JP2004083532A - 7-oxabicyclo[2.2.1]heptanedimethylamines and their production methods - Google Patents

7-oxabicyclo[2.2.1]heptanedimethylamines and their production methods Download PDF

Info

Publication number
JP2004083532A
JP2004083532A JP2002249848A JP2002249848A JP2004083532A JP 2004083532 A JP2004083532 A JP 2004083532A JP 2002249848 A JP2002249848 A JP 2002249848A JP 2002249848 A JP2002249848 A JP 2002249848A JP 2004083532 A JP2004083532 A JP 2004083532A
Authority
JP
Japan
Prior art keywords
oxabicyclo
heptane
heptanedimethylamines
catalyst
dimethylamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002249848A
Other languages
Japanese (ja)
Inventor
Isao Fukada
深田 功
Sukeyoshi Mizutani
水谷 祐喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2002249848A priority Critical patent/JP2004083532A/en
Publication of JP2004083532A publication Critical patent/JP2004083532A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide 7-oxabicyclo[2.2.1]heptanedimethylamines which are starting materials for various derivatives capable of introducing oxygen-containing alicyclic skeletons into various polymers to impart thereto excellent properties such as solvent solubility as well as transparency and optical properties. <P>SOLUTION: The 7-oxabicyclo[2.2.1]heptanedimethylamines are represented by formula (I). The method for producing the compounds comprises hydrogenating 7-oxabicyclo[2.2.1]heptanedicarbonitriles in the presence of a catalyst. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、新規な7−オキサビシクロ〔2.2.1〕ヘプタンジメチルアミン類、およびそれらの製造方法に関するものであり、詳しくは7−オキサビシクロ〔2.2.1〕ヘプタン−2,5−ジメチルアミン、7−オキサビシクロ〔2.2.1〕ヘプタン−2,6−ジメチルアミン、およびそれらの製造方法に関するものである。
【0002】
【従来の技術】
近年、ポリイミド重合体、ポリアミド重合体、ポリエステル重合体、ポリエチレン重合体やポリエチレンプロピレン共重合体等に、透明性、光学特性[高屈折率、低色収差(高アッベ数)、低複屈折率]等の物性を付与する目的で、脂環式の骨格を有する化合物を導入する検討がなされている。例えば、脂環式の骨格としては、シクロヘキサン、ノルボルナン、テトラシクロドデカン等が知られている。
【0003】
これらの脂環式の骨格を導入した重合体では、確かに透明性や光学特性が向上し、既に工業的生産規模で製造されている重合体も存在する。しかしながら、最近では、これらの物性に加えて溶剤等に対する溶解性が望まれるようになってきているが、この要求を満足する重合体については、未だ実用化するに至ってはいないのが現状であった。
一方、脂環式骨格にヘテロ原子を導入することで重合体に極性を付与することが可能なノルボルナン骨格の7位に酸素原子を有する7−オキサビシクロ〔2.2.1〕ヘプタンジメチルアミン類は知られていなかった。
【0004】
【発明が解決しようとする課題】
本発明の課題は、透明性、光学特性等の各種物性の他に溶剤溶解性に優れた各種重合体の原料を提供すると共に、その工業的な生産性で高収率に製造し得る方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、前記の課題を解決するため鋭意検討した結果、酸素原子を有する脂環式の骨格を導入可能な各種誘導体の原料となる新規な7−オキサビシクロ〔2.2.1〕ヘプタンジメチルアミン類を見出し、これを用いると上記課題が解決できることを見出し、本発明を完成した。
【0006】
すなわち、本発明は、下記式(I)(化3)で表される7−オキサビシクロ〔2.2.1〕ヘプタンジメチルアミン類、及びその製造方法に関する。
【化3】

Figure 2004083532
【0007】
【発明の実施の形態】
以下、本発明の7−オキサビシクロ〔2.2.1〕ヘプタンジメチルアミン類、及びその製造方法について具体的に説明する。
本発明に係わる7−オキサビシクロ〔2.2.1〕ヘプタンジメチルアミン類は、下記式(III)(化4)で表される7−オキサビシクロ〔2.2.1〕ヘプタン−2,5−ジメチルアミン、および下記式(IV)(化5)で表される7−オキサビシクロ〔2.2.1〕ヘプタン−2,6−ジメチルアミンである。
【0008】
【化4】
Figure 2004083532
【0009】
【化5】
Figure 2004083532
【0010】
本発明の7−オキサビシクロ〔2.2.1〕ヘプタンジメチルアミン類は、下記式(II)(化6)で表される7−オキサビシクロ〔2.2.1〕ヘプタンジカルボニトリル類を触媒の存在下、水素化することで製造することができる。
【0011】
【化6】
Figure 2004083532
【0012】
式(II)で表される7−オキサビシクロ〔2.2.1〕ヘプタンジカルボニトリル類は、具体的には、下記式(V)(化7)で表される7−オキサビシクロ〔2.2.1〕ヘプタン−2,5−ジカルボニトリル、および下記式(VI)(化8)で表される7−オキサビシクロ〔2.2.1〕ヘプタン2,6−ジカルボニトリルである。
【0013】
【化7】
Figure 2004083532
【0014】
【化8】
Figure 2004083532
【0015】
本発明の7−オキサビシクロ〔2.2.1〕ヘプタンジメチルアミン類を製造する際に用いる上述の式(II)で表される7−オキサビシクロ〔2.2.1〕ヘプタンジカルボニトリル類は、7−オキサビシクロ〔2.2.1〕ヘプト−5−エン−2−カルボニトリルへのシアン化水素付加により製造されたもの等を使用することができる。
【0016】
本発明の7−オキサビシクロ〔2.2.1〕ヘプタンジメチルアミン類を製造する際に使用される水素は、通常100%純度のものが好ましいが、反応に不活性なガス、例えば窒素、アルゴン、ヘリウムあるいはメタン等のガスが含まれていても、何ら差し支えはない。
【0017】
さらに、本発明の7−オキサビシクロ〔2.2.1〕ヘプタンジメチルアミン類を製造する際に使用される触媒は、コバルト、ニッケル、ルテニウム、パラジウム等の金属種を含有する触媒であり、これらの金属をシリカ、アルミナ、シリカアルミナ、カーボン等の担体に担持した担持金属触媒や、これらの金属を含む合金粉末を常法(例えば、触媒工学講座10元素別触媒便覧、528頁)によりアルカリ展開して得られたラネー金属触媒を使用することができる。
【0018】
また、触媒の反応槽への仕込量は特に限定されないが、反応液の良好な流動性を保持し、かつ触媒コストを低減するという点から、通常は原料の7−オキサビシクロ〔2.2.1〕ヘプタンジカルボニトリル類に対し20重量%程度までの量、より具体的には0.1〜20重量%の量を使用することが好ましい。
【0019】
触媒の反応槽への添加方法は、使用する触媒量を一括して添加することもできるが、化学的な触媒被毒を抑制する点からは、一回の反応当たりに必要な触媒量を添加し、反応を反復する際に毎回逐次的に添加する方法を採用することが好ましい。
【0020】
本発明において、水素化を行う際の温度は、7−オキサビシクロ〔2.2.1〕ヘプタンジメチルアミン類の良好な生産性を保持し、かつ副生物を抑制するという点から50〜250℃の範囲が好ましく、更には80〜200℃の範囲であることがより好ましい。
【0021】
本発明において、水素化を行う際の圧力は0.5〜20MPaGの範囲が好ましく、更には1〜10MPaGの範囲であることがより好ましい。0.5MPaG未満の圧力では水素化が完結するまでに長時間を要することがあるため、目的の7−オキサビシクロ〔2.2.1〕ヘプタンジメチルアミン類の生産性の悪化を招くことになり、また、20MPaGを越える圧力では、圧力増大の効果があまり見られず、かえって高圧設備の建設費等の増大も招くことになる場合がある。
【0022】
本発明において7−オキサビシクロ〔2.2.1〕ヘプタンジカルボニトリル類の水素化は、アンモニアの存在下で行うことが好ましい。このアンモニアは、目的とする7−オキサビシクロ〔2.2.1〕ヘプタンジメチルアミン類以外の第2級アミン、第3級アミン、あるいはポリアミン等の高沸物の副生を抑制して選択性を向上する働きをもつ。アンモニアは液体アンモニアやアンモニア水等の形で反応槽に仕込むことができる。アンモニアの使用量は、上記高沸物の副生を抑制し、水素化速度の低下を防止し、かつ反応後のアンモニアの処理あるいは回収を容易にするという点から、原料の7−オキサビシクロ〔2.2.1〕ヘプタンジカルボニトリル類に対して0.05〜40モル比の範囲であることが好ましく、更には0.1〜20モル比の範囲であることが好ましい。
【0023】
本発明において、7−オキサビシクロ〔2.2.1〕ヘプタンジカルボニトリル類の水素化は、溶媒を使用しなくても実施することはできるが、原料の7−オキサビシクロ〔2.2.1〕ヘプタンジカルボニトリル類が比較的高粘性の液体であったり、一部固体であったりするため、操作性の向上及び反応槽中での触媒の流動性向上等を目的として溶媒を使用することもできる。使用可能な溶媒は本水素化反応に不活性な化合物であり、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、メシチレン等の芳香族炭化水素類、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール等のアルコール類、及びこれらの類似化合物等が好ましく、これらは混合して使用しても差し支えない。
【0024】
また、上記溶媒を使用する場合、その使用量は任意の量をとりうるが、得られる7−オキサビシクロ〔2.2.1〕ヘプタンジメチルアミン類の良好な生産性を保持し、かつ溶媒留去のためのエネルギーを少なくするという点から、好ましくは原料の7−オキサビシクロ〔2.2.1〕ヘプタンジカルボニトリル類の10重量倍までの範囲、より好ましくは8重量倍までの範囲、更に好ましくは5重量倍までの範囲である。
【0025】
本発明において、7−オキサビシクロ〔2.2.1〕ヘプタンジカルボニトリル類を水素化する際の反応形式については特に制限がなく、回分式、半回分式、または流通式等の、いずれの方式であっても実施することが可能である。
【0026】
本発明に係わる7−オキサビシクロ〔2.2.1〕ヘプタンジカルボニトリル類の水素化後に生成する7−オキサビシクロ〔2.2.1〕ヘプタンジメチルアミン類は、式(V)で表される7−オキサビシクロ〔2.2.1〕ヘプタン−2,5−ジメチルアミンおよび式(VI)で表される7−オキサビシクロ〔2.2.1〕ヘプタン−2,6−ジメチルアミンを成分とする混合物として得られる。この7−オキサビシクロ〔2.2.1〕ヘプタンジメチルアミン類を含有する反応液からは、例えば、ろ過等によって金属触媒を除去し、さらに蒸留等によって未反応の7−オキサビシクロ〔2.2.1〕ヘプタンジカルボニトリル類、アンモニア、溶媒および副生物を除去することで、高濃度の7−オキサビシクロ〔2.2.1〕ヘプタン−2,5−ジメチルアミンおよび7−オキサビシクロ〔2.2.1〕ヘプタン−2,6−ジメチルアミンを成分とする混合物を得ることができる。
【0027】
本発明の7−オキサビシクロ〔2.2.1〕ヘプタンジメチルアミン類は、酸無水物との反応によってポリイミド重合体を製造することができる。このポリイミド重合体は、ポリイミドが本来有する耐熱性、機械特性、低吸湿性等の優れた諸物性を有する上に、耐熱性、光学特性、耐薬品性、電気特性、溶融流動性等に優れる特徴を有しているため、例えば、光ファイバー、光導波路、光ディスク基板、光レンズ、光フィルターなどの分野において、高温下での使用で要求される耐熱性を満足する光線透過率の高い(無色透明性の)ポリイミドとして有用である。
【0028】
また、本発明の7−オキサビシクロ〔2.2.1〕ヘプタンジメチルアミン類は、ジカルボン酸化合物との反応によってポリアミド重合体を製造することができ、更には、ウレタン原料として有用なジイソシアネート化合物やエポキシ樹脂等の硬化剤に誘導することができる他、医薬中間体、農薬中間体等の各種有機化学工業における原料としても有用である。
【実施例】
以下、実施例により本発明の有用性を更に詳細に説明する。
合成例1
7−オキサビシクロ〔2.2.1〕ヘプト−5−エン−2−カルボニトリルの合成:
1Lのチタン製電磁攪拌式オートクレーブに、アクリロニトリル166.1g(3.10mol)、フラン300.9g(4.42mol)、塩化亜鉛125.4g(0.90mol)を仕込み、系内を窒素で充分置換した後、攪拌下、40℃で24時間の反応を実施した。反応終了後、オートクレーブを室温まで冷却し、反応液を回収した。
次に、5Lの分液ロートに上記で得られた反応液と酢酸エチル2923.8gを仕込み、1Lの水を使用して洗浄を行い、静置後水層を分離した。この1Lの水による洗浄操作を合計で5回実施し、更に、得られた有機層から未反応の原料と酢酸エチルを留去することで、318.6g(収率85%)の7−オキサビシクロ〔2.2.1〕ヘプト−5−エン−2−カルボニトリルを得た。
【0029】
合成例2(7−オキサビシクロ〔2.2.1〕ヘプタンジカルボニトリル類の合成):
攪拌機、温度計、窒素導入口、シアン化水素導入口、冷却器等を備えた5Lガラス製平底セパラブルフラスコに、合成例1で合成した7−オキサビシクロ〔2.2.1〕ヘプト−5−エン−2−カルボニトリルを444.8g(3.672mol)、トルエン1987g、テトラキス(トリフェニルホスファイト)ニッケル34.20g(26.3mmol)、塩化亜鉛5.21g(38.1mmol)、トリフェニルホスファイト82.90g(267mmol)を仕込み、室温で気相部の窒素置換を行い、その後40℃に昇温した。次いで、液体シアン化水素99.02g(3.665mol)を4.5時間に亘り供給した。反応終了後、反応液を室温まで冷却し、触媒を分離後、精製することで、7−オキサビシクロ〔2.2.1〕ヘプタンジカルボニトリル類(7−オキサビシクロ〔2.2.1〕ヘプタン−2,5−ジカルボニトリルと7−オキサビシクロ〔2.2.1〕ヘプタン−2,6−ジカルボニトリルを成分とする混合物)377.4gを得た。
【0030】
実施例1
内容量1.5Lのステンレス製電磁攪拌式オートクレーブに、合成例2で合成した7−オキサビシクロ〔2.2.1〕ヘプタン−2,5−ジカルボニトリルおよび7−オキサビシクロ〔2.2.1〕ヘプタン−2,6−ジカルボニトリルを成分とする7−オキサビシクロ〔2.2.1〕ヘプタンジカルボニトリル類を208.8g(1.41mol)、トルエンを204.7g、及びラネーコバルト触媒(OFT−MS、川研ファインケミカル製)を11.3g(乾燥重量)を仕込み、系内を窒素で充分置換した後、続いて水素で置換し、更に液体アンモニアを391.0g(23.0mol)注入した。次に、オートクレーブ内の圧力が3MPaGまで水素を圧入した後、攪拌下、120℃に昇温して水素化を開始した。反応の進行と共にオートクレーブ内の圧力が低下するため、圧力が10MPaGを保つように連続的に水素を供給し、かつ液温が120℃を保つように調整して、6時間水素化反応を実施した。反応終了後、オートクレーブを室温まで冷却し、気相部の水素及びアンモニアを抜き出した後、反応液を回収した。
【0031】
回収した反応液についてガスクロマトグラフィーを使用して分析した結果、7−オキサビシクロ〔2.2.1〕ヘプタンジカルボニトリル類(7−オキサビシクロ〔2.2.1〕ヘプタン−2,5−ジカルボニトリルと7−オキサビシクロ〔2.2.1〕ヘプタン−2,6−ジカルボニトリルを成分とする混合物)の転化率は100mol%、7−オキサビシクロ〔2.2.1〕ヘプタンジメチルアミン類(7−オキサビシクロ〔2.2.1〕ヘプタン−2,5−ジメチルアミンと7−オキサビシクロ〔2.2.1〕ヘプタン−2,6−ジメチルアミンを成分とする混合物)の選択率は92.8mol%であった。
【0032】
次に、上記で回収された反応液からろ過によってラネーコバルト触媒を分離し、次にロータリーエバポレーターによってトルエンの大部分を留去した後、蒸留によって、7−オキサビシクロ〔2.2.1〕ヘプタンジメチルアミン類(7−オキサビシクロ〔2.2.1〕ヘプタン−2,5−ジメチルアミンと7−オキサビシクロ〔2.2.1〕ヘプタン−2,6−ジメチルアミンを成分とする混合物)201.0gを得た。
以下に、得られた7−オキサビシクロ〔2.2.1〕ヘプタンジメチルアミン類のマススペクトルを図1に示す。
【0033】
実施例2
内容量1.5Lのステンレス製電磁攪拌式オートクレーブに、合成例2で合成した7−オキサビシクロ〔2.2.1〕ヘプタンジカルボニトリル類を115.0g(0.78mol)、トルエンを467.9g、29%アンモニア水を42.4g及びラネーコバルト触媒(OFT−MS、川研ファインケミカル製)を2.1g(乾燥重量)を仕込み、系内を窒素で充分置換した後、続いて水素で置換した。次に、オートクレーブ内の圧力が2.5MPaGまで水素を圧入した後、攪拌下、120℃に昇温して水素化を開始した。反応の進行と共にオートクレーブ内の圧力が低下するため、圧力が3.5MPaGを保つように連続的に水素を供給し、かつ液温が120℃を保つように調整して、4時間水素化反応を実施した。反応終了後、オートクレーブを室温まで冷却し、気相部の水素及びアンモニアを抜き出した後、反応液を回収した。
【0034】
回収した反応液についてガスクロマトグラフィーを使用して分析した結果、7−オキサビシクロ〔2.2.1〕ヘプタンジカルボニトリル類の転化率は100mol%、7−オキサビシクロ〔2.2.1〕ヘプタンジメチルアミン類(7−オキサビシクロ〔2.2.1〕ヘプタン−2,5−ジメチルアミンと7−オキサビシクロ〔2.2.1〕ヘプタンジ−2,6−メチルアミンを成分とする混合物)の選択率は81mol%であった。
【0035】
実施例3
実施例2において、触媒量を3.1g、反応温度を150℃とし、水素化反応を6時間に亘って実施する以外は、全て同様に操作した。その結果、7−オキサビシクロ〔2.2.1〕ヘプタンジカルボニトリル類の転化率は100mol%、7−オキサビシクロ〔2.2.1〕ヘプタンジメチルアミン類(7−オキサビシクロ〔2.2.1〕ヘプタン−2,5−ジメチルアミンと7−オキサビシクロ〔2.2.1〕ヘプタン−2,6−ジメチルアミンを成分とする混合物)の選択率は60mol%であった。
【0036】
参考例
攪拌機、温度計および窒素導入管を備えたフラスコに、ピロメリット酸二無水物10.91g(0.050mol)とN,N−ジメチルアセトアミド30gを装入し、窒素気流下、10℃で攪拌した。ここへ7−オキサビシクロ〔2.2.1〕ヘプタンジメチルアミン類(7−オキサビシクロ〔2.2.1〕ヘプタン−2,5−ジメチルアミンと7−オキサビシクロ〔2.2.1〕ヘプタン−2,6−ジメチルアミンを成分とする混合物)7.81g(0.050mol)およびN,N−ジメチルアセトアミド7.81gの混合溶液を90分間で徐々に滴下した。その後、室温で5時間攪拌し、次に50℃まで昇温して更に5時間攪拌した。冷却後、得られたポリアミド酸の対数粘度は0.84dl/g、E型機械粘度は34900mPa・sであった。また、GPCによる分子量測定では、数平均分子量(Mn)が28000、重量平均分子量(Mw)が101000、分子量分布(Mw/Mn)が3.61であった。
得られたワニスを、ガラス板上にキャストし、窒素気流下で室温から250℃まで2時間、250℃で2時間焼成して厚さ42μmのポリイミドフィルムを得た。得られたポリイミドフィルムの外観はほぼ無色透明であった。DSCにより窒素雰囲気下、室温から350℃まで測定したところ、このフィルムのガラス転移温度(Tg)は観察されなかった。従って、Tgは350℃を越えるものと考えられる。また、5%重量減少温度(Td5)は423℃であった。更に、このフィルムの光線透過率は500nmで85.3%、450nmで82.4%、400nmで76.3%であった。
【0037】
【発明の効果】
本発明の7−オキサビシクロ〔2.2.1〕ヘプタンジメチルアミン類は、酸無水物との反応によってポリイミド重合体を製造することができる。このポリイミド重合体は、ポリイミドが本来有する耐熱性、機械特性、低吸湿性等の優れた諸物性を有する上に、耐熱性、光学特性、耐薬品性、電気特性、溶融流動性等に優れる特徴を有しているため、例えば、光ファイバー、光導波路、光ディスク基板、光レンズ、光フィルターなどの分野において、高温下での使用で要求される耐熱性を満足する光線透過率の高い(無色透明性の)ポリイミドとして有用である。
【0038】
また、本発明の7−オキサビシクロ〔2.2.1〕ヘプタンジメチルアミン類は、ジカルボン酸化合物との反応によってポリアミド重合体を製造することができ、更には、ウレタン原料として有用なジイソシアネート化合物やエポキシ樹脂等の硬化剤に誘導することができる他、医薬中間体、農薬中間体等の各種有機化学工業における原料としても有用である。
また本発明の製造方法によれば、7−オキサビシクロ〔2.2.1〕ヘプタンジメチルアミン類を工業的な生産性で高収率に製造することができる。
【図面の簡単な説明】
【図1】図1は、実施例1の同定結果で、7−オキサビシクロ〔2.2.1〕ヘプタン−2,5−ジメチルアミンと7−オキサビシクロ〔2.2.1〕ヘプタン−2,6−ジメチルアミンの混合物のマススペクトル図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to novel 7-oxabicyclo [2.2.1] heptane dimethylamines and a method for producing them, and more particularly, to 7-oxabicyclo [2.2.1] heptane-2,5. -Dimethylamine, 7-oxabicyclo [2.2.1] heptane-2,6-dimethylamine, and methods for producing them.
[0002]
[Prior art]
In recent years, polyimide polymers, polyamide polymers, polyester polymers, polyethylene polymers, polyethylene propylene copolymers, etc. have been added to transparency, optical properties [high refractive index, low chromatic aberration (high Abbe number), low birefringence], etc. For the purpose of imparting the above physical properties, studies have been made to introduce a compound having an alicyclic skeleton. For example, as an alicyclic skeleton, cyclohexane, norbornane, tetracyclododecane and the like are known.
[0003]
In the polymers into which these alicyclic skeletons are introduced, the transparency and the optical properties are certainly improved, and there are polymers which are already manufactured on an industrial production scale. However, recently, in addition to these properties, solubility in solvents and the like has been desired. However, a polymer satisfying this requirement has not yet been put to practical use. Was.
On the other hand, 7-oxabicyclo [2.2.1] heptanedimethylamines having an oxygen atom at the 7-position of a norbornane skeleton capable of imparting polarity to a polymer by introducing a hetero atom into an alicyclic skeleton Was not known.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a raw material for various polymers having excellent solvent solubility in addition to various physical properties such as transparency and optical properties, and to provide a method capable of producing the polymer in a high yield with industrial productivity. To provide.
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, a novel 7-oxabicyclo [2.2.1] which is a raw material of various derivatives into which an alicyclic skeleton having an oxygen atom can be introduced. The inventors have found heptane dimethylamines and have found that the use thereof can solve the above-mentioned problems, thus completing the present invention.
[0006]
That is, the present invention relates to 7-oxabicyclo [2.2.1] heptanedimethylamines represented by the following formula (I) (formula 3) and a method for producing the same.
Embedded image
Figure 2004083532
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the 7-oxabicyclo [2.2.1] heptanedimethylamines of the present invention and a method for producing the same will be specifically described.
The 7-oxabicyclo [2.2.1] heptane dimethylamine according to the present invention is a 7-oxabicyclo [2.2.1] heptane-2,5 represented by the following formula (III): -Dimethylamine and 7-oxabicyclo [2.2.1] heptane-2,6-dimethylamine represented by the following formula (IV).
[0008]
Embedded image
Figure 2004083532
[0009]
Embedded image
Figure 2004083532
[0010]
The 7-oxabicyclo [2.2.1] heptanedimethylamines of the present invention include 7-oxabicyclo [2.2.1] heptane dicarbonitrile represented by the following formula (II) (Formula 6). It can be produced by hydrogenation in the presence of a catalyst.
[0011]
Embedded image
Figure 2004083532
[0012]
The 7-oxabicyclo [2.2.1] heptanedicarbonitrile represented by the formula (II) is specifically a 7-oxabicyclo [2.2.1] represented by the following formula (V). 2.2.1] heptane-2,5-dicarbonitrile and 7-oxabicyclo [2.2.1] heptane 2,6-dicarbonitrile represented by the following formula (VI): .
[0013]
Embedded image
Figure 2004083532
[0014]
Embedded image
Figure 2004083532
[0015]
7-oxabicyclo [2.2.1] heptane dicarbonitrile represented by the above formula (II) used for producing 7-oxabicyclo [2.2.1] heptane dimethylamine of the present invention Can be used those produced by hydrogen cyanide addition to 7-oxabicyclo [2.2.1] hept-5-ene-2-carbonitrile.
[0016]
The hydrogen used in the production of the 7-oxabicyclo [2.2.1] heptanedimethylamines of the present invention is generally preferably 100% pure, but is inert to the reaction, such as nitrogen or argon. Even if a gas such as helium or methane is contained, there is no problem.
[0017]
Further, the catalyst used for producing the 7-oxabicyclo [2.2.1] heptanedimethylamines of the present invention is a catalyst containing a metal species such as cobalt, nickel, ruthenium, and palladium. Supported metal catalyst in which the above-mentioned metal is supported on a carrier such as silica, alumina, silica-alumina, or carbon, or an alloy powder containing these metals is alkali-developed by a conventional method (for example, Catalyst Engineering Course, Handbook of Catalysts by Element, page 528). The Raney metal catalyst obtained as described above can be used.
[0018]
The amount of the catalyst to be charged into the reaction tank is not particularly limited. However, from the viewpoint of maintaining good fluidity of the reaction solution and reducing the cost of the catalyst, 7-oxabicyclo [2.2. 1] It is preferable to use an amount of up to about 20% by weight, more specifically an amount of 0.1 to 20% by weight, based on heptane dicarbonitrile.
[0019]
As for the method of adding catalyst to the reaction tank, the amount of catalyst used can be added all at once, but from the viewpoint of suppressing chemical catalyst poisoning, the amount of catalyst required per reaction is added. However, it is preferable to employ a method in which the addition is carried out successively each time the reaction is repeated.
[0020]
In the present invention, the temperature at which the hydrogenation is performed is 50 to 250 ° C. from the viewpoint of maintaining good productivity of 7-oxabicyclo [2.2.1] heptanedimethylamines and suppressing by-products. Is more preferable, and more preferably in the range of 80 to 200C.
[0021]
In the present invention, the pressure at which hydrogenation is performed is preferably in the range of 0.5 to 20 MPaG, and more preferably in the range of 1 to 10 MPaG. If the pressure is less than 0.5 MPaG, it may take a long time to complete the hydrogenation, which may lead to a decrease in the productivity of the desired 7-oxabicyclo [2.2.1] heptanedimethylamines. At a pressure exceeding 20 MPaG, the effect of increasing the pressure is not so much seen, and the construction cost of a high-pressure facility may be increased.
[0022]
In the present invention, the hydrogenation of 7-oxabicyclo [2.2.1] heptanedicarbonitrile is preferably performed in the presence of ammonia. This ammonia suppresses by-products of high-boiling substances such as secondary amines, tertiary amines, and polyamines other than the desired 7-oxabicyclo [2.2.1] heptanedimethylamines, and has selectivity. Has the function of improving. Ammonia can be charged to the reaction tank in the form of liquid ammonia or aqueous ammonia. The amount of ammonia used is 7-oxabicyclo [starting material] from the viewpoint of suppressing the by-product of the high-boiling substances, preventing a decrease in the hydrogenation rate, and facilitating the treatment or recovery of ammonia after the reaction. 2.2.1] The molar ratio is preferably in the range of 0.05 to 40, and more preferably in the range of 0.1 to 20 with respect to heptane dicarbonitrile.
[0023]
In the present invention, hydrogenation of 7-oxabicyclo [2.2.1] heptanedicarbonitrile can be carried out without using a solvent, but the starting material 7-oxabicyclo [2.2. 1] Since heptane dicarbonitrile is a liquid having a relatively high viscosity or is partially solid, a solvent is used for the purpose of improving operability, improving the fluidity of the catalyst in the reaction tank, and the like. You can also. Solvents that can be used are compounds inert to the hydrogenation reaction, for example, aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, diethylbenzene, mesitylene, methanol, ethanol, 1-propanol, 2-propanol, Alcohols such as 1-butanol and 2-butanol, and similar compounds thereof are preferable, and these may be used in combination.
[0024]
When the above-mentioned solvent is used, the amount of the solvent used may be any amount, but it is possible to maintain good productivity of the obtained 7-oxabicyclo [2.2.1] heptanedimethylamines and to distill the solvent. From the viewpoint of reducing the energy for removal, the range is preferably up to 10 times by weight, more preferably up to 8 times by weight of the starting 7-oxabicyclo [2.2.1] heptanedicarbonitrile, More preferably, the range is up to 5 times by weight.
[0025]
In the present invention, there is no particular limitation on the type of reaction for hydrogenating 7-oxabicyclo [2.2.1] heptanedicarbonitrile, and any of a batch system, a semi-batch system, and a flow system can be used. It is possible to implement even with the method.
[0026]
The 7-oxabicyclo [2.2.1] heptanedimethylamines formed after hydrogenation of 7-oxabicyclo [2.2.1] heptanedicarbonitrile according to the present invention are represented by the formula (V). 7-oxabicyclo [2.2.1] heptane-2,5-dimethylamine and 7-oxabicyclo [2.2.1] heptane-2,6-dimethylamine represented by the formula (VI) as components As a mixture. From the reaction solution containing the 7-oxabicyclo [2.2.1] heptanedimethylamines, for example, the metal catalyst is removed by filtration or the like, and the unreacted 7-oxabicyclo [2.2] is distilled or the like. .1] removal of heptanedicarbonitrile, ammonia, solvent and by-products to give high concentrations of 7-oxabicyclo [2.2.1] heptane-2,5-dimethylamine and 7-oxabicyclo [2 2.2.1] A mixture containing heptane-2,6-dimethylamine as a component can be obtained.
[0027]
The 7-oxabicyclo [2.2.1] heptanedimethylamines of the present invention can produce a polyimide polymer by reacting with an acid anhydride. This polyimide polymer has excellent physical properties such as heat resistance, mechanical properties, and low moisture absorption inherent to polyimide, as well as excellent heat resistance, optical properties, chemical resistance, electrical properties, and melt fluidity. Therefore, for example, in the fields of optical fibers, optical waveguides, optical disk substrates, optical lenses, optical filters, etc., high light transmittance (colorless transparency) that satisfies the heat resistance required for use at high temperatures ) Is useful as a polyimide.
[0028]
In addition, the 7-oxabicyclo [2.2.1] heptanedimethylamines of the present invention can produce a polyamide polymer by reacting with a dicarboxylic acid compound. Further, a diisocyanate compound useful as a urethane raw material can be produced. It can be derived into a curing agent such as an epoxy resin, and is also useful as a raw material in various organic chemical industries such as pharmaceutical intermediates and agricultural chemical intermediates.
【Example】
Hereinafter, the usefulness of the present invention will be described in more detail with reference to examples.
Synthesis Example 1
Synthesis of 7-oxabicyclo [2.2.1] hept-5-ene-2-carbonitrile:
166.1 g (3.10 mol) of acrylonitrile, 300.9 g (4.42 mol) of furan, and 125.4 g (0.90 mol) of zinc chloride were charged into a 1-L titanium magnetic stirring autoclave, and the system was sufficiently purged with nitrogen. After that, the reaction was carried out at 40 ° C. for 24 hours with stirring. After completion of the reaction, the autoclave was cooled to room temperature, and the reaction solution was recovered.
Next, the reaction solution obtained above and 2923.8 g of ethyl acetate were charged into a 5 L separatory funnel, washed with 1 L of water, and allowed to stand, and then an aqueous layer was separated. This washing operation with 1 L of water was performed a total of 5 times, and the unreacted raw material and ethyl acetate were distilled off from the obtained organic layer to obtain 318.6 g (yield: 85%) of 7-oxadene. Bicyclo [2.2.1] hept-5-ene-2-carbonitrile was obtained.
[0029]
Synthesis Example 2 (Synthesis of 7-oxabicyclo [2.2.1] heptanedicarbonitrile):
7-oxabicyclo [2.2.1] hept-5-ene synthesized in Synthesis Example 1 was placed in a 5 L glass flat-bottom separable flask equipped with a stirrer, thermometer, nitrogen inlet, hydrogen cyanide inlet, cooler and the like. 444.8 g (3.672 mol) of 2-carbonitrile, 1987 g of toluene, 34.20 g (26.3 mmol) of nickel tetrakis (triphenylphosphite), 5.21 g (38.1 mmol) of zinc chloride, and triphenylphosphite 82.90 g (267 mmol) were charged, the gas phase was replaced with nitrogen at room temperature, and then the temperature was raised to 40 ° C. Next, 99.02 g (3.665 mol) of liquid hydrogen cyanide was supplied over 4.5 hours. After completion of the reaction, the reaction solution was cooled to room temperature, and the catalyst was separated and purified, whereby 7-oxabicyclo [2.2.1] heptanedicarbonitrile (7-oxabicyclo [2.2.1]) was obtained. 377.4 g of a mixture containing heptane-2,5-dicarbonitrile and 7-oxabicyclo [2.2.1] heptane-2,6-dicarbonitrile) were obtained.
[0030]
Example 1
A 7-oxabicyclo [2.2.1] heptane-2,5-dicarbonitrile synthesized in Synthesis Example 2 and a 7-oxabicyclo [2.2. 1] 208.8 g (1.41 mol) of 7-oxabicyclo [2.2.1] heptanedicarbonitrile having heptane-2,6-dicarbonitrile as a component, 204.7 g of toluene, and Raney cobalt 11.3 g (dry weight) of a catalyst (OFT-MS, manufactured by Kawaken Fine Chemicals) was charged, and the system was sufficiently purged with nitrogen, followed by hydrogen and 391.0 g (23.0 mol) of liquid ammonia. A) injected. Next, after hydrogen was injected into the autoclave until the pressure in the autoclave reached 3 MPaG, the temperature was raised to 120 ° C. with stirring to start hydrogenation. Since the pressure in the autoclave decreases with the progress of the reaction, hydrogen was continuously supplied to keep the pressure at 10 MPaG, and the liquid temperature was adjusted to keep at 120 ° C., and the hydrogenation reaction was carried out for 6 hours. . After the completion of the reaction, the autoclave was cooled to room temperature, hydrogen and ammonia in the gas phase were extracted, and the reaction solution was recovered.
[0031]
As a result of analyzing the collected reaction solution using gas chromatography, 7-oxabicyclo [2.2.1] heptanedicarbonitrile (7-oxabicyclo [2.2.1] heptane-2,5-) was obtained. The conversion of dicarbonitrile and 7-oxabicyclo [2.2.1] heptane-2,6-dicarbonitrile) is 100 mol%, and 7-oxabicyclo [2.2.1] heptanedimethyl Selection of amines (mixture containing 7-oxabicyclo [2.2.1] heptane-2,5-dimethylamine and 7-oxabicyclo [2.2.1] heptane-2,6-dimethylamine as components) The rate was 92.8 mol%.
[0032]
Next, the Raney cobalt catalyst was separated from the reaction solution recovered above by filtration, and then most of the toluene was distilled off by a rotary evaporator. Dimethylamines (mixture containing 7-oxabicyclo [2.2.1] heptane-2,5-dimethylamine and 7-oxabicyclo [2.2.1] heptane-2,6-dimethylamine as components) 201 0.0 g was obtained.
FIG. 1 shows a mass spectrum of the obtained 7-oxabicyclo [2.2.1] heptanedimethylamine.
[0033]
Example 2
115.0 g (0.78 mol) of 7-oxabicyclo [2.2.1] heptanedicarbonitrile synthesized in Synthesis Example 2 and 467.mL of toluene were placed in a stainless steel electromagnetic stirring autoclave having an internal capacity of 1.5 L. 9 g, 42.4 g of 29% ammonia water, and 2.1 g (dry weight) of Raney cobalt catalyst (OFT-MS, manufactured by Kawaken Fine Chemicals) were charged, and the system was sufficiently purged with nitrogen and then hydrogen. did. Next, after hydrogen was injected into the autoclave until the pressure in the autoclave reached 2.5 MPaG, the temperature was raised to 120 ° C. with stirring to start hydrogenation. Since the pressure in the autoclave decreases as the reaction proceeds, hydrogen is continuously supplied so that the pressure is maintained at 3.5 MPaG, and the liquid temperature is adjusted so as to maintain 120 ° C., and the hydrogenation reaction is performed for 4 hours. Carried out. After the completion of the reaction, the autoclave was cooled to room temperature, hydrogen and ammonia in the gas phase were extracted, and the reaction solution was recovered.
[0034]
As a result of analyzing the recovered reaction solution using gas chromatography, the conversion of 7-oxabicyclo [2.2.1] heptanedicarbonitrile was 100 mol%, and 7-oxabicyclo [2.2.1] was obtained. Heptane dimethylamines (mixture containing 7-oxabicyclo [2.2.1] heptane-2,5-dimethylamine and 7-oxabicyclo [2.2.1] heptanedi-2,6-methylamine as components) Was 81 mol%.
[0035]
Example 3
All operations were the same as in Example 2, except that the amount of the catalyst was 3.1 g, the reaction temperature was 150 ° C., and the hydrogenation reaction was carried out for 6 hours. As a result, the conversion of 7-oxabicyclo [2.2.1] heptanedicarbonitrile was 100 mol%, and that of 7-oxabicyclo [2.2.1] heptanedimethylamines (7-oxabicyclo [2.2] .1] heptane-2,5-dimethylamine and 7-oxabicyclo [2.2.1] heptane-2,6-dimethylamine).
[0036]
Reference Example In a flask equipped with a stirrer, a thermometer and a nitrogen inlet tube, 10.91 g (0.050 mol) of pyromellitic dianhydride and 30 g of N, N-dimethylacetamide were charged, and the mixture was heated at 10 ° C. under a nitrogen stream. Stirred. Here, 7-oxabicyclo [2.2.1] heptanedimethylamines (7-oxabicyclo [2.2.1] heptane-2,5-dimethylamine and 7-oxabicyclo [2.2.1] heptane A mixed solution of 7.81 g (0.050 mol) of a mixture containing -2,6-dimethylamine as a component) and 7.81 g of N, N-dimethylacetamide was gradually added dropwise over 90 minutes. Thereafter, the mixture was stirred at room temperature for 5 hours, then heated to 50 ° C. and further stirred for 5 hours. After cooling, the logarithmic viscosity of the obtained polyamic acid was 0.84 dl / g, and the E-type mechanical viscosity was 34900 mPa · s. In the molecular weight measurement by GPC, the number average molecular weight (Mn) was 28,000, the weight average molecular weight (Mw) was 101,000, and the molecular weight distribution (Mw / Mn) was 3.61.
The resulting varnish was cast on a glass plate and baked under a nitrogen stream from room temperature to 250 ° C. for 2 hours and at 250 ° C. for 2 hours to obtain a polyimide film having a thickness of 42 μm. The appearance of the obtained polyimide film was almost colorless and transparent. When measured from room temperature to 350 ° C. in a nitrogen atmosphere by DSC, the glass transition temperature (Tg) of this film was not observed. Therefore, Tg is considered to exceed 350 ° C. The 5% weight loss temperature (Td5) was 423 ° C. Further, the light transmittance of this film was 85.3% at 500 nm, 82.4% at 450 nm, and 76.3% at 400 nm.
[0037]
【The invention's effect】
The 7-oxabicyclo [2.2.1] heptanedimethylamines of the present invention can produce a polyimide polymer by reacting with an acid anhydride. This polyimide polymer has excellent physical properties such as heat resistance, mechanical properties, and low moisture absorption inherent to polyimide, as well as excellent heat resistance, optical properties, chemical resistance, electrical properties, and melt fluidity. Therefore, for example, in the fields of optical fibers, optical waveguides, optical disk substrates, optical lenses, optical filters, etc., high light transmittance (colorless transparency) that satisfies the heat resistance required for use at high temperatures ) Is useful as a polyimide.
[0038]
In addition, the 7-oxabicyclo [2.2.1] heptanedimethylamines of the present invention can produce a polyamide polymer by reacting with a dicarboxylic acid compound. Further, a diisocyanate compound useful as a urethane raw material can be produced. It can be derived into a curing agent such as an epoxy resin, and is also useful as a raw material in various organic chemical industries such as pharmaceutical intermediates and agricultural chemical intermediates.
Further, according to the production method of the present invention, 7-oxabicyclo [2.2.1] heptanedimethylamines can be produced in a high yield with industrial productivity.
[Brief description of the drawings]
FIG. 1 shows the results of identification of Example 1, wherein 7-oxabicyclo [2.2.1] heptane-2,5-dimethylamine and 7-oxabicyclo [2.2.1] heptane-2 were used. FIG. 3 is a mass spectrum diagram of a mixture of 2,6-dimethylamine.

Claims (2)

下記式(I)(化1)で表される7−オキサビシクロ〔2.2.1〕ヘプタンジメチルアミン類。
Figure 2004083532
7-oxabicyclo [2.2.1] heptanedimethylamines represented by the following formula (I):
Figure 2004083532
下記式(II)(化3)で表される7−オキサビシクロ〔2.2.1〕ヘプタンジカルボニトリル類を触媒の存在下、水素化することを特徴とする請求項1記載の7−オキサビシクロ〔2.2.1〕ヘプタンジメチルアミン類の製造方法。
Figure 2004083532
The 7-oxabicyclo [2.2.1] heptanedicarbonitrile represented by the following formula (II) (Chemical Formula 3) is hydrogenated in the presence of a catalyst. A method for producing oxabicyclo [2.2.1] heptanedimethylamines.
Figure 2004083532
JP2002249848A 2002-08-29 2002-08-29 7-oxabicyclo[2.2.1]heptanedimethylamines and their production methods Pending JP2004083532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002249848A JP2004083532A (en) 2002-08-29 2002-08-29 7-oxabicyclo[2.2.1]heptanedimethylamines and their production methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002249848A JP2004083532A (en) 2002-08-29 2002-08-29 7-oxabicyclo[2.2.1]heptanedimethylamines and their production methods

Publications (1)

Publication Number Publication Date
JP2004083532A true JP2004083532A (en) 2004-03-18

Family

ID=32056826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002249848A Pending JP2004083532A (en) 2002-08-29 2002-08-29 7-oxabicyclo[2.2.1]heptanedimethylamines and their production methods

Country Status (1)

Country Link
JP (1) JP2004083532A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306812A (en) * 2004-04-23 2005-11-04 Shin Etsu Chem Co Ltd Nitrogen-containing organic compound, chemical amplification-type resist material and method for forming pattern

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306812A (en) * 2004-04-23 2005-11-04 Shin Etsu Chem Co Ltd Nitrogen-containing organic compound, chemical amplification-type resist material and method for forming pattern
KR100829700B1 (en) 2004-04-23 2008-05-14 신에쓰 가가꾸 고교 가부시끼가이샤 Nitrogen-Containing Organic Compound, Chemically Amplified Resist Composition and Patterning Process
JP4502115B2 (en) * 2004-04-23 2010-07-14 信越化学工業株式会社 Nitrogen-containing organic compound, chemically amplified resist material, and pattern forming method

Similar Documents

Publication Publication Date Title
JP5140900B2 (en) Amino compound and method for producing the same
JP6882737B2 (en) Benzoxazine compound, its production method and benzoxazine resin
KR20070108370A (en) High-purity alicyclic diepoxy compound and process for producing the same
US8492542B2 (en) Method for producing bicyclic guanidines by use of a cyclic thiourea
WO2018056459A1 (en) Method for producing polyamide
JP2004083532A (en) 7-oxabicyclo[2.2.1]heptanedimethylamines and their production methods
JP4611287B2 (en) Method for producing alicyclic oxetane compound
WO2006085493A1 (en) Aromatic diamine and process for producing the same
JP5591856B2 (en) (Meth) acrylamide compound precursor
US20040082819A1 (en) Purification process of fluorenylidenediallyphenol
EP1321453A2 (en) N-(Aminopropyl)-toluenediamines and their use as epoxy curing agents
JP7141219B2 (en) Method for producing alicyclic carbonate
JPS62123154A (en) Production of 3-aminomethyl-3,5,5-trimethylcyclohexylamine
JP2010163414A (en) Method for producing cyclic aliphatic diamine having trans-structure
KR102592383B1 (en) Diamine compound and method for producing intermediate thereof
JP2005068099A (en) New alicyclic dicarbamide compound and method for producing the same
Fan et al. Poly (ester amide) s from biomass‐based 3, 4‐dihydrocoumarine through Meldrum's acid mediated ketene chemistry
JP4016301B2 (en) Novel azo group-containing aromatic compound and process for producing the same
JP4250040B2 (en) Method for producing novel alicyclic diamine compound
Georgiades et al. N-(2-biphenylenyl)-4-[2′-phenylethynyl] phthalimide—new monomer synthesis, cure and thermal properties of resulting high temperature polymer
JP3297093B2 (en) Novel diamines and method for producing the same
JP4004320B2 (en) Tetracyclododecanedicarbonitriles and methods for producing them
JP2816002B2 (en) 4,4&#39;-bis (3-aminobenzoyl) biphenyl and method for producing the same
JPS63107976A (en) Novel polymaleimide compound and production thereof
JPH04103564A (en) Production of bis(3-aminophenoxy) compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080805