side valve (V2) provided at the other end of the cooling medium amount adjustment circuit. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ものを冷却する冷凍機および、庫内の貯蔵物を冷蔵する冷蔵庫に関する。
【0002】
【従来の技術】
従来の冷凍機を備えた冷蔵庫は、庫内が冷凍機の冷却器で冷却されており、この庫内に貯蔵物を貯蔵している。冷凍機の冷凍サイクルの冷媒は、一般的にはフロン系冷媒が用いられ、凝縮器で液化している。したがって、この凝縮器において、冷媒は略一定の温度(すなわち、凝縮温度)となる。
【0003】
【発明が解決しようとする課題】
ところで、近年、フロン系冷媒の使用を削減する方向であり、冷蔵庫においても、フロン系冷媒以外の冷媒(たとえば、二酸化炭素など)の使用が検討されている。この様な冷媒を使用すると、冷凍サイクルの高圧側において、冷媒が空冷された際に超臨界域や亜臨界域で状態変化することがある。この冷媒の空冷は、冷凍機や冷蔵庫の周囲の空気(すなわち、大気)により行われているが、この大気の温度は、変化しており、高い場合(たとえば、約30℃)や低い(たとえば、約10℃)場合がある。この様に、空冷の状態などの冷凍機の負荷条件は変化しており、この負荷条件に応じて、冷凍サイクルの高圧側の冷媒は、超臨界域で状態変化したり、また、亜臨界域で状態変化したりする。そして、超臨界状態では、冷凍サイクルの高圧側がガス領域のため、必要な冷媒量は少なくて済む。一方、亜臨界状態では、冷凍サイクルの高圧側がガス、気液2相、液体と状態変化していくので超臨界状態に比べて必要な冷媒量が大きくなる。この様に、超臨界域で状態変化した際に最適な冷媒量と、亜臨界域で状態変化した際に最適な冷媒量とが異なるため、適宜冷凍サイクル内の冷媒量を調整する必要がある。
【0004】
本発明は、以上のような課題を解決するためのもので、冷凍サイクルの高圧側において超臨界域や亜臨界域などで状態変化する冷媒を使用するのに最適な冷凍機および冷蔵庫を提供することを目的としている。
【0005】
【課題を解決するための手段】
本発明の冷凍機は、コンプレッサ(16)の吐出口(16c)から、このコンプレッサで圧縮されて高温・高圧となったガス状冷媒が空冷される空冷熱交換器(17)、内部熱交換器(22)の高圧側配管(22a)、減圧装置(23)、この減圧装置により減圧されて低温となった冷媒が流れる冷却器(24)、および、内部熱交換器の高圧側配管と熱交換する低圧側配管(22b)を順次経て、コンプレッサの流入口(16d)に戻る冷凍サイクルと、一端が冷凍サイクルの低圧側冷媒回路に、かつ、他端が高圧側冷媒回路に接続されている冷媒量調整回路(26)と、この冷媒量調整回路の一端部に設けられている低圧側バルブ(V1)と、前記冷媒量調整回路の他端部に設けられている高圧側バルブ(V2)とを備えている。
【0006】
また、前記冷媒が二酸化炭素である場合がある。
そして、前記冷媒量調整回路の外周面が前記内部熱交換器の低圧側配管の外周面と接合している場合がある。
【0007】
さらに、前記冷媒量調整回路の一端が内部熱交換器の低圧側配管の上流側に接続されている場合がある。
また、前記冷媒量調整回路の他端が内部熱交換器の高圧側配管の下流側に接続されている場合がある。
【0008】
そして、前記冷却器の入口側の温度を検出する冷却器入口温度検出手段(36)と、前記冷却器の出口側の温度を検出する冷却器出口温度検出手段(37)と、前記低圧側バルブおよび高圧側バルブの開度を制御する制御装置(41)とを備え、この制御装置が、冷却器入口温度検出手段の検出値および冷却器出口温度検出手段の検出値から冷却器入出温度差を生成し、冷却器入出温度差が大きい場合には、低圧側バルブの開度を大きくするとともに、高圧側バルブの開度を小さくまたは閉じ、かつ、冷却器入出温度差が小さい場合には、低圧側バルブの開度を小さくまたは閉じるとともに、高圧側バルブの開度を大きくする手段を具備していることがある。
【0009】
そして、本発明の冷蔵庫は、外郭が断熱箱体(1)で構成されるとともに、その前面開口が断熱扉で開閉可能に閉じられる冷蔵庫において、コンプレッサの吐出口から順次、このコンプレッサで圧縮されて高温・高圧となったガス状冷媒が空冷される空冷熱交換器、内部熱交換器の高圧側配管、減圧装置、この減圧装置により減圧されて低温となった冷媒で庫内を冷却する冷却器、および、内部熱交換器の高圧側配管と熱交換する低圧側配管を経て、コンプレッサの流入口に戻る冷凍サイクルと、一端が冷凍サイクルの低圧側冷媒回路に、かつ、他端が高圧側冷媒回路に接続されている冷媒量調整回路と、この冷媒量調整回路の一端部に設けられている低圧側バルブと、前記冷媒量調整回路の他端部に設けられている高圧側バルブとを備えている。
【0010】
【発明の実施の形態】
次に、本発明における冷凍機を備えた冷蔵庫の実施の一形態を図1ないし図5を用いて説明する。図1は本発明にかかる冷凍機の実施の一形態の冷媒回路の説明図である。図2は図1における露付防止パイプの具体例の図である。図3は制御装置の入出力図である。図4は内部熱交換器の冷媒配管の断面図である。図5は高圧側バルブおよび低圧側バルブの作動のフローチャートである。
【0011】
冷凍機を備えた家庭用冷蔵庫は、その外郭が断熱箱体1(図2参照)で構成されている。この断熱箱体1の内部空間すなわち庫内は、設定温度の異なる複数の部屋(この実施の形態では4室)に仕切られており、上側から冷蔵室6、野菜室7、冷凍室8および冷凍室9となっている。各冷却室6〜9の前面は開口し、この前面開口は断熱扉(図示せず)で開閉自在に閉じられている。また、冷凍室9の奥側は、機械室となっている。
【0012】
機械室には、庫内を冷却するための冷凍機の機器、すなわち、二段圧縮式のコンプレッサ16、空冷熱交換器17、空冷熱交換器用送風機18などが設けられている。コンプレッサ16および空冷熱交換器17などは、冷媒配管21で接続されて冷凍サイクルを構成し、冷凍サイクルの冷媒としては、CO (二酸化炭素)が用いられる。この冷凍サイクルは、図1に図示するように、コンプレッサ16の一段目の吐出口16aから空冷熱交換器17の一次空冷熱交換部17aを通ってコンプレッサ16の二段目の流入口16bに戻る一段目のサイクルと、コンプレッサ16の二段目の吐出口16cから、順次、空冷熱交換器17の二次空冷熱交換部17b、断熱箱体1の間口(前端面)に沿って配管されている露付防止パイプ19、内部熱交換器22の高圧側配管22a、減圧装置である電動膨張弁23、冷却器24、および、内部熱交換器22の低圧側配管22bから再びコンプレッサ16の一段目の流入口16dに戻る二段目のサイクルとを有している。
【0013】
そして、コンプレッサ16は、一段目の圧縮機構が、一段目の流入口16dから流入した冷媒を圧縮して吐出口16aから吐出し、また、二段目の圧縮機構が、二段目の流入口16bから流入した冷媒を圧縮して吐出口16cから吐出する。また、コンプレッサ16の吐出口16cから電動膨張弁23までが冷凍サイクルの高圧側で、電動膨張弁23からコンプレッサ16の流入口16dまでが冷凍サイクルの低圧側となっている。
【0014】
冷凍サイクルの一段目のサイクルおよび二段目のサイクルの冷媒の量を調整する冷媒量調整回路26の一端が、低圧側バルブV1を介して冷凍サイクルの低圧側冷媒回路(より具体的には、冷却器24の下流で、かつ、内部熱交換器22の低圧側配管22bの上流)に接続されている。また、冷媒量調整回路26の他端が高圧側バルブV2を介して冷凍サイクルの高圧側冷媒回路(より具体的には、内部熱交換器22の高圧側配管22aの下流で、かつ、膨張弁23の上流)に接続されている。この冷媒量調整回路26の冷媒配管の外周面は、図4に図示するように、内部熱交換器22の高圧側配管22aの外周面および内部熱交換器22の低圧側配管22bの外周面と半田付け31などの接合材で接合されている。特に、冷媒量調整回路26は低圧側配管22bと接合して密着しており、冷媒量調整回路26の冷媒は低圧側配管22bの低温の冷媒と熱交換をし、温度が低下する。また、この冷媒量調整回路26との接合の際に、高圧側配管22aの外周面および低圧側配管22bの外周面も互いに半田付け31などの接合材で接合して密着しており、高圧側配管22aの比較的高温の冷媒と、低圧側配管22bの低温の冷媒とが熱交換をする。
【0015】
また、冷却器24は低温となり、周囲の空気の温度を低下させる。この冷却器24の周囲の冷気は、庫内ファン33が庫内に送風して循環させ、庫内を冷却する。この様にして、冷却器24で庫内を冷却することができる。さらに、庫内温度(この実施の形態では冷却室である冷凍室8の温度)を検出する冷却室温度検出手段としての庫内温度センサ34、冷却器24の入口側の温度を検出する冷却器入口温度検出手段である冷却器入口温度センサ36および冷却器24の出口側の温度を検出する冷却器出口温度検出手段である冷却器出口温度センサ37が設けられている。
【0016】
また、図3に図示するように、冷蔵庫には、制御装置41が設けられており、この制御装置41はマイコンなどで構成されている。そして、制御装置41には、種々の電気部品が接続されているが、特に低圧側バルブV1および高圧側バルブV2などを制御するための電気部品として、入力側に、冷却器入口温度センサ36、冷却器出口温度センサ37および庫内温度センサ34などが接続され、一方、出力側に、低圧側バルブV1、高圧側バルブV2およびコンプレッサ16などが接続されている。なお、制御装置41の記憶部(ROMやRAMなど)には種々の設定値が記憶されるとともに、図示しないタイマを内蔵している。また、制御装置41は、低圧側バルブV1および高圧側バルブV2の制御以外に種々の制御(たとえば、庫内の温度制御など)を行っている。
【0017】
この様に構成されている実施の形態の冷蔵庫は、コンプレッサ16が稼働すると、ガス状の冷媒(CO )はコンプレッサ16の一段目で圧縮され、高温・高圧のガス状冷媒となり、空冷熱交換器17の一次空冷熱交換部17aにおいて、空冷熱交換器用送風機18からの空気(冷蔵庫すなわち冷凍機の設置されている部屋の空気)で空冷されて温度が低下し、コンプレッサ16に戻る。
【0018】
そして、冷媒はコンプレッサ16の二段目でさらに圧縮され、高温・高圧のガス状冷媒となり、空冷熱交換器17の二次空冷熱交換部17bにおいて、空冷熱交換器用送風機18からの空気で空冷されて、超臨界域や亜臨界域で状態変化しながら、冷媒の温度は低下する。この温度が低下した冷媒は、露付防止パイプ19に流入する。この露付防止パイプ19は、前述のように、断熱箱体1の間口に沿って配管されているが、露付防止パイプ19内の冷媒は、漸次温度が低下するため、冷却室6〜9の結露し易い順(すなわち、冷却室6〜9の温度の低い順)に、その周囲を巡って配管されている。この実施の形態では、冷凍室8と冷凍室9とは略同じ温度で一番低く、ついで、冷蔵室6で、一番温度の高い冷却室が野菜室7となっている。したがって、露付防止パイプ19は、図2に図示するように、冷媒の流入側から順に、冷凍室8の右辺、冷凍室9の右辺、下辺、左辺、上辺、ついで、冷凍室8の下辺、左辺、上辺、そして、折り返して、野菜室7の下辺、左辺、冷蔵室6の左辺、上辺、右辺、下辺、ついで、折り返して、野菜室7の上辺、右辺を通り、内部熱交換器22に向かって流出している。この様にして、露付防止パイプ19は極力、冷凍室8,9を最初に、ついで、冷蔵室6を、その後、野菜室7の周囲を巡っている。
【0019】
ついで、露付防止パイプ19を出た冷媒は、内部熱交換器22で冷却器24からの戻りの冷媒で冷却され、その後、減圧装置である電動膨張弁23を通って減圧され、温度が低下する。この低温の冷媒は、冷却器24に流入し、冷却器24の周囲の空気の温度を低下させる。冷却器24により温度が低下した空気は、庫内ファン33により庫内を循環し、冷却室6〜9を冷却する。冷却器24から流れ出た冷媒は、内部熱交換器22で高圧側の冷媒と熱交換して、温度が上昇した後に、コンプレッサ16の流入口16dに戻る。
【0020】
制御装置41は、庫内温度センサ34の検出値である庫内温度(冷却室温度)が、制御装置41の記憶部に設定された冷却室設定温度になったか否かを判定し、庫内温度が冷却室設定温度以下の場合にはコンプレッサ16を停止させ、一方、庫内温度が冷却室設定温度を越えた場合にはコンプレッサ16を稼働させて、冷却器24により庫内を冷却する。空冷熱交換器用送風機18および庫内ファン33は、制御装置41の制御により、コンプレッサ16と略連動して稼働しており、コンプレッサ16とともに稼働を開始し、コンプレッサ16が停止すると、少し遅延して停止している。
【0021】
ところで、冷蔵庫が設置されている部屋の室温が高くなると、それに伴って、空冷熱交換器17における冷媒の温度が高くなり、冷凍サイクルの高圧側において、冷媒は超臨界域で状態変化する。一方、室温が低くなると、それに伴って、空冷熱交換器17における冷媒の温度が低くなり、冷凍サイクルの高圧側において、冷媒は亜臨界域で状態変化する。この様に負荷条件が異なると、最適な冷媒の量が変化する。そこで、低圧側バルブV1および高圧側バルブV2の開度を制御することにより、冷媒量調整回路26に溜まる冷媒の量を調整する。たとえば、低圧側バルブV1を閉じ、かつ、高圧側バルブV2を開けて、冷媒量調整回路26内の圧力を高くすると、冷媒量調整回路26内の冷媒の量が増大し、逆に、冷凍サイクルに流れる冷媒の量が減少する。
【0022】
この低圧側バルブV1および高圧側バルブV2の開度の制御のフローを、図5のフローチャートに基づいて説明する。
ステップ1において、コンプレッサ16が稼働すると、ステップ2に行く。ステップ2において、制御装置41は、低圧側バルブV1を全開に、高圧側バルブV2を全閉にし、冷媒量調整回路26内の圧力を低くして、冷凍サイクルに流れる冷媒の量を増大させる。そして、ステップ3に行く。
【0023】
ステップ3において、制御装置41は、冷却器入口温度センサ36および冷却器出口温度センサ37から検出値をサンプリング(入手)し、冷却器出口温度センサ37の検出値である冷却器出口温度から冷却器入口温度センサ36の検出値である冷却器入口温度を引いて、冷却器入出温度差dTEを求める。そして、制御装置41は、その記憶部に予め設定されている上側設定値TU(たとえば、5度)と冷却器入出温度差dTEとを比較し、冷却器入出温度差dTEが上側設定値TU以上の場合には、冷凍サイクルに流れる冷媒の量が不足しているのでステップ1に戻る。一方、冷却器入出温度差dTEが上側設定値TU未満の場合には、ステップ4に行く。
【0024】
ステップ4において、制御装置41は、その記憶部に予め設定されている下側設定値TL(たとえば、1度)と冷却器入出温度差dTEとを比較し、冷却器入出温度差dTEが下側設定値TL未満の場合には、冷凍サイクルに流れる冷媒の量が余り気味なのでステップ6に行く。一方、冷却器入出温度差dTEが下側設定値TL以上の場合には、冷凍サイクルに流れる冷媒の量が不足気味なのでステップ5に行く。
【0025】
ステップ5において、制御装置41は、低圧側バルブV1の開度を大きめに、かつ、高圧側バルブV2の開度を小さめまたは閉じる様に制御する。この低圧側バルブV1および高圧側バルブV2の開度は各々、冷却器入出温度差dTEの関数で決定する。すなわち、V1開度=f1(dTE)  V2開度=f2(dTE)
そして、ステップ3に戻る。
【0026】
ステップ6において、制御装置41は、低圧側バルブV1の開度を小さめまたは閉じ、かつ、高圧側バルブV2の開度を大きめとなる様に制御する。この低圧側バルブV1および高圧側バルブV2の開度は各々、冷却器入出温度差dTEの関数で決定する。すなわち、V1開度=f3(dTE)  V2開度=f4(dTE)
そして、ステップ4に戻る。
【0027】
この様にして、(1)コンプレッサ16の稼働の初期時および、冷却器入出温度差dTEが上側設定値TUよりも大きい場合には、冷凍サイクルに流れる冷媒の量が不足しているので、低圧側バルブV1を全開に、高圧側バルブV2を全閉にし、冷媒量調整回路26内の圧力を低くして、冷凍サイクルに流れる冷媒の量を増大させる。
(2)冷却器入出温度差dTEが上側設定値TUよりも小さく、かつ、下側設定値TLよりも大きい場合には、冷凍サイクルに流れる冷媒の量が不足気味なので、低圧側バルブV1の開度を大きめに、かつ、高圧側バルブV2の開度を小さめまたは閉じて、冷媒量調整回路26内の圧力をやや低くして、冷凍サイクルに流れる冷媒の量を多いめにする。
(3)冷却器入出温度差dTEが下側設定値TLよりも小さい場合には、冷凍サイクルに流れる冷媒の量が余り気味なので、低圧側バルブV1の開度を小さめまたは閉じ(すなわち、上記冷却器入出温度差dTEが上側設定値TUよりも小さく、かつ、下側設定値TLよりも大きい場合と比較して、低圧側バルブV1の開度を小さくする)、かつ、高圧側バルブV2の開度を大きめにして(すなわち、上記冷却器入出温度差dTEが上側設定値TUよりも小さく、かつ、下側設定値TLよりも大きい場合と比較して、高圧側バルブV2の開度を大きくする)、冷媒量調整回路26内の圧力をやや高くして、冷凍サイクルに流れる冷媒の量を少なめにする。
【0028】
前述のように、実施の形態の冷凍機および冷蔵庫では、冷媒量調整回路26で、冷凍サイクルに流れる冷媒の量を適正に調整することができ、高効率な運転が可能となる。その結果、消費電力を削減することができる。
また、冷媒量調整回路26は、冷凍サイクルの高圧側冷媒回路と低圧側冷媒回路との間に設けられており、中間圧力となる。したがって、耐圧能力を比較的低くすることができ、生産性に優れるとともに、コストなどを削減することができる。
そして、冷媒量調整回路26は内部熱交換器22の低圧側配管22bで冷却されており、冷媒量調整回路26に溜められた冷媒の温度を低くすることができる。したがって、比較的小さな容量で多量の冷媒を蓄えることができる。
さらに、冷媒量調整回路26の低圧側の端部は、内部熱交換器22の低圧側配管22bの上流側に接続されているので、冷媒量調整回路26からの冷媒は、内部熱交換器22の低圧側配管22bを流れて、比較的高温の高圧側配管22aと熱交換をしてからコンプレッサ16に流れている。したがって、冷媒量調整回路26から液体の冷媒がコンプレッサ16に流入することを極力防止することができる。
【0029】
前述の様にして、制御装置41は、(1)冷却器入出温度差dTEが上側設定値TUよりも大きい場合には、低圧側バルブV1を全開に、高圧側バルブV2を全閉にする手段、(2)冷却器入出温度差dTEが上側設定値TUよりも小さく、かつ、下側設定値TLよりも大きい場合には、低圧側バルブV1の開度を大きめに、かつ、高圧側バルブV2の開度を小さめまたは閉じる手段、(3)冷却器入出温度差dTEが下側設定値TLよりも小さい場合には、低圧側バルブV1の開度を小さめまたは閉じ、かつ、高圧側バルブV2の開度を大きめにする手段などを具備している。
この様に、制御装置41は、上記手段以外にも、実行される各作用に対応して各々作用を実行する手段を具備している。また、全ての手段を具備している必要は必ずしもない。
【0030】
以上、本発明の実施の形態を詳述したが、本発明は、前記実施の形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内で、種々の変更を行うことが可能である。本発明の変更例を下記に例示する。
(1)冷凍サイクルの冷媒は、適宜選択可能である。ただし、CO が最適である。
【0031】
(2)冷蔵庫の形式や構造などは適宜選択可能であるが、好ましくは、家庭用であり、その庫内は少なくとも3温度帯(すなわち、冷蔵室、冷凍室および野菜室)に仕切られている。また、冷蔵庫は冷蔵室だけでなく、冷凍室も備えていることが可能である。
(3)減圧装置は、膨張弁で構成されているが、他の構成たとえば、キャピラリーチューブなどでも可能である。
(4)この実施の形態では、コンプレッサは、二段圧縮式であるが、一段圧縮式でも可能である。なお、一段圧縮式の場合には、冷凍サイクルは一段目のサイクルがなくなり、二段目のサイクルのみとなる。
【0032】
(5)制御装置41の記憶部には、種々の値が設定されているが、その設定方法や設定値は適宜選択可能である。また、低圧側バルブV1および高圧側バルブV2の開度の制御方法は適宜変更可能である。
(6)冷媒量調整回路は内部熱交換器内に設けられているが、他の場所に設けることも可能である。
【0033】
【発明の効果】
本発明によれば、冷媒量調整回路の一端が低圧側バルブを介して冷凍サイクルの低圧側冷媒回路に、かつ、他端が高圧側バルブを介して高圧側冷媒回路に接続されており、両バルブを適宜開閉することにより、冷媒量調整回路に冷媒を溜めたり、また、開放したりして、冷凍サイクルに流れる冷媒の量を調整することができる。したがって、冷凍サイクルの高圧側において、冷媒が超臨界域や亜臨界域で状態変化しても、冷媒量調整回路により、冷凍サイクルに流れる冷媒の量を適正に調整できる。その結果、冷凍機を高効率で運転することができ、消費電力を削減することができる。
【0034】
そして、冷媒量調整回路の外周面が内部熱交換器の低圧側配管の外周面と接合しているので、冷媒量調整回路の冷媒の温度を低くすることができる。したがって、比較的小さな容量で多量の冷媒を蓄えることができる。
【0035】
さらに、冷媒量調整回路の一端が内部熱交換器の低圧側配管の上流側に接続されているので、冷媒量調整回路からの冷媒は、内部熱交換器の低圧側配管を流れて、比較的高温の高圧側配管と熱交換をしてからコンプレッサに流入する。したがって、冷媒量調整回路から液体の冷媒がコンプレッサに流入することを極力防止することができる。
【0036】
また、冷媒量調整回路の他端が内部熱交換器の高圧側配管の下流側に接続されているので、冷媒量調整回路には、内部熱交換器の低圧側配管と熱交換して低温となった高圧側配管の冷媒が流れ込む。この様にして、冷媒量調整回路には比較的低温の冷媒が溜められるため、比較的小さな容量で多量の冷媒を蓄えることができる。
【0037】
そして、冷却器の入口側の温度と出口側の温度との差で、低圧側バルブおよび高圧側バルブの開度を制御しているので、圧力センサなどで制御する場合と比較して、構造が簡単となる。
【図面の簡単な説明】
【図1】図1は本発明にかかる冷凍機の実施の一形態の冷媒回路の説明図である。
【図2】図2は図1における露付防止パイプの具体例の図である。
【図3】図3は制御装置の入出力図である。
【図4】図4は内部熱交換器の冷媒配管の断面図である。
【図5】図5は高圧側バルブおよび低圧側バルブの作動のフローチャートである。
【符号の説明】
V1 低圧側バルブ
V2 高圧側バルブ
1 断熱箱体
16 コンプレッサ
16c コンプレッサの吐出口
16d コンプレッサの流入口
17 空冷熱交換器
22 内部熱交換器
22a 高圧側配管
22b 低圧側配管
23 電動膨張弁(減圧装置)
24 冷却器
26 冷媒量調整回路
36 冷却器入口温度センサ(冷却器入口温度検出手段)
37 冷却器出口温度センサ(冷却器出口温度検出手段)
41 制御装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigerator for cooling objects and a refrigerator for refrigerated storage in a refrigerator.
[0002]
[Prior art]
In a refrigerator equipped with a conventional refrigerator, the inside of the refrigerator is cooled by a cooler of the refrigerator, and stored items are stored in the refrigerator. As a refrigerant in a refrigeration cycle of a refrigerator, a Freon-based refrigerant is generally used, and is liquefied in a condenser. Therefore, in this condenser, the refrigerant has a substantially constant temperature (that is, the condensation temperature).
[0003]
[Problems to be solved by the invention]
By the way, in recent years, the use of chlorofluorocarbon-based refrigerants has been reduced, and the use of refrigerants other than chlorofluorocarbon-based refrigerants (for example, carbon dioxide) has also been studied in refrigerators. When such a refrigerant is used, the state may change in a supercritical region or a subcritical region when the refrigerant is air-cooled on the high pressure side of the refrigeration cycle. The air cooling of the refrigerant is performed by air around the refrigerator or the refrigerator (that is, the atmosphere), and the temperature of the atmosphere changes, and is high (for example, about 30 ° C.) or low (for example, about 30 ° C.). , About 10 ° C). As described above, the load condition of the refrigerator such as the air-cooled state changes, and in accordance with the load condition, the refrigerant on the high pressure side of the refrigeration cycle changes state in the supercritical region, or in the subcritical region. Or change state. In the supercritical state, the high pressure side of the refrigeration cycle is in the gas region, so that the required amount of refrigerant is small. On the other hand, in the subcritical state, the high-pressure side of the refrigeration cycle changes state to gas, gas-liquid two-phase, and liquid, so that the required amount of refrigerant is larger than that in the supercritical state. As described above, since the optimum amount of refrigerant when the state changes in the supercritical region and the optimum amount of refrigerant when the state changes in the subcritical region are different, it is necessary to appropriately adjust the amount of the refrigerant in the refrigeration cycle. .
[0004]
The present invention has been made to solve the above problems, and provides a refrigerator and a refrigerator that are optimal for using a refrigerant that changes state in a supercritical region or a subcritical region on the high pressure side of a refrigeration cycle. It is aimed at.
[0005]
[Means for Solving the Problems]
The refrigerating machine of the present invention comprises an air-cooled heat exchanger (17) for air-cooling a high-temperature and high-pressure gaseous refrigerant compressed by the compressor from a discharge port (16c) of the compressor (16), and an internal heat exchanger. Heat exchange with the high pressure side pipe (22a) of (22), the pressure reducing device (23), the cooler (24) through which the refrigerant depressurized by the pressure reducing device and having a low temperature flows, and the high pressure side pipe of the internal heat exchanger Refrigeration cycle which returns to the compressor inlet (16d) through the low pressure side pipe (22b) sequentially, and a refrigerant having one end connected to the low pressure side refrigerant circuit of the refrigeration cycle and the other end connected to the high pressure side refrigerant circuit. An amount adjustment circuit (26), a low pressure side valve (V1) provided at one end of the refrigerant amount adjustment circuit, and a high pressure side valve (V2) provided at the other end of the refrigerant amount adjustment circuit. It has.
[0006]
Further, the refrigerant may be carbon dioxide.
And the outer peripheral surface of the said refrigerant | coolant amount adjustment circuit may be joined with the outer peripheral surface of the low pressure side piping of the said internal heat exchanger.
[0007]
Further, there is a case where one end of the refrigerant amount adjusting circuit is connected to the upstream side of the low pressure side pipe of the internal heat exchanger.
Further, the other end of the refrigerant amount adjusting circuit may be connected to a downstream side of a high pressure side pipe of the internal heat exchanger.
[0008]
A cooler inlet temperature detecting means (36) for detecting a temperature on an inlet side of the cooler; a cooler outlet temperature detecting means (37) for detecting a temperature on an outlet side of the cooler; And a control device (41) for controlling the opening degree of the high-pressure side valve. The control device detects a difference between the cooler inlet / outlet temperature from the cooler inlet temperature detecting means and the cooler outlet temperature detecting means. When the difference between the inlet and outlet temperature of the cooler is large, the opening of the low pressure side valve is increased, and the opening of the high pressure side valve is reduced or closed. There may be provided a means for reducing or closing the opening of the side valve and increasing the opening of the high pressure side valve.
[0009]
In the refrigerator of the present invention, the outer shell is formed of an insulating box (1), and the front opening of the refrigerator is opened and closed by an insulating door. An air-cooled heat exchanger that air-cools high-temperature, high-pressure gaseous refrigerant, a high-pressure pipe of the internal heat exchanger, a decompression device, and a cooler that cools the inside of the refrigerator with low-temperature refrigerant depressurized by the decompression device And a refrigeration cycle that returns to the compressor inlet via a low-pressure pipe that exchanges heat with the high-pressure pipe of the internal heat exchanger, one end of the refrigeration cycle in the low-pressure refrigerant circuit, and the other end of the high-pressure refrigerant. A refrigerant amount adjusting circuit connected to the circuit, a low pressure side valve provided at one end of the refrigerant amount adjusting circuit, and a high pressure side valve provided at the other end of the refrigerant amount adjusting circuit. hand That.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of a refrigerator having a refrigerator according to the present invention will be described with reference to FIGS. FIG. 1 is an explanatory diagram of a refrigerant circuit of a refrigerator according to an embodiment of the present invention. FIG. 2 is a diagram of a specific example of the dew-prevention pipe in FIG. FIG. 3 is an input / output diagram of the control device. FIG. 4 is a sectional view of the refrigerant pipe of the internal heat exchanger. FIG. 5 is a flowchart of the operation of the high-pressure side valve and the low-pressure side valve.
[0011]
A household refrigerator provided with a refrigerator has an outer shell formed of a heat insulating box 1 (see FIG. 2). The internal space of the heat-insulating box 1, that is, the inside of the refrigerator, is partitioned into a plurality of rooms (four in this embodiment) having different set temperatures, and a refrigerator room 6, a vegetable room 7, a freezer room 8 and a freezer room from the upper side. It is room 9. The front surfaces of the cooling chambers 6 to 9 are open, and the front openings are openably closed by heat insulating doors (not shown). The back side of the freezing room 9 is a machine room.
[0012]
In the machine room, equipment of a refrigerator for cooling the inside of the refrigerator, that is, a two-stage compression type compressor 16, an air-cooling heat exchanger 17, an air-cooling heat exchanger blower 18 and the like are provided. The compressor 16 and the air-cooled heat exchanger 17 are connected by a refrigerant pipe 21 to form a refrigeration cycle, and CO 2 (carbon dioxide) is used as a refrigerant of the refrigeration cycle. In this refrigeration cycle, as shown in FIG. 1, the compressor 16 returns from the first-stage discharge port 16 a to the second-stage inlet 16 b of the compressor 16 through the primary air-cooled heat exchange section 17 a of the air-cooled heat exchanger 17. From the first-stage cycle and from the second-stage discharge port 16c of the compressor 16, the secondary air-cooled heat exchange part 17b of the air-cooled heat exchanger 17 and the front end face of the heat insulating box 1 are sequentially piped. The first stage of the compressor 16 again from the dew-prevention pipe 19, the high-pressure side pipe 22 a of the internal heat exchanger 22, the electric expansion valve 23, the cooler 24, which is a pressure reducing device, and the low-pressure side pipe 22 b of the internal heat exchanger 22. And a second-stage cycle returning to the inflow port 16d.
[0013]
In the compressor 16, the first stage compression mechanism compresses the refrigerant flowing from the first stage inlet 16d and discharges the refrigerant through the outlet 16a, and the second stage compression mechanism switches the second stage inlet The refrigerant flowing from the outlet 16b is compressed and discharged from the outlet 16c. Further, the area from the discharge port 16c of the compressor 16 to the electric expansion valve 23 is on the high pressure side of the refrigeration cycle, and the area from the electric expansion valve 23 to the inlet 16d of the compressor 16 is on the low pressure side of the refrigeration cycle.
[0014]
One end of the refrigerant amount adjusting circuit 26 for adjusting the amount of refrigerant in the first stage cycle and the second stage cycle of the refrigeration cycle is connected to the low pressure side refrigerant circuit of the refrigeration cycle via the low pressure side valve V1 (more specifically, It is connected downstream of the cooler 24 and upstream of the low pressure side pipe 22 b of the internal heat exchanger 22. Further, the other end of the refrigerant amount adjusting circuit 26 is connected to the high pressure side refrigerant circuit of the refrigeration cycle via the high pressure side valve V2 (more specifically, downstream of the high pressure side pipe 22a of the internal heat exchanger 22 and the expansion valve). 23 upstream). As shown in FIG. 4, the outer peripheral surface of the refrigerant pipe of the refrigerant amount adjusting circuit 26 is in contact with the outer peripheral surface of the high pressure side pipe 22a of the internal heat exchanger 22 and the outer peripheral surface of the low pressure side pipe 22b of the internal heat exchanger 22. It is joined by a joining material such as soldering 31. In particular, the refrigerant amount adjusting circuit 26 is bonded to and adhered to the low-pressure side pipe 22b, and the refrigerant in the refrigerant amount adjusting circuit 26 exchanges heat with the low-temperature refrigerant in the low-pressure side pipe 22b, and the temperature decreases. Further, at the time of joining with the refrigerant amount adjusting circuit 26, the outer peripheral surface of the high-pressure side pipe 22a and the outer peripheral surface of the low-pressure side pipe 22b are also joined to each other with a joining material such as soldering 31 so that they are in close contact with each other. The relatively high-temperature refrigerant in the pipe 22a and the low-temperature refrigerant in the low-pressure pipe 22b exchange heat.
[0015]
Further, the cooler 24 has a low temperature, and lowers the temperature of the surrounding air. The cool air around the cooler 24 is blown and circulated by the fan 33 in the refrigerator to cool the refrigerator. Thus, the inside of the refrigerator can be cooled by the cooler 24. Further, a refrigerator temperature sensor 34 as a cooling chamber temperature detecting means for detecting a temperature inside the refrigerator (in this embodiment, a temperature of the freezing room 8 which is a cooling room), and a cooler for detecting the temperature on the inlet side of the cooler 24. A cooler inlet temperature sensor 36 serving as inlet temperature detecting means and a cooler outlet temperature sensor 37 serving as cooler outlet temperature detecting means for detecting the temperature at the outlet side of the cooler 24 are provided.
[0016]
As shown in FIG. 3, the refrigerator is provided with a control device 41, and the control device 41 is configured by a microcomputer or the like. Various electric components are connected to the control device 41. In particular, as an electric component for controlling the low-pressure side valve V1, the high-pressure side valve V2, and the like, the cooler inlet temperature sensor 36, The cooler outlet temperature sensor 37, the internal temperature sensor 34, and the like are connected, while the output side is connected to the low-pressure valve V1, the high-pressure valve V2, the compressor 16, and the like. Note that various setting values are stored in a storage unit (ROM, RAM, or the like) of the control device 41, and a timer (not shown) is built in. In addition, the control device 41 performs various controls (for example, temperature control in the refrigerator) in addition to the control of the low-pressure side valve V1 and the high-pressure side valve V2.
[0017]
In the refrigerator according to the embodiment configured as described above, when the compressor 16 operates, the gaseous refrigerant (CO 2 ) is compressed in the first stage of the compressor 16 to become a high-temperature and high-pressure gaseous refrigerant, and air-cooled heat exchange. In the primary air-cooling heat exchange section 17 a of the heat exchanger 17, the air is cooled by the air from the air-cooling heat exchanger blower 18 (air in the room where the refrigerator, that is, the refrigerator is installed), the temperature is reduced, and the air returns to the compressor 16.
[0018]
Then, the refrigerant is further compressed in the second stage of the compressor 16 to become a high-temperature and high-pressure gaseous refrigerant, and is air-cooled by air from the air-cooling heat exchanger blower 18 in the secondary air-cooling heat exchanger 17 b of the air-cooling heat exchanger 17. Then, the temperature of the refrigerant decreases while changing the state in the supercritical region or the subcritical region. The cooled refrigerant flows into the dew-prevention pipe 19. As described above, the dew-prevention pipe 19 is provided along the frontage of the heat-insulating box 1. However, since the temperature of the refrigerant in the dew-prevention pipe 19 gradually decreases, the cooling chambers 6 to 9 are formed. (That is, the order of decreasing the temperature of the cooling chambers 6 to 9). In this embodiment, the freezing compartment 8 and the freezing compartment 9 have the lowest temperature at substantially the same temperature, and the cooling compartment 6 having the highest temperature in the refrigerator compartment 6 is the vegetable compartment 7. Therefore, as shown in FIG. 2, the dew-prevention pipe 19 includes, in order from the refrigerant inflow side, the right side of the freezing room 8, the right side, the lower side, the left side, the upper side of the freezing room 9, the lower side of the freezing room 8, The left side, the upper side, and then turned back, the lower side, the left side of the vegetable compartment 7, the left side, the upper side, the right side, the lower side of the refrigerator compartment 6, and then turned back, passed through the upper side, the right side of the vegetable compartment 7, to the internal heat exchanger 22. It is flowing out. In this way, the dew-prevention pipe 19 goes around the freezing compartments 8 and 9 first, then the refrigerator compartment 6 and then around the vegetable compartment 7 as much as possible.
[0019]
Next, the refrigerant that has flowed out of the dew-prevention pipe 19 is cooled by the refrigerant returned from the cooler 24 in the internal heat exchanger 22, and then depressurized through the electric expansion valve 23, which is a decompression device, to lower the temperature. I do. This low-temperature refrigerant flows into the cooler 24 and lowers the temperature of the air around the cooler 24. The air whose temperature has been lowered by the cooler 24 is circulated in the refrigerator by the fan 33 in the refrigerator, and cools the cooling chambers 6 to 9. The refrigerant flowing out of the cooler 24 exchanges heat with the refrigerant on the high pressure side in the internal heat exchanger 22 and returns to the inlet 16 d of the compressor 16 after the temperature rises.
[0020]
The control device 41 determines whether or not the inside temperature (cooling room temperature) detected by the inside temperature sensor 34 has reached the cooling room set temperature set in the storage unit of the control device 41. When the temperature is equal to or lower than the cooling room set temperature, the compressor 16 is stopped. On the other hand, when the internal temperature exceeds the cooling room set temperature, the compressor 16 is operated and the cooler 24 cools the internal space. The air-cooling heat exchanger blower 18 and the in-compartment fan 33 operate substantially in conjunction with the compressor 16 under the control of the control device 41, and start operating together with the compressor 16, and when the compressor 16 stops, there is a slight delay. Has stopped.
[0021]
By the way, when the room temperature of the room where the refrigerator is installed increases, the temperature of the refrigerant in the air-cooled heat exchanger 17 increases accordingly, and the refrigerant changes state in the supercritical region on the high pressure side of the refrigeration cycle. On the other hand, when the room temperature decreases, the temperature of the refrigerant in the air-cooled heat exchanger 17 decreases accordingly, and the refrigerant changes state in the subcritical region on the high pressure side of the refrigeration cycle. When the load conditions are different as described above, the optimum amount of the refrigerant changes. Therefore, by controlling the opening degrees of the low-pressure side valve V1 and the high-pressure side valve V2, the amount of refrigerant accumulated in the refrigerant amount adjusting circuit 26 is adjusted. For example, when the low-pressure side valve V1 is closed and the high-pressure side valve V2 is opened to increase the pressure in the refrigerant amount adjustment circuit 26, the amount of refrigerant in the refrigerant amount adjustment circuit 26 increases, and conversely, the refrigeration cycle The amount of the refrigerant flowing to is reduced.
[0022]
The control flow of the opening of the low-pressure side valve V1 and the high-pressure side valve V2 will be described with reference to the flowchart of FIG.
In step 1, when the compressor 16 operates, the process proceeds to step 2. In step 2, the control device 41 fully opens the low-pressure side valve V1, fully closes the high-pressure side valve V2, lowers the pressure in the refrigerant amount adjustment circuit 26, and increases the amount of refrigerant flowing in the refrigeration cycle. Then, go to step 3.
[0023]
In step 3, the control device 41 samples (obtains) detection values from the cooler inlet temperature sensor 36 and the cooler outlet temperature sensor 37, and calculates the cooler from the cooler outlet temperature, which is the detected value of the cooler outlet temperature sensor 37. The cooler inlet / outlet temperature difference dTE is obtained by subtracting the cooler inlet temperature detected by the inlet temperature sensor 36. Then, control device 41 compares upper set value TU (for example, 5 degrees) preset in the storage unit with cooler inlet / outlet temperature difference dTE, and cooler inlet / outlet temperature difference dTE is equal to or larger than upper set value TU. In this case, the flow returns to step 1 because the amount of the refrigerant flowing through the refrigeration cycle is insufficient. On the other hand, if the cooler inlet / outlet temperature difference dTE is smaller than the upper set value TU, the procedure goes to step 4.
[0024]
In step 4, the control device 41 compares the lower set value TL (for example, 1 degree) preset in the storage unit thereof with the cooler inlet / outlet temperature difference dTE, and determines that the cooler inlet / outlet temperature difference dTE is lower. If it is less than the set value TL, the amount of the refrigerant flowing through the refrigeration cycle is too small, so that the procedure goes to step 6. On the other hand, if the cooler inlet / outlet temperature difference dTE is equal to or greater than the lower set value TL, the flow of the refrigerant in the refrigeration cycle is likely to be insufficient, and the process proceeds to step 5.
[0025]
In step 5, the control device 41 controls the opening of the low-pressure side valve V1 to be large and the opening of the high-pressure side valve V2 to be small or closed. The opening degrees of the low-pressure side valve V1 and the high-pressure side valve V2 are each determined by a function of the cooler inlet / outlet temperature difference dTE. That is, V1 opening = f1 (dTE) V2 opening = f2 (dTE)
Then, the process returns to step 3.
[0026]
In step 6, the control device 41 controls the opening degree of the low-pressure side valve V1 to be small or closed and the opening degree of the high-pressure side valve V2 to be large. The opening degrees of the low-pressure side valve V1 and the high-pressure side valve V2 are each determined by a function of the cooler inlet / outlet temperature difference dTE. That is, V1 opening = f3 (dTE) V2 opening = f4 (dTE)
Then, the process returns to step 4.
[0027]
In this manner, (1) at the initial stage of the operation of the compressor 16 and when the cooler inlet / outlet temperature difference dTE is larger than the upper set value TU, the amount of refrigerant flowing through the refrigeration cycle is insufficient. The side valve V1 is fully opened, the high-pressure side valve V2 is fully closed, the pressure in the refrigerant amount adjustment circuit 26 is reduced, and the amount of refrigerant flowing through the refrigeration cycle is increased.
(2) When the cooler inlet / outlet temperature difference dTE is smaller than the upper set value TU and larger than the lower set value TL, the amount of the refrigerant flowing through the refrigeration cycle tends to be insufficient, and thus the low pressure side valve V1 is opened. The pressure inside the refrigerant amount adjusting circuit 26 is made slightly lower by increasing the degree of opening, and the opening degree of the high pressure side valve V2 is made smaller or closed, so that the amount of refrigerant flowing through the refrigeration cycle becomes larger.
(3) When the cooler inlet / outlet temperature difference dTE is smaller than the lower set value TL, the amount of the refrigerant flowing through the refrigeration cycle is too small, so the opening of the low-pressure side valve V1 is reduced or closed (that is, the cooling is performed). The opening / closing of the low-pressure side valve V1 is made smaller than the case where the temperature difference dTE between the container and the outlet is smaller than the upper set value TU and larger than the lower set value TL. (Ie, the opening degree of the high-pressure side valve V2 is made larger than when the cooler inlet / outlet temperature difference dTE is smaller than the upper set value TU and larger than the lower set value TL. 3.) The pressure in the refrigerant amount adjusting circuit 26 is slightly increased to reduce the amount of refrigerant flowing in the refrigeration cycle.
[0028]
As described above, in the refrigerator and the refrigerator of the embodiment, the amount of refrigerant flowing through the refrigeration cycle can be appropriately adjusted by the refrigerant amount adjustment circuit 26, and high-efficiency operation can be performed. As a result, power consumption can be reduced.
Further, the refrigerant amount adjusting circuit 26 is provided between the high pressure side refrigerant circuit and the low pressure side refrigerant circuit of the refrigeration cycle, and has an intermediate pressure. Therefore, the pressure resistance can be made relatively low, and the productivity can be improved, and the cost and the like can be reduced.
The refrigerant amount adjusting circuit 26 is cooled by the low pressure side pipe 22 b of the internal heat exchanger 22, so that the temperature of the refrigerant stored in the refrigerant amount adjusting circuit 26 can be lowered. Therefore, a large amount of refrigerant can be stored with a relatively small capacity.
Further, since the low pressure side end of the refrigerant amount adjustment circuit 26 is connected to the upstream side of the low pressure side pipe 22 b of the internal heat exchanger 22, the refrigerant from the refrigerant amount adjustment circuit 26 is supplied to the internal heat exchanger 22. Flows into the compressor 16 after having exchanged heat with the high-pressure side pipe 22a having a relatively high temperature. Therefore, it is possible to prevent the liquid refrigerant from flowing into the compressor 16 from the refrigerant amount adjustment circuit 26 as much as possible.
[0029]
As described above, the control device 41 (1) means for fully opening the low-pressure side valve V1 and fully closing the high-pressure side valve V2 when the cooler inlet / outlet temperature difference dTE is larger than the upper set value TU. (2) When the cooler inlet / outlet temperature difference dTE is smaller than the upper set value TU and larger than the lower set value TL, the opening degree of the low pressure side valve V1 is increased and the high pressure side valve V2 is increased. Means for reducing or closing the opening degree of the valve (3) When the cooler inlet / outlet temperature difference dTE is smaller than the lower set value TL, the opening degree of the low pressure side valve V1 is reduced or closed, and the high pressure side valve V2 is closed. Means for increasing the degree of opening are provided.
As described above, the control device 41 includes, in addition to the above-described means, means for executing each action corresponding to each action to be executed. Also, not all means need be provided.
[0030]
As described above, the embodiments of the present invention have been described in detail. However, the present invention is not limited to the above embodiments, and various modifications may be made within the scope of the present invention described in the appended claims. It is possible to do. Modification examples of the present invention are exemplified below.
(1) The refrigerant of the refrigeration cycle can be appropriately selected. However, CO 2 is optimal.
[0031]
(2) The type and structure of the refrigerator can be appropriately selected, but it is preferably for household use, and the interior of the refrigerator is partitioned into at least three temperature zones (that is, a refrigerator room, a freezer room, and a vegetable room). . Further, the refrigerator can include not only a refrigerator but also a freezer.
(3) Although the decompression device is configured by an expansion valve, other configurations such as a capillary tube can be used.
(4) In this embodiment, the compressor is of a two-stage compression type, but may be of a one-stage compression type. In the case of the single-stage compression type, the refrigeration cycle does not include the first-stage cycle but only the second-stage cycle.
[0032]
(5) Various values are set in the storage unit of the control device 41, and the setting method and the set values can be appropriately selected. Further, the control method of the opening degree of the low-pressure side valve V1 and the high-pressure side valve V2 can be appropriately changed.
(6) The refrigerant amount adjusting circuit is provided in the internal heat exchanger, but may be provided in another place.
[0033]
【The invention's effect】
According to the present invention, one end of the refrigerant amount adjustment circuit is connected to the low pressure side refrigerant circuit of the refrigeration cycle via the low pressure side valve, and the other end is connected to the high pressure side refrigerant circuit via the high pressure side valve. By appropriately opening and closing the valve, the amount of the refrigerant flowing through the refrigeration cycle can be adjusted by storing or opening the refrigerant in the refrigerant amount adjustment circuit. Therefore, even if the state of the refrigerant changes in the supercritical region or the subcritical region on the high pressure side of the refrigeration cycle, the amount of the refrigerant flowing through the refrigeration cycle can be appropriately adjusted by the refrigerant amount adjustment circuit. As a result, the refrigerator can be operated with high efficiency, and power consumption can be reduced.
[0034]
And since the outer peripheral surface of a refrigerant | coolant amount adjustment circuit is joined to the outer peripheral surface of the low pressure side piping of an internal heat exchanger, the temperature of the refrigerant | coolant of a refrigerant | coolant amount adjustment circuit can be made low. Therefore, a large amount of refrigerant can be stored with a relatively small capacity.
[0035]
Furthermore, since one end of the refrigerant amount adjustment circuit is connected to the upstream side of the low pressure side pipe of the internal heat exchanger, the refrigerant from the refrigerant amount adjustment circuit flows through the low pressure side pipe of the internal heat exchanger, and Heat exchanges with the high-temperature high-pressure side piping before flowing into the compressor. Therefore, it is possible to prevent liquid refrigerant from flowing into the compressor from the refrigerant amount adjustment circuit as much as possible.
[0036]
Also, since the other end of the refrigerant amount adjustment circuit is connected to the downstream side of the high pressure side pipe of the internal heat exchanger, the refrigerant amount adjustment circuit exchanges heat with the low pressure side pipe of the internal heat exchanger to maintain a low temperature. The refrigerant in the high-pressure side pipe that has flowed in flows. In this way, a relatively low temperature refrigerant is stored in the refrigerant amount adjustment circuit, so that a large amount of refrigerant can be stored with a relatively small capacity.
[0037]
And, since the opening degree of the low pressure side valve and the high pressure side valve is controlled by the difference between the temperature on the inlet side and the temperature on the outlet side of the cooler, the structure is smaller than the case where the opening degree is controlled by a pressure sensor or the like. It's easy.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a refrigerant circuit of one embodiment of a refrigerator according to the present invention.
FIG. 2 is a view showing a specific example of a dew-prevention pipe in FIG. 1;
FIG. 3 is an input / output diagram of a control device.
FIG. 4 is a sectional view of a refrigerant pipe of the internal heat exchanger.
FIG. 5 is a flowchart of the operation of a high-pressure side valve and a low-pressure side valve.
[Explanation of symbols]
V1 Low-pressure side valve V2 High-pressure side valve 1 Insulated box 16 Compressor 16c Compressor outlet 16d Compressor inlet 17 Air-cooled heat exchanger 22 Internal heat exchanger 22a High-pressure side pipe 22b Low-pressure side pipe 23 Electric expansion valve (decompression device)
24 cooler 26 refrigerant amount adjustment circuit 36 cooler inlet temperature sensor (cooler inlet temperature detecting means)
37 Cooler outlet temperature sensor (cooler outlet temperature detecting means)
41 Control device

Claims (7)

コンプレッサの吐出口から、このコンプレッサで圧縮されて高温・高圧となったガス状冷媒が空冷される空冷熱交換器、内部熱交換器の高圧側配管、減圧装置、この減圧装置により減圧されて低温となった冷媒が流れる冷却器、および、内部熱交換器の高圧側配管と熱交換する低圧側配管を順次経て、コンプレッサの流入口に戻る冷凍サイクルと、
一端が冷凍サイクルの低圧側冷媒回路に、かつ、他端が高圧側冷媒回路に接続されている冷媒量調整回路と、
この冷媒量調整回路の一端部に設けられている低圧側バルブと、
前記冷媒量調整回路の他端部に設けられている高圧側バルブとを備えていることを特徴とする冷凍機。
An air-cooled heat exchanger, in which the gaseous refrigerant compressed to a high temperature and a high pressure by the compressor is air-cooled from the discharge port of the compressor, a high pressure side pipe of the internal heat exchanger, a decompression device, and a low pressure A refrigeration cycle that returns to the compressor inlet through a cooler through which the refrigerant that has passed, and a low-pressure pipe that exchanges heat with the high-pressure pipe of the internal heat exchanger,
One end is connected to the low-pressure side refrigerant circuit of the refrigeration cycle, and the other end is connected to the high-pressure side refrigerant circuit, a refrigerant amount adjustment circuit,
A low-pressure side valve provided at one end of the refrigerant amount adjustment circuit,
A refrigerator provided with a high-pressure side valve provided at the other end of the refrigerant amount adjusting circuit.
前記冷媒が二酸化炭素であることを特徴とする請求項1記載の冷凍機。The refrigerator according to claim 1, wherein the refrigerant is carbon dioxide. 前記冷媒量調整回路の外周面が前記内部熱交換器の低圧側配管の外周面と接合していることを特徴とする請求項1または2記載の冷凍機。The refrigerator according to claim 1, wherein an outer peripheral surface of the refrigerant amount adjusting circuit is joined to an outer peripheral surface of a low-pressure side pipe of the internal heat exchanger. 前記冷媒量調整回路の一端は内部熱交換器の低圧側配管の上流側に接続されていることを特徴とする請求項1,2または3記載の冷凍機。The refrigerator according to claim 1, 2, or 3, wherein one end of the refrigerant amount adjusting circuit is connected to an upstream side of a low-pressure pipe of the internal heat exchanger. 前記冷媒量調整回路の他端は内部熱交換器の高圧側配管の下流側に接続されていることを特徴とする請求項1ないし4のいずれか1項記載の冷凍機。The refrigerator according to any one of claims 1 to 4, wherein the other end of the refrigerant amount adjusting circuit is connected to a downstream side of a high pressure side pipe of the internal heat exchanger. 前記冷却器の入口側の温度を検出する冷却器入口温度検出手段と、前記冷却器の出口側の温度を検出する冷却器出口温度検出手段と、前記低圧側バルブおよび高圧側バルブの開度を制御する制御装置とを備え、
この制御装置が、冷却器入口温度検出手段の検出値および冷却器出口温度検出手段の検出値から冷却器入出温度差を生成し、冷却器入出温度差が大きい場合には、低圧側バルブの開度を大きくするとともに、高圧側バルブの開度を小さくまたは閉じ、かつ、冷却器入出温度差が小さい場合には、低圧側バルブの開度を小さくまたは閉じるとともに、高圧側バルブの開度を大きくする手段を具備していることを特徴とする請求項1ないし5のいずれか1項記載の冷凍機。
A cooler inlet temperature detecting means for detecting a temperature on an inlet side of the cooler, a cooler outlet temperature detecting means for detecting a temperature on an outlet side of the cooler, and an opening degree of the low pressure side valve and the high pressure side valve. Control device to control,
This control device generates a cooler inlet / outlet temperature difference from the detected value of the cooler inlet temperature detecting means and the detected value of the cooler outlet temperature detecting means, and when the cooler inlet / outlet temperature difference is large, opens the low pressure side valve. When the opening of the high pressure side valve is reduced or closed and the temperature difference between the inlet and outlet of the cooler is small, the opening of the low pressure side valve is reduced or closed and the opening of the high pressure side valve is increased. The refrigerator according to any one of claims 1 to 5, further comprising:
外郭が断熱箱体で構成されるとともに、その前面開口が断熱扉で開閉可能に閉じられる冷蔵庫において、
コンプレッサの吐出口から順次、このコンプレッサで圧縮されて高温・高圧となったガス状冷媒が空冷される空冷熱交換器、内部熱交換器の高圧側配管、減圧装置、この減圧装置により減圧されて低温となった冷媒で庫内を冷却する冷却器、および、内部熱交換器の高圧側配管と熱交換する低圧側配管を経て、コンプレッサの流入口に戻る冷凍サイクルと、
一端が冷凍サイクルの低圧側冷媒回路に、かつ、他端が高圧側冷媒回路に接続されている冷媒量調整回路と、
この冷媒量調整回路の一端部に設けられている低圧側バルブと、
前記冷媒量調整回路の他端部に設けられている高圧側バルブとを備えていることを特徴とする冷蔵庫。
In a refrigerator in which the outer shell is formed of an insulated box and the front opening of which is opened and closed by an insulated door,
An air-cooled heat exchanger in which the high-temperature and high-pressure gaseous refrigerant compressed by the compressor is sequentially cooled from the discharge port of the compressor, a high-pressure side pipe of an internal heat exchanger, a pressure reducing device, and a pressure reducing device. A refrigeration cycle that returns to the compressor inlet through a cooler that cools the inside of the refrigerator with low-temperature refrigerant, and a low-pressure pipe that exchanges heat with the high-pressure pipe of the internal heat exchanger;
One end is connected to the low-pressure side refrigerant circuit of the refrigeration cycle, and the other end is connected to the high-pressure side refrigerant circuit, a refrigerant amount adjustment circuit,
A low-pressure side valve provided at one end of the refrigerant amount adjustment circuit,
A refrigerator comprising: a high-pressure side valve provided at the other end of the refrigerant amount adjusting circuit.
JP2002247861A 2002-08-27 2002-08-27 Refrigerator and cold storage Pending JP2004085106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002247861A JP2004085106A (en) 2002-08-27 2002-08-27 Refrigerator and cold storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002247861A JP2004085106A (en) 2002-08-27 2002-08-27 Refrigerator and cold storage

Publications (1)

Publication Number Publication Date
JP2004085106A true JP2004085106A (en) 2004-03-18

Family

ID=32055377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002247861A Pending JP2004085106A (en) 2002-08-27 2002-08-27 Refrigerator and cold storage

Country Status (1)

Country Link
JP (1) JP2004085106A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093111A (en) * 2005-09-28 2007-04-12 Sanyo Electric Co Ltd Cooling storage
JP2007093126A (en) * 2005-09-29 2007-04-12 Sanyo Electric Co Ltd Cooling storage
JP2007093127A (en) * 2005-09-29 2007-04-12 Sanyo Electric Co Ltd Cooling storage box
JP2007226336A (en) * 2006-02-21 2007-09-06 Fuji Electric Retail Systems Co Ltd Cooling unit and vending machine
JP2009144933A (en) * 2007-12-11 2009-07-02 Fuji Electric Retail Systems Co Ltd Refrigerant circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093111A (en) * 2005-09-28 2007-04-12 Sanyo Electric Co Ltd Cooling storage
JP2007093126A (en) * 2005-09-29 2007-04-12 Sanyo Electric Co Ltd Cooling storage
JP2007093127A (en) * 2005-09-29 2007-04-12 Sanyo Electric Co Ltd Cooling storage box
JP2007226336A (en) * 2006-02-21 2007-09-06 Fuji Electric Retail Systems Co Ltd Cooling unit and vending machine
JP2009144933A (en) * 2007-12-11 2009-07-02 Fuji Electric Retail Systems Co Ltd Refrigerant circuit

Similar Documents

Publication Publication Date Title
US7293428B2 (en) Refrigerating machine
US8474280B2 (en) Refrigerating storage cabinet and control method for compressor thereof
JP2006183950A (en) Refrigeration apparatus and refrigerator
JP2007010220A (en) Refrigerating unit and refrigerator comprising the same
JP3975664B2 (en) Refrigerating refrigerator, operation method of freezing refrigerator
JP3995562B2 (en) refrigerator
JP3847499B2 (en) Two-stage compression refrigeration system
JP2008008499A (en) Refrigerating cycle device and heat pump type water heater
JP2004053055A (en) Refrigerator
JP2006023028A (en) Refrigerant cooling circuit
JP2004085106A (en) Refrigerator and cold storage
JP2005241195A (en) Air conditioning refrigerator
JP2005257149A (en) Refrigerator
KR100743753B1 (en) Refrigerator and controlling method thereof
JP2003336918A (en) Cooling device
JP2004085103A (en) Refrigerator
JP2004085102A (en) Refrigerator
JP2004085104A (en) Refrigerator
JP2006125843A (en) Cooling cycle and refrigerator
KR20140115838A (en) Method for controlling refrigerator
JP4425104B2 (en) refrigerator
JP3966262B2 (en) Freezer refrigerator
JP2005098605A (en) Refrigerator
JP5474635B2 (en) Refrigeration equipment
JP2005106373A (en) Refrigerator-freezer